
Network Working Group A. Melnikov, Ed.
Request for Comments: 4549 Isode Ltd.
Category: Informational June 2006

 Synchronization Operations for Disconnected IMAP4 Clients

Status of This Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 This document attempts to address some of the issues involved in
 building a disconnected IMAP4 client. In particular, it deals with
 the issues of what might be called the "driver" portion of the
 synchronization tool: the portion of the code responsible for issuing
 the correct set of IMAP4 commands to synchronize the disconnected
 client in the way that is most likely to make the human who uses the
 disconnected client happy.

 This note describes different strategies that can be used by
 disconnected clients and shows how to use IMAP protocol in order to
 minimize the time of the synchronization process.

 This note also lists IMAP extensions that a server should implement
 in order to provide better synchronization facilities to disconnected
 clients.

Melnikov Informational [Page 1]

RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006

Table of Contents

 1. Introduction ..3
 1.1. Conventions Used in This Document3
 2. Design Principles ...3
 3. Overall Picture of Synchronization4
 4. Mailbox Synchronization Steps and Strategies7
 4.1. Checking UID Validity7
 4.2. Synchronizing Local Changes with the Server8
 4.2.1. Uploading Messages to the Mailbox8
 4.2.2. Optimizing "move" and "copy" Operations9
 4.2.3. Replaying Local Flag Changes14
 4.2.4. Processing Mailbox Compression (EXPUNGE) Requests ..15
 4.2.5. Closing a Mailbox17
 4.3. Details of "Normal" Synchronization of a Single Mailbox ...18
 4.3.1. Discovering New Messages and Changes to Old
 Messages ...18
 4.3.2. Searching for "Interesting" Messages.20
 4.3.3. Populating Cache with "Interesting" Messages.21
 4.3.4. User-Initiated Synchronization22
 4.4. Special Case: Descriptor-Only Synchronization22
 4.5. Special Case: Fast New-Only Synchronization23
 4.6. Special Case: Blind FETCH23
 5. Implementation Considerations24
 5.1. Error Recovery during Playback26
 5.2. Quality of Implementation Issues28
 5.3. Optimizations ...28
 6. IMAP Extensions That May Help30
 6.1. CONDSTORE Extension30
 7. Security Considerations ..33
 8. References ...33
 8.1. Normative References33
 8.2. Informative References34
 9. Acknowledgements ...34

Melnikov Informational [Page 2]

RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006

1. Introduction

 Several recommendations presented in this document are generally
 applicable to all types of IMAP clients. However, this document
 tries to concentrate on disconnected mail clients [IMAP-MODEL]. It
 also suggests some IMAP extensions* that should be implemented by
 IMAP servers in order to make the life of disconnected clients
 easier. In particular, the [UIDPLUS] extension was specifically
 designed to streamline certain disconnected operations, like
 expunging, uploading, and copying messages (see Sections 4.2.1,
 4.2.2.1, and 4.2.4).

 Readers of this document are also strongly advised to read RFC 2683
 [RFC2683].

 * Note that the functionality provided by the base IMAP protocol
 [IMAP4] is sufficient to perform basic synchronization.

1.1. Conventions Used in This Document

 In examples, "C:" and "S:" indicate lines sent by the client and
 server, respectively. Long lines in examples are broken for
 editorial clarity.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [KEYWORDS].

 Let’s call an IMAP command idempotent if the result of executing the
 command twice sequentially is the same as the result of executing the
 command just once.

2. Design Principles

 All mailbox state or content information stored on the disconnected
 client should be viewed strictly as a cache of the state of the
 server. The "master" state remains on the server, just as it would
 with an interactive IMAP4 client. The one exception to this rule is
 that information about the state of the disconnected client’s cache
 (the state includes flag changes while offline and during scheduled
 message uploads) remains on the disconnected client: that is, the
 IMAP4 server is not responsible for remembering the state of the
 disconnected IMAP4 client.

 We assume that a disconnected client is a client that, for whatever
 reason, wants to minimize the length of time that it is "on the
 phone" to the IMAP4 server. Often this will be because the client is
 using a dialup connection, possibly with very low bandwidth, but

Melnikov Informational [Page 3]

RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006

 sometimes it might just be that the human is in a hurry to catch an
 airplane, or some other event beyond our control. Whatever the
 reason, we assume that we must make efficient use of the network
 connection, both in the usual sense (not generating spurious traffic)
 and in the sense that we would prefer not to have the connection
 sitting idle while the client and/or the server is performing
 strictly local computation or I/O. Another, perhaps simpler way of
 stating this is that we assume that network connections are
 "expensive".

 Practical experience with disconnected mail systems has shown that
 there is no single synchronization strategy that is appropriate for
 all cases. Different humans have different preferences, and the same
 human’s preference will vary depending both on external circumstance
 (how much of a hurry the human is in today) and on the value that the
 human places on the messages being transferred. The point here is
 that there is no way that the synchronization program can guess
 exactly what the human wants to do, so the human will have to provide
 some guidance.

 Taken together, the preceding two principles lead to the conclusion
 that the synchronization program must make its decisions based on
 some kind of guidance provided by the human, by selecting the
 appropriate options in the user interface or through some sort of
 configuration file. Almost certainly, it should not pause for I/O
 with the human in the middle of the synchronization process. The
 human will almost certainly have several different configurations for
 the synchronization program, for different circumstances.

 Since a disconnected client has no way of knowing what changes might
 have occurred to the mailbox while it was disconnected, message
 numbers are not useful to a disconnected client. All disconnected
 client operations should be performed using UIDs, so that the client
 can be sure that it and the server are talking about the same
 messages during the synchronization process.

3. Overall Picture of Synchronization

 The basic strategy for synchronization is outlined below. Note that
 the real strategy may vary from one application to another or may
 depend on a synchronization mode.

 a) Process any "actions" that were pending on the client that were
 not associated with any mailbox. (In particular sending messages
 composed offline with SMTP. This is not part of IMAP
 synchronization, but it is mentioned here for completeness.)

Melnikov Informational [Page 4]

RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006

 b) Fetch the current list of "interesting" mailboxes. (The
 disconnected client should allow the user to skip this step
 completely.)

 c) "Client-to-server synchronization": for each IMAP "action" that
 was pending on the client, do the following:

 1) If the action implies opening a new mailbox (any operation that
 operates on messages), open the mailbox. Check its UID
 validity value (see Section 4.1 for more details) returned in
 the UIDVALIDITY response code. If the UIDVALIDITY value
 returned by the server differs, the client MUST empty the local
 cache of the mailbox and remove any pending "actions" that
 refer to UIDs in that mailbox (and consider them failed). Note
 that this doesn’t affect actions performed on client-generated
 fake UIDs (see Section 5).

 2) Perform the action. If the action is to delete a mailbox
 (DELETE), make sure that the mailbox is closed first (see also
 Section 3.4.12 of [RFC2683]).

 d) "Server-to-client synchronization": for each mailbox that requires
 synchronization, do the following:

 1) Check the mailbox UIDVALIDITY (see Section 4.1 for more
 details) with SELECT/EXAMINE/STATUS.

 If UIDVALIDITY value returned by the server differs, the client
 MUST

 * empty the local cache of that mailbox;
 * remove any pending "actions" that refer to UIDs in that
 mailbox and consider them failed; and
 * skip step 2-II.

 2) Fetch the current "descriptors";

 I) Discover new messages.

 II) Discover changes to old messages.

 3) Fetch the bodies of any "interesting" messages that the client
 doesn’t already have.

 e) Close all open mailboxes not required for further operations (if
 staying online) or disconnect all open connections (if going
 offline).

Melnikov Informational [Page 5]

RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006

 Terms used:

 "Actions" are queued requests that were made by the human to the
 client’s Mail User Agent (MUA) software while the client was
 disconnected.

 We define "descriptors" as a set of IMAP4 FETCH data items.
 Conceptually, a message’s descriptor is that set of information that
 allows the synchronization program to decide what protocol actions
 are necessary to bring the local cache to the desired state for this
 message; since this decision is really up to the human, this
 information probably includes at least a few header fields intended
 for human consumption. Exactly what will constitute a descriptor
 depends on the client implementation. At a minimum, the descriptor
 contains the message’s UID and FLAGS. Other likely candidates are
 the RFC822.SIZE, RFC822.HEADER, BODYSTRUCTURE, or ENVELOPE data
 items.

 Comments:

 1) The list of actions should be ordered. For example, if the human
 deletes message A1 in mailbox A, then expunges mailbox A, and then
 deletes message A2 in mailbox A, the human will expect that
 message A1 is gone and that message A2 is still present but is now
 deleted.

 By processing all the actions before proceeding with
 synchronization, we avoid having to compensate for the local MUA’s
 changes to the server’s state. That is, once we have processed
 all the pending actions, the steps that the client must take to
 synchronize itself will be the same no matter where the changes to
 the server’s state originated.

 2) Steps a and b can be performed in parallel. Alternatively, step a
 can be performed after d.

 3) On step b, the set of "interesting" mailboxes pretty much has to
 be determined by the human. What mailboxes belong to this set may
 vary between different IMAP4 sessions with the same server,
 client, and human. An interesting mailbox can be a mailbox
 returned by LSUB command (see Section 6.3.9 of [IMAP4]). The
 special mailbox "INBOX" SHOULD be in the default set of mailboxes
 that the client considers interesting. However, providing the
 ability to ignore INBOX for a particular session or client may be
 valuable for some mail filtering strategies.

Melnikov Informational [Page 6]

RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006

 4) On step d-2-II, the client also finds out about changes to the
 flags of messages that the client already has in its local cache,
 and about messages in the local cache that no longer exist on the
 server (i.e., messages that have been expunged).

 5) "Interesting" messages are those messages that the synchronization
 program thinks the human wants to have cached locally, based on
 the configuration and the data retrieved in step b.

 6) A disconnected IMAP client is a special case of an IMAP client, so
 it MUST be able to handle any "unexpected" unsolicited responses,
 like EXISTS and EXPUNGE, at any time. The disconnected client MAY
 ignore EXPUNGE response during "client-to-server" synchronization
 phase (step c).

 The rest of this discussion will focus primarily on the
 synchronization issues for a single mailbox.

4. Mailbox Synchronization Steps and Strategies

4.1. Checking UID Validity

 The "UID validity" of a mailbox is a number returned in an
 UIDVALIDITY response code in an OK untagged response at mailbox
 selection time. The UID validity value changes between sessions when
 UIDs fail to persist between sessions.

 Whenever the client selects a mailbox, the client must compare the
 returned UID validity value with the value stored in the local cache.
 If the UID validity values differ, the UIDs in the client’s cache are
 no longer valid. The client MUST then empty the local cache of that
 mailbox and remove any pending "actions" that refer to UIDs in that
 mailbox. The client MAY also issue a warning to the human. The
 client MUST NOT cancel any scheduled uploads (i.e., APPENDs) for the
 mailbox.

 Note that UIDVALIDITY is not only returned on a mailbox selection.
 The COPYUID and APPENDUID response codes defined in the [UIDPLUS]
 extension (see also 4.2.2) and the UIDVALIDITY STATUS response data
 item also contain a UIDVALIDITY value for some other mailbox. The
 client SHOULD behave as described in the previous paragraph (but it
 should act on the other mailbox’s cache), no matter how it obtained
 the UIDVALIDITY value.

Melnikov Informational [Page 7]

RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006

4.2. Synchronizing Local Changes with the Server

4.2.1. Uploading Messages to the Mailbox

 Two of the most common examples of operations resulting in message
 uploads are:

 1) Saving a draft message

 2) Copying a message between remote mailboxes on two different IMAP
 servers or a local mailbox and a remote mailbox.

 Message upload is performed with the APPEND command. A message
 scheduled to be uploaded has no UID associated with it, as all UIDs
 are assigned by the server. The APPEND command will effectively
 associate a UID with the uploaded message that can be stored in the
 local cache for future reference. However, [IMAP4] doesn’t describe
 a simple mechanism to discover the message UID by just performing the
 APPEND command. In order to discover the UID, the client can do one
 of the following:

 1) Remove the uploaded message from cache. Then, use the mechanism
 described in 4.3 to fetch the information about the uploaded
 message as if it had been uploaded by some other client.

 2) Try to fetch header information as described in 4.2.2 in order to
 find a message that corresponds to the uploaded message. One
 strategy for doing this is described in 4.2.2.

 Case 1 describes a not particularly smart client.

 C: A003 APPEND Drafts (\Seen $MDNSent) {310}
 S: + Ready for literal data
 C: Date: Mon, 7 Feb 1994 21:52:25 -0800 (PST)
 C: From: Fred Foobar <foobar@blt.example.COM>
 C: Subject: afternoon meeting
 C: To: mooch@owatagu.siam.edu
 C: Message-Id: <B27397-0100000@blt.example.COM>
 C: MIME-Version: 1.0
 C: Content-Type: TEXT/PLAIN; CHARSET=US-ASCII
 C:
 C: Hello Joe, do you think we can meet at 3:30 tomorrow?
 C:
 S: A003 OK APPEND Completed

 Fortunately, there is a simpler way to discover the message UID in
 the presence of the [UIDPLUS] extension:

Melnikov Informational [Page 8]

RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006

 C: A003 APPEND Drafts (\Seen $MDNSent) {310}
 S: + Ready for literal data
 C: Date: Mon, 7 Feb 1994 21:52:25 -0800 (PST)
 C: From: Fred Foobar <foobar@blt.example.COM>
 C: Subject: afternoon meeting
 C: To: mooch@owatagu.siam.edu
 C: Message-Id: <B27397-0100000@blt.example.COM>
 C: MIME-Version: 1.0
 C: Content-Type: TEXT/PLAIN; CHARSET=US-ASCII
 C:
 C: Hello Joe, do you think we can meet at 3:30 tomorrow?
 C:
 S: A003 OK [APPENDUID 1022843275 77712] APPEND completed

 The UID of the appended message is the second parameter of APPENDUID
 response code.

4.2.2. Optimizing "move" and "copy" Operations

 Practical experience with IMAP and other mailbox access protocols
 that support multiple mailboxes suggests that moving a message from
 one mailbox to another is an extremely common operation.

4.2.2.1. Moving a Message between Two Mailboxes on the Same Server

 In IMAP4, a "move" operation between two mailboxes on the same server
 is really a combination of a COPY operation and a STORE +FLAGS
 (\Deleted) operation. This makes good protocol sense for IMAP, but
 it leaves a simple-minded disconnected client in the silly position
 of deleting and possibly expunging its cached copy of a message, then
 fetching an identical copy via the network.

 However, the presence of the UIDPLUS extension in the server can
 help:

 C: A001 UID COPY 567,414 "Interesting Messages"
 S: A001 OK [COPYUID 1022843275 414,567 5:6] Completed

 This tells the client that the message with UID 414 in the current
 mailbox was successfully copied to the mailbox "Interesting Messages"
 and was given the UID 5, and that the message with UID 567 was given
 the UID 6.

 In the absence of UIDPLUS extension support in the server, the
 following trick can be used. By including the Message-ID: header and
 the INTERNALDATE data item as part of the descriptor, the client can
 check the descriptor of a "new" message against messages that are
 already in its cache and avoid fetching the extra copy. Of course,

Melnikov Informational [Page 9]

RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006

 it’s possible that the cost of checking to see if the message is
 already in the local cache may exceed the cost of just fetching it,
 so this technique should not be used blindly. If the MUA implements
 a "move" command, it makes special provisions to use this technique
 when it knows that a copy/delete sequence is the result of a "move"
 command.

 Note that servers are not required (although they are strongly
 encouraged with "SHOULD language") to preserve INTERNALDATE when
 copying messages.

 Also note that since it’s theoretically possible for this algorithm
 to find the wrong message (given sufficiently malignant Message-ID
 headers), implementers should provide a way to disable this
 optimization, both permanently and on a message-by-message basis.

 Example 1: Copying a message in the absence of UIDPLUS extension.

 At some point in time the client has fetched the source message and
 some information was cached:

 C: C021 UID FETCH <uids> (BODY.PEEK[] INTERNALDATE FLAGS)
 ...
 S: * 27 FETCH (UID 123 INTERNALDATE "31-May-2002 05:26:59 -0600"
 FLAGS (\Draft $MDNSent) BODY[] {1036}
 S: ...
 S: Message-Id: <20040903110856.22a127cd@chardonnay>
 S: ...
 S: ...message body...
 S:)
 ...
 S: C021 OK fetch completed

 Later on, the client decides to copy the message:

 C: C035 UID COPY 123 "Interesting Messages"
 S: C035 OK Completed

 As the server hasn’t provided the COPYUID response code, the client
 tries the optimization described above:

 C: C036 SELECT "Interesting Messages"
 ...
 C: C037 UID SEARCH ON 31-May-2002 HEADER
 "Message-Id" "20040903110856.22a127cd@chardonnay"
 S: SEARCH 12368
 S: C037 OK completed

Melnikov Informational [Page 10]

RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006

 Note that if the server has returned multiple UIDs in the SEARCH
 response, the client MUST NOT use any of the returned UID.

4.2.2.2. Moving a Message from a Remote Mailbox to a Local

 Moving a message from a remote mailbox to a local is done with FETCH
 (that includes FLAGS and INTERNALDATE) followed by UID STORE <uid>
 +FLAGS.SILENT (\Deleted):

 C: A003 UID FETCH 123 (BODY.PEEK[] INTERNALDATE FLAGS)
 S: * 27 FETCH (UID 123 INTERNALDATE "31-May-2002 05:26:59 -0600"
 FLAGS (\Seen $MDNSent) BODY[]
 S: ...message body...
 S:)
 S: A003 OK UID FETCH completed
 C: A004 UID STORE <uid> +FLAGS.SILENT (\Deleted)
 S: A004 STORE completed

 Note that there is no reason to fetch the message during
 synchronization if it’s already in the client’s cache. Also, the
 client SHOULD preserve delivery date in the local cache.

4.2.2.3. Moving a Message from a Local Mailbox to a Remote

 Moving a message from a local mailbox to a remote is done with
 APPEND:

 C: A003 APPEND Drafts (\Seen $MDNSent) "31-May-2002 05:26:59 -0600"
 {310}
 S: + Ready for literal data
 C: Date: Mon, 7 Feb 1994 21:52:25 -0800 (PST)
 C: From: Fred Foobar <foobar@blt.example.COM>
 C: Subject: afternoon meeting
 C: To: mooch@owatagu.siam.edu
 C: Message-Id: <B27397-0100000@blt.example.COM>
 C: MIME-Version: 1.0
 C: Content-Type: TEXT/PLAIN; CHARSET=US-ASCII
 C:
 C: Hello Joe, do you think we can meet at 3:30 tomorrow?
 C:
 S: A003 OK [APPENDUID 1022843275 77712] completed

 The client SHOULD specify the delivery date from the local cache in
 the APPEND.

 If the [LITERAL+] extension is available, the client can save a
 round-trip*:

Melnikov Informational [Page 11]

RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006

 C: A003 APPEND Drafts (\Seen $MDNSent) "31-May-2002 05:26:59 -0600"
 {310+}
 C: Date: Mon, 7 Feb 1994 21:52:25 -0800 (PST)
 C: From: Fred Foobar <foobar@blt.example.COM>
 C: Subject: afternoon meeting
 C: To: mooch@owatagu.siam.edu
 C: Message-Id: <B27397-0100000@blt.example.COM>
 C: MIME-Version: 1.0
 C: Content-Type: TEXT/PLAIN; CHARSET=US-ASCII
 C:
 C: Hello Joe, do you think we can meet at 3:30 tomorrow?
 C:
 S: A003 OK [APPENDUID 1022843275 77712] completed

 * Note that there is a risk that the server will reject the message
 due to its size. If this happens, the client will waste bandwidth
 transferring the whole message. If the client wouldn’t have used
 the LITERAL+, this could have been avoided:

 C: A003 APPEND Drafts (\Seen $MDNSent) "31-May-2004 05:26:59 -0600"
 {16777215}
 S: A003 NO Sorry, message is too big

4.2.2.4. Moving a Message between Two Mailboxes on Different Servers

 Moving a message between two mailbox on two different servers is a
 combination of the operations described in 4.2.2.2 followed by the
 operations described in 4.2.2.3.

4.2.2.5. Uploading Multiple Messages to a Remote Mailbox with
 MULTIAPPEND

 When there is a need to upload multiple messages to a remote mailbox
 (e.g., as per 4.2.2.3), the presence of certain IMAP extensions may
 significantly improve performance. One of them is [MULTIAPPEND].

 For some mail stores, opening a mailbox for appending might be
 expensive. [MULTIAPPEND] tells the server to open the mailbox once
 (instead of opening and closing it "n" times per "n" messages to be
 uploaded) and to keep it open while a group of messages is being
 uploaded to the server.

 Also, if the server supports both [MULTIAPPEND] and [LITERAL+]
 extensions, the entire upload is accomplished in a single
 command/response round-trip.

Melnikov Informational [Page 12]

RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006

 Note: Client implementers should be aware that [MULTIAPPEND] performs
 append of multiple messages atomically. This means, for example, if
 there is not enough space to save "n"-th message (or the message has
 invalid structure and is rejected by the server) after successful
 upload of "n-1" messages, the whole upload operation fails, and no
 message will be saved in the mailbox. Although this behavior might
 be desirable in certain situations, it might not be what you want.
 Otherwise, the client should use the regular APPEND command (Section
 4.2.2.3), possibly utilizing the [LITERAL+] extension. See also
 Section 5.1 for discussions about error recovery.

 Note: MULTIAPPEND can be used together with the UIDPLUS extension in
 a way similar to what was described in Section 4.2.1. [MULTIAPPEND]
 extends the syntax of the APPENDUID response code to allow for
 multiple message UIDs in the second parameter.

 Example 2:

 This example demonstrates the use of MULTIAPPEND together with
 UIDPLUS (synchronization points where the client waits for
 confirmations from the server are marked with "<--->"):

 C: A003 APPEND Jan-2002 (\Seen $MDNSent) "31-May-2002 05:26:59 -0600"
 {310}
 <--->
 S: + Ready for literal data
 C: Date: Mon, 7 Feb 1994 21:52:25 -0800 (PST)
 C: From: Fred Foobar <foobar@blt.example.COM>
 C: Subject: afternoon meeting
 C: To: mooch@owatagu.siam.edu
 C: Message-Id: <B27397-0100000@blt.example.COM>
 C: MIME-Version: 1.0
 C: Content-Type: TEXT/PLAIN; CHARSET=US-ASCII
 C:
 C: Hello Joe, do you think we can meet at 3:30 tomorrow?
 C: (\Seen) " 1-Jun-2002 22:43:04 -0800" {286}
 <--->
 S: + Ready for literal data
 C: Date: Mon, 7 Feb 1994 22:43:04 -0800 (PST)
 C: From: Joe Mooch <mooch@OWaTaGu.siam.EDU>
 C: Subject: Re: afternoon meeting
 C: To: foobar@blt.example.com
 C: Message-Id: <a0434793874930@OWaTaGu.siam.EDU>
 C: MIME-Version: 1.0
 C: Content-Type: TEXT/PLAIN; CHARSET=US-ASCII
 C:
 C: 3:30 is fine with me.
 C:

Melnikov Informational [Page 13]

RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006

 S: A003 OK [APPENDUID 1022843275 77712,77713] completed

 The upload takes 3 round-trips.

 Example 3:

 In this example, Example 2 was modified for the case when the server
 supports MULTIAPPEND, LITERAL+, and UIDPLUS. The upload takes only 1
 round-trip.

 C: A003 APPEND Jan-2002 (\Seen $MDNSent) "31-May-2002 05:26:59 -0600"
 {310+}
 C: Date: Mon, 7 Feb 1994 21:52:25 -0800 (PST)
 C: From: Fred Foobar <foobar@blt.example.COM>
 C: Subject: afternoon meeting
 C: To: mooch@owatagu.siam.edu
 C: Message-Id: <B27397-0100000@blt.example.COM>
 C: MIME-Version: 1.0
 C: Content-Type: TEXT/PLAIN; CHARSET=US-ASCII
 C:
 C: Hello Joe, do you think we can meet at 3:30 tomorrow?
 C: (\Seen) " 1-Jun-2002 22:43:04 -0800" {286+}
 C: Date: Mon, 7 Feb 1994 22:43:04 -0800 (PST)
 C: From: Joe Mooch <mooch@OWaTaGu.siam.EDU>
 C: Subject: Re: afternoon meeting
 C: To: foobar@blt.example.com
 C: Message-Id: <a0434793874930@OWaTaGu.siam.EDU>
 C: MIME-Version: 1.0
 C: Content-Type: TEXT/PLAIN; CHARSET=US-ASCII
 C:
 C: 3:30 is fine with me.
 C:
 S: A003 OK [APPENDUID 1022843275 77712,77713] completed

4.2.3. Replaying Local Flag Changes

 The disconnected client uses the STORE command to synchronize local
 flag state with the server. The disconnected client SHOULD use
 +FLAGS.SILENT or -FLAGS.SILENT in order to set or unset flags
 modified by the user while offline. The FLAGS form MUST NOT be used,
 as there is a risk that this will overwrite flags on the server that
 have been changed by some other client.

 Example 4:

 For the message with UID 15, the disconnected client stores the
 following flags \Seen and $Highest. The flags were modified on the
 server by some other client: \Seen, \Answered, and $Highest. While

Melnikov Informational [Page 14]

RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006

 offline, the user requested that the $Highest flags be removed and
 that the \Deleted flag be added. The flag synchronization sequence
 for the message should look like:

 C: A001 UID STORE 15 +FLAGS.SILENT (\Deleted)
 S: A001 STORE completed
 C: A002 UID STORE 15 -FLAGS.SILENT ($Highest)
 S: A002 STORE completed

 If the disconnected client is able to store an additional binary
 state information (or a piece of information that can take a value
 from a predefined set of values) in the local cache of an IMAP
 mailbox or in a local mailbox (e.g., message priority), and if the
 server supports storing of arbitrary keywords, the client MUST use
 keywords to store this state on the server.

 Example 5:

 Imagine a speculative mail client that can mark a message as one of
 work-related ($Work), personal ($Personal), or spam ($Spam). In
 order to mark a message as personal, the client issues:

 C: A001 UID STORE 15 +FLAGS.SILENT ($Personal)
 S: A001 STORE completed
 C: A002 UID STORE 15 -FLAGS.SILENT ($Work $Spam)
 S: A002 STORE completed

 In order to mark the message as not work, not personal and not spam,
 the client issues:

 C: A003 UID STORE 15 -FLAGS.SILENT ($Personal $Work $Spam)
 S: A003 STORE completed

4.2.4. Processing Mailbox Compression (EXPUNGE) Requests

 A naive disconnected client implementation that supports compressing
 a mailbox while offline may decide to issue an EXPUNGE command to the
 server in order to expunge messages marked \Deleted. The problem
 with this command during synchronization is that it permanently
 erases all messages with the \Deleted flag set, i.e., even those
 messages that were marked as \Deleted on the server while the user
 was offline. Doing this might result in an unpleasant surprise for
 the user.

 Fortunately the [UIDPLUS] extension can help in this case as well.
 The extension introduces UID EXPUNGE command, that, unlike EXPUNGE,
 takes a UID set parameter, that lists UIDs of all messages that can
 be expunged. When processing this command the server erases only

Melnikov Informational [Page 15]

RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006

 messages with \Deleted flag listed in the UID list. Thus, messages
 not listed in the UID set will not be expunged even if they have the
 \Deleted flag set.

 Example 6:

 While the user was offline, 3 messages with UIDs 7, 27, and 65 were
 marked \Deleted when the user requested to compress the open mailbox.
 Another client marked a message \Deleted on the server (UID 34).
 During synchronization, the disconnected client issues:

 C: A001 UID EXPUNGE 7,27,65
 S: * ... EXPUNGE
 S: * ... EXPUNGE
 S: * ... EXPUNGE
 S: A001 UID EXPUNGE completed

 If another client issues UID SEARCH DELETED command (to find all
 messages with the \Deleted flag) before and after the UID EXPUNGE, it
 will get:

 Before:

 C: B001 UID SEARCH DELETED
 S: * SEARCH 65 34 27 7
 S: B001 UID SEARCH completed

 After:

 C: B002 UID SEARCH DELETED
 S: * SEARCH 34
 S: B002 UID SEARCH completed

 In the absence of the [UIDPLUS] extension, the following sequence of
 commands can be used as an approximation. Note: It’s possible for
 another client to mark additional messages as deleted while this
 sequence is being performed. In this case, these additional messages
 will be expunged as well.

 1) Find all messages marked \Deleted on the server.

 C: A001 UID SEARCH DELETED
 S: * SEARCH 65 34 27 7
 S: A001 UID SEARCH completed

 2) Find all messages that must not be erased (for the previous
 example the list will consist of the message with UID 34).

Melnikov Informational [Page 16]

RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006

 3) Temporarily remove \Deleted flag on all messages found in step 2.

 C: A002 UID STORE 34 -FLAGS.SILENT (\Deleted)
 S: A002 UID STORE completed

 4) Expunge the mailbox.

 C: A003 EXPUNGE
 S: * 20 EXPUNGE
 S: * 7 EXPUNGE
 S: * 1 EXPUNGE
 S: A003 EXPUNGE completed

 Here, the message with UID 7 has message number 1, with UID 27 has
 message number 7, and with UID 65 has message number 20.

 5) Restore \Deleted flag on all messages found when performing step
 2.

 C: A004 UID STORE 34 +FLAGS.SILENT (\Deleted)
 S: A004 UID STORE completed

4.2.5. Closing a Mailbox

 When the disconnected client has to close a mailbox, it should not
 use the CLOSE command, because CLOSE does a silent EXPUNGE. (Section
 4.2.4 explains why EXPUNGE should not be used by a disconnected
 client.) It is safe to use CLOSE only if the mailbox was opened with
 EXAMINE.

 If the mailbox was opened with SELECT, the client can use one of the
 following commands to implicitly close the mailbox and prevent the
 silent expunge:

 1) UNSELECT - This is a command described in [UNSELECT] that works as
 CLOSE, but doesn’t cause the silent EXPUNGE. This command is
 supported by the server if it reports UNSELECT in its CAPABILITY
 list.

 2) SELECT <another_mailbox> - SELECT causes implicit CLOSE without
 EXPUNGE.

 3) If the client intends to issue LOGOUT after closing the mailbox,
 it may just issue LOGOUT, because LOGOUT causes implicit CLOSE
 without EXPUNGE as well.

 4) SELECT <non_existing_mailbox> - If the client knows a mailbox that
 doesn’t exist or can’t be selected, it MAY SELECT it.

Melnikov Informational [Page 17]

RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006

 If the client opened the mailbox with SELECT and just wants to avoid
 implicit EXPUNGE without closing the mailbox, it may also use the
 following:

 5) EXAMINE <mailbox> - Reselect the same mailbox in read-only mode.

4.3. Details of "Normal" Synchronization of a Single Mailbox

 The most common form of synchronization is where the human trusts the
 integrity of the client’s copy of the state of a particular mailbox
 and simply wants to bring the client’s cache up to date so that it
 accurately reflects the mailbox’s current state on the server.

4.3.1. Discovering New Messages and Changes to Old Messages

 Let <lastseenuid> represent the highest UID that the client knows
 about in this mailbox. Since UIDs are allocated in strictly
 ascending order, this is simply the UID of the last message in the
 mailbox that the client knows about. Let <lastseenuid+1> represent
 <lastseenuid>’s UID plus one. Let <descriptors> represent a list
 consisting of all the FETCH data item items that the implementation
 considers part of the descriptor; at a minimum this is just the FLAGS
 data item, but it usually also includes BODYSTRUCTURE and
 RFC822.SIZE. At this step, <descriptors> SHOULD NOT include RFC822.

 With no further information, the client can issue the following two
 commands:

 tag1 UID FETCH <lastseenuid+1>:* <descriptors>
 tag2 UID FETCH 1:<lastseenuid> FLAGS

 The first command will request some information about "new" messages
 (i.e., messages received by the server since the last
 synchronization). It will also allow the client to build a message
 number to UID map (only for new messages). The second command allows
 the client to

 1) update cached flags for old messages;

 2) find out which old messages got expunged; and

 3) build a mapping between message numbers and UIDs (for old
 messages).

 The order here is significant. We want the server to start returning
 the list of new message descriptors as fast as it can, so that the
 client can start issuing more FETCH commands, so we start out by
 asking for the descriptors of all the messages we know the client

Melnikov Informational [Page 18]

RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006

 cannot possibly have cached yet. The second command fetches the
 information we need to determine what changes may have occurred to
 messages that the client already has cached. Note that the former
 command should only be issued if the UIDNEXT value cached by the
 client differs from the one returned by the server. Once the client
 has issued these two commands, there’s nothing more the client can do
 with this mailbox until the responses to the first command start
 arriving. A clever synchronization program might use this time to
 fetch its local cache state from disk or to start the process of
 synchronizing another mailbox.

 The following is an example of the first FETCH:

 C: A011 UID fetch 131:* (FLAGS BODYSTRUCTURE INTERNALDATE
 RFC822.SIZE)

 Note 1: The first FETCH may result in the server’s sending a huge
 volume of data. A smart disconnected client should use message
 ranges (see also Section 3.2.1.2 of [RFC2683]), so that the user is
 able to execute a different operation between fetching information
 for a group of new messages.

 Example 7:

 Knowing the new UIDNEXT returned by the server on SELECT or EXAMINE
 (<uidnext>), the client can split the UID range
 <lastseenuid+1>:<uidnext> into groups, e.g., 100 messages. After
 that, the client can issue:

 C: A011 UID fetch <lastseenuid+1>:<lastseenuid+100>
 (FLAGS BODYSTRUCTURE INTERNALDATE RFC822.SIZE)
 ...
 C: A012 UID fetch <lastseenuid+101>:<lastseenuid+200>
 (FLAGS BODYSTRUCTURE INTERNALDATE RFC822.SIZE)
 ...
 ...
 C: A0FF UID fetch <lastseenuid+901>:<uidnext>
 (FLAGS BODYSTRUCTURE INTERNALDATE RFC822.SIZE)

 Note that unless a SEARCH command is issued, it is impossible to
 determine how many messages will fall into a subrange, as UIDs are
 not necessarily contiguous.

 Note 2: The client SHOULD ignore any unsolicited EXPUNGE responses
 received during the first FETCH command. EXPUNGE responses contain
 message numbers that are useless to a client that doesn’t have the
 message-number-to-UID translation table.

Melnikov Informational [Page 19]

RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006

 The second FETCH command will result in zero or more untagged fetch
 responses. Each response will have a corresponding UID FETCH data
 item. All messages that didn’t have a matching untagged FETCH
 response MUST be removed from the local cache.

 For example, if the <lastseenuid> had a value 15000 and the local
 cache contained 3 messages with the UIDs 12, 777, and 14999,
 respectively, then after receiving the following responses from the
 server, the client must remove the message with UID 14999 from its
 local cache.

 S: * 1 FETCH (UID 12 FLAGS (\Seen))
 S: * 2 FETCH (UID 777 FLAGS (\Answered \Deleted))

 Note 3: If the client is not interested in flag changes (i.e., the
 client only wants to know which old messages are still on the
 server), the second FETCH command can be substituted with:

 tag2 UID SEARCH UID 1:<lastseenuid>

 This command will generate less traffic. However, an implementor
 should be aware that in order to build the mapping table from message
 numbers to UIDs, the output of the SEARCH command MUST be sorted
 first, because there is no requirement for a server to return UIDs in
 SEARCH response in any particular order.

4.3.2. Searching for "Interesting" Messages.

 This step is performed entirely on the client (from the information
 received in the step described in 4.3.1), entirely on the server, or
 on some combination of both. The decision on what is an
 "interesting" message is up to the client software and the human.
 One easy criterion that should probably be implemented in any client
 is whether the message is "too big" for automatic retrieval, where
 "too big" is a parameter defined in the client’s configuration.

 Another commonly used criterion is the age of a message. For
 example, the client may choose to download only messages received in
 the last week (in this case, <date> would be today’s date minus 7
 days):

 tag3 UID SEARCH UID <uidset> SINCE <date>

 Keep in mind that a date search disregards time and time zone. The
 client can avoid doing this search if it specified INTERNALDATE in
 <descriptors> on the step described in 4.3.1. If the client did, it
 can perform the local search on its message cache.

Melnikov Informational [Page 20]

RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006

 At this step, the client also decides what kind of information about
 a particular message to fetch from the server. In particular, even
 for a message that is considered "too big", the client MAY choose to
 fetch some part(s) of it. For example, if the message is a
 multipart/mixed containing a text part and a MPEG attachment, there
 is no reason for the client not to fetch the text part. The decision
 of which part should or should not be fetched can be based on the
 information received in the BODYSTRUCTURE FETCH response data item
 (i.e., if BODYSTRUCTURE was included in <descriptors> on the step
 described in 4.3.1).

4.3.3. Populating Cache with "Interesting" Messages.

 Once the client has found out which messages are "interesting", it
 can start issuing appropriate FETCH commands for "interesting"
 messages or parts thereof.

 Note that fetching a message into the disconnected client’s local
 cache does NOT imply that the human has (or even will) read the
 message. Thus, the synchronization program for a disconnected client
 should always be careful to use the .PEEK variants of the FETCH data
 items that implicitly set the \Seen flag.

 Once the last descriptor has arrived and the last FETCH command has
 been issued, the client simply needs to process the incoming fetch
 items and use them to update the local message cache.

 In order to avoid deadlock problems, the client must give processing
 of received messages priority over issuing new FETCH commands during
 this synchronization process. This may necessitate temporary local
 queuing of FETCH requests that cannot be issued without causing a
 deadlock. In order to achieve the best use of the "expensive"
 network connection, the client will almost certainly need to pay
 careful attention to any flow-control information that it can obtain
 from the underlying transport connection (usually a TCP connection).

 Note: The requirement stated in the previous paragraph might result
 in an unpleasant user experience, if followed blindly. For example,
 the user might be unwilling to wait for the client to finish
 synchronization before starting to process the user’s requests. A
 smart disconnected client should allow the user to perform requested
 operations in between IMAP commands that are part of the
 synchronization process. See also Note 1 in Section 4.3.1.

Melnikov Informational [Page 21]

RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006

 Example 8:

 After fetching a message BODYSTRUCTURE, the client discovers a
 complex MIME message. Then, it decides to fetch MIME headers of the
 nested MIME messages and some body parts.

 C: A011 UID fetch 11 (BODYSTRUCTURE)
 S: ...
 C: A012 UID fetch 11 (BODY[HEADER] BODY[1.MIME] BODY[1.1.MIME]
 BODY[1.2.MIME] BODY[2.MIME] BODY[3.MIME] BODY[4.MIME]
 BODY[5.MIME] BODY[6.MIME] BODY[7.MIME] BODY[8.MIME] BODY[9.MIME]
 BODY[10.MIME] BODY[11.MIME] BODY[12.MIME] BODY[13.MIME]
 BODY[14.MIME] BODY[15.MIME] BODY[16.MIME] BODY[17.MIME]
 BODY[18.MIME] BODY[19.MIME] BODY[20.MIME] BODY[21.MIME])
 S: ...
 C: A013 UID fetch 11 (BODY[1.1] BODY[1.2])
 S: ...
 C: A014 UID fetch 11 (BODY[3] BODY[4] BODY[5] BODY[6] BODY[7] BODY[8]
 BODY[9] BODY[10] BODY[11] BODY[13] BODY[14] BODY[15] BODY[16]
 BODY[21])
 S: ...

4.3.4. User-Initiated Synchronization

 After the client has finished the main synchronization process as
 described in Sections 4.3.1-4.3.3, the user may optionally request
 additional synchronization steps while the client is still online.
 This is not any different from the process described in Sections
 4.3.2 and 4.3.3.

 Typical examples are:

 1) fetch all messages selected in UI.
 2) fetch all messages marked as \Flagged on the server.

4.4. Special Case: Descriptor-Only Synchronization

 For some mailboxes, fetching the descriptors might be the entire
 synchronization step. Practical experience with IMAP has shown that
 a certain class of mailboxes (e.g., "archival" mailboxes) are used
 primarily for long-term storage of important messages that the human
 wants to have instantly available on demand but does not want
 cluttering up the disconnected client’s cache at any other time.
 Messages in this kind of mailbox would be fetched exclusively by
 explicit actions queued by the local MUA. Thus, the only
 synchronization desirable on this kind of mailbox is fetching enough
 descriptor information for the user to be able to identify messages
 for subsequent download.

Melnikov Informational [Page 22]

RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006

 Special mailboxes that receive messages from a high volume, low
 priority mailing list might also be in this category, at least when
 the human is in a hurry.

4.5. Special Case: Fast New-Only Synchronization

 In some cases, the human might be in such a hurry that he or she
 doesn’t care about changes to old messages, just about new messages.
 In this case, the client can skip the UID FETCH command that obtains
 the flags and UIDs for old messages (1:<lastseenuid>).

4.6. Special Case: Blind FETCH

 In some cases, the human may know (for whatever reason) that he or
 she always wants to fetch any new messages in a particular mailbox,
 unconditionally. In this case, the client can just fetch the
 messages themselves, rather than just the descriptors, by using a
 command like:

 tag1 UID FETCH <lastseenuid+1>:* (FLAGS BODY.PEEK[])

 Note that this example ignores the fact that the messages can be
 arbitrary long. The disconnected client MUST always check for
 message size before downloading, unless explicitly told otherwise. A
 well-behaved client should instead use something like the following:

 1) Issue "tag1 UID FETCH <lastseenuid+1>:* (FLAGS RFC822.SIZE)".

 2) From the message sizes returned in step 1, construct UID set
 <required_messages>.

 3) Issue "tag2 UID FETCH <required_messages> (BODY.PEEK[])".

 or

 1) Issue "tag1 UID FETCH <lastseenuid+1>:* (FLAGS)".

 2) Construct UID set <old_uids> from the responses of step 1.

 3) Issue "tag2 SEARCH UID <old_uids> SMALLER <message_limit>".
 Construct UID set <required_messages> from the result of the
 SEARCH command.

 4) Issue "tag3 UID FETCH <required_messages> (BODY.PEEK[])".

Melnikov Informational [Page 23]

RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006

 or

 1) Issue "tag1 UID FETCH <lastseenuid+1>:* (FLAGS
 BODY.PEEK[]<0.<length>>)", where <length> should be replaced with
 the maximal message size the client is willing to download.

 Note: In response to such a command, the server will only return
 partial data if the message is longer than <length>. It will
 return the full message data for any message whose size is smaller
 than or equal to <length>. In the former case, the client will
 not be able to extract the full MIME structure of the message from
 the truncated data, so the client should include BODYSTRUCTURE in
 the UID FETCH command as well.

5. Implementation Considerations

 Below are listed some common implementation pitfalls that should be
 considered when implementing a disconnected client.

 1) Implementing fake UIDs on the client.

 A message scheduled to be uploaded has no UID, as UIDs are
 selected by the server. The client may implement fake UIDs
 internally in order to reference not-yet-uploaded messages in
 further operations. (For example, a message could be scheduled to
 be uploaded, but subsequently marked as deleted or copied to
 another mailbox). Here, the client MUST NOT under any
 circumstances send these fake UIDs to the server. Also, client
 implementers should be reminded that according to [IMAP4] a UID is
 a 32-bit unsigned integer excluding 0. So, both 4294967295 and
 2147483648 are valid UIDs, and 0 and -1 are both invalid. Some
 disconnected mail clients have been known to send negative numbers
 (e.g., "-1") as message UIDs to servers during synchronization.

 Situation 1: The user starts composing a new message, edits it,
 saves it, continues to edit it, and saves it again.

 A disconnected client may record in its replay log (log of
 operations to be replayed on the server during synchronization)
 the sequence of operations as shown below. For the purpose of
 this situation, we assume that all draft messages are stored in
 the mailbox called Drafts on an IMAP server. We will also use the
 following conventions: <old_uid> is the UID of the intermediate
 version of the draft when it was saved for the first time. This
 is a fake UID generated on the client. <new_uid> is the UID of
 the final version of the draft. This is another fake UID
 generated on the client.

Melnikov Informational [Page 24]

RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006

 1) APPEND Drafts (\Seen $MDNSent \Drafts) {<nnn>}
 ...first version of the message follows...

 2) APPEND Drafts (\Seen $MDNSent \Drafts) {<mmm>}
 ...final version of the message follows...

 3) STORE <old_uid> +FLAGS (\Deleted)

 Step 1 corresponds to the first attempt to save the draft message,
 step 2 corresponds to the second attempt to save the draft
 message, and step 3 deletes the first version of the draft message
 saved in step 1.

 A naive disconnected client may send the command in step 3 without
 replacing the fake client generated <old_uid> with the value
 returned by the server in step 1. A server will probably reject
 this command, which will make the client believe that the
 synchronization sequence has failed.

 2) Section 5.1 discusses common implementation errors related to
 error recovery during playback.

 3) Don’t assume that the disconnected client is the only client used
 by the user.

 Situation 2: Some clients may use the \Deleted flag as an
 indicator that the message should not appear in the user’s view.
 Usage of the \Deleted flag for this purpose is not safe, as other
 clients (e.g., online clients) might EXPUNGE the mailbox at any
 time.

 4) Beware of data dependencies between synchronization operations.

 It might be very tempting for a client writer to perform some
 optimizations on the playback log. Such optimizations might
 include removing redundant operations (for example, see
 optimization 2 in Section 5.3), or their reordering.

 It is not always safe to reorder or remove redundant operations
 during synchronization because some operations may have
 dependencies (as Situation 3 demonstrates). So, if in doubt,
 don’t do this.

 Situation 3: The user copies a message out of a mailbox and then
 deletes the mailbox.

Melnikov Informational [Page 25]

RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006

 C: A001 SELECT Old-Mail
 S: ...
 C: A002 UID COPY 111 ToDo
 S: A002 OK [COPYUID 1022843345 111 94] Copy completed
 ...
 C: A015 CLOSE
 S: A015 OK Completed
 C: A016 DELETE Old-Mail
 S: A016 OK Mailbox deletion completed successfully

 If the client performs DELETE (tag A016) first and COPY (tag A002)
 second, then the COPY fails. Also, the message that the user so
 carefully copied into another mailbox has been lost.

5.1. Error Recovery during Playback

 Error recovery during synchronization is one of the trickiest parts
 to get right. Below, we will discuss certain error conditions and
 suggest possible choices for handling them.

 1) Lost connection to the server.

 The client MUST remember the current position in the playback
 (replay) log and replay it starting from the interrupted operation
 (the last command issued by the client, but not acknowledged by
 the server) the next time it successfully connects to the same
 server. If the connection was lost while executing a non-
 idempotent IMAP command (see the definition in Section 1), then
 when the client is reconnected, it MUST make sure that the
 interrupted command was indeed not executed. If it wasn’t
 executed, the client must restart playback from the interrupted
 command, otherwise from the following command.

 Upon reconnect, care must be taken in order to properly reapply
 logical operations that are represented by multiple IMAP commands,
 e.g., UID EXPUNGE emulation when UID EXPUNGE is not supported by
 the server (see Section 4.2.4).

 Once the client detects that the connection to the server was
 lost, it MUST stop replaying its log. There are existing
 disconnected clients that, to the great annoyance of users, pop up
 an error dialog for each and every playback operation that fails.

 2) Copying/appending messages to a mailbox that doesn’t exist. (The
 server advertises this condition by sending the TRYCREATE response
 code in the tagged NO response to the APPEND or COPY command.)

Melnikov Informational [Page 26]

RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006

 The user should be advised about the situation and be given one of
 the following choices:

 a) Try to recreate a mailbox.
 b) Copy/upload messages to another mailbox.
 c) Skip copy/upload.
 d) Abort replay.

 3) Copying messages from a mailbox that doesn’t exist, or renaming or
 getting/changing ACLs [ACL] on a mailbox that doesn’t exist:

 a) Skip operation.
 b) Abort replay.

 4) Deleting mailboxes or deleting/expunging messages that no longer
 exist.

 This is actually is not an error and should be ignored by the
 client.

 5) Performing operations on messages that no longer exist.

 a) Skip operation.
 b) Abort replay.

 In the case of changing flags on an expunged message, the client
 should silently ignore the error.

 Note 1: Several synchronization operations map to multiple IMAP
 commands (for example, "move" described in 4.2.2). The client must
 guarantee atomicity of each such multistep operation. For example,
 when performing a "move" between two mailboxes on the same server, if
 the server is unable to copy messages, the client MUST NOT attempt to
 set the \Deleted flag on the messages being copied, let alone expunge
 them. However, the client MAY consider that move operation to have
 succeeded even if the server was unable to set the \Deleted flag on
 copied messages.

 Note 2: Many synchronization operations have data dependencies. A
 failed operation must cause all dependent operations to fail as well.
 The client should check this and MUST NOT try to perform all
 dependent operations blindly (unless the user corrected the original
 problem). For example, a message may be scheduled to be appended to
 a mailbox on the server and later on the appended message may be
 copied to another mailbox. If the APPEND operation fails, the client
 must not attempt to COPY the failed message later on. (See also
 Section 5, Situation 3).

Melnikov Informational [Page 27]

RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006

5.2. Quality of Implementation Issues

 Below, some quality of implementation issues are listed for
 disconnected clients. They will help to write a disconnected client
 that works correctly, performs synchronization as quickly as possible
 (and thus can make the user happier as well as save her some money),
 and minimizes the server load:

 1) Don’t lose information.

 No matter how smart your client is in other areas, if it loses
 information, users will get very upset.

 2) Don’t do work unless explicitly asked. Be flexible. Ask all
 questions BEFORE starting synchronization, if possible.

 3) Minimize traffic.

 The client MUST NOT issue a command if the client already received
 the required information from the server.

 The client MUST make use of UIDPLUS extension if it is supported
 by the server.

 See also optimization 1 in Section 5.3.

 4) Minimize the number of round-trips.

 Round-trips kill performance, especially on links with high
 latency. Sections 4.2.2.5 and 5.2 give some advice on how to
 minimize the number of round-trips.

 See also optimization 1 in Section 5.3.

5.3. Optimizations

 Some useful optimizations are described in this section. A
 disconnected client that supports the recommendations listed below
 will give the user a more pleasant experience.

 1) The initial OK or PREAUTH responses may contain the CAPABILITY
 response code as described in Section 7.1 of [IMAP4]. This
 response code gives the same information as returned by the
 CAPABILITY command*. A disconnected client that pays attention to
 this response code can avoid sending CAPABILITY command and will
 save a round-trip.

Melnikov Informational [Page 28]

RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006

 * Note: Some servers report in the CAPABILITY response code
 extensions that are only relevant in unauthenticated state or in
 all states. Such servers usually send another CAPABILITY
 response code upon successful authentication using LOGIN or
 AUTHENTICATE command (that negotiates no security layer; see
 Section 6.2.2 of [IMAP4]). The CAPABILITY response code sent
 upon successful LOGIN/AUTHENTICATE might be different from the
 CAPABILITY response code in the initial OK response, as
 extensions only relevant for unauthenticated state will not be
 advertised, and some additional extensions available only in
 authenticated and/or selected state will be.

 Example 9:

 S: * OK [CAPABILITY IMAP4REV1 LOGIN-REFERRALS STARTTLS
 AUTH=DIGEST-MD5 AUTH=SRP] imap.example.com ready
 C: 2 authenticate DIGEST-MD5
 S: 2 OK [CAPABILITY IMAP4REV1 IDLE NAMESPACE MAILBOX-REFERRALS SCAN
 SORT THREAD=REFERENCES THREAD=ORDEREDSUBJECT MULTIAPPEND]
 User authenticated (no layer)

 2) An advanced disconnected client may choose to optimize its replay
 log. For example, there might be some operations that are
 redundant (the list is not complete):

 a) an EXPUNGE followed by another EXPUNGE or CLOSE;
 b) changing flags (other than the \Deleted flag) on a message that
 gets immediately expunged;
 c) opening and closing the same mailbox.

 When optimizing, be careful about data dependencies between commands.
 For example, if the client is wishing to optimize (see case b, above)

 tag1 UID STORE <uid1> +FLAGS (\Deleted)
 ...
 tag2 UID STORE <uid1> +FLAGS (\Flagged)
 ...
 tag3 UID COPY <uid1> "Backup"
 ...
 tag4 UID EXPUNGE <uid1>

 it can’t remove the second UID STORE command because the message is
 being copied before it gets expunged.

 In general, it might be a good idea to keep mailboxes open during
 synchronization (see case c above), if possible. This can be more
 easily achieved in conjunction with optimization 3 described below.

Melnikov Informational [Page 29]

RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006

 3) Perform some synchronization steps in parallel, if possible.

 Several synchronization steps don’t depend on each other and thus
 can be performed in parallel. Because the server machine is
 usually more powerful than the client machine and can perform some
 operations in parallel, this may speed up the total time of
 synchronization.

 In order to achieve such parallelization, the client will have to
 open more than one connection to the same server. Client writers
 should not forget about non-trivial cost associated with
 establishing a TCP connection and performing an authentication.
 The disconnected client MUST NOT use one connection per mailbox.
 In most cases, it is sufficient to have two connections. The
 disconnected client SHOULD avoid selecting the same mailbox in
 more than one connection; see Section 3.1.1 of [RFC2683] for more
 details.

 Any mailbox synchronization MUST start with checking the
 UIDVALIDITY as described in Section 4.1 of this document. The
 client MAY use STATUS command to check UID Validity of a non-
 selected mailbox. This is preferable to opening many connections
 to the same server to perform synchronization of multiple
 mailboxes simultaneously. As described in Section 5.3.10 of
 [IMAP4], this SHOULD NOT be used on the selected mailbox.

6. IMAP Extensions That May Help

 The following extensions can save traffic and/or the number of
 round-trips:

 1) The use of [UIDPLUS] is discussed in Sections 4.1, 4.2.1, 4.2.2.1
 and 4.2.4.

 2) The use of the MULTIAPPEND and LITERAL+ extensions for uploading
 messages is discussed in Section 4.2.2.5.

 3) Use the CONDSTORE extension (see Section 6.1) for quick flag
 resynchronization.

6.1. CONDSTORE Extension

 An advanced disconnected mail client should use the [CONDSTORE]
 extension when it is supported by the server. The client must cache
 the value from HIGHESTMODSEQ OK response code received on mailbox
 opening and update it whenever the server sends MODSEQ FETCH data
 items.

Melnikov Informational [Page 30]

RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006

 If the client receives NOMODSEQ OK untagged response instead of
 HIGHESTMODSEQ, it MUST remove the last known HIGHESTMODSEQ value from
 its cache and follow the more general instructions in Section 3.

 When the client opens the mailbox for synchronization, it first
 compares UIDVALIDITY as described in step d-1 in Section 3. If the
 cached UIDVALIDITY value matches the one returned by the server, the
 client MUST compare the cached value of HIGHESTMODSEQ with the one
 returned by the server. If the cached HIGHESTMODSEQ value also
 matches the one returned by the server, then the client MUST NOT
 fetch flags for cached messages, as they hasn’t changed. If the
 value on the server is higher than the cached one, the client MAY use
 "SEARCH MODSEQ <cached-value>" to find all messages with flags
 changed since the last time the client was online and had the mailbox
 opened. Alternatively, the client MAY use "FETCH 1:* (FLAGS)
 (CHANGEDSINCE <cached-value>)". The latter operation combines
 searching for changed messages and fetching new information.

 In all cases, the client still needs to fetch information about new
 messages (if requested by the user) as well as discover which
 messages have been expunged.

 Step d ("Server-to-client synchronization") in Section 4 in the
 presence of the CONDSTORE extension is amended as follows:

 d) "Server-to-client synchronization" - For each mailbox that
 requires synchronization, do the following:

 1a) Check the mailbox UIDVALIDITY (see section 4.1 for more
 details) with SELECT/EXAMINE/STATUS.

 If the UIDVALIDITY value returned by the server differs, the
 client MUST

 * empty the local cache of that mailbox;
 * "forget" the cached HIGHESTMODSEQ value for the mailbox;
 * remove any pending "actions" that refer to UIDs in that
 mailbox (note that this doesn’t affect actions performed on
 client-generated fake UIDs; see Section 5); and
 * skip steps 1b and 2-II;

 1b) Check the mailbox HIGHESTMODSEQ. If the cached value is the
 same as the one returned by the server, skip fetching message
 flags on step 2-II, i.e., the client only has to find out
 which messages got expunged.

Melnikov Informational [Page 31]

RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006

 2) Fetch the current "descriptors".

 I) Discover new messages.

 II) Discover changes to old messages and flags for new messages
 using
 "FETCH 1:* (FLAGS) (CHANGEDSINCE <cached-value>)" or
 "SEARCH MODSEQ <cached-value>".

 Discover expunged messages; for example, using
 "UID SEARCH 1:<lastseenuid>". (All messages not returned
 in this command are expunged.)

 3) Fetch the bodies of any "interesting" messages that the client
 doesn’t already have.

 Example 10:

 The UIDVALIDITY value is the same, but the HIGHESTMODSEQ value
 has changed on the server while the client was offline.

 C: A142 SELECT INBOX
 S: * 172 EXISTS
 S: * 1 RECENT
 S: * OK [UNSEEN 12] Message 12 is first unseen
 S: * OK [UIDVALIDITY 3857529045] UIDs valid
 S: * OK [UIDNEXT 201] Predicted next UID
 S: * FLAGS (\Answered \Flagged \Deleted \Seen \Draft)
 S: * OK [PERMANENTFLAGS (\Deleted \Seen *)] Limited
 S: * OK [HIGHESTMODSEQ 20010715194045007]
 S: A142 OK [READ-WRITE] SELECT completed

 After that, either:

 C: A143 UID FETCH 1:* (FLAGS) (CHANGEDSINCE 20010715194032001)
 S: * 2 FETCH (UID 6 MODSEQ (20010715205008000) FLAGS (\Deleted))
 S: * 5 FETCH (UID 9 MODSEQ (20010715195517000) FLAGS ($NoJunk
 $AutoJunk $MDNSent))
 ...
 S: A143 OK FETCH completed

 or:

Melnikov Informational [Page 32]

RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006

 C: A143 UID SEARCH MODSEQ 20010715194032001 UID 1:20
 S: * SEARCH 6 9 11 12 18 19 20 23 (MODSEQ 20010917162500)
 S: A143 OK Search complete
 C: A144 UID SEARCH 1:20
 S: * SEARCH 6 9 ...
 S: A144 OK FETCH completed

7. Security Considerations

 It is believed that this document does not raise any new security
 concerns that are not already present in the base [IMAP4] protocol,
 and these issues are discussed in [IMAP4]. Additional security
 considerations may be found in different extensions mentioned in this
 document; in particular, in [UIDPLUS], [LITERAL+], [CONDSTORE],
 [MULTIAPPEND], and [UNSELECT].

 Implementers are also reminded about the importance of thorough
 testing.

8. References

8.1. Normative References

 [KEYWORDS] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [IMAP4] Crispin, M., "INTERNET MESSAGE ACCESS PROTOCOL -
 VERSION 4rev1", RFC 3501, March 2003.

 [UIDPLUS] Crispin, M., "Internet Message Access Protocol (IMAP) -
 UIDPLUS extension", RFC 4315, December 2005.

 [LITERAL+] Myers, J., "IMAP4 non-synchronizing literals", RFC
 2088, January 1997.

 [CONDSTORE] Melnikov, A. and S. Hole, "IMAP Extension for
 Conditional STORE Operation or Quick Flag Changes
 Resynchronization", RFC 4551, June 2006.

 [MULTIAPPEND] Crispin, M., "Internet Message Access Protocol (IMAP) -
 MULTIAPPEND Extension", RFC 3502, March 2003.

 [UNSELECT] Melnikov, A., "Internet Message Access Protocol (IMAP)
 UNSELECT command", RFC 3691, February 2004.

 [RFC2683] Leiba, B., "IMAP4 Implementation Recommendations", RFC
 2683, September 1999.

Melnikov Informational [Page 33]

RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006

8.2. Informative References

 [ACL] Melnikov, A., "IMAP4 Access Control List (ACL)
 Extension", RFC 4314, December 2005.

 [IMAP-MODEL] Crispin, M., "Distributed Electronic Mail Models in
 IMAP4", RFC 1733, December 1994.

9. Acknowledgements

 This document is based on version 01 of the text written by Rob
 Austein in November 1994.

 The editor appreciates comments posted by Mark Crispin to the IMAP
 mailing list and the comments/corrections/ideas received from Grant
 Baillie, Cyrus Daboo, John G. Myers, Chris Newman, and Timo Sirainen.

 The editor would also like to thank the developers of Netscape
 Messenger and Mozilla mail clients for providing examples of
 disconnected mail clients that served as a base for many
 recommendations in this document.

Editor’s Address

 Alexey Melnikov
 Isode Limited
 5 Castle Business Village
 36 Station Road
 Hampton, Middlesex
 TW12 2BX
 United Kingdom

 Phone: +44 77 53759732
 EMail: alexey.melnikov@isode.com

Melnikov Informational [Page 34]

RFC 4549 Synch Ops for Disconnected IMAP4 Clients June 2006

Full Copyright Statement

 Copyright (C) The Internet Society (2006).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

Melnikov Informational [Page 35]

