
Network Working Group A. B. Roach
Request for Comments: 4662 B. Campbell
Category: Standards Track Estacado Systems
 J. Rosenberg
 Cisco Systems
 August 2006

 A Session Initiation Protocol (SIP) Event Notification Extension
 for Resource Lists

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 This document presents an extension to the Session Initiation
 Protocol (SIP)-Specific Event Notification mechanism for subscribing
 to a homogeneous list of resources. Instead of sending a SUBSCRIBE
 for each resource individually, the subscriber can subscribe to an
 entire list and then receive notifications when the state of any of
 the resources in the list changes.

Roach, et al. Standards Track [Page 1]

RFC 4662 SIP Event Lists August 2006

Table of Contents

 1. Introduction ..3
 2. Terminology ...4
 3. Overview of Operation ...4
 4. Operation of List Subscriptions5
 4.1. Negotiation of Support for Resource Lists6
 4.2. Subscription Duration7
 4.3. NOTIFY Bodies ..7
 4.4. RLS Processing of SUBSCRIBE Requests7
 4.5. RLS Generation of NOTIFY Requests7
 4.6. Subscriber Processing of NOTIFY Requests9
 4.7. Handling of Forked Requests10
 4.8. Rate of Notifications10
 5. Using multipart/related to Convey Aggregate State10
 5.1. XML Syntax ..11
 5.2. List Attributes ...13
 5.3. Resource Attributes14
 5.4. Name Attributes ...14
 5.5. Instance Attributes14
 5.6. Constructing Coherent Resource State16
 5.6.1. Processing Full State Notifications17
 5.6.2. Processing Partial State Notifications17
 6. Example ..18
 7. Security Considerations ..31
 7.1. Authentication ..31
 7.1.1. RLS and Subscriber in the Same Domain31
 7.1.2. RLS and Subscriber in Different Domains32
 7.2. Risks of Improper Aggregation33
 7.3. Signing and Sealing33
 7.4. Infinite Loops ..34
 8. IANA Considerations ..34
 8.1. New SIP Option Tag: eventlist34
 8.2. New MIME type for Resource List Meta-Information34
 8.3. URN Sub-Namespace ...35
 9. Acknowledgements ...36
 10. References ..36
 10.1. Normative References36
 10.2. Informative References37

Roach, et al. Standards Track [Page 2]

RFC 4662 SIP Event Lists August 2006

1. Introduction

 The SIP-specific event notification mechanism [2] allows a user (the
 subscriber) to request to be notified of changes in the state of a
 particular resource. This is accomplished by the subscriber
 generating a SUBSCRIBE request for the resource, which is processed
 by a notifier that represents the resource.

 In many cases, a subscriber has a list of resources they are
 interested in. Without some aggregating mechanism, this will require
 the subscriber to generate a SUBSCRIBE request for each resource
 about which they want information. For environments in which
 bandwidth is limited, such as wireless networks, subscribing to each
 resource individually is problematic. Some specific problems are:

 o Doing so generates substantial message traffic, in the form of the
 initial SUBSCRIBE requests for each resource and the refreshes of
 each individual subscription.

 o The notifier may insist on low refresh intervals, in order to
 avoid a long-lived subscription state. This means that the
 subscriber may need to generate SUBSCRIBE refreshes faster than it
 would like to or has the capacity to.

 o The notifier may generate NOTIFY requests more rapidly than the
 subscriber desires, causing NOTIFY traffic at a greater volume
 than is desired by the subscriber.

 To solve these problems, this specification defines an extension to
 RFC 3265 [2] that allows for requesting and conveying notifications
 for lists of resources. A resource list is identified by a URI, and
 it represents a list of zero or more URIs. Each of these URIs is an
 identifier for an individual resource for which the subscriber wants
 to receive information. In many cases, the URI used to identify the
 resource list will be a SIP URI [1]; however, the use of other
 schemes (such as pres: [10]) is also foreseen.

 The notifier for the list is called a "resource list server", or RLS.
 In order to determine the state of the entire list, the RLS will act
 as if it has generated a subscription to each resource in the list.

 The resource list is not restricted to be inside the domain of the
 subscriber. Similarly, the resources in the list are not constrained
 to be in the domain of the resource list server.

Roach, et al. Standards Track [Page 3]

RFC 4662 SIP Event Lists August 2006

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [5].

 The following terms are used throughout the remainder of this
 document.

 Back-End Subscription: Any subscription (SIP or otherwise) that an
 RLS creates to learn of the state of a resource. An RLS will
 create back-end subscriptions to learn of the state of a resource
 about which the RLS is not an authority. For back-end
 subscriptions, RLSes act as a subscriber.

 List Subscription: A subscription to a resource list. In list
 subscriptions, RLSes act as the notifier.

 Resource: A resource is any logical entity that has a state or
 states that can be subscribed to. Resources are identified by
 URIs.

 Resource List: A list of zero or more resources that can have their
 individual states subscribed to with a single subscription.

 RLMI: Resource List Meta-Information. RLMI is a document that
 describes the state of the virtual subscriptions associated with a
 list subscription.

 RLS: Resource List Server. RLSes accept subscriptions to resource
 lists and send notifications to update subscribers of the state of
 the resources in a resource list.

 Virtual Subscription: A Virtual Subscription is a logical construct
 within an RLS that represents subscriptions to the resources in a
 resource list. For each list subscription it services, an RLS
 creates at least one virtual subscription for every resource in
 the resource list being subscribed to. In some cases, such as
 when the RLS is not the authority for the state of the resource,
 this virtual subscription will be associated with a back-end
 subscription. In other cases, such as when the RLS is the
 authority for the state of the resource, the virtual subscription
 will not have a corresponding back-end subscription.

3. Overview of Operation

 This section provides an overview of the typical mode of operation of
 this extension. It is not normative.

Roach, et al. Standards Track [Page 4]

RFC 4662 SIP Event Lists August 2006

 When users wish to subscribe to the resource of a list of resources,
 they can use the mechanisms described in this specification. The
 first step is the creation of a resource list. This resource list is
 represented by a SIP URI. The list contains a set of URIs, each of
 which represents a resource for which the subscriber wants to receive
 information. The resource list can exist in any domain. The list
 could be manipulated through a web page, through a voice response
 system, or through some other protocol. The specific means by which
 the list is created and maintained is outside the scope of this
 specification.

 To learn the resource state of the set of elements on the list, the
 user sends a single SUBSCRIBE request targeted to the URI of the
 list. This will be routed to an RLS for that URI. The RLS acts as a
 notifier, authenticates the subscriber, and accepts the subscription.

 The RLS may have direct information about some or all of the
 resources specified by the list. If it does not, it could subscribe
 to any non-local resources specified by the list resource.

 Note that subscriptions to non-local resources may or may not be SIP
 subscriptions; any mechanism for determining such information may be
 employed. This document uses the term "back-end subscription" to
 refer to such a subscription, regardless of whether SIP is used to
 establish and service it.

 As the state of resources in the list change, the RLS generates
 notifications to the list subscribers. The RLS can, at its
 discretion, buffer notifications of resource changes and send the
 resource information to the subscriber in batches, rather than
 individually. This allows the RLS to provide rate limiting for the
 subscriber.

 The list notifications contain a body of type multipart/related. The
 root section of the multipart/related content is an XML document that
 provides meta-information about each resource present in the list.
 The remaining sections contain the actual state information for each
 resource.

4. Operation of List Subscriptions

 The event list extension acts, in many ways, like an event template
 package. In particular, any single list subscription must be
 homogeneous with respect to the underlying event package. In other
 words, a single list subscription can apply only one event package to
 all the resources in the resource list.

Roach, et al. Standards Track [Page 5]

RFC 4662 SIP Event Lists August 2006

 Note that it is perfectly valid for an RLS to allow multiple
 subscriptions to the same list to use differing event packages.

 The key difference between a list subscription and templates in
 general is that support for list subscriptions indicates support for
 arbitrary nesting of list subscriptions. In other words, elements
 within the list may be atomic elements, or they may be lists
 themselves.

 The consequence of this is that subscription to a URI that represents
 a list actually results in several virtual subscriptions to a tree of
 resources. The leaf nodes of this tree are virtual subscriptions of
 the event type given in the "Event" header field; all other nodes in
 the tree are list subscriptions that are serviced as described in
 this section and its subsections.

 Keep in mind that these virtual subscriptions are not literal SIP
 subscriptions (although they may result in SIP subscriptions,
 depending on the RLS implementation).

4.1. Negotiation of Support for Resource Lists

 This specification uses the SIP option tag mechanism for negotiating
 support for the extension defined herein. Refer to RFC 3261 [1] for
 the normative description of processing of the "Supported" and
 "Require" header fields and the 421 (Extension Required) response
 code.

 A non-normative description of the implications of the use of
 option tags follows.
 Any client that supports the event list extension will include an
 option tag of "eventlist" in a "Supported" header field of every
 SUBSCRIBE message for a subscription for which it is willing to
 process a list. If the subscription is made to a URI that
 represents a list, the RLS will include "eventlist" in a "Require"
 header field of the response to the SUBSCRIBE, and in all NOTIFY
 messages within that subscription.

 Use of "Require: eventlist" in NOTIFY messages is applied by the
 notifier to satisfy the RFC 3261 requirement that a UAC MUST
 insert a Require header field into a request if the UAC wishes to
 insist that a UAS understand an extension in order to process the
 request. Because the NOTIFY would not be usable without applying
 the eventlist option, the notifier is obligated to include it.

 Including "eventlist" in a "Require" header field in a SUBSCRIBE
 request serves no purpose except to break interoperability in certain
 cases, and is consequently NOT RECOMMENDED.

Roach, et al. Standards Track [Page 6]

RFC 4662 SIP Event Lists August 2006

 Sending of "Supported: eventlist" in a NOTIFY message is meaningless
 and silly. Implementations SHOULD NOT include "Supported: eventlist"
 in any requests except for SUBSCRIBE.

 There is nothing in a SIP URI that indicates whether it represents a
 list of resources or a single resource. Therefore, if a subscriber
 sends a request to a URI that represents a list resource but does not
 include a Supported header field listing the "eventlist" token, the
 notifier will typically return a 421 (Extension Required) response
 code. RFC 3261 [1] advises that servers avoid returning a 421 and
 instead attempt to process the request without the extension.
 However, in this case, the URI fundamentally represents a list
 resource, and therefore the subscription cannot proceed without this
 extension.

4.2. Subscription Duration

 Since the primary benefit of the resource list server is to reduce
 the overall messaging volume to a subscriber, it is RECOMMENDED that
 the subscription duration to a list be reasonably long. The default,
 when no duration is specified, is taken from the underlying event
 package. Of course, the standard techniques [2] can be used to
 increase or reduce this amount.

4.3. NOTIFY Bodies

 An implementation compliant to this specification MUST support the
 multipart/related and application/rlmi+xml MIME types. These types
 MUST be included in an Accept header sent in a SUBSCRIBE message, in
 addition to any other types supported by the client (including any
 types required by the event package being used).

4.4. RLS Processing of SUBSCRIBE Requests

 Once the subscriber is authenticated, the RLS performs authorization
 per its local policy. In many cases, each resource list is
 associated with a particular user (the one who created it and manages
 the set of elements in it), and only that user will be allowed to
 subscribe. Of course, this mode of operation is not inherent in the
 use of resource lists, and an RLS can use any authorization policy it
 chooses.

4.5. RLS Generation of NOTIFY Requests

 This specification leaves the choice about how and when to generate
 NOTIFY requests at the discretion of the implementor. One of the
 differentiators between various RLS implementations is the means by
 which they aggregate, rate-limit, or optimize the way in which

Roach, et al. Standards Track [Page 7]

RFC 4662 SIP Event Lists August 2006

 notifications are generated. As a baseline behavior, the RLS MAY
 generate a NOTIFY to the RLS subscriber whenever the state of any
 resource on the list changes.

 It is important to understand that any given subscription is a
 subscription either to a single resource or to a list of resources.
 This nature (single resource versus list of resources) cannot change
 during the duration of a single subscription. In particular, this
 means that RLSes MUST NOT send NOTIFY messages that do not contain
 RLMI for a subscription if they have previously sent NOTIFY messages
 in that subscription containing RLMI. Similarly, RLSes MUST NOT send
 NOTIFY messages that do contain RLMI for a subscription if they have
 previously sent NOTIFY messages in that subscription which do not.

 List representations necessarily contain RLMI documents for two
 reasons. Importantly, they identify the resource to which the
 event state corresponds. Many state syntaxes do not fully
 identify the resource to which the state applies, or they may
 identify the resource in a different way than it is represented in
 the list; for example, PIDF documents may contain resource URIs
 that are not identical to the URI used to retrieve them. Further,
 RLMI documents serve to disambiguate multiple instances of a
 single resource.

 See Section 5 for a detailed definition of the syntax used to convey
 the state of resource lists. For the purposes of the following
 discussion, it is important to know that the overall list contains
 zero or more resources, and that the resources contain zero or more
 instances. Each instance has a state associated with it (pending,
 active, or terminating) representing the state of the virtual
 subscription.

 Notifications contain a multipart document, the first part of which
 always contains meta-information about the list (e.g., membership,
 state of the virtual subscription to the resource). Remaining parts
 are used to convey the actual state of the resources listed in the
 meta-information.

 The "state" attribute of each instance of a resource in the
 meta-information is set according to the state of the virtual
 subscription. The meanings of the "state" attribute are described in
 RFC 3265 [2].

 If an instance of a resource was previously reported to the
 subscriber but is no longer available (i.e., the virtual subscription
 to that instance has been terminated), the resource list server
 SHOULD include that resource instance in the meta-information in the
 first NOTIFY message sent to the subscriber following the instance’s

Roach, et al. Standards Track [Page 8]

RFC 4662 SIP Event Lists August 2006

 unavailability. The RLS MAY continue to do so for future
 notifications.

 When sending information for a terminated resource instance, the RLS
 indicates a state of "terminated" and an appropriate reason value.
 Valid reason values and their meanings are described in RFC 3265 [2].
 If the RLS will attempt to recover the resource state again at some
 point in the future (e.g., when the reason in the meta-information is
 "probation"), then the instance of the resource SHOULD remain in the
 meta-information until the instance state is available, or until the
 RLS gives up on making such state available.

 When the first SUBSCRIBE message for a particular subscription is
 received by an RLS, the RLS will often not know state information for
 all the resources specified by the resource list. For any resource
 for which state information is not known, the corresponding "uri"
 attribute will be set appropriately, and no <instance> elements will
 be present for the resource.

 For an initial notification, sections corresponding to resources for
 which the RLS does have state will be populated with appropriate data
 (subject, of course, to local policy decisions). This will often
 occur if the resource list server is co-located with the server for
 one or more of the resources specified on the list.

 Immediate notifications triggered as a result of subsequent SUBSCRIBE
 messages SHOULD include an RLMI document in which the full state is
 indicated. The RLS SHOULD also include state information for all
 resources in the list for which the RLS has state, subject to policy
 restrictions. This allows the subscriber to refresh their state, and
 to recover from lost notifications.

4.6. Subscriber Processing of NOTIFY Requests

 Notifications for a resource list can convey information about a
 subset of the list elements. This means that an explicit algorithm
 needs to be defined in order to construct coherent and consistent
 state.

 The XML document present in the root of the multipart/related
 document contains a <resource> element for some or all of the
 resources in the list. Each <resource> element contains a URI that
 uniquely identifies the resource to which that section corresponds.
 When a NOTIFY arrives, it can contain full or partial state (as
 indicated by the "fullState" attribute of the top-level <list>
 element). If full state is indicated, then the recipient replaces
 all state associated with the list with the entities in the NOTIFY
 body. If full state is not indicated, the recipient of the NOTIFY

Roach, et al. Standards Track [Page 9]

RFC 4662 SIP Event Lists August 2006

 updates information for each identified resource. Information for
 any resources that are not identified in the NOTIFY is not changed,
 even if they were indicated in previous NOTIFY messages. See
 Section 5.6 for more information.

 When full state is indicated, note that it applies only to the
 RLMI document in which it occurs. In particular, one of the
 <resource> elements in the document may in turn refer to another
 list of resources. Any such sub-lists will be detailed in their
 own RLMI documents, which may or may not have full state
 indicated.

 Further note that the underlying event package may have its own
 rules for compositing partial state notification. When processing
 data related to those packages, their rules apply (i.e., the fact
 that they were reported as part of a list does not change their
 partial notification semantics).

 Finally, note that as a consequence of the way in which resource
 list subscriptions work, polling of resource state may not be
 particularly useful. While such polls will retrieve the resource
 list, they will not necessarily contain state for some or all of
 the resources on the list.

4.7. Handling of Forked Requests

 Forking makes little sense with subscriptions to event lists, since
 the whole idea is a centralization of the source of notifications.
 Therefore, a subscriber to a list MUST NOT install multiple
 subscriptions when the initial request is forked. If multiple
 responses are received, they are handled using the techniques
 described in Section 4.4.9 of RFC 3265 [2].

4.8. Rate of Notifications

 One potential role of the RLS is to perform rate limitations on
 behalf of the subscriber. As such, this specification does not
 mandate any particular rate limitation, and rather leaves that to the
 discretion of the implementation.

5. Using multipart/related to Convey Aggregate State

 In order to convey the state of multiple resources, the list
 extension uses the "multipart/related" mime type. The syntax for
 multipart/related is defined in "The MIME Multipart/Related Content-
 type" [4].

Roach, et al. Standards Track [Page 10]

RFC 4662 SIP Event Lists August 2006

5.1. XML Syntax

 The root document of the multipart/related body MUST be a Resource
 List Meta-Information (RLMI) document. It is of the type
 "application/rlmi+xml". This document contains the meta-information
 for the resources contained in the notification. The schema for this
 XML document is given below.

 <?xml version="1.0" encoding="UTF-8" ?>
 <xs:schema targetNamespace="urn:ietf:params:xml:ns:rlmi"
 elementFormDefault="qualified"
 xmlns="urn:ietf:params:xml:ns:rlmi"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:import namespace="http://www.w3.org/XML/1998/namespace"
 schemaLocation="http://www.w3.org/2001/xml.xsd"/>
 <xs:element name="list">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="name" minOccurs="0"
 maxOccurs="unbounded" />
 <xs:element ref="resource" minOccurs="0"
 maxOccurs="unbounded" />
 </xs:sequence>
 <xs:attribute name="uri" type="xs:anyURI" use="required" />
 <xs:attribute name="version" type="xs:unsignedInt"
 use="required" />
 <xs:attribute name="fullState" type="xs:boolean"
 use="required" />
 <xs:attribute name="cid" type="xs:string" use="optional" />
 <xs:anyAttribute processContents="lax" />
 </xs:complexType>
 </xs:element>
 <xs:element name="resource">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="name" minOccurs="0"
 maxOccurs="unbounded" />
 <xs:element ref="instance" minOccurs="0"
 maxOccurs="unbounded" />
 </xs:sequence>
 <xs:attribute name="uri" type="xs:anyURI" use="required" />
 <xs:anyAttribute processContents="lax" />
 </xs:complexType>
 </xs:element>
 <xs:element name="instance">
 <xs:complexType>
 <xs:sequence>
 <xs:any minOccurs="0" maxOccurs="unbounded"

Roach, et al. Standards Track [Page 11]

RFC 4662 SIP Event Lists August 2006

 processContents="lax" />
 </xs:sequence>
 <xs:attribute name="id" type="xs:string" use="required" />
 <xs:attribute name="state" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="active" />
 <xs:enumeration value="pending" />
 <xs:enumeration value="terminated" />
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="reason" type="xs:string"
 use="optional" />
 <xs:attribute name="cid" type="xs:string" use="optional" />
 <xs:anyAttribute processContents="lax" />
 </xs:complexType>
 </xs:element>
 <xs:element name="name">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute ref="xml:lang" use="optional"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 </xs:schema>

 An example of a document formatted using this schema follows.

 <?xml version="1.0"?>
 <list xmlns="urn:ietf:params:xml:ns:rlmi"
 uri="sip:adam-friends@lists.vancouver.example.com"
 version="7" fullState="true">
 <name xml:lang="en">Buddy List</name>
 <name xml:lang="fr">Liste d’amis</name>
 <resource uri="sip:bob@vancouver.example.com">
 <name>Bob Smith</name>
 <instance id="juwigmtboe" state="active"
 cid="12345.aaa@vancouver.example.com"/>
 </resource>
 <resource uri="sip:dave@vancouver.example.com">
 <name>Dave Jones</name>
 <instance id="hqzsuxtfyq" state="active"
 cid="12345.aab@vancouver.example.com"/>
 </resource>
 <resource uri="sip:jim@vancouver.example.com">

Roach, et al. Standards Track [Page 12]

RFC 4662 SIP Event Lists August 2006

 <name>Jim</name>
 <instance id="oflzxqzuvg" state="terminated"
 reason="rejected" />
 </resource>
 <resource uri="sip:ed@vancouver.example.com">
 <name>Ed</name>
 <instance id="grqhzsppxb" state="pending"/>
 </resource>
 </list>

5.2. List Attributes

 The <list> element present in a list notification MUST contain three
 attributes.

 The first mandatory <list> attribute is "uri", which contains the uri
 that corresponds to the list. Typically, this is the URI to which
 the SUBSCRIBE request was sent.

 The second mandatory <list> attribute is "version", which contains a
 number from 0 to 2^32-1. This version number MUST be 0 for the first
 NOTIFY message sent within a subscription, and MUST increase by
 exactly one for each subsequent NOTIFY sent within a subscription.

 The third mandatory attribute is "fullState". The "fullState"
 attribute indicates whether the NOTIFY message contains information
 for every resource in the list. If it does, the value of the
 attribute is "true" (or "1"); otherwise, it is "false" (or "0"). The
 first NOTIFY sent in a subscription MUST contain full state, as must
 the first NOTIFY sent after receipt of a SUBSCRIBE request for the
 subscription.

 Finally, <list> elements MAY contain a "cid" attribute. If present,
 the "cid" attribute identifies a section within the multipart/related
 body that contains aggregate state information for the resources
 contained in the list. The definition of such aggregate information
 is outside the scope of this document and will be defined on a per-
 package basis, as needed. The cid attribute is the Content-ID for
 the corresponding section in the multipart body.

 The cid attribute MUST refer only to top-level parts of the
 multipart/related document for which the RLMI document in which it
 appears is the root. See Section 5.5 for an example.

Roach, et al. Standards Track [Page 13]

RFC 4662 SIP Event Lists August 2006

5.3. Resource Attributes

 The resource list contains one <resource> element for each resource
 being reported in the notification. These resource elements contain
 attributes that identify meta-data associated with each resource.

 The "uri" attribute identifies the resource to which the <resource>
 element corresponds. Typically, this will be a SIP URI that, if
 subscribed to, would return the state of the resource. This
 attribute MUST be present.

5.4. Name Attributes

 Each list and resource element contains zero or more name elements.
 These name elements contain human-readable descriptions or names for
 the resource list or resource. The contents of these elements are
 somewhat analogous to the "Display Name" present in the SIP name-addr
 element.

 Name elements optionally contain the standard XML "xml:lang"
 attribute. The "xml:lang" attribute, if present, specifies the
 language of the human-readable name. If this attribute is present,
 it MUST contain a valid language tag. Language tags are defined in
 RFC 3066 [6]. The language tag assists applications in determining
 which of potentially several name elements should be rendered to the
 user.

5.5. Instance Attributes

 Each resource element contains zero or more instance elements. These
 instance elements are used to represent a single notifier for the
 resource. For event packages that allow forking, multiple virtual
 subscriptions may exist for a given resource. Multiple virtual
 subscriptions are represented as multiple instance elements in the
 corresponding resource element. For subscriptions in which forking
 does not occur, at most one instance will be present for a given
 resource.

 The "id" attribute contains an opaque string used to uniquely
 identify the instance of the resource. The "id" attribute is unique
 only within the context of a resource. Construction of this string
 is an implementation decision. Any mechanism for generating this
 string is valid, as long as uniqueness within the resource is
 assured.

 The "state" attribute contains the subscription state for the
 identified instance of the resource. This attribute contains one of
 the values "active", "pending", or "terminated". The meanings for

Roach, et al. Standards Track [Page 14]

RFC 4662 SIP Event Lists August 2006

 these values are as defined for the "Subscription-State" header field
 in RFC 3265 [2].

 If the "state" attribute indicates "terminated", then a "reason"
 attribute MUST also be present. This "reason" attribute has the same
 values and meanings as those given for the "reason" parameter on the
 "Subscription-State" header field in RFC 3265 [2]. Note that the
 "reason" attribute is included for informational purposes; the list
 subscriber is not expected to take any automated actions based on the
 reason value.

 Finally, the "cid" attribute, which MUST be present if the "state"
 attribute is "active", identifies the section within the
 multipart/related body that contains the actual resource state. This
 state is expressed in the content type defined by the event package
 for conveying state. The cid attribute is the Content-ID for the
 corresponding section in the multipart body.

 The cid attribute MUST refer only to top-level parts of the
 multipart/related document for which the RLMI document in which it
 appears is the root.

Roach, et al. Standards Track [Page 15]

RFC 4662 SIP Event Lists August 2006

 For example, consider a multipart/related document containing
 three parts; we’ll label these parts A, B, and C. Part A is type
 application/rlmi+xml, part B is type multipart/related, and part C
 is type application/pidf+xml. Part B is in turn a document
 containing three parts: D, E, and F. Part D is of type
 application/rlmi+xml, and parts E and F are of type
 application/pidf+xml.

 +---+
 | Top Level Document: multipart/related |
 | |
 | +---------------------------------------+ |
 | | Part A: application/rlmi+xml | |
 | +---------------------------------------+ |
 | | Part B: multipart/related | | | |
 | | | |
 | | +-----------------------------------+ | |
 | | | Part D: application/rlmi+xml | | |
 | | +-----------------------------------+ | |
 | | | Part E: application/pidf+xml | | |
 | | +-----------------------------------+ | |
 | | | Part F: application/pidf+xml | | |
 | | +-----------------------------------+ | |
 | | | |
 | +---------------------------------------+ |
 | | Part C: application/pidf+xml | |
 | +---------------------------------------+ |
 | |
 +---+

 Any "cid" attributes in document A must refer only to parts B or
 C. Referring to parts D, E, or F would be illegal. Similarly,
 any "cid" attributes in document D must refer only to parts E or
 F. Referring to any other parts would be illegal.
 Also note that the subscription durations of any back-end
 subscriptions are not propagated into the meta-information state
 in any way.

5.6. Constructing Coherent Resource State

 The resource list subscriber maintains a table for each resource
 list. The table contains a row for each resource in the resource
 list. Each row is indexed by the URI for that resource. That URI is
 obtained from the "uri" attribute on each <resource> element. The
 contents of each row contain the state of that resource as conveyed
 in the resource document.

Roach, et al. Standards Track [Page 16]

RFC 4662 SIP Event Lists August 2006

 For resources that provide versioning information (which is mandated
 by [2] for any formats that allow partial notification), each row
 also contains a resource state version number. The version number of
 the row is initialized with the version specified in the first
 document received, as defined by the corresponding event package.
 This value is used when comparing versions of partial notifications
 for a resource.

 The processing of the resource list notification depends on whether
 it contains full or partial state.

5.6.1. Processing Full State Notifications

 If a notification contains full state, indicated by the <list>
 attribute "fullState" set to "true", the notification is used to
 update the table. A check is first made to ensure that the "version"
 attribute of the <list> attribute in the received message is greater
 than the local version number. If not, the received document is
 discarded without any further processing. Otherwise, the contents of
 the resource-list table are flushed and repopulated from the contents
 of the document. A new row in the table is created for each
 "resource" element.

5.6.2. Processing Partial State Notifications

 If a notification contains partial state, indicated by the <list>
 attribute "fullState" set to "false", a check is made to ensure that
 no list notifications have been lost. The value of the local version
 number (the "version" attribute of the <list> element) is compared to
 the version number of the new document.

 o If the value in the new document is exactly one higher than the
 local version number, the local version number is increased by
 one, and the document is processed as described below.

 o If the version in the document is more than one higher than the
 local version number, the local version number is set to the value
 in the new document, and the document is processed as described
 below. The list subscriber SHOULD also generate a refresh request
 to trigger a full state notification.

 o If the version in the document is less than or equal to the local
 version, the document is discarded without any further processing.

 For each resource listed in the document, the subscriber checks to
 see whether a row exists for that resource. This check is done by
 comparing the Resource-URI value with the URI associated with the
 row. If the resource doesn’t exist in the table, a row is added, and

Roach, et al. Standards Track [Page 17]

RFC 4662 SIP Event Lists August 2006

 its state is set to the information from that "resource" element. If
 the resource does exist, its state is updated to be the information
 from that "resource" element, as described in the definition of the
 event package. If a row is updated or created such that its state is
 now "terminated," that entry MAY be removed from the table at any
 time.

6. Example

 This section gives an example call flow. It is not normative. If a
 conflict arises between this call flow and the normative behavior
 described in this or any other document, the normative descriptions
 are to be followed.

 In this particular example, we request a subscription to a nested
 presence list. The subscriber’s address-of-record is
 "sip:adam@vancouver.example.com", and the name of the nested list
 resource that we are subscribing to is called
 "sip:adam-buddies@pres.vancouver.example.com". The underlying event
 package is "presence", described by [8].

 In this example, the RLS has information to service some of the
 resources on the list, but must consult other servers to retrieve
 information for others. The implementation of the RLS in this
 example uses the SIP SUBSCRIBE/NOTIFY mechanism to retrieve such
 information.

Roach, et al. Standards Track [Page 18]

RFC 4662 SIP Event Lists August 2006

 Terminal pres.vancouver.example.com pres.stockholm.example.org
 | | pres.dallas.example.net |
 1 |---SUBSCRIBE--->| | |
 2 |<-----200-------| | |
 3 |<----NOTIFY-----| | |
 4 |------200------>| | |
 5 | |---SUBSCRIBE--->| |
 6 | |<-----200-------| |
 7 | |<----NOTIFY-----| |
 8 | |------200------>| |
 9 | |------------SUBSCRIBE----------->|
 10| |<--------------200---------------|
 11| |<-------------NOTIFY-------------|
 12| |---------------200-------------->|
 13|<----NOTIFY-----| | |
 14|------200------>| | |

 1. We initiate the subscription by sending a SUBSCRIBE message to
 our local RLS. (There is no reason that the RLS we contact has
 to be in our domain, of course). Note that we must advertise
 support for application/rlmi+xml and multipart/related because
 we support the eventlist extension, and that we must advertise
 application/pidf+xml because we are requesting a subscription to
 presence.

 Terminal -> Local RLS

 SUBSCRIBE sip:adam-buddies@pres.vancouver.example.com SIP/2.0
 Via: SIP/2.0/TCP terminal.vancouver.example.com;
 branch=z9hG4bKwYb6QREiCL
 Max-Forwards: 70
 To: <sip:adam-buddies@pres.vancouver.example.com>
 From: <sip:adam@vancouver.example.com>;tag=ie4hbb8t
 Call-ID: cdB34qLToC@terminal.vancouver.example.com
 CSeq: 322723822 SUBSCRIBE
 Contact: <sip:terminal.vancouver.example.com>
 Event: presence
 Expires: 7200
 Supported: eventlist
 Accept: application/pidf+xml
 Accept: application/rlmi+xml
 Accept: multipart/related
 Accept: multipart/signed
 Accept: application/pkcs7-mime
 Content-Length: 0

Roach, et al. Standards Track [Page 19]

RFC 4662 SIP Event Lists August 2006

 2. The Local RLS completes the SUBSCRIBE transaction. Note that
 authentication and authorization would normally take place at
 this point in the call flow. Those steps are omitted for
 brevity.

 Local RLS -> Terminal

 SIP/2.0 200 OK
 Via: SIP/2.0/TCP terminal.vancouver.example.com;
 branch=z9hG4bKwYb6QREiCL
 To: <sip:adam-buddies@pres.vancouver.example.com>;tag=zpNctbZq
 From: <sip:adam@vancouver.example.com>;tag=ie4hbb8t
 Call-ID: cdB34qLToC@terminal.vancouver.example.com
 CSeq: 322723822 SUBSCRIBE
 Contact: <sip:pres.vancouver.example.com>
 Expires: 7200
 Require: eventlist
 Content-Length: 0

 3. As is required by RFC 3265 [2], the RLS sends a NOTIFY
 immediately upon accepting the subscription. In this example,
 we are assuming that the local RLS is also an authority for
 presence information for the users in the
 "vancouver.example.com" domain. The NOTIFY contains an RLMI
 document describing the entire buddy list (initial notifies
 require full state), as well as presence information for the
 users about which it already knows. Note that, since the RLS
 has not yet retrieved information for some of the entries on the
 list, those <resource> elements contain no <instance> elements.

 Local RLS -> Terminal

 NOTIFY sip:terminal.vancouver.example.com SIP/2.0
 Via: SIP/2.0/TCP pres.vancouver.example.com;
 branch=z9hG4bKMgRenTETmm
 Max-Forwards: 70
 From: <sip:adam-buddies@pres.vancouver.example.com>;tag=zpNctbZq
 To: <sip:adam@vancouver.example.com>;tag=ie4hbb8t
 Call-ID: cdB34qLToC@terminal.vancouver.example.com
 CSeq: 997935768 NOTIFY
 Contact: <sip:pres.vancouver.example.com>
 Event: presence
 Subscription-State: active;expires=7200
 Require: eventlist
 Content-Type: multipart/related;type="application/rlmi+xml";
 start="<nXYxAE@pres.vancouver.example.com>";
 boundary="50UBfW7LSCVLtggUPe5z"
 Content-Length: 1560

Roach, et al. Standards Track [Page 20]

RFC 4662 SIP Event Lists August 2006

 --50UBfW7LSCVLtggUPe5z
 Content-Transfer-Encoding: binary
 Content-ID: <nXYxAE@pres.vancouver.example.com>
 Content-Type: application/rlmi+xml;charset="UTF-8"

 <?xml version="1.0" encoding="UTF-8"?>
 <list xmlns="urn:ietf:params:xml:ns:rlmi"
 uri="sip:adam-friends@pres.vancouver.example.com"
 version="1" fullState="true">
 <name xml:lang="en">Buddy List at COM</name>
 <name xml:lang="de">Liste der Freunde an COM</name>
 <resource uri="sip:bob@vancouver.example.com"">
 <name>Bob Smith</name>
 <instance id="juwigmtboe" state="active"
 cid="bUZBsM@pres.vancouver.example.com"/>
 </resource>
 <resource uri="sip:dave@vancouver.example.com">
 <name>Dave Jones</name>
 <instance id="hqzsuxtfyq" state="active"
 cid="ZvSvkz@pres.vancouver.example.com"/>
 </resource>
 <resource uri="sip:ed@dallas.example.net">
 <name>Ed at NET</name>
 </resource>
 <resource uri="sip:adam-friends@stockholm.example.org">
 <name xml:lang="en">My Friends at ORG</name>
 <name xml:lang="de">Meine Freunde an ORG</name>
 </resource>
 </list>

 --50UBfW7LSCVLtggUPe5z
 Content-Transfer-Encoding: binary
 Content-ID: <bUZBsM@pres.vancouver.example.com>
 Content-Type: application/pidf+xml;charset="UTF-8"

 <?xml version="1.0" encoding="UTF-8"?>
 <presence xmlns="urn:ietf:params:xml:ns:pidf"
 entity="sip:bob@vancouver.example.com">
 <tuple id="sg89ae">
 <status>
 <basic>open</basic>
 </status>
 <contact priority="1.0">sip:bob@vancouver.example.com</contact>
 </tuple>
 </presence>

 --50UBfW7LSCVLtggUPe5z
 Content-Transfer-Encoding: binary

Roach, et al. Standards Track [Page 21]

RFC 4662 SIP Event Lists August 2006

 Content-ID: <ZvSvkz@pres.vancouver.example.com>
 Content-Type: application/pidf+xml;charset="UTF-8"

 <?xml version="1.0" encoding="UTF-8"?>
 <presence xmlns="urn:ietf:params:xml:ns:pidf"
 entity="sip:dave@vancouver.example.com">
 <tuple id="slie74">
 <status>
 <basic>closed</basic>
 </status>
 </tuple>
 </presence>

 --50UBfW7LSCVLtggUPe5z--

 4. The terminal completes the transaction.

 Terminal -> Local RLS

 SIP/2.0 200 OK
 Via: SIP/2.0/TCP pres.vancouver.example.com;
 branch=z9hG4bKMgRenTETmm
 From: <sip:adam-buddies@pres.vancouver.example.com>;tag=zpNctbZq
 To: <sip:adam@vancouver.example.com>;tag=ie4hbb8t
 Call-ID: cdB34qLToC@terminal.vancouver.example.com
 CSeq: 997935768 NOTIFY
 Contact: <sip:terminal.vancouver.example.com>
 Content-Length: 0

 5. In order to service the subscription, the local RLS subscribes
 to the state of the resources. In this step, the RLS attempts
 to subscribe to the presence state of the resource
 "sip:ed@dallas.example.net". Since the local RLS knows how to
 receive notifications for list subscriptions, it includes the
 "Supported: eventlist" header field in its request. Although
 the linkage between this subscription and the one sent by the
 terminal is left up to the application, this message
 demonstrates some reasonable behavior by including "Accept"
 header fields for all the body types it knows the subscriber
 (Terminal) supports. This is safe to do, since the local RLS
 will only pass these formats through to the subscriber and does
 not need to actually understand them.

 Local RLS -> Presence Server in dallas.example.net

 SUBSCRIBE sip:ed@dallas.example.net SIP/2.0
 Via: SIP/2.0/TCP pres.vancouver.example.com;
 branch=z9hG4bKMEyGjdG1LH

Roach, et al. Standards Track [Page 22]

RFC 4662 SIP Event Lists August 2006

 Max-Forwards: 70
 To: <sip:ed@dallas.example.net>
 From: <sip:adam@vancouver.example.com>;tag=aM5icQu9
 Call-ID: Ugwz5ARxNw@pres.vancouver.example.com
 CSeq: 870936068 SUBSCRIBE
 Contact: <sip:pres.vancouver.example.com>
 Identity: Tm8sIHRoaXMgaXNuJ3QgYSByZWFsIGNlcnQuIFlvdSBvn
 Zpb3VzbHkgaGF2ZSB0aW1lIHRvIGtpbGwuIEkKc3VnZ2V
 zdCBodHRwOi8vd3d3LmhvbWVzdGFycnVubmVyLmNvbS8K
 Identity-Info: https://vancouver.example.com/cert
 Event: presence
 Expires: 3600
 Supported: eventlist
 Accept: application/pidf+xml
 Accept: application/rlmi+xml
 Accept: multipart/related
 Accept: multipart/signed
 Accept: application/pkcs7-mime
 Content-Length: 0

 6. The Presence Server in dallas.example.net completes the
 SUBSCRIBE transaction. Note that authentication would normally
 take place at this point in the call flow. This step is omitted
 for brevity.

 Presence Server in dallas.example.net -> Local RLS

 SIP/2.0 200 OK
 Via: SIP/2.0/TCP pres.vancouver.example.com;
 branch=z9hG4bKMEyGjdG1LH
 To: <sip:ed@dallas.example.net>;tag=e45TmHTh
 From: <sip:adam@vancouver.example.com>;tag=aM5icQu9
 Call-ID: Ugwz5ARxNw@pres.vancouver.example.com
 CSeq: 870936068 SUBSCRIBE
 Contact: <sip:dallas.example.net>
 Expires: 3600
 Content-Length: 0

 7. In this example, we assume that the server at dallas.example.net
 doesn’t have enough authorization information to reject or
 accept our subscription. The initial notify, therefore,
 contains a "Subscription-State" of "pending". Presumably, the
 party responsible for accepting or denying authorization for the
 resource is notified of this change; however, those steps are
 not included in this call flow for brevity.

Roach, et al. Standards Track [Page 23]

RFC 4662 SIP Event Lists August 2006

 Presence Server in dallas.example.net -> Local RLS

 NOTIFY sip:pres.vancouver.example.com SIP/2.0
 Via: SIP/2.0/TCP pres.dallas.example.net;
 branch=z9hG4bKfwpklPxmrW
 Max-Forwards: 70
 From: <sip:ed@dallas.example.net>;tag=e45TmHTh
 To: <sip:adam@vancouver.example.com>;tag=aM5icQu9
 Call-ID: Ugwz5ARxNw@pres.vancouver.example.com
 CSeq: 1002640632 NOTIFY
 Contact: <sip:dallas.example.net>
 Subscription-State: pending;expires=3600
 Event: presence
 Require: eventlist
 Content-Length: 0

 8. The local RLS completes the NOTIFY transaction. Note that, at
 this point, the Local RLS has new information to report to the
 subscriber. Whether it chooses to report the information
 immediately or spool it up for later delivery is completely up
 to the application. For this example, we assume that the RLS
 will wait for a short period of time before doing so, in order
 to allow the subscriptions it sent out sufficient time to
 provide useful data.

 Local RLS -> Presence Server in dallas.example.net

 SIP/2.0 200 OK
 Via: SIP/2.0/TCP pres.dallas.example.net;
 branch=z9hG4bKfwpklPxmrW
 From: <sip:ed@dallas.example.net>;tag=e45TmHTh
 To: <sip:adam@vancouver.example.com>;tag=aM5icQu9
 Call-ID: Ugwz5ARxNw@pres.vancouver.example.com
 CSeq: 1002640632 NOTIFY
 Contact: <sip:pres.vancouver.example.com>
 Content-Length: 0

 9. The Local RLS subscribes to the state of the other non-local
 resource.

 Local RLS -> RLS in stockholm.example.org

 SUBSCRIBE sip:adam-friends@stockholm.example.org SIP/2.0
 Via: SIP/2.0/TCP pres.vancouver.example.com;
 branch=z9hG4bKFSrAF8CZFL
 Max-Forwards: 70
 To: <sip:adam-friends@stockholm.example.org>
 From: <sip:adam@vancouver.example.com>;tag=a12eztNf

Roach, et al. Standards Track [Page 24]

RFC 4662 SIP Event Lists August 2006

 Call-ID: kBq5XhtZLN@pres.vancouver.example.com
 CSeq: 980774491 SUBSCRIBE
 Contact: <sip:pres.vancouver.example.com>
 Identity: Tm90IGEgcmVhbCBzaWduYXR1cmUsIGVpdGhlci4gQ2VydGFp
 bmx5IHlvdSBoYXZlIGJldHRlcgp0aGluZ3MgdG8gYmUgZG9p
 bmcuIEhhdmUgeW91IGZpbmlzaGVkIHlvdXIgUkxTIHlldD8K
 Identity-Info: https://vancouver.example.com/cert
 Event: presence
 Expires: 3600
 Supported: eventlist
 Accept: application/pidf+xml
 Accept: application/rlmi+xml
 Accept: multipart/related
 Accept: multipart/signed
 Accept: application/pkcs7-mime
 Content-Length: 0

 10. The RLS in stockholm.example.org completes the SUBSCRIBE
 transaction. Note that authentication would normally take place
 at this point in the call flow. This step is omitted for
 brevity.

 RLS in stockholm.example.org -> Local RLS

 SIP/2.0 200 OK
 Via: SIP/2.0/TCP pres.vancouver.example.com;
 branch=z9hG4bKFSrAF8CZFL
 To: <sip:adam-friends@stockholm.example.org>;tag=JenZ40P3
 From: <sip:adam@vancouver.example.com>;tag=a12eztNf
 Call-ID: kBq5XhtZLN@pres.vancouver.example.com
 CSeq: 980774491 SUBSCRIBE
 Contact: <sip:stockholm.example.org>
 Expires: 3600
 Content-Length: 0

 11. In this example, we assume that the RLS in stockholm.example.org
 is also an authority for presence information for the users in
 the "stockholm.example.org" domain. The NOTIFY contains an RLMI
 document describing the contained buddy list, as well as
 presence information for those users. In this particular case,
 the RLS in stockholm.example.org has chosen to sign [14] the
 body of the NOTIFY message. As described in RFC 3851, signing
 is performed by creating a multipart/signed document that has
 two parts. The first part is the document to be signed (in this
 example, the multipart/related document that describes the list
 resource states), while the second part is the actual signature.

Roach, et al. Standards Track [Page 25]

RFC 4662 SIP Event Lists August 2006

 RLS in stockholm.example.org -> Local RLS

 NOTIFY sip:pres.vancouver.example.com SIP/2.0
 Via: SIP/2.0/TCP pres.stockholm.example.org;
 branch=z9hG4bKmGL1nyZfQI
 Max-Forwards: 70
 From: <sip:adam-friends@stockholm.example.org>;tag=JenZ40P3
 To: <sip:adam@vancouver.example.com>;tag=a12eztNf
 Call-ID: kBq5XhtZLN@pres.vancouver.example.com
 CSeq: 294444656 NOTIFY
 Contact: <sip:stockholm.example.org>
 Event: presence
 Subscription-State: active;expires=3600
 Require: eventlist
 Content-Type: multipart/signed;
 protocol="application/pkcs7-signature";
 micalg=sha1;boundary="l3WMZaaL8NpQWGnQ4mlU"
 Content-Length: 2038

 --l3WMZaaL8NpQWGnQ4mlU
 Content-Transfer-Encoding: binary
 Content-ID: <ZPvJHL@stockholm.example.org>
 Content-Type: multipart/related;type="application/rlmi+xml";
 start="<Cvjpeo@stockholm.example.org>";
 boundary="tuLLl3lDyPZX0GMr2YOo"

 --tuLLl3lDyPZX0GMr2YOo
 Content-Transfer-Encoding: binary
 Content-ID: <Cvjpeo@stockholm.example.org>
 Content-Type: application/rlmi+xml;charset="UTF-8"

 <?xml version="1.0" encoding="UTF-8"?>
 <list xmlns="urn:ietf:params:xml:ns:rlmi"
 uri="sip:adam-friends@stockholm.example.org" version="1"
 fullState="true">
 <name xml:lang="en">Buddy List at COM</name>
 <name xml:lang="de">Liste der Freunde an COM</name>
 <resource uri="sip:joe@stockholm.example.org">
 <name>Joe Thomas</name>
 <instance id="1" state="active"
 cid="mrEakg@stockholm.example.org"/>
 </resource>
 <resource uri="sip:mark@stockholm.example.org">
 <name>Mark Edwards</name>
 <instance id="1" state="active"
 cid="KKMDmv@stockholm.example.org"/>
 </resource>
 </list>

Roach, et al. Standards Track [Page 26]

RFC 4662 SIP Event Lists August 2006

 --tuLLl3lDyPZX0GMr2YOo
 Content-Transfer-Encoding: binary
 Content-ID: <mrEakg@stockholm.example.org>
 Content-Type: application/pidf+xml;charset="UTF-8"

 <?xml version="1.0" encoding="UTF-8"?>
 <presence xmlns="urn:ietf:params:xml:ns:pidf"
 entity="sip:joe@stockholm.example.org">
 <tuple id="x823a4">
 <status>
 <basic>open</basic>
 </status>
 <contact priority="1.0">sip:joe@stockholm.example.org</contact>
 </tuple>
 </presence>

 --tuLLl3lDyPZX0GMr2YOo
 Content-Transfer-Encoding: binary
 Content-ID: <KKMDmv@stockholm.example.org>
 Content-Type: application/pidf+xml;charset="UTF-8"

 <?xml version="1.0" encoding="UTF-8"?>
 <presence xmlns="urn:ietf:params:xml:ns:pidf"
 entity="sip:mark@stockholm.example.org">
 <tuple id="z98075">
 <status>
 <basic>closed</basic>
 </status>
 </tuple>
 </presence>

 --tuLLl3lDyPZX0GMr2YOo--

 --l3WMZaaL8NpQWGnQ4mlU
 Content-Transfer-Encoding: binary
 Content-ID: <K9LB7k@stockholm.example.org>
 Content-Type: application/pkcs7-signature

 [PKCS #7 signature here]

 --l3WMZaaL8NpQWGnQ4mlU--

Roach, et al. Standards Track [Page 27]

RFC 4662 SIP Event Lists August 2006

 12. The Local RLS completes the NOTIFY transaction.

 Local RLS -> RLS in stockholm.example.org

 SIP/2.0 200 OK
 Via: SIP/2.0/TCP pres.stockholm.example.org;
 branch=z9hG4bKmGL1nyZfQI
 From: <sip:adam-friends@stockholm.example.org>;tag=JenZ40P3
 To: <sip:adam@vancouver.example.com>;tag=a12eztNf
 Call-ID: kBq5XhtZLN@pres.vancouver.example.com
 CSeq: 294444656 NOTIFY
 Contact: <sip:pres.vancouver.example.com>
 Content-Length: 0

 13. At this point, the Local RLS decides it has collected enough
 additional information to warrant sending a new notification to
 the user. Although sending a full notification would be
 perfectly acceptable, the RLS decides to send a partial
 notification instead. The RLMI document contains only
 information for the updated resources, as indicated by setting
 the "fullState" parameter to "false". To avoid corrupting the
 S/MIME signature on the data received from the RLS in
 stockholm.example.org, the local RLS copies the entire
 multipart/signed body as-is into the notification that it sends.

 Local RLS -> Terminal

 NOTIFY sip:terminal.vancouver.example.com SIP/2.0
 Via: SIP/2.0/TCP pres.vancouver.example.com;
 branch=z9hG4bK4EPlfSFQK1
 Max-Forwards: 70
 From: <sip:adam-buddies@pres.vancouver.example.com>;tag=zpNctbZq
 To: <sip:adam@vancouver.example.com>;tag=ie4hbb8t
 Call-ID: cdB34qLToC@terminal.vancouver.example.com
 CSeq: 997935769 NOTIFY
 Contact: <sip:pres.vancouver.example.com>
 Event: presence
 Subscription-State: active;expires=7200
 Require: eventlist
 Content-Type: multipart/related;type="application/rlmi+xml";
 start="<2BEI83@pres.vancouver.example.com>";
 boundary="TfZxoxgAvLqgj4wRWPDL"
 Content-Length: 2862

 --TfZxoxgAvLqgj4wRWPDL
 Content-Transfer-Encoding: binary
 Content-ID: <2BEI83@pres.vancouver.example.com>
 Content-Type: application/rlmi+xml;charset="UTF-8"

Roach, et al. Standards Track [Page 28]

RFC 4662 SIP Event Lists August 2006

 <?xml version="1.0" encoding="UTF-8"?>
 <list xmlns="urn:ietf:params:xml:ns:rlmi"
 uri="sip:adam-friends@pres.vancouver.example.com" version="2"
 fullState="false">
 <name xml:lang="en">Buddy List at COM</name>
 <name xml:lang="de">Liste der Freunde an COM</name>
 <resource uri="sip:ed@dallas.example.net">
 <name>Ed at NET</name>
 <instance id="sdlkmeopdf" state="pending"/>
 </resource>
 <resource uri="sip:adam-friends@stockholm.example.org">
 <name xml:lang="en">My Friends at ORG</name>
 <name xml:lang="de">Meine Freunde an ORG</name>
 <instance id="cmpqweitlp" state="active"
 cid="1KQhyE@pres.vancouver.example.com"/>
 </resource>
 </list>

 --TfZxoxgAvLqgj4wRWPDL
 Content-Transfer-Encoding: binary
 Content-ID: <1KQhyE@pres.vancouver.example.com>
 Content-Type: multipart/signed;
 protocol="application/pkcs7-signature";
 micalg=sha1;boundary="l3WMZaaL8NpQWGnQ4mlU"

 --l3WMZaaL8NpQWGnQ4mlU
 Content-Transfer-Encoding: binary
 Content-ID: <ZPvJHL@stockholm.example.org>
 Content-Type: multipart/related;type="application/rlmi+xml";
 start="<Cvjpeo@stockholm.example.org>";
 boundary="tuLLl3lDyPZX0GMr2YOo"

 --tuLLl3lDyPZX0GMr2YOo
 Content-Transfer-Encoding: binary
 Content-ID: <Cvjpeo@stockholm.example.org>
 Content-Type: application/rlmi+xml;charset="UTF-8"
 <?xml version="1.0" encoding="UTF-8"?>
 <list xmlns="urn:ietf:params:xml:ns:rlmi"
 uri="sip:adam-friends@stockholm.example.org" version="1"
 fullState="true">
 <name xml:lang="en">Buddy List at ORG</name>
 <name xml:lang="de">Liste der Freunde an ORG</name>
 <resource uri="sip:joe@stockholm.example.org">
 <name>Joe Thomas</name>
 <instance id="1" state="active"
 cid="mrEakg@stockholm.example.org"/>
 </resource>
 <resource uri="sip:mark@stockholm.example.org">

Roach, et al. Standards Track [Page 29]

RFC 4662 SIP Event Lists August 2006

 <name>Mark Edwards</name>
 <instance id="1" state="active"
 cid="KKMDmv@stockholm.example.org"/>
 </resource>
 </list>

 --tuLLl3lDyPZX0GMr2YOo
 Content-Transfer-Encoding: binary
 Content-ID: <mrEakg@stockholm.example.org>
 Content-Type: application/pidf+xml;charset="UTF-8"

 <?xml version="1.0" encoding="UTF-8"?>
 <presence xmlns="urn:ietf:params:xml:ns:pidf"
 entity="sip:joe@stockholm.example.org">
 <tuple id="x823a4">
 <status>
 <basic>open</basic>
 </status>
 <contact priority="1.0">sip:joe@stockholm.example.org</contact>
 </tuple>
 </presence>

 --tuLLl3lDyPZX0GMr2YOo
 Content-Transfer-Encoding: binary
 Content-ID: <KKMDmv@stockholm.example.org>
 Content-Type: application/pidf+xml;charset="UTF-8"

 <?xml version="1.0" encoding="UTF-8"?>
 <presence xmlns="urn:ietf:params:xml:ns:pidf"
 entity="sip:mark@stockholm.example.org">
 <tuple id="z98075">
 <status>
 <basic>closed</basic>
 </status>
 </tuple>
 </presence>
 --tuLLl3lDyPZX0GMr2YOo--

 --l3WMZaaL8NpQWGnQ4mlU
 Content-Transfer-Encoding: binary
 Content-ID: <K9LB7k@stockholm.example.org>
 Content-Type: application/pkcs7-signature

 [PKCS #7 signature here]

 --l3WMZaaL8NpQWGnQ4mlU--

 --TfZxoxgAvLqgj4wRWPDL--

Roach, et al. Standards Track [Page 30]

RFC 4662 SIP Event Lists August 2006

 14. The terminal completes the NOTIFY transaction.

 Terminal -> Local RLS

 SIP/2.0 200 OK
 Via: SIP/2.0/TCP pres.vancouver.example.com;
 branch=z9hG4bK4EPlfSFQK1
 From: <sip:adam-buddies@pres.vancouver.example.com>;tag=zpNctbZq
 To: <sip:adam@vancouver.example.com>;tag=ie4hbb8t
 Call-ID: cdB34qLToC@terminal.vancouver.example.com
 CSeq: 997935769 NOTIFY
 Contact: <sip:terminal.vancouver.example.com>
 Content-Length: 0

7. Security Considerations

 Note that the mechanisms for obtaining state information for
 resources in a list are generally left to the RLS implementor. Some
 of the security issues below are specific to the circumstance in
 which a SIP back-end subscription is used for such a purpose. Non-
 SIP mechanisms for obtaining state information of resources in a list
 will typically have their own security issues associated with doing
 so; however, exhaustively enumerating such access methods is not
 possible in this document. Implementors using such mechanisms must
 analyze their chosen access methods for relevant security issues.

7.1. Authentication

 If back-end subscriptions are required to retrieve resource state
 information, the end user is no longer the direct subscriber to the
 state of the resource. This means that direct authentication of the
 user is no longer possible.

7.1.1. RLS and Subscriber in the Same Domain

 It is expected that the most common deployment of RLSes entails that
 the subscribers to the RLS will be in the same domain as the RLS.
 When this is the case, the RLS then has the ability to act as an
 authentication service. The role of authentication service is
 defined in "Enhancements for Authenticated Identity Management in the
 Session Initiation Protocol (SIP)" [7].

 At a high level, under this system, the RLS authenticates the
 subscriber and then includes an "Identity" header field in all of the
 back-end subscriptions performed on behalf of that authenticated
 user. This "Identity" header field cryptographically asserts that
 the request has been authorized to be made on behalf of the user
 indicated in the "From" header field.

Roach, et al. Standards Track [Page 31]

RFC 4662 SIP Event Lists August 2006

 Because the ability to authenticate requests is central to the proper
 functioning of the network, any RLS that uses SIP back-end
 subscriptions to acquire information about the resources in a
 resource list MUST be able to act as an authentication service as
 defined in [7], provided that local administrative policy allows it
 to do so.

 In other words, all RLS implementations that support back-end SIP
 subscriptions also must include the ability to be configured to
 act as an authentication service. Whether any given administrator
 chooses to activate such a feature is completely up to them. Of
 course, lacking the ability to act as an identity server, any RLS
 so configured will behave as described in the following section,
 since it is effectively acting as if it were in a different domain
 than the user.

7.1.2. RLS and Subscriber in Different Domains

 In the general case, the SIP Authenticated Identity extensions do not
 provide a means for the RLS to securely assert that subscriptions are
 being performed on the end user’s behalf. Specifically, when the
 subscriber and the RLS are in different domains, the RLS will have no
 means by which it can vouch for the user’s identity. Mechanisms by
 which back-end subscriptions in such circumstances can be
 authenticated are left for future study.

 Until such general solutions are developed, RLSes that are in a
 different domain than the subscriber on whose behalf they are
 creating back-end subscriptions SHOULD subscribe to the resources
 using their own identity. By doing so, the RLS will generally obtain
 only the resource information that is made publicly available.

 Absent such general solutions, implementations of subscriber user
 agents MAY attempt direct subscriptions to resources in the resource
 list when subscribing to an RLS outside of their domain (either
 directly or by way of another resource list subscription). The
 resources to be subscribed to will be those indicated in the "uri"
 attribute of the <resource> elements present in the RLMI document
 returned by the RLS. Directly subscribing to the resources allows
 proper authentication of the user to take place, which will generally
 authorize them to receive more complete state information.
 Implementations that choose to perform such direct subscriptions
 SHOULD use the data retrieved instead of any information about the
 resource obtained via the list subscription.

Roach, et al. Standards Track [Page 32]

RFC 4662 SIP Event Lists August 2006

7.2. Risks of Improper Aggregation

 A resource list server typically serves information to multiple
 subscribers at once. In many cases, resources may be present in
 several lists; additionally, it is quite possible that resource list
 servers will have two users subscribe to the same list.

 In these cases, misguided RLS implementations may attempt to minimize
 network load by maintaining only one back-end subscription to a
 resource in a list and presenting the result of such a subscription
 to more than one user. Of course, doing so circumvents any
 authorization policy that the notifier for the resource maintains.
 Keep in mind that authorization is often much more than a simple
 binary "allowed/not allowed" decision; resources may render very
 different -- and even conflicting -- resource states, depending on
 the identity of the subscribing user.

 To prevent the transmission of event information to anyone other than
 the intended recipient, implementations MUST NOT present the result
 of one back-end subscription to more than one user, unless:

 a. The RLS has adequate access to the complete authorization policy
 associated with the resource to which the back-end subscription
 has been made, AND

 b. The RLS can and has determined that presenting the information to
 more than one user does not violate such policy.

 Note that this is a very difficult problem to solve correctly. Even
 in the cases where such access is believed possible, this mode of
 operation is NOT RECOMMENDED.

7.3. Signing and Sealing

 Implementors should keep in mind that any section of the MIME body
 may be signed and/or encrypted as necessary. Resource List Servers
 should take care not to modify any MIME bodies they receive from any
 back-end subscriptions, and should not generally rely on being able
 to read them.

 In order to facilitate security, resource list servers SHOULD pass
 along indication for support of "multipart/signed" and "application/
 pkcs7-mime" content types to any SIP back-end subscriptions, if the
 subscriber includes them in the initial SUBSCRIBE message. Not doing
 so may actually result in resources refusing to divulge state (if
 notifier policy requires encryption, but the RLS fails to convey
 support), or subscribers discarding valid state (if subscriber policy
 requires a signature, but the RLS fails to convey support).

Roach, et al. Standards Track [Page 33]

RFC 4662 SIP Event Lists August 2006

 Note that actual implementation of encryption and signing by the RLS
 is not necessary to be able to pass through signed and/or encrypted
 bodies.

7.4. Infinite Loops

 One risk introduced by the ability to nest resource lists is the
 possibility of creating lists that ultimately contain themselves as a
 sub-list. Detection and handling of such a case is trivial when the
 RLS services all the virtual subscriptions internally. When back-end
 subscriptions are created to service virtual subscriptions, however,
 detection of such situations becomes a more difficult problem.

 Implementors of RLSes that create back-end subscriptions MUST
 implement safeguards to prevent such nestings from creating an
 infinite loop of subscriptions. Typically, such mechanisms will
 require support in the back-end subscription protocol. In
 particular, applying filters to the back-end subscriptions can be an
 effective way to preclude such problems.

8. IANA Considerations

8.1. New SIP Option Tag: eventlist

 This section defines a new option tag for the registry established by
 Section 27.1 of RFC 3261[1].

 Option Tag Name: eventlist

 Description: Extension to allow subscriptions to lists of resources.

 Published specification: RFC 4662

8.2. New MIME type for Resource List Meta-Information

 MIME Media Type Name: application

 MIME subtype name: rlmi+xml

 Required parameters: None

 Optional parameters: charset

 See RFC 3023 [12] for a discussion of the charset parameter on
 XML-derived MIME types. Since this MIME type is used exclusively
 in SIP, the use of UTF-8 encoding is strongly encouraged.

 Encoding considerations: 8-bit text

Roach, et al. Standards Track [Page 34]

RFC 4662 SIP Event Lists August 2006

 Security considerations: Security considerations specific to uses of
 this MIME type are discussed in RFC 4662. RFC 1874 [11] and RFC
 3023 [12] discuss security issues common to all uses of XML.

 Interoperability considerations: The use of this MIME body is
 intended to be generally interoperable. No unique considerations
 have been identified.

 Published specification: RFC 4662

 Applications that use this media type: This media type is used to
 convey meta-information for the state of lists of resources within
 a Session Initiation Protocol (SIP) subscription.

 Additional information:
 Magic Number(s): None.
 File Extension(s): None.
 Macintosh File Type Code(s): None.
 Object Identifier(s) or OID(s): None.

 Intended usage: Limited Use

 Other Information/General Comment: None.

 Person to contact for further information:
 Name: Adam Roach
 E-Mail: adam@estacado.net
 Author/Change Controller: The specification of this MIME type is
 a work product of the SIMPLE working group and was authored by
 Adam Roach, Jonathan Rosenberg, and Ben Campbell. The IETF has
 change control over its specification.

8.3. URN Sub-Namespace

 URI: urn:ietf:params:xml:ns:rlmi

 Description: This is the XML namespace URI for XML elements defined
 by RFC 4662 to describe information about subscriptions when such
 subscriptions are aggregated within a single SIP subscription. It
 is used in the application/rlmi+xml body type.

 Registrant Contact:
 Name: Adam Roach
 E-Mail: adam@estacado.net
 Author/Change Controller: The specification of this MIME type is
 a work product of the SIMPLE working group and was authored by
 Adam Roach, Jonathan Rosenberg, and Ben Campbell. The IETF has
 change control over its specification.

Roach, et al. Standards Track [Page 35]

RFC 4662 SIP Event Lists August 2006

 XML:
 BEGIN
 <?xml version="1.0"?>
 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML Basic 1.0//EN"
 "http://www.w3.org/TR/xhtml-basic/xhtml-basic10.dtd">
 <html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <meta http-equiv="content-type"
 content="text/html;charset=utf-8"/>
 <title>Namespace for SIP Event Resource List
 Meta-Information</title>
 </head>
 <body>
 <h1>Namespace for SIP Event Resource List
 Meta-Information</h1>
 <h2>application/rlmi+xml</h2>
 <p>See
 RFC4662.</p>
 </body>
 </html>
 END

9. Acknowledgements

 Thanks to Sean Olson for a review of and corrections to the usage of
 XML in this protocol.

 Thanks also to Hisham Khartabil, Paul Kyzivat, Keith Drage, and
 Robert Sparks for their careful reviews of and comments on this
 document.

10. References

10.1. Normative References

 [1] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
 Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP:
 Session Initiation Protocol", RFC 3261, June 2002.

 [2] Roach, A. B., "Session Initiation Protocol (SIP)-Specific Event
 Notification", RFC 3265, June 2002.

 [3] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message Bodies",
 RFC 2045, November 1996.

Roach, et al. Standards Track [Page 36]

RFC 4662 SIP Event Lists August 2006

 [4] Levinson, E., "The MIME Multipart/Related Content-type", RFC
 2387, August 1998.

 [5] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [6] Alvestrand, H., "Tags for the Identification of Languages", BCP
 47, RFC 3066, January 2001.

 [7] Peterson, J. and C. Jennings, "Enhancements for Authenticated
 Identity Management in the Session Initiation Protocol (SIP)",
 RFC 4474, August 2006.

10.2. Informative References

 [8] Rosenberg, J., "A Presence Event Package for the Session
 Initiation Protocol (SIP)", RFC 3856, August 2004.

 [9] Burger, E., "A Mechanism for Content Indirection in Session
 Initiation Protocol (SIP) Messages", RFC 4483, May 2006.

 [10] Peterson, J., "Common Profile for Presence (CPP)", RFC 3859,
 August 2004.

 [11] Levinson, E., "SGML Media Types", RFC 1874, December 1995.

 [12] Murata, M., St. Laurent, S., and D. Kohn, "XML Media Types",
 RFC 3023, January 2001.

 [13] Ramsdell, B., "Secure/Multipurpose Internet Mail Extensions
 (S/MIME) Version 3.1 Message Specification", RFC 3851, July
 2004.

 [14] Galvin, J., Murphy, S., Crocker, S., and N. Freed, "Security
 Multiparts for MIME: Multipart/Signed and Multipart/Encrypted",
 RFC 1847, October 1995.

 [15] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

Roach, et al. Standards Track [Page 37]

RFC 4662 SIP Event Lists August 2006

Authors’ Addresses

 Adam Roach
 Estacado Systems
 US

 EMail: adam@estacado.net

 Ben Campbell
 Estacado Systems
 US

 EMail: ben@estacado.net

 Jonathan Rosenberg
 Cisco Systems
 600 Lanidex Plaza
 Parsippany, NJ 07054-2711
 US

 EMail: jdrosen@cisco.com

Roach, et al. Standards Track [Page 38]

RFC 4662 SIP Event Lists August 2006

Full Copyright Statement

 Copyright (C) The Internet Society (2006).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

Roach, et al. Standards Track [Page 39]

