
Network Working Group R. Sparks
Request for Comments: 5057 Estacado Systems
Category: Informational November 2007

 Multiple Dialog Usages in the Session Initiation Protocol

Status of This Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Abstract

 Several methods in the Session Initiation Protocol (SIP) can create
 an association between endpoints known as a dialog. Some of these
 methods can also create a different, but related, association within
 an existing dialog. These multiple associations, or dialog usages,
 require carefully coordinated processing as they have independent
 life-cycles, but share common dialog state. Processing multiple
 dialog usages correctly is not completely understood. What is
 understood is difficult to implement.

 This memo argues that multiple dialog usages should be avoided. It
 discusses alternatives to their use and clarifies essential behavior
 for elements that cannot currently avoid them.

 This is an informative document and makes no normative statements of
 any kind.

Sparks Informational [Page 1]

RFC 5057 Multiple Dialog Usages November 2007

Table of Contents

 1. Overview . 2
 2. Introduction . 2
 3. Examples of Multiple Usages 4
 3.1. Transfer . 4
 3.2. Reciprocal Subscription 6
 4. Usage Creation and Destruction 9
 4.1. Invite Usages . 9
 4.2. Subscribe usages . 9
 5. Proper Handling of Multiple Usages 9
 5.1. A Survey of the Effect of Failure Responses on Usages
 and Dialogs . 9
 5.2. Transaction Timeouts 15
 5.3. Matching Requests to Usages 16
 5.4. Target Refresh Requests 17
 5.5. Refreshing and Terminating Usages 17
 5.6. Refusing New Usages 18
 5.7. Replacing Usages . 18
 6. Avoiding Multiple Usages 18
 7. Security Considerations 23
 8. Conclusion . 24
 9. Acknowledgments . 24
 10. Informative References . 24

1. Overview

 This is an informative document. It makes no normative statements of
 any kind. This document refines the concept of a dialog usage in the
 Session Initiation Protocol (SIP [1]), and discusses what led to its
 existence. It explores ambiguity associated with processing multiple
 dialog usages that share a dialog. In particular, it surveys the
 effect of SIP failure responses on transaction, dialog usage, and
 dialog state. This document will help the implementer understand
 what is required to process multiple dialog usages correctly, and
 will provide information for future standards-track work that will
 clarify RFC 3261 and other related documents. Finally, the document
 explores single-usage dialog alternatives (using SIP extensions) to
 multiple dialog usages.

2. Introduction

 Several methods in SIP can establish a dialog. When they do so, they
 also establish an association between the endpoints within that
 dialog. This association has been known for some time as a "dialog
 usage" in the developer community. A dialog initiated with an INVITE
 request has an invite usage. A dialog initiated with a SUBSCRIBE

Sparks Informational [Page 2]

RFC 5057 Multiple Dialog Usages November 2007

 request has a subscribe usage. A dialog initiated with a REFER
 request has a subscribe usage.

 Dialogs with multiple usages arise when a usage-creating action
 occurs inside an existing dialog. Such actions include accepting a
 REFER or SUBSCRIBE issued inside a dialog established with an INVITE
 request. Multiple REFERs within a dialog create multiple
 subscriptions, each of which is a new dialog usage sharing common
 dialog state. (Note that any REFER issued utilizing the
 subscription-suppression mechanism specified in [2] creates no new
 usage.) Similarly, an endpoint in a dialog established with an
 INVITE might subscribe to its peer’s Key Press Markup Language (KPML)
 [3] and later issue a REFER, resulting in three dialog usages sharing
 common dialog state.

 The common state in the dialog shared by any usages is exactly:

 o the Call-ID

 o the local Tag

 o the remote Tag

 o the local CSeq

 o the remote CSeq

 o the Route-set

 o the local contact

 o the remote target

 o the secure flag

 Usages have state that is not shared in the dialog. For example, a
 subscription has a duration, along with other usage-specific state.
 Multiple subscriptions in the same dialog each have their own
 duration.

 A dialog comes into existence with the creation of the first usage,
 and continues to exist until the last usage is terminated (reference
 counting). Unfortunately, many of the usage management aspects of
 SIP, such as authentication, were originally designed with the
 implicit assumption that there was one usage per dialog. The
 resulting mechanisms have mixed effects, some influencing the usage,
 and some influencing the entire dialog.

Sparks Informational [Page 3]

RFC 5057 Multiple Dialog Usages November 2007

 The current specifications define two usages, invite and subscribe.
 A dialog can share up to one invite usage and arbitrarily many
 subscribe usages.

 Because RFC 3261 [1] states that user-agents should reuse Call-ID and
 increment CSeq across a series of registration requests (and that to-
 tags appear in register responses in some of the examples), some
 implementations have treated REGISTER as if it were in a dialog.
 However, RFC 3261 explicitly calls out that REGISTER does not create
 a dialog. A series of REGISTER requests does not create any usage or
 dialog. Similarly, PUBLISH [4] does not create any usage or dialog.

3. Examples of Multiple Usages

3.1. Transfer

 In Figure 1, Alice transfers a call she received from Bob to Carol.
 A dialog (and an invite dialog usage) between Alice and Bob comes
 into being with the 200 OK labeled F1. A second usage (a
 subscription to event refer) comes into being with the NOTIFY labeled
 F2. This second usage ends when the subscription is terminated by
 the NOTIFY transaction labeled F3. The dialog still has one usage
 (the invite usage), which lasts until the BYE transaction labeled F4.
 At this point, the dialog has no remaining usages, so it ceases to
 exist. Details of each of these messages are shown in Figure 2.

Sparks Informational [Page 4]

RFC 5057 Multiple Dialog Usages November 2007

 Alice Bob Carol
 | INVITE | |
 |<----------------| |
 Dialog 1 Usage 1 | 200 OK (F1) | |
 -start- -start- ----------->|---------------->| |
 | | | ACK | | |
 | | |<----------------| |
 | | | reINVITE/200/ACK| |
 | | | (hold) | |
 | | |---------------->| |
 | | | REFER | |
 | | Dialog 1 |---------------->| |
 | | Usage 2 | NOTIFY (F2) | |
 | | -start- -->|<----------------| INVITE |
 | | | | 200 NOTIFY |----------->|
 | | | |---------------->| 200 OK |
 | | | | 200 REFER |<-----------|
 | | | |<----------------| ACK |
 | | | | NOTIFY (F3) |----------->|
 | | | |<----------------| |
 | | | | 200 | . |
 | | -end- -->|---------------->| . |
 | | | BYE (F4) | Dialog 2 |
 | | |<----------------| proceeds |
 | | | 200 | . |
 -end- -end- ------------>|---------------->| . |

 Figure 1

 Message Details (abridged to show only dialog or usage details)
 F1
 SIP/2.0 200 OK
 Call-ID: dialog1@bob.example.com
 CSeq: 100 INVITE
 To: <sip:Alice@alice.example.com>;tag=alicetag1
 From: <sip:Bob@bob.example.com>;tag=bobtag1
 Contact: <sip:aliceinstance@alice.example.com>

 F2
 NOTIFY sip:aliceinstance@alice.example.com SIP/2.0
 Event: refer
 Call-ID: dialog1@bob.example.com
 CSeq: 101 NOTIFY
 To: <sip:Alice@alice.example.com>;tag=alicetag1
 From: <sip:Bob@bob.example.com>;tag=bobtag1
 Contact: <sip:bobinstance@bob.example.com>

Sparks Informational [Page 5]

RFC 5057 Multiple Dialog Usages November 2007

 F3
 NOTIFY sip:aliceinstance@alice.example.com SIP/2.0
 Event: refer
 Subscription-State: terminated;reason=noresource
 Call-ID: dialog1@bob.example.com
 CSeq: 102 NOTIFY
 To: <sip:Alice@alice.example.com>;tag=alicetag1
 From: <sip:Bob@bob.example.com>;tag=bobtag1
 Contact: <sip:bobinstance@bob.example.com>
 Content-Type: message/sipfrag

 SIP/2.0 200 OK

 F4
 BYE sip:aliceinstance@alice.example.com SIP/2.0
 Call-ID: dialog1@bob.example.com
 CSeq: 103 BYE
 To: <sip:Alice@alice.example.com>;tag=alicetag1
 From: <sip:Bob@bob.example.com>;tag=bobtag1
 Contact: <sip:bobinstance@bob.example.com>

 Figure 2

3.2. Reciprocal Subscription

 In Figure 3, Alice subscribes to Bob’s presence. For simplicity,
 assume Bob and Alice are both serving their presence from their
 endpoints instead of a presence server. To focus on the essential
 points, the figure leaves out any rendezvous signaling through which
 Alice discovers Bob’s endpoint.

 Bob is interested in Alice’s presence too, so he subscribes to Alice
 (in most deployed presence/IM systems, people watch each other). He
 decides to skip the rendezvous step since he’s already in a dialog
 with Alice, and sends his SUBSCRIBE inside that dialog (a few early
 SIMPLE clients behaved exactly this way).

 The dialog and its first usage comes into being at F1, which
 establishes Alice’s subscription to Bob. Its second usage begins at
 F2, which establishes Bob’s subscription to Alice. These two
 subscriptions are independent - they have distinct and different
 expirations, but they share all the dialog state.

 The first usage ends when Alice decides to unsubscribe at F3. Bob’s
 subscription to Alice, and thus the dialog, continues to exist.
 Alice’s UA must maintain this dialog state even though the
 subscription that caused it to exist in the first place is now over.
 The second usage ends when Alice decides to terminate Bob’s

Sparks Informational [Page 6]

RFC 5057 Multiple Dialog Usages November 2007

 subscription at F4 (she’s probably going to reject any attempt on
 Bob’s part to resubscribe until she’s ready to subscribe to Bob
 again). Since this was the last usage, the dialog also terminates.
 Details of these messages are shown in Figure 4.

 Alice Bob
 | |
 | SUBSCRIBE |
 |------------------->|
 Dialog Usage 1 | NOTIFY (F1) |
 -start- -start- --------->|<-------------------|
 | | | 200 SUBSCRIBE |
 | | |<-------------------|
 | | | 200 NOTIFY |
 | | |------------------->|
 | | | SUBSCRIBE |
 | | |<-------------------|
 | | Usage 2 | NOTIFY (F2) |
 | | -start- -->|------------------->|
 | | | | 200 SUBSCRIBE
 | | | |------------------->|
 | | | | 200 NOTIFY |
 | | | |<-------------------|
 | | | | : |
 | | | | : |
 | | | | (un)SUBSCRIBE (F3) |
 | | | |------------------->|
 | | | | 200 |
 | | | |<-------------------|
 | | | | NOTIFY |
 | | | |<-------------------|
 | | | | 200 |
 | -end- ----------->|------------------->|
 | | | : |
 | | | : |
 | | | NOTIFY (F4) |
 | | | (Terminated) |
 | | |------------------->|
 | | | 200 |
 -end- -end- -->|<-------------------|
 | |

 Figure 3

Sparks Informational [Page 7]

RFC 5057 Multiple Dialog Usages November 2007

 Message Details (abridged to show only dialog or usage details)
 F1
 NOTIFY sip:aliceinstance@alice.example.com SIP/2.0
 Event: presence
 Subscription-State: active;expires=600
 Call-ID: alicecallid1@alice.example.com
 From: <sip:Bob@bob.example.com>;tag=bobtag2
 To: <sip:Alice@alice.example.com>;tag=alicetag2
 CSeq: 100 NOTIFY
 Contact: <sip:bobinstance@bob.example.com>

 F2
 NOTIFY sip:bobinstance@bob.example.com SIP/2.0
 Event: presence
 Subscription-State: active;expires=1200
 Call-ID: alicecallid1@alice.example.com
 To: <sip:Bob@bob.example.com>;tag=bobtag2
 From: <sip:Alice@alice.example.com>;tag=alicetag2
 CSeq: 500 NOTIFY
 Contact: <sip:aliceinstance@alice.example.com>

 F3
 SUBSCRIBE sip:bobinstance@bob.example.com SIP/2.0
 Event: presence
 Expires: 0
 Call-ID: alicecallid1@alice.example.com
 To: <sip:Bob@bob.example.com>;tag=bobtag2
 From: <sip:Alice@alice.example.com>;tag=alicetag2
 CSeq: 501 SUBSCRIBE
 Contact: <sip:aliceinstance@alice.example.com>

 F4
 NOTIFY sip:bobinstance@bob.example.com SIP/2.0
 Event: presence
 Subscription-State: terminated;reason=deactivated
 Call-ID: alicecallid1@alice.example.com
 To: <sip:Bob@bob.example.com>;tag=bobtag2
 From: <sip:Alice@alice.example.com>;tag=alicetag2
 CSeq: 502 NOTIFY
 Contact: <sip:aliceinstance@alice.example.com>

 Figure 4

Sparks Informational [Page 8]

RFC 5057 Multiple Dialog Usages November 2007

4. Usage Creation and Destruction

 Dialogs come into existence along with their first usage. Dialogs
 terminate when their last usage is destroyed. The messages that
 create and destroy usages vary per usage. This section provides a
 high-level categorization of those messages. The section does not
 attempt to explore the REGISTER pseudo-dialog.

4.1. Invite Usages

 Created by: non-100 provisional responses to INVITE; 200 response to
 INVITE

 Destroyed by: 200 responses to BYE; certain failure responses to
 INVITE, UPDATE, PRACK, INFO, or BYE; anything that destroys a
 dialog and all its usages

4.2. Subscribe usages

 Created by: 200 class responses to SUBSCRIBE; 200 class responses to
 REFER; NOTIFY requests

 Destroyed by: 200 class responses to NOTIFY-terminated; NOTIFY or
 refresh-SUBSCRIBE request timeout; certain failure responses to
 NOTIFY or SUBSCRIBE; expiration without refresh if network issues
 prevent the terminal NOTIFY from arriving; anything that destroys
 a dialog and all its usages

5. Proper Handling of Multiple Usages

 The examples in Section 3 show straightforward cases where it is
 fairly obvious when the dialog begins and ends. Unfortunately, there
 are many scenarios where such clarity is not present. For instance,
 in Figure 1, what would it mean if the response to the NOTIFY (F2)
 were a 481? Does that simply terminate the refer subscription, or
 does it destroy the entire dialog? This section explores the problem
 areas with multiple usages that have been identified to date.

5.1. A Survey of the Effect of Failure Responses on Usages and Dialogs

 For this survey, consider a subscribe usage inside a dialog
 established with an invite usage. Unless stated otherwise, we’ll
 discuss the effect on each usage and the dialog when a client issuing
 a NOTIFY inside the subscribe usage receives a failure response (such
 as a transferee issuing a NOTIFY to event refer). Further, unless
 otherwise stated, the conclusions apply to arbitrary multiple usages.
 This survey is written from the perspective of a client receiving the

Sparks Informational [Page 9]

RFC 5057 Multiple Dialog Usages November 2007

 error response. The effect on dialogs and usages at the server
 issuing the response is the same.

 3xx responses: Redirection mid-dialog is not well understood in SIP,
 but whatever effect it has impacts the entire dialog and all of
 its usages equally. In our example scenario, both the
 subscription and the invite usage would be redirected by this
 single response.

 For the failure responses with code 400 and greater, there are three
 common ways the failure can affect the transaction, usage, and dialog
 state.

 Transaction Only The error affects only the transaction, not the
 usage or dialog the transaction occurs in (beyond affecting the
 local CSeq). Any other usage of the dialog is unaffected. The
 error is a complaint about this transaction, not the usage or
 dialog that the transaction occurs in.

 Destroys Usage The error destroys the usage, but not the dialog.
 Any other usages sharing this dialog are not affected.

 Destroys Dialog The error destroys the dialog and all usages sharing
 it.

 Table 1 and Table 2 display how the various codes affect transaction,
 usage, or dialog state. Response code specific comments or
 exceptions follow the table.

 +----------------------+----------------+-----------------+
 | Transaction Only | Destroys Usage | Destroys Dialog |
 +----------------------+----------------+-----------------+
 | 400 (or unknown 4xx) | 405, 480 | 404, 410, 416 |
 | 401, 402, 403, 406 | 481, 489 | 482, 483 |
 | 407, 408, 412-415 | 501 | 484, 485 |
 | 417, 420, 421, 422 | | 502, 604 |
 | 423, 428, 429 | | |
 | 436-438, 486, 487 | | |
 | 488, 491, 493, 494 | | |
 | 500 (or unknown 5xx) | | |
 | 503, 504, 505 | | |
 | 513, 580 | | |
 | 600 (or unknown 6xx) | | |
 | 603, 606 | | |
 +----------------------+----------------+-----------------+

 Table 1

Sparks Informational [Page 10]

RFC 5057 Multiple Dialog Usages November 2007

 +---------+---------------------------------+-------------+-------+
 | Code | Reason | Impact | Notes |
 +---------+---------------------------------+-------------+-------+
 | 400/4xx | Bad Request | Transaction | |
 | 401 | Unauthorized | Transaction | |
 | 402 | Payment Required | Transaction | (1) |
 | 403 | Forbidden | Transaction | |
 | 404 | Not Found | Dialog | (2) |
 | 405 | Method Not Allowed | Usage | (3) |
 | 406 | Not Acceptable | Transaction | |
 | 407 | Proxy Authentication Required | Transaction | |
 | 408 | Request Timeout | Transaction | (4) |
 | 410 | Gone | Dialog | (2) |
 | 412 | Conditional Request Failed | Transaction | |
 | 413 | Request Entity Too Large | Transaction | |
 | 414 | Request-URI Too Long | Transaction | |
 | 415 | Unsupported Media Type | Transaction | |
 | 416 | Unsupported URI Scheme | Dialog | (2) |
 | 417 | Unknown Resource-Priority | Transaction | |
 | 420 | Bad Extension | Transaction | |
 | 421 | Extension Required | Transaction | |
 | 422 | Session Interval Too Small | Transaction | (5) |
 | 423 | Interval Too Brief | Transaction | |
 | 428 | Use Identity Header | Transaction | |
 | 429 | Provide Referrer Identity | Transaction | (6) |
 | 436 | Bad Identity-Info | Transaction | |
 | 437 | Unsupported Certificate | Transaction | |
 | 438 | Invalid Identity Header | Transaction | |
 | 480 | Temporarily Unavailable | Usage | (7) |
 | 481 | Call/Transaction Does Not Exist | Usage | (8) |
 | 482 | Loop Detected | Dialog | (9) |
 | 483 | Too Many Hops | Dialog | (10) |
 | 484 | Address Incomplete | Dialog | (2) |
 | 485 | Ambiguous | Dialog | (2) |
 | 486 | Busy Here | Transaction | (11) |
 | 487 | Request Terminated | Transaction | |
 | 488 | Not Acceptable Here | Transaction | |
 | 489 | Bad Event | Usage | (12) |
 | 491 | Request Pending | Transaction | |
 | 493 | Undecipherable | Transaction | |
 | 494 | Security Agreement Required | Transaction | |
 | 500/5xx | Server Internal Error | Transaction | (13) |
 | 501 | Not Implemented | Usage | (3) |
 | 502 | Bad Gateway | Dialog | (14) |
 | 503 | Service Unavailable | Transaction | (15) |
 | 504 | Server Time-Out | Transaction | (16) |
 | 505 | Version Not Supported | Transaction | |
 | 513 | Message Too Large | Transaction | |

Sparks Informational [Page 11]

RFC 5057 Multiple Dialog Usages November 2007

 | 580 | Precondition Failure | Transaction | |
 | 600/6xx | Busy Everywhere | Transaction | (17) |
 | 603 | Decline | Transaction | |
 | 604 | Does Not Exist Anywhere | Dialog | (2) |
 | 606 | Not Acceptable | Transaction | |
 +---------+---------------------------------+-------------+-------+

 Table 2

 (1) 402 Payment Required: This is a reserved response code. If
 encountered, it should be treated as an unrecognized 4xx.

 (2) 404 Not Found:

 410 Gone:

 416 Unsupported URI Scheme:

 484 Address Incomplete:

 485 Ambiguous:

 604 Does Not Exist Anywhere:

 The Request-URI that is being rejected is the remote target set by
 the Contact provided by the peer. Getting this response means
 that something has gone fundamentally wrong with the dialog state.

 (3) 405 Method Not Allowed:

 501 Not Implemented:

 Either of these responses would be aberrant in our example
 scenario since support for the NOTIFY method is required by the
 usage. In this case, the UA knows the condition is unrecoverable
 and should stop sending NOTIFYs on the usage. Any refresh
 subscriptions should be rejected. In general, these errors will
 affect at most the usage. If the request was not integral to the
 usage (it used an unknown method, or was an INFO inside an INVITE
 usage, for example), only the transaction will be affected.

 (4) 408 Request Timeout: Receiving a 408 will have the same effect
 on usages and dialogs as a real transaction timeout as described
 in Section 5.2.

Sparks Informational [Page 12]

RFC 5057 Multiple Dialog Usages November 2007

 (5) 422 Session Interval Too Small: This response does not make
 sense for any mid-usage request. If it is received, an element in
 the path of the request is violating protocol, and the recipient
 should treat this as it would an unknown 4xx response.

 (6) 429 Provide Referrer Identity: This response won’t be returned
 to a NOTIFY as in our example scenario, but when it is returned to
 a REFER, it is objecting only to the REFER request itself.

 (7) 480 Temporarily Unavailable: RFC 3261 is unclear on what this
 response means for mid-usage requests. Future updates to that
 specification are expected to clarify that this response affects
 only the usage in which the request occurs. No other usages are
 affected. If the response included a Retry-After header field,
 further requests in that usage should not be sent until the
 indicated time has past. Requests in other usages may still be
 sent at any time.

 (8) 481 Call/Transaction Does Not Exist: This response indicates
 that the peer has lost its copy of the dialog usage state. The
 dialog itself should not be destroyed unless this was the last
 usage.

 The effects of a 481 on a dialog and its usages are the most
 ambiguous of any final response. There are implementations that
 have chosen the meaning recommended here, and others that destroy
 the entire dialog without regard to the number of outstanding
 usages. Going forward with this clarification will allow those
 deployed implementations that assumed only the usage was destroyed
 to work with a wider number of implementations. Existing
 implementations that destroy all other usages in the dialog will
 continue to function as they do now, except that peers following
 the recommendation will attempt to do things with the other usages
 and this element will return 481s for each of them until they are
 all gone. However, the necessary clarification to RFC 3261 needs
 to make it very clear that the ability to terminate usages
 independently from the overall dialog using a 481 is not
 justification for designing new applications that count on
 multiple usages in a dialog.

 The 481 response to a CANCEL request has to be treated
 differently. For CANCEL, a 481 means the UAS can’t find a
 matching transaction. A 481 response to a CANCEL affects only the
 CANCEL transaction. The usage associated with the INVITE is not
 affected.

Sparks Informational [Page 13]

RFC 5057 Multiple Dialog Usages November 2007

 (9) 482 Loop Detected: This response is aberrant mid-dialog. It
 will only occur if the Record-Route header field were improperly
 constructed by the proxies involved in setting up the dialog’s
 initial usage, or if a mid-dialog request forks and merges (which
 should never happen). Future requests using this dialog state
 will also fail.

 An edge condition exists during RFC 3263 failover at the
 element sending a request, where the request effectively forks
 to multiple destinations from the client. Some implementations
 increase risk entering this edge condition by trying the next
 potential location as determined by RFC 3263 very rapidly if
 the first does not immediately respond. In any situation where
 a client sends the same request to more than one endpoint, it
 must be prepared to receive a response from each branch (and
 should choose a "best" response to act on following the same
 guidelines as a forking proxy). In this particular race
 condition, if multiple branches respond, all but one will most
 likely return a 482 Merged Request. The client should select
 the remaining non-482 response as the "best" response.

 (10) 483 Too Many Hops: Similar to 482, receiving this mid-dialog is
 aberrant. Unlike 482, recovery may be possible by increasing Max-
 Forwards (assuming that the requester did something strange like
 using a smaller value for Max-Forwards in mid-dialog requests than
 it used for an initial request). If the request isn’t tried with
 an increased Max-Forwards, then the agent should follow the
 Destroy Dialog actions.

 (11) 486 Busy Here: This response is nonsensical in our example
 scenario, or in any scenario where this response comes inside an
 established usage. If it occurs in that context, it should be
 treated as an unknown 4xx response.

 (12) 489 Bad Event: In our example scenario, [5] declares that the
 subscription usage in which the NOTIFY is sent is terminated.
 This response is only valid in the context of SUBSCRIBE and
 NOTIFY. UAC behavior for receiving this response to other methods
 is not specified, but treating it as an unknown 4xx is a
 reasonable practice.

 (13) 500 and 5xx unrecognized responses: If the response contains a
 Retry-After header field value, the server thinks the condition is
 temporary, and the request can be retried after the indicated
 interval. If the response does not contain a Retry-After header
 field value, the UA may decide to retry after an interval of its
 choosing or attempt to gracefully terminate the usage. Whether or
 not to terminate other usages depends on the application. If the

Sparks Informational [Page 14]

RFC 5057 Multiple Dialog Usages November 2007

 UA receives a 500 (or unrecognized 5xx) in response to an attempt
 to gracefully terminate this usage, it can treat this usage as
 terminated. If this is the last usage sharing the dialog, the
 dialog is also terminated.

 (14) 502 Bad Gateway: This response is aberrant mid-dialog. It will
 only occur if the Record-Route header field were improperly
 constructed by the proxies involved in setting up the dialog’s
 initial usage. Future requests using this dialog state will also
 fail.

 (15) 503 Service Unavailable: As per [6], the logic handling
 locating SIP servers for transactions may handle 503 requests
 (effectively, sequentially forking at the endpoint based on DNS
 results). If this process does not yield a better response, a 503
 may be returned to the transaction user. Like a 500 response, the
 error is a complaint about this transaction, not the usage.
 Because this response occurred in the context of an established
 usage (hence an existing dialog), the route-set has already been
 formed and any opportunity to try alternate servers (as
 recommended in [1]) has been exhausted by the RFC3263 logic.

 (16) 504 Server Time-out: It is not obvious under what circumstances
 this response would be returned to a request in an existing
 dialog.

 (17) 600 and 6xx unrecognized responses: Unlike 400 Bad Request, a
 600 response code says something about the recipient user, not the
 request that was made. This end user is stating an unwillingness
 to communicate. If the response contains a Retry-After header
 field value, the user is indicating willingness to communicate
 later and the request can be retried after the indicated interval.
 This usage, and any other usages sharing the dialog are
 unaffected. If the response does not contain a Retry-After header
 field value, the UA may decide to retry after an interval of its
 choosing or attempt to gracefully terminate the usage. Whether or
 not to terminate other usages depends on the application. If the
 UA receives a 600 (or unrecognized 6xx) in response to an attempt
 to gracefully terminate this usage, it can treat this usage as
 terminated. If this is the last usage sharing the dialog, the
 dialog is also terminated.

5.2. Transaction Timeouts

 [1] states that a UAC should terminate a dialog (by sending a BYE) if
 no response is received for a request sent within a dialog. This
 recommendation should have been limited to the invite usage instead
 of the whole dialog. [5] states that a timeout for a NOTIFY removes a

Sparks Informational [Page 15]

RFC 5057 Multiple Dialog Usages November 2007

 subscription, but a SUBSCRIBE that fails with anything other than a
 481 does not. Given these statements, it is unclear whether a
 refresh SUBSCRIBE issued in a dialog shared with an invite usage
 destroys either usage or the dialog if it times out.

 Generally, a transaction timeout should affect only the usage in
 which the transaction occurred. Other uses sharing the dialog should
 not be affected. In the worst case of timeout due to total transport
 failure, it may require multiple failed messages to remove all usages
 from a dialog (at least one per usage).

 There are some mid-dialog messages that never belong to any usage.
 If they timeout, they will have no effect on the dialog or its
 usages.

5.3. Matching Requests to Usages

 For many mid-dialog requests, identifying the usage they belong to is
 obvious. A dialog can have at most one invite usage, so any INVITE,
 UPDATE, PRACK, ACK, CANCEL, BYE, or INFO requests belong to it. The
 usage (i.e. the particular subscription) SUBSCRIBE, NOTIFY, and REFER
 requests belong to can be determined from the Event header field of
 the request. REGISTER requests within a (pseudo)-dialog belong to
 the registration usage. (As mentioned before, implementations aren’t
 mixing registration usages with other usages, so this document isn’t
 exploring the consequences of that bad behavior).

 According to [1], "an OPTIONS request received within a dialog
 generates a 200 OK response that is identical to one constructed
 outside a dialog and does not have any impact on that dialog". Thus,
 OPTIONS does not belong to any usage. Only those failures discussed
 in Section 5.1 and Section 5.2 that destroy entire dialogs will have
 any effect on the usages sharing the dialog with a failed OPTIONS
 request.

 MESSAGE requests are discouraged inside a dialog. Implementations
 are restricted from creating a usage for the purpose of carrying a
 sequence of MESSAGE requests (though some implementations use it that
 way, against the standard recommendation). A failed MESSAGE
 occurring inside an existing dialog will have similar effects on the
 dialog and its usages as a failed OPTIONS request.

 Mid-dialog requests with unknown methods cannot be matched with a
 usage. Servers will return a failure response (likely a 501). The
 effect on the dialog and its usages at either the client or the
 server should be similar to that of a failed OPTIONS request.

Sparks Informational [Page 16]

RFC 5057 Multiple Dialog Usages November 2007

 These guidelines for matching messages to usages (or determining
 there is no usage) apply equally when acting as a UAS, a UAC, or any
 third party tracking usage and dialog state by inspecting all
 messages between two endpoints.

5.4. Target Refresh Requests

 Target refresh requests update the remote target of a dialog when
 they are successfully processed. The currently defined target
 refresh requests are INVITE, UPDATE, SUBSCRIBE, NOTIFY, and REFER
 [7]).

 The remote target is part of the dialog state. When a target refresh
 request affects it, it affects it for ALL usages sharing that dialog.
 If a subscription and invite usage are sharing a dialog, sending a
 refresh SUBSCRIBE with a different contact will cause reINVITEs from
 the peer to go to that different contact.

 A UAS will only update the remote target if it sends a 200 class
 response to a target refresh request. A UAC will only update the
 remote target if it receives a 200 class response to a target refresh
 request. Again, any update to a dialog’s remote target affects all
 usages of that dialog.

 There is known ambiguity around the effects of provisional responses
 on remote targets that a future specification will attempt to
 clarify. Furthermore, because the remote target is part of the
 dialog state, not any usage state, there is ambiguity in having
 target refresh requests in progress simultaneously on multiple usages
 in the same dialog. Implementation designers should consider these
 conditions with care.

5.5. Refreshing and Terminating Usages

 Subscription and registration usages expire over time and must be
 refreshed (with a refresh SUBSCRIBE, for example). This expiration
 is usage state, not dialog state. If several subscriptions share a
 dialog, refreshing one of them has no effect on the expiration of the
 others.

 Normal termination of a usage has no effect on other usages sharing
 the same dialog. For instance, terminating a subscription with a
 NOTIFY/Subscription-State: terminated will not terminate an invite
 usage sharing its dialog. Likewise, ending an invite usage with a
 BYE does not terminate any active Event: refer subscriptions
 established on that dialog.

Sparks Informational [Page 17]

RFC 5057 Multiple Dialog Usages November 2007

5.6. Refusing New Usages

 As the survey of the effect of failure responses shows, care must be
 taken when refusing a new usage inside an existing dialog. Choosing
 the wrong response code will terminate the dialog and all of its
 usages. Generally, returning a 603 Decline is the safest way to
 refuse a new usage.

5.7. Replacing Usages

 [8] defines a mechanism through which one usage can replace another.
 It can be used, for example, to associate the two dialogs in which a
 transfer target is involved during an attended transfer. It is
 written using the term "dialog", but its intent was only to affect
 the invite usage of the dialog it targets. Any other usages inside
 that dialog are unaffected. For some applications, the other usages
 may no longer make sense, and the application may terminate them as
 well.

 However, the interactions between Replaces and multiple dialog usages
 have not been well explored. More discussion of this topic is
 needed. Implementers should avoid this scenario completely.

6. Avoiding Multiple Usages

 Processing multiple usages correctly is not completely understood.
 What is understood is difficult to implement and is very likely to
 lead to interoperability problems. The best way to avoid the trouble
 that comes with such complexity is to avoid it altogether.

 When designing new applications or features that use SIP dialogs, do
 not require endpoints to construct multiple usages to participate in
 the application or use the feature. When designing endpoints,
 address the existing multiple usage scenarios as best as possible.
 Outside those scenarios, if a peer attempts to create a second usage
 inside a dialog, refuse it.

 Unfortunately, there are existing applications, like transfer, that
 currently entail multiple usages, so the simple solution of "don’t do
 it" will require some transitional work. This section looks at the
 pressures that led to these existing multiple usages and suggests
 alternatives.

 When executing a transfer, the transferor and transferee currently
 share an invite usage and a subscription usage within the dialog
 between them. This is a result of sending the REFER request within
 the dialog established by the invite usage. Implementations were led
 to this behavior by these primary problems:

Sparks Informational [Page 18]

RFC 5057 Multiple Dialog Usages November 2007

 1. There was no way to ensure that a REFER on a new dialog would
 reach the particular endpoint involved in a transfer. Many
 factors, including details of implementations and changes in
 proxy routing between an INVITE and a REFER could cause the REFER
 to be sent to the wrong place. Sending the REFER down the
 existing dialog ensured it got to the same endpoint with which
 the dialog was established.

 2. It was unclear how to associate an existing invite usage with a
 REFER arriving on a new dialog, where it was completely obvious
 what the association was when the REFER came on the invite
 usage’s dialog.

 3. There were concerns with authorizing out-of-dialog REFERs. The
 authorization policy for REFER in most implementations piggybacks
 on the authorization policy for INVITE (which is, in most cases,
 based simply on "I placed or answered this call").

 Globally Routable User Agent (UA) URIs (GRUUs) [9] have been defined
 specifically to address problem 1 by providing a URI that will reach
 one specific user-agent. The Target-Dialog header field [10] was
 created to address problems 2 and 3. This header field allows a
 request to indicate the dialog identifiers of some other dialog,
 providing association with the other dialog that can be used in an
 authorization decision.

 The Join [11] and Replaces [8] mechanisms can also be used to address
 problem 1. When using this technique, a new request is sent outside
 any dialog with the expectation that it will fork to possibly many
 endpoints, including the one we’re interested in. This request
 contains a header field listing the dialog identifiers of a dialog in
 progress. Only the endpoint holding a dialog matching those
 identifiers will accept the request. The other endpoints the request
 may have forked to will respond with an error. This mechanism is
 reasonably robust, failing only when the routing logic for out-of-
 dialog requests changes such that the new request does not arrive at
 the endpoint holding the dialog of interest.

 The reachability aspects of using a GRUU to address problem 1 can be
 combined with the association-with-other-dialogs aspects of the Join/
 Replaces and Target-Dialog mechanisms. A REFER request sent out-of-
 dialog can be sent towards a GRUU, and identify an existing dialog as
 part of the context the receiver should use. The Target-Dialog
 header field can be included in the REFER listing the dialog this
 REFER is associated with. Figure 5 sketches how this could be used
 to achieve transfer without reusing a dialog. For simplicity, the
 diagram and message details do not show the server at example.com

Sparks Informational [Page 19]

RFC 5057 Multiple Dialog Usages November 2007

 that will be involved in routing the GRUU. Refer to [9] for those
 details.

 Alice Bob Carol
 | | |
 | F1 INVITE (Bob’s AOR) | |
 | Call-ID: (call-id one) | |
 | Contact: (Alice’s-GRUU) | |
 |------------------------------->| |
 | F2 200 OK | |
 | To: <>;tag=totag1 | |
 | From: <>;tag=fromtag1 | |
 | Call-ID: (call-id one) | |
 | Contact: (Bob’s-GRUU) | |
 |<-------------------------------| |
 | ACK | |
 |------------------------------->| |
 | : | |
 | (Bob places Alice on hold) | |
 | : | F3 INVITE (Carol’s AOR) |
 | | Call-ID: (call-id two) |
 | | Contact: (Bob’s-GRUU) |
 | |----------------------------->|
 | | F4 200 OK |
 | | To: <>;tag=totag2 |
 | | From: <>;tag=fromtag2 |
 | | Call-ID: (call-id two) |
 | | Contact: (Carol’s-GRUU) |
 | |<-----------------------------|
 | | ACK |
 | |----------------------------->|
 | | : |
 | | (Bob places Carol on hold) |
 | F5 REFER (Alice’s-GRUU) | : |
 | Call-ID: (call-id three) | |
 | Refer-To: (Carol’s-GRUU) | |
 | Target-Dialog: (call-id one,totag1,fromtag1) |
 | Contact: (Bob’s-GRUU) | |
 |<-------------------------------| |
 | 202 Accepted | |
 |------------------------------->| |

Sparks Informational [Page 20]

RFC 5057 Multiple Dialog Usages November 2007

 | NOTIFY (Bob’s-GRUU) | |
 | Call-ID: (call-id three) | |
 |------------------------------->| |
 | 200 OK | |
 |<-------------------------------| |
 | | |
 | F6 INVITE (Carol’s-GRUU) |
 | Call-ID: (call-id four) |
 | Contact: (Alice’s-GRUU) |
 |-->|
 | 200 OK |
 | Contact: (Carol’s-GRUU) |
 |<--|
 | ACK |
 |-->|
 | | |
 | F7 NOTIFY (Bob’s-GRUU) | |
 | Call-ID: (call-id three) | |
 |------------------------------->| |
 | 200 OK | |
 |<-------------------------------| |
 | BYE (Alice’s-GRUU) | |
 | Call-ID: (call-id one) | |
 |<-------------------------------| BYE (Carol’s-GRUU) |
 | | Call-ID: (call-id two) |
 | 200 OK |----------------------------->|
 |------------------------------->| 200 OK |
 | |<-----------------------------|
 | | |

 Figure 5: Transfer without dialog reuse

 In message F1, Alice invites Bob indicating support for GRUUs (and
 offering a GRUU for herself):

 Message F1 (abridged, detailing pertinent fields)

 INVITE sip:bob@example.com SIP/2.0
 Call-ID: 13jfdwer230jsdw@alice.example.com
 Supported: gruu
 Contact: <sip:alice@example.com;gr=urn:uuid:(Alice’s UA’s bits)>

Sparks Informational [Page 21]

RFC 5057 Multiple Dialog Usages November 2007

 Message F2 carries Bob’s GRUU to Alice.

 Message F2 (abridged, detailing pertinent fields)

 SIP/2.0 200 OK
 Supported: gruu
 To: <sip:bob@example.com>;tag=totag1
 From: <sip:alice@example.com>;tag=fromtag1
 Contact: <sip:bob@example.com;gr=urn:uuid:(Bob’s UA’s bits)>

 Bob decides to try to transfer Alice to Carol, so he puts Alice on
 hold and sends an INVITE to Carol. Carol and Bob negotiate GRUU
 support similar to what happened in F1 and F2.

 Message F3 (abridged, detailing pertinent fields)

 INVITE sip:carol@example.com SIP/2.0
 Supported: gruu
 Call-ID: 23rasdnfoa39i4jnasdf@bob.example.com
 Contact: <sip:bob@example.com;gr=urn:uuid:(Bob’s UA’s bits)>

 Message F4 (abridged, detailing pertinent fields)

 SIP/2.0 200 OK
 Supported: gruu
 To: <sip:carol@example.com>;tag=totag2
 From: <sip:bob@example.com>;tag=fromtag2
 Call-ID: 23rasdnfoa39i4jnasdf@bob.example.com
 Contact: <sip:carol@example.com;gr=urn:uuid:(Carol’s UA’s bits)>

 After consulting Carol, Bob places her on hold and refers Alice to
 her using message F5. Notice that the Refer-To URI is Carol’s GRUU,
 and that this is on a different Call-ID than message F1. (The URI in
 the Refer-To header is line-broken for readability in this document;
 it would not be valid to break the URI this way in a real message.)

 Message F5 (abridged, detailing pertinent fields)

 REFER sip:aanewmr203raswdf@example.com SIP/2.0
 Call-ID: 39fa99r0329493asdsf3n@bob.example.com
 Refer-To: <sip:carol@example.com;g=urn:uid:(Carol’s UA’s bits)
 ?Replaces=23rasdnfoa39i4jnasdf@bob.example.com;
 to-tag=totag2;from-tag=fromtag2>
 Target-Dialog: 13jfdwer230jsdw@alice.example.com;
 local-tag=fromtag1;remote-tag=totag1
 Supported: gruu
 Contact: <sip:bob@example.com;gr=urn:uuid:(Bob’s UA’s bits)>

Sparks Informational [Page 22]

RFC 5057 Multiple Dialog Usages November 2007

 Alice uses the information in the Target-Dialog header field to
 determine that this REFER is associated with the dialog she already
 has in place with Bob. Alice is now in a position to use the same
 admission policy she used for in-dialog REFERs: "Do I have a call
 with this person?". She accepts the REFER, sends Bob the obligatory
 immediate NOTIFY, and proceeds to INVITE Carol with message F6.

 Message F6 (abridged, detailing pertinent fields)

 sip:carol@example.com;gr=urn:uuid:(Carol’s UA’s bits)
 \ /
 \ /
 | |
 v v
 INVITE SIP/2.0
 Call-ID: 4zsd9f234jasdfasn3jsad@alice.example.com
 Replaces: 23rasdnfoa39i4jnasdf@bob.example.com;
 to-tag=totag2;from-tag=fromtag2
 Supported: gruu
 Contact: <sip:alice@example.com;gr=urn:uuid:(Alice’s UA’s bits)>

 Carol accepts Alice’s invitation to replace her dialog (invite usage)
 with Bob, and notifies him that the REFERenced INVITE succeeded with
 F7:

 Message F7 (abridged, detailing pertinent fields)

 NOTIFY sip:boaiidfjjereis@example.com SIP/2.0
 Subscription-State: terminated;reason=noresource
 Call-ID: 39fa99r0329493asdsf3n@bob.example.com
 Contact: <sip:alice@example.com;gr=urn:uuid:(Alice’s UA’s bits)>
 Content-Type: message/sipfrag

 SIP/2.0 200 OK

 Bob then ends his invite usages with both Alice and Carol using BYEs.

7. Security Considerations

 Handling multiple usages within a single dialog is complex and
 introduces scenarios where the right thing to do is not clear. The
 ambiguities described here can result in unexpected disruption of
 communication if response codes are chosen carelessly. Furthermore,
 these ambiguities could be exploited, particularly by third-parties
 injecting unauthenticated requests or inappropriate responses.
 Implementations choosing to create or accept multiple usages within a
 dialog should give extra attention to the security considerations in

Sparks Informational [Page 23]

RFC 5057 Multiple Dialog Usages November 2007

 [1], especially those concerning the authenticity of requests and
 processing of responses.

 Service implementations should carefully consider the effects on
 their service of peers making different choices in these areas of
 ambiguity. A service that requires multiple usages needs to pay
 particular attention to the effect on service and network utilization
 when a client fails to destroy a dialog the service believes should
 be destroyed. A service that disallows multiple usages should
 consider the effect on clients that, for instance, destroy the entire
 dialog when only a usage should be torn down. In the worst case of a
 service deployed into a network with a large number of misbehaving
 clients trying to create multiple usages in an automated fashion, a
 retry storm similar to an avalanche restart could be induced.

8. Conclusion

 Handling multiple usages within a single dialog is complex and
 introduces scenarios where the right thing to do is not clear.
 Implementations should avoid entering into multiple usages whenever
 possible. New applications should be designed to never introduce
 multiple usages.

 There are some accepted SIP practices, including transfer, that
 currently require multiple usages. Recent work, most notably GRUU,
 makes those practices unnecessary. The standardization of those
 practices and the implementations should be revised as soon as
 possible to use only single-usage dialogs.

9. Acknowledgments

 The ideas in this document have been refined over several IETF
 meetings with many participants. Significant contribution was
 provided by Adam Roach, Alan Johnston, Ben Campbell, Cullen Jennings,
 Jonathan Rosenberg, Paul Kyzivat, and Rohan Mahy. Members of the
 reSIProcate project also shared their difficulties and discoveries
 while implementing multiple-usage dialog handlers.

10. Informative References

 [1] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
 Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP:
 Session Initiation Protocol", RFC 3261, June 2002.

 [2] Levin, O., "Suppression of Session Initiation Protocol (SIP)
 REFER Method Implicit Subscription", RFC 4488, May 2006.

Sparks Informational [Page 24]

RFC 5057 Multiple Dialog Usages November 2007

 [3] Burger, E. and M. Dolly, "A Session Initiation Protocol (SIP)
 Event Package for Key Press Stimulus (KPML)", RFC 4730,
 November 2006.

 [4] Niemi, A., "Session Initiation Protocol (SIP) Extension for
 Event State Publication", RFC 3903, October 2004.

 [5] Roach, A., "Session Initiation Protocol (SIP)-Specific Event
 Notification", RFC 3265, June 2002.

 [6] Rosenberg, J. and H. Schulzrinne, "Session Initiation Protocol
 (SIP): Locating SIP Servers", RFC 3263, June 2002.

 [7] Sparks, R., "The Session Initiation Protocol (SIP) Refer
 Method", RFC 3515, April 2003.

 [8] Mahy, R., Biggs, B., and R. Dean, "The Session Initiation
 Protocol (SIP) "Replaces" Header", RFC 3891, September 2004.

 [9] Rosenberg, J., "Obtaining and Using Globally Routable User
 Agent (UA) URIs (GRUU) in the Session Initiation Protocol
 (SIP)", Work in Progress, June 2006.

 [10] Rosenberg, J., "Request Authorization through Dialog
 Identification in the Session Initiation Protocol (SIP)",
 RFC 4538, June 2006.

 [11] Mahy, R. and D. Petrie, "The Session Initiation Protocol (SIP)
 "Join" Header", RFC 3911, October 2004.

Author’s Address

 Robert J. Sparks
 Estacado Systems

 EMail: RjS@estacado.net

Sparks Informational [Page 25]

RFC 5057 Multiple Dialog Usages November 2007

Full Copyright Statement

 Copyright (C) The IETF Trust (2007).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Sparks Informational [Page 26]

