
Network Working Group D. McGrew
Request for Comments: 5116 Cisco Systems, Inc.
Category: Standards Track January 2008

 An Interface and Algorithms for Authenticated Encryption

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Abstract

 This document defines algorithms for Authenticated Encryption with
 Associated Data (AEAD), and defines a uniform interface and a
 registry for such algorithms. The interface and registry can be used
 as an application-independent set of cryptoalgorithm suites. This
 approach provides advantages in efficiency and security, and promotes
 the reuse of crypto implementations.

McGrew Standards Track [Page 1]

RFC 5116 Authenticated Encryption January 2008

Table of Contents

 1. Introduction . 3
 1.1. Background . 3
 1.2. Scope . 3
 1.3. Benefits . 4
 1.4. Conventions Used in This Document 4
 2. AEAD Interface . 5
 2.1. Authenticated Encryption 5
 2.2. Authenticated Decryption 7
 2.3. Data Formatting . 7
 3. Guidance on the Use of AEAD Algorithms 8
 3.1. Requirements on Nonce Generation 8
 3.2. Recommended Nonce Formation 9
 3.2.1. Partially Implicit Nonces 10
 3.3. Construction of AEAD Inputs 11
 3.4. Example Usage . 11
 4. Requirements on AEAD Algorithm Specifications 12
 5. AEAD Algorithms . 14
 5.1. AEAD_AES_128_GCM . 14
 5.1.1. Nonce Reuse . 14
 5.2. AEAD_AES_256_GCM . 15
 5.3. AEAD_AES_128_CCM . 15
 5.3.1. Nonce Reuse . 16
 5.4. AEAD_AES_256_CCM . 16
 6. IANA Considerations . 16
 7. Other Considerations . 17
 8. Security Considerations 18
 9. Acknowledgments . 18
 10. References . 19
 10.1. Normative References 19
 10.2. Informative References 19

McGrew Standards Track [Page 2]

RFC 5116 Authenticated Encryption January 2008

1. Introduction

 Authenticated encryption [BN00] is a form of encryption that, in
 addition to providing confidentiality for the plaintext that is
 encrypted, provides a way to check its integrity and authenticity.
 Authenticated Encryption with Associated Data, or AEAD [R02], adds
 the ability to check the integrity and authenticity of some
 Associated Data (AD), also called "additional authenticated data",
 that is not encrypted.

1.1. Background

 Many cryptographic applications require both confidentiality and
 message authentication. Confidentiality is a security service that
 ensures that data is available only to those authorized to obtain it;
 usually it is realized through encryption. Message authentication is
 the service that ensures that data has not been altered or forged by
 unauthorized entities; it can be achieved by using a Message
 Authentication Code (MAC). This service is also called data
 integrity. Many applications use an encryption method and a MAC
 together to provide both of those security services, with each
 algorithm using an independent key. More recently, the idea of
 providing both security services using a single cryptoalgorithm has
 become accepted. In this concept, the cipher and MAC are replaced by
 an Authenticated Encryption with Associated Data (AEAD) algorithm.

 Several crypto algorithms that implement AEAD algorithms have been
 defined, including block cipher modes of operation and dedicated
 algorithms. Some of these algorithms have been adopted and proven
 useful in practice. Additionally, AEAD is close to an ’idealized’
 view of encryption, such as those used in the automated analysis of
 cryptographic protocols (see, for example, Section 2.5 of [BOYD]).

 The benefits of AEAD algorithms, and this interface, are outlined in
 Section 1.3.

1.2. Scope

 In this document, we define an AEAD algorithm as an abstraction, by
 specifying an interface to an AEAD and defining an IANA registry for
 AEAD algorithms. We populate this registry with four AEAD algorithms
 based on the Advanced Encryption Standard (AES) in Galois/Counter
 Mode [GCM] with 128- and 256-bit keys, and AES in Counter and CBC MAC
 Mode [CCM] with 128- and 256-bit keys.

 In the following, we define the AEAD interface (Section 2), and then
 provide guidance on the use of AEAD algorithms (Section 3), and
 outline the requirements that each AEAD algorithm must meet

McGrew Standards Track [Page 3]

RFC 5116 Authenticated Encryption January 2008

 (Section 4). Then we define several AEAD algorithms (Section 5), and
 establish an IANA registry for AEAD algorithms (Section 6). Lastly,
 we discuss some other considerations (Section 7).

 The AEAD interface specification does not address security protocol
 issues such as anti-replay services or access control decisions that
 are made on authenticated data. Instead, the specification aims to
 abstract the cryptography away from those issues. The interface, and
 the guidance about how to use it, are consistent with the
 recommendations from [EEM04].

1.3. Benefits

 The AEAD approach enables applications that need cryptographic
 security services to more easily adopt those services. It benefits
 the application designer by allowing them to focus on important
 issues such as security services, canonicalization, and data
 marshaling, and relieving them of the need to design crypto
 mechanisms that meet their security goals. Importantly, the security
 of an AEAD algorithm can be analyzed independent from its use in a
 particular application. This property frees the user of the AEAD of
 the need to consider security aspects such as the relative order of
 authentication and encryption and the security of the particular
 combination of cipher and MAC, such as the potential loss of
 confidentiality through the MAC. The application designer that uses
 the AEAD interface need not select a particular AEAD algorithm during
 the design stage. Additionally, the interface to the AEAD is
 relatively simple, since it requires only a single key as input and
 requires only a single identifier to indicate the algorithm in use in
 a particular case.

 The AEAD approach benefits the implementer of the crypto algorithms
 by making available optimizations that are otherwise not possible to
 reduce the amount of computation, the implementation cost, and/or the
 storage requirements. The simpler interface makes testing easier;
 this is a considerable benefit for a crypto algorithm implementation.
 By providing a uniform interface to access cryptographic services,
 the AEAD approach allows a single crypto implementation to more
 easily support multiple applications. For example, a hardware module
 that supports the AEAD interface can easily provide crypto
 acceleration to any application using that interface, even to
 applications that had not been designed when the module was built.

1.4. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

McGrew Standards Track [Page 4]

RFC 5116 Authenticated Encryption January 2008

2. AEAD Interface

 An AEAD algorithm has two operations, authenticated encryption and
 authenticated decryption. The inputs and outputs of these algorithms
 are defined below in terms of octet strings.

 An implementation MAY accept additional inputs. For example, an
 input could be provided to allow the user to select between different
 implementation strategies. However, such extensions MUST NOT affect
 interoperability with other implementations.

2.1. Authenticated Encryption

 The authenticated encryption operation has four inputs, each of which
 is an octet string:

 A secret key K, which MUST be generated in a way that is uniformly
 random or pseudorandom.

 A nonce N. Each nonce provided to distinct invocations of the
 Authenticated Encryption operation MUST be distinct, for any
 particular value of the key, unless each and every nonce is zero-
 length. Applications that can generate distinct nonces SHOULD use
 the nonce formation method defined in Section 3.2, and MAY use any
 other method that meets the uniqueness requirement. Other
 applications SHOULD use zero-length nonces.

 A plaintext P, which contains the data to be encrypted and
 authenticated.

 The associated data A, which contains the data to be
 authenticated, but not encrypted.

 There is a single output:

 A ciphertext C, which is at least as long as the plaintext, or

 an indication that the requested encryption operation could not be
 performed.

 All of the inputs and outputs are variable-length octet strings,
 whose lengths obey the following restrictions:

 The number of octets in the key K is between 1 and 255. For each
 AEAD algorithm, the length of K MUST be fixed.

McGrew Standards Track [Page 5]

RFC 5116 Authenticated Encryption January 2008

 For any particular value of the key, either 1) each nonce provided
 to distinct invocations of the Authenticated Encryption operation
 MUST be distinct, or 2) each and every nonce MUST be zero-length.
 If zero-length nonces are used with a particular key, then each
 and every nonce used with that key MUST have a length of zero.
 Otherwise, the number of octets in the nonce SHOULD be twelve
 (12). Nonces with different lengths MAY be used with a particular
 key. Some algorithms cannot be used with zero-length nonces, but
 others can; see Section 4. Applications that conform to the
 recommended nonce length will avoid having to construct nonces
 with different lengths, depending on the algorithm that is in use.
 This guidance helps to keep algorithm-specific logic out of
 applications.

 The number of octets in the plaintext P MAY be zero.

 The number of octets in the associated data A MAY be zero.

 The number of octets in the ciphertext C MAY be zero.

 This specification does not put a maximum length on the nonce, the
 plaintext, the ciphertext, or the additional authenticated data.
 However, a particular AEAD algorithm MAY further restrict the lengths
 of those inputs and outputs. A particular AEAD implementation MAY
 further restrict the lengths of its inputs and outputs. If a
 particular implementation of an AEAD algorithm is requested to
 process an input that is outside the range of admissible lengths, or
 an input that is outside the range of lengths supported by that
 implementation, it MUST return an error code and it MUST NOT output
 any other information. In particular, partially encrypted or
 partially decrypted data MUST NOT be returned.

 Both confidentiality and message authentication are provided on the
 plaintext P. When the length of P is zero, the AEAD algorithm acts
 as a Message Authentication Code on the input A.

 The associated data A is used to protect information that needs to be
 authenticated, but does not need to be kept confidential. When using
 an AEAD to secure a network protocol, for example, this input could
 include addresses, ports, sequence numbers, protocol version numbers,
 and other fields that indicate how the plaintext or ciphertext should
 be handled, forwarded, or processed. In many situations, it is
 desirable to authenticate these fields, though they must be left in
 the clear to allow the network or system to function properly. When
 this data is included in the input A, authentication is provided
 without copying the data into the plaintext.

McGrew Standards Track [Page 6]

RFC 5116 Authenticated Encryption January 2008

 The secret key K MUST NOT be included in any of the other inputs (N,
 P, and A). (This restriction does not mean that the values of those
 inputs must be checked to ensure that they do not include substrings
 that match the key; instead, it means that the key must not be
 explicitly copied into those inputs.)

 The nonce is authenticated internally to the algorithm, and it is not
 necessary to include it in the AD input. The nonce MAY be included
 in P or A if it is convenient to the application.

 The nonce MAY be stored or transported with the ciphertext, or it MAY
 be reconstructed immediately prior to the authenticated decryption
 operation. It is sufficient to provide the decryption module with
 enough information to allow it to construct the nonce. (For example,
 a system could use a nonce consisting of a sequence number in a
 particular format, in which case it could be inferred from the order
 of the ciphertexts.) Because the authenticated decryption process
 detects incorrect nonce values, no security failure will result if a
 nonce is incorrectly reconstructed and fed into an authenticated
 decryption operation. Any nonce reconstruction method will need to
 take into account the possibility of loss or reorder of ciphertexts
 between the encryption and decryption processes.

 Applications MUST NOT assume any particular structure or formatting
 of the ciphertext.

2.2. Authenticated Decryption

 The authenticated decryption operation has four inputs: K, N, A, and
 C, as defined above. It has only a single output, either a plaintext
 value P or a special symbol FAIL that indicates that the inputs are
 not authentic. A ciphertext C, a nonce N, and associated data A are
 authentic for key K when C is generated by the encrypt operation with
 inputs K, N, P, and A, for some values of N, P, and A. The
 authenticated decrypt operation will, with high probability, return
 FAIL whenever the inputs N, P, and A were crafted by a nonce-
 respecting adversary that does not know the secret key (assuming that
 the AEAD algorithm is secure).

2.3. Data Formatting

 This document does not specify any particular encoding for the AEAD
 inputs and outputs, since the encoding does not affect the security
 services provided by an AEAD algorithm.

 When choosing the format of application data, an application SHOULD
 position the ciphertext C so that it appears after any other data
 that is needed to construct the other inputs to the authenticated

McGrew Standards Track [Page 7]

RFC 5116 Authenticated Encryption January 2008

 decryption operation. For instance, if the nonce and ciphertext both
 appear in a packet, the former value should precede the latter. This
 rule facilitates efficient and simple hardware implementations of
 AEAD algorithms.

3. Guidance on the Use of AEAD Algorithms

 This section provides advice that must be followed in order to use an
 AEAD algorithm securely.

 If an application is unable to meet the uniqueness requirement on
 nonce generation, then it MUST use a zero-length nonce. Randomized
 or stateful algorithms, which are defined below, are suitable for use
 with such applications. Otherwise, an application SHOULD use nonces
 with a length of twelve octets. Since algorithms are encouraged to
 support that length, applications should use that length to aid
 interoperability.

3.1. Requirements on Nonce Generation

 It is essential for security that the nonces be constructed in a
 manner that respects the requirement that each nonce value be
 distinct for each invocation of the authenticated encryption
 operation, for any fixed value of the key. In this section, we call
 attention to some consequences of this requirement in different
 scenarios.

 When there are multiple devices performing encryption using a single
 key, those devices must coordinate to ensure that the nonces are
 unique. A simple way to do this is to use a nonce format that
 contains a field that is distinct for each one of the devices, as
 described in Section 3.2. Note that there is no need to coordinate
 the details of the nonce format between the encrypter and the
 decrypter, as long the entire nonce is sent or stored with the
 ciphertext and is thus available to the decrypter. If the complete
 nonce is not available to the decrypter, then the decrypter will need
 to know how the nonce is structured so that it can reconstruct it.
 Applications SHOULD provide encryption engines with some freedom in
 choosing their nonces; for example, a nonce could contain both a
 counter and a field that is set by the encrypter but is not processed
 by the receiver. This freedom allows a set of encryption devices to
 more readily coordinate to ensure the distinctness of their nonces.

 If a secret key will be used for a long period of time, e.g., across
 multiple reboots, then the nonce will need to be stored in non-
 volatile memory. In such cases, it is essential to use checkpointing
 of the nonce; that is, the current nonce value should be stored to
 provide the state information needed to resume encryption in case of

McGrew Standards Track [Page 8]

RFC 5116 Authenticated Encryption January 2008

 unexpected failure. One simple way to provide a high assurance that
 a nonce value will not be used repeatedly is to wait until the
 encryption process receives confirmation from the storage process
 indicating that the succeeding nonce value has already been stored.
 Because this method may add significant latency, it may be desirable
 to store a nonce value that is several values ahead in the sequence.
 As an example, the nonce 100 could be stored, after which the nonces
 1 through 99 could be used for encryption. The nonce value 200 could
 be stored at the same time that nonces 1 through 99 are being used,
 and so on.

 Many problems with nonce reuse can be avoided by changing a key in a
 situation in which nonce coordination is difficult.

 Each AEAD algorithm SHOULD describe what security degradation would
 result from an inadvertent reuse of a nonce value.

3.2. Recommended Nonce Formation

 The following method to construct nonces is RECOMMENDED. The nonce
 is formatted as illustrated in Figure 1, with the initial octets
 consisting of a Fixed field, and the final octets consisting of a
 Counter field. For each fixed key, the length of each of these
 fields, and thus the length of the nonce, is fixed. Implementations
 SHOULD support 12-octet nonces in which the Counter field is four
 octets long.

 <----- variable ----> <----------- variable ----------->
 +---------------------+----------------------------------+
 | Fixed | Counter |
 +---------------------+----------------------------------+

 Figure 1: Recommended nonce format

 The Counter fields of successive nonces form a monotonically
 increasing sequence, when those fields are regarded as unsigned
 integers in network byte order. The length of the Counter field MUST
 remain constant for all nonces that are generated for a given
 encryption device. The Counter part SHOULD be equal to zero for the
 first nonce, and increment by one for each successive nonce that is
 generated. However, any particular Counter value MAY be skipped
 over, and left out of the sequence of values that are used, if it is
 convenient. For example, an application could choose to skip the
 initial Counter=0 value, and set the Counter field of the initial
 nonce to 1. Thus, at most 2^(8*C) nonces can be generated when the
 Counter field is C octets in length.

McGrew Standards Track [Page 9]

RFC 5116 Authenticated Encryption January 2008

 The Fixed field MUST remain constant for all nonces that are
 generated for a given encryption device. If different devices are
 performing encryption with a single key, then each distinct device
 MUST use a distinct Fixed field, to ensure the uniqueness of the
 nonces. Thus, at most 2^(8*F) distinct encrypters can share a key
 when the Fixed field is F octets in length.

3.2.1. Partially Implicit Nonces

 In some cases, it is desirable to not transmit or store an entire
 nonce, but instead to reconstruct that value from contextual
 information immediately prior to decryption. As an example,
 ciphertexts could be stored in sequence on a disk, and the nonce for
 a particular ciphertext could be inferred from its location, as long
 as the rule for generating the nonces is known by the decrypter. We
 call the portion of the nonce that is stored or sent with the
 ciphertext the explicit part. We call the portion of the nonce that
 is inferred the implicit part. When part of the nonce is implicit,
 the following specialization of the above format is RECOMMENDED. The
 Fixed field is divided into two sub-fields: a Fixed-Common field and
 a Fixed-Distinct field. This format is shown in Figure 2. If
 different devices are performing encryption with a single key, then
 each distinct device MUST use a distinct Fixed-Distinct field. The
 Fixed-Common field is common to all nonces. The Fixed-Distinct field
 and the Counter field MUST be in the explicit part of the nonce. The
 Fixed-Common field MAY be in the implicit part of the nonce. These
 conventions ensure that the nonce is easy to reconstruct from the
 explicit data.

 +-------------------+--------------------+---------------+
 | Fixed-Common | Fixed-Distinct | Counter |
 +-------------------+--------------------+---------------+
 <---- implicit ---> <------------ explicit ------------>

 Figure 2: Partially implicit nonce format

 The rationale for the partially implicit nonce format is as
 follows. This method of nonce construction incorporates the best
 known practice; it is used by both GCM Encapuslating Security
 Payload (ESP) [RFC4106] and CCM ESP [RFC4309], in which the Fixed
 field contains the Salt value and the lowest eight octets of the
 nonce are explicitly carried in the ESP packet. In GCM ESP, the
 Fixed field must be at least four octets long, so that it can
 contain the Salt value. In CCM ESP, the Fixed field must be at
 least three octets long for the same reason. This nonce
 generation method is also used by several counter mode variants
 including CTR ESP.

McGrew Standards Track [Page 10]

RFC 5116 Authenticated Encryption January 2008

3.3. Construction of AEAD Inputs

 If the AD input is constructed out of multiple data elements, then it
 is essential that it be unambiguously parseable into its constituent
 elements, without the use of any unauthenticated data in the parsing
 process. (In mathematical terms, the AD input must be an injective
 function of the data elements.) If an application constructs its AD
 input in such a way that there are two distinct sets of data elements
 that result in the same AD value, then an attacker could cause a
 receiver to accept a bogus set by substituting one set for the other.
 The requirement that the AD be uniquely parseable ensures that this
 attack is not possible. This requirement is trivially met if the AD
 is composed of fixed-width elements. If the AD contains a variable-
 length string, for example, this requirement can be met by also
 including the length of the string in the AD.

 Similarly, if the plaintext is constructed out of multiple data
 elements, then it is essential that it be unambiguously parseable
 into its constituent elements, without using any unauthenticated data
 in the parsing process. Note that data included in the AD may be
 used when parsing the plaintext, though of course since the AD is not
 encrypted there is a potential loss of confidentiality when
 information about the plaintext is included in the AD.

3.4. Example Usage

 To make use of an AEAD algorithm, an application must define how the
 encryption algorithm’s inputs are defined in terms of application
 data, and how the ciphertext and nonce are conveyed. The clearest
 way to do this is to express each input in terms of the data that
 form it, then to express the application data in terms of the outputs
 of the AEAD encryption operation.

 For example, AES-GCM ESP [RFC4106] can be expressed as follows. The
 AEAD inputs are

 P = RestOfPayloadData || TFCpadding || Padding || PadLength ||
 NextHeader

 N = Salt || IV

 A = SPI || SequenceNumber

 where the symbol "||" denotes the concatenation operation, and the
 fields RestOfPayloadData, TFCpadding, Padding, PadLength, NextHeader,
 SPI, and SequenceNumber are as defined in [RFC4303], and the fields
 Salt and IV are as defined in [RFC4106]. The field RestOfPayloadData
 contains the plaintext data that is described by the NextHeader

McGrew Standards Track [Page 11]

RFC 5116 Authenticated Encryption January 2008

 field, and no other data. (Recall that the PayloadData field
 contains both the IV and the RestOfPayloadData; see Figure 2 of
 [RFC4303] for an illustration.)

 The format of the ESP packet can be expressed as

 ESP = SPI || SequenceNumber || IV || C

 where C is the AEAD ciphertext (which in this case incorporates the
 authentication tag). Please note that here we have not described the
 use of the ESP Extended Sequence Number.

4. Requirements on AEAD Algorithm Specifications

 Each AEAD algorithm MUST only accept keys with a fixed key length
 K_LEN, and MUST NOT require any particular data format for the keys
 provided as input. An algorithm that requires such structure (e.g.,
 one with subkeys in a particular parity-check format) will need to
 provide it internally.

 Each AEAD algorithm MUST accept any plaintext with a length between
 zero and P_MAX octets, inclusive, where the value P_MAX is specific
 to that algorithm. The value of P_MAX MUST be larger than zero, and
 SHOULD be at least 65,536 (2^16) octets. This size is a typical
 upper limit for network data packets. Other applications may use
 even larger values of P_MAX, so it is desirable for general-purpose
 algorithms to support higher values.

 Each AEAD algorithm MUST accept any associated data with a length
 between zero and A_MAX octets, inclusive, where the value A_MAX is
 specific to that algorithm. The value of A_MAX MUST be larger than
 zero, and SHOULD be at least 65,536 (2^16) octets. Other
 applications may use even larger values of A_MAX, so it is desirable
 for general-purpose algorithms to support higher values.

 Each AEAD algorithm MUST accept any nonce with a length between N_MIN
 and N_MAX octets, inclusive, where the values of N_MIN and N_MAX are
 specific to that algorithm. The values of N_MAX and N_MIN MAY be
 equal. Each algorithm SHOULD accept a nonce with a length of twelve
 (12) octets. Randomized or stateful algorithms, which are described
 below, MAY have an N_MAX value of zero.

 An AEAD algorithm MAY structure its ciphertext output in any way; for
 example, the ciphertext can incorporate an authentication tag. Each
 algorithm SHOULD choose a structure that is amenable to efficient
 processing.

McGrew Standards Track [Page 12]

RFC 5116 Authenticated Encryption January 2008

 An Authenticated Encryption algorithm MAY incorporate or make use of
 a random source, e.g., for the generation of an internal
 initialization vector that is incorporated into the ciphertext
 output. An AEAD algorithm of this sort is called randomized; though
 note that only encryption is random, and decryption is always
 deterministic. A randomized algorithm MAY have a value of N_MAX that
 is equal to zero.

 An Authenticated Encryption algorithm MAY incorporate internal state
 information that is maintained between invocations of the encrypt
 operation, e.g., to allow for the construction of distinct values
 that are used as internal nonces by the algorithm. An AEAD algorithm
 of this sort is called stateful. This method could be used by an
 algorithm to provide good security even when the application inputs
 zero-length nonces. A stateful algorithm MAY have a value of N_MAX
 that is equal to zero.

 The specification of an AEAD algorithm MUST include the values of
 K_LEN, P_MAX, A_MAX, N_MIN, and N_MAX defined above. Additionally,
 it MUST specify the number of octets in the largest possible
 ciphertext, which we denote C_MAX.

 Each AEAD algorithm MUST provide a description relating the length of
 the plaintext to that of the ciphertext. This relation MUST NOT
 depend on external parameters, such as an authentication strength
 parameter (e.g., authentication tag length). That sort of dependence
 would complicate the use of the algorithm by creating a situation in
 which the information from the AEAD registry was not sufficient to
 ensure interoperability.

 EACH AEAD algorithm specification SHOULD describe what security
 degradation would result from an inadvertent reuse of a nonce value.

 Each AEAD algorithm specification SHOULD provide a reference to a
 detailed security analysis. This document does not specify a
 particular security model, because several different models have been
 used in the literature. The security analysis SHOULD define or
 reference a security model.

 An algorithm that is randomized or stateful, as defined above, SHOULD
 describe itself using those terms.

McGrew Standards Track [Page 13]

RFC 5116 Authenticated Encryption January 2008

5. AEAD Algorithms

 This section defines four AEAD algorithms; two are based on AES GCM,
 two are based on AES CCM. Each pair includes an algorithm with a key
 size of 128 bits and one with a key size of 256 bits.

5.1. AEAD_AES_128_GCM

 The AEAD_AES_128_GCM authenticated encryption algorithm works as
 specified in [GCM], using AES-128 as the block cipher, by providing
 the key, nonce, and plaintext, and associated data to that mode of
 operation. An authentication tag with a length of 16 octets (128
 bits) is used. The AEAD_AES_128_GCM ciphertext is formed by
 appending the authentication tag provided as an output to the GCM
 encryption operation to the ciphertext that is output by that
 operation. Test cases are provided in the appendix of [GCM]. The
 input and output lengths are as follows:

 K_LEN is 16 octets,

 P_MAX is 2^36 - 31 octets,

 A_MAX is 2^61 - 1 octets,

 N_MIN and N_MAX are both 12 octets, and

 C_MAX is 2^36 - 15 octets.

 An AEAD_AES_128_GCM ciphertext is exactly 16 octets longer than its
 corresponding plaintext.

 A security analysis of GCM is available in [MV04].

5.1.1. Nonce Reuse

 The inadvertent reuse of the same nonce by two invocations of the GCM
 encryption operation, with the same key, but with distinct plaintext
 values, undermines the confidentiality of the plaintexts protected in
 those two invocations, and undermines all of the authenticity and
 integrity protection provided by that key. For this reason, GCM
 should only be used whenever nonce uniqueness can be provided with
 assurance. The design feature that GCM uses to achieve minimal
 latency causes the vulnerabilities on the subsequent uses of the key.
 Note that it is acceptable to input the same nonce value multiple
 times to the decryption operation.

 The security consequences are quite serious if an attacker observes
 two ciphertexts that were created using the same nonce and key

McGrew Standards Track [Page 14]

RFC 5116 Authenticated Encryption January 2008

 values, unless the plaintext and AD values in both invocations of the
 encrypt operation were identical. First, a loss of confidentiality
 ensues because he will be able to reconstruct the bitwise
 exclusive-or of the two plaintext values. Second, a loss of
 integrity ensues because the attacker will be able to recover the
 internal hash key used to provide data integrity. Knowledge of this
 key makes subsequent forgeries trivial.

5.2. AEAD_AES_256_GCM

 This algorithm is identical to AEAD_AES_128_GCM, but with the
 following differences:

 K_LEN is 32 octets, instead of 16 octets, and

 AES-256 GCM is used instead of AES-128 GCM.

5.3. AEAD_AES_128_CCM

 The AEAD_AES_128_CCM authenticated encryption algorithm works as
 specified in [CCM], using AES-128 as the block cipher, by providing
 the key, nonce, associated data, and plaintext to that mode of
 operation. The formatting and counter generation function are as
 specified in Appendix A of that reference, and the values of the
 parameters identified in that appendix are as follows:

 the nonce length n is 12,

 the tag length t is 16, and

 the value of q is 3.

 An authentication tag with a length of 16 octets (128 bits) is used.
 The AEAD_AES_128_CCM ciphertext is formed by appending the
 authentication tag provided as an output to the CCM encryption
 operation to the ciphertext that is output by that operation. Test
 cases are provided in [CCM]. The input and output lengths are as
 follows:

 K_LEN is 16 octets,

 P_MAX is 2^24 - 1 octets,

 A_MAX is 2^64 - 1 octets,

 N_MIN and N_MAX are both 12 octets, and

 C_MAX is 2^24 + 15 octets.

McGrew Standards Track [Page 15]

RFC 5116 Authenticated Encryption January 2008

 An AEAD_AES_128_CCM ciphertext is exactly 16 octets longer than its
 corresponding plaintext.

 A security analysis of AES CCM is available in [J02].

5.3.1. Nonce Reuse

 Inadvertent reuse of the same nonce by two invocations of the CCM
 encryption operation, with the same key, undermines the security for
 the messages processed with those invocations. A loss of
 confidentiality ensues because an adversary will be able to
 reconstruct the bitwise exclusive-or of the two plaintext values.

5.4. AEAD_AES_256_CCM

 This algorithm is identical to AEAD_AES_128_CCM, but with the
 following differences:

 K_LEN is 32 octets, instead of 16, and

 AES-256 CCM is used instead of AES-128 CCM.

6. IANA Considerations

 The Internet Assigned Numbers Authority (IANA) has defined the "AEAD
 Registry" described below. An algorithm designer MAY register an
 algorithm in order to facilitate its use. Additions to the AEAD
 Registry require that a specification be documented in an RFC or
 another permanent and readily available reference, in sufficient
 detail that interoperability between independent implementations is
 possible. Each entry in the registry contains the following
 elements:

 a short name, such as "AEAD_AES_128_GCM", that starts with the
 string "AEAD",

 a positive number, and

 a reference to a specification that completely defines an AEAD
 algorithm and provides test cases that can be used to verify the
 correctness of an implementation.

 Requests to add an entry to the registry MUST include the name and
 the reference. The number is assigned by IANA. These number
 assignments SHOULD use the smallest available positive number.
 Submitters SHOULD have their requests reviewed by the IRTF Crypto

McGrew Standards Track [Page 16]

RFC 5116 Authenticated Encryption January 2008

 Forum Research Group (CFRG) at cfrg@ietf.org. Interested applicants
 that are unfamiliar with IANA processes should visit
 http://www.iana.org.

 The numbers between 32,768 (binary 1000000000000000) and 65,535
 (binary 1111111111111111) inclusive, will not be assigned by IANA,
 and are reserved for private use; no attempt will be made to prevent
 multiple sites from using the same value in different (and
 incompatible) ways [RFC2434].

 IANA has added the following entries to the AEAD Registry:

 +------------------+-------------+--------------------+
 | Name | Reference | Numeric Identifier |
 +------------------+-------------+--------------------+
 | AEAD_AES_128_GCM | Section 5.1 | 1 |
 | AEAD_AES_256_GCM | Section 5.2 | 2 |
 | AEAD_AES_128_CCM | Section 5.3 | 3 |
 | AEAD_AES_256_CCM | Section 5.4 | 4 |
 +------------------+-------------+--------------------+

 An IANA registration of an AEAD does not constitute an endorsement of
 that algorithm or its security.

7. Other Considerations

 Directly testing a randomized AEAD encryption algorithm using test
 cases with fixed inputs and outputs is not possible, since the
 encryption process is non-deterministic. However, it is possible to
 test a randomized AEAD algorithm using the following technique. The
 authenticated decryption algorithm is deterministic, and it can be
 directly tested. The authenticated encryption algorithm can be
 tested by encrypting a plaintext, decrypting the resulting
 ciphertext, and comparing the original plaintext to the post-
 decryption plaintext. Combining both of these tests covers both the
 encryption and decryption algorithms.

 The AEAD algorithms selected reflect those that have been already
 adopted by standards. It is an open question as to what other AEAD
 algorithms should be added. Many variations on basic algorithms are
 possible, each with its own advantages. While it is desirable to
 admit any algorithms that are found to be useful in practice, it is
 also desirable to limit the total number of registered algorithms.
 The current specification requires that a registered algorithm
 provide a complete specification and a set of validation data; it is
 hoped that these prerequisites set the admission criteria
 appropriately.

McGrew Standards Track [Page 17]

RFC 5116 Authenticated Encryption January 2008

 It may be desirable to define an AEAD algorithm that uses the generic
 composition with the encrypt-then-MAC method [BN00], combining a
 common encryption algorithm, such as CBC [MODES], with a common
 message authentication code, such as HMAC-SHA1 [RFC2104] or AES CMAC
 [CMAC]. An AEAD algorithm of this sort would reflect the best
 current practice, and might be more easily supported by crypto
 modules that lack support for other AEAD algorithms.

8. Security Considerations

 This document describes authenticated encryption algorithms, and
 provides guidance on their use. While these algorithms make it
 easier, in some ways, to design a cryptographic application, it
 should be borne in mind that strong cryptographic security is
 difficult to achieve. While AEAD algorithms are quite useful, they
 do nothing to address the issues of key generation [RFC4086] and key
 management [RFC4107].

 AEAD algorithms that rely on distinct nonces may be inappropriate for
 some applications or for some scenarios. Application designers
 should understand the requirements outlined in Section 3.1.

 A software implementation of the AEAD encryption operation in a
 Virtual Machine (VM) environment could inadvertently reuse a nonce
 due to a "rollback" of the VM to an earlier state [GR05].
 Applications are encouraged to document potential issues to help the
 user of the application and the VM avoid unintentional mistakes of
 this sort. The possibility exists that an attacker can cause a VM
 rollback; threats and mitigations in that scenario are an area of
 active research. For perspective, we note that an attacker who can
 trigger such a rollback may have already succeeded in subverting the
 security of the system, e.g., by causing an accounting error.

 An IANA registration of an AEAD algorithm MUST NOT be regarded as an
 endorsement of its security. Furthermore, the perceived security
 level of an algorithm can degrade over time, due to cryptanalytic
 advances or to "Moore’s Law", that is, the diminishing cost of
 computational resources over time.

9. Acknowledgments

 Many reviewers provided valuable comments on earlier drafts of this
 document. Some fruitful discussions took place on the email list of
 the Crypto Forum Research Group in 2006.

McGrew Standards Track [Page 18]

RFC 5116 Authenticated Encryption January 2008

10. References

10.1. Normative References

 [CCM] Dworkin, M., "NIST Special Publication 800-38C: The CCM
 Mode for Authentication and Confidentiality", U.S.
 National Institute of Standards and Technology,
 <http://csrc.nist.gov/publications/nistpubs/800-38C/
 SP800-38C.pdf>.

 [GCM] Dworkin, M., "NIST Special Publication 800-38D:
 Recommendation for Block Cipher Modes of Operation:
 Galois/Counter Mode (GCM) and GMAC.", U.S. National
 Institute of Standards and Technology, November 2007,
 <http://csrc.nist.gov/publications/nistpubs/800-38D/
 SP-800-38D.pdf>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

10.2. Informative References

 [BN00] Bellare, M. and C. Namprempre, "Authenticated encryption:
 Relations among notions and analysis of the generic
 composition paradigm", Proceedings of ASIACRYPT 2000,
 Springer-Verlag, LNCS 1976, pp. 531-545, 2002.

 [BOYD] Boyd, C. and A. Mathuria, "Protocols for Authentication
 and Key Establishment", Springer 2003.

 [CMAC] "NIST Special Publication 800-38B", <http://csrc.nist.gov/
 publications/nistpubs/800-38B/SP_800-38B.pdf>.

 [EEM04] Bellare, M., Namprempre, C., and T. Kohno, "Breaking and
 provably repairing the SSH authenticated encryption
 scheme: A case study of the Encode-then-Encrypt-and-MAC
 paradigm", ACM Transactions on Information and
 System Security,
 <http://www-cse.ucsd.edu/users/tkohno/papers/TISSEC04/>.

 [GR05] Garfinkel, T. and M. Rosenblum, "When Virtual is Harder
 than Real: Security Challenges in Virtual Machine Based
 Computing Environments", Proceedings of the 10th Workshop
 on Hot Topics in Operating Systems,
 <http://www.stanford.edu/˜talg/papers/HOTOS05/
 virtual-harder-hotos05.pdf>.

McGrew Standards Track [Page 19]

RFC 5116 Authenticated Encryption January 2008

 [J02] Jonsson, J., "On the Security of CTR + CBC-MAC",
 Proceedings of the 9th Annual Workshop on Selected Areas
 on Cryptography, 2002, <http://csrc.nist.gov/groups/ST/
 toolkit/BCM/documents/proposedmodes/ccm/ccm-ad1.pdf>.

 [MODES] Dworkin, M., "NIST Special Publication 800-38:
 Recommendation for Block Cipher Modes of Operation", U.S.
 National Institute of Standards and Technology,
 <http://csrc.nist.gov/publications/nistpubs/800-38a/
 sp800-38a.pdf>.

 [MV04] McGrew, D. and J. Viega, "The Security and Performance of
 the Galois/Counter Mode (GCM)", Proceedings of
 INDOCRYPT ’04, December 2004,
 <http://eprint.iacr.org/2004/193>.

 [R02] Rogaway, P., "Authenticated encryption with Associated-
 Data", ACM Conference on Computer and Communication
 Security (CCS’02), pp. 98-107, ACM Press, 2002,
 <http://www.cs.ucdavis.edu/˜rogaway/papers/ad.html>.

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 February 1997.

 [RFC2434] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 2434,
 October 1998.

 [RFC4086] Eastlake, D., Schiller, J., and S. Crocker, "Randomness
 Requirements for Security", BCP 106, RFC 4086, June 2005.

 [RFC4106] Viega, J. and D. McGrew, "The Use of Galois/Counter Mode
 (GCM) in IPsec Encapsulating Security Payload (ESP)",
 RFC 4106, June 2005.

 [RFC4107] Bellovin, S. and R. Housley, "Guidelines for Cryptographic
 Key Management", BCP 107, RFC 4107, June 2005.

 [RFC4303] Kent, S., "IP Encapsulating Security Payload (ESP)",
 RFC 4303, December 2005.

 [RFC4309] Housley, R., "Using Advanced Encryption Standard (AES) CCM
 Mode with IPsec Encapsulating Security Payload (ESP)",
 RFC 4309, December 2005.

McGrew Standards Track [Page 20]

RFC 5116 Authenticated Encryption January 2008

Author’s Address

 David A. McGrew
 Cisco Systems, Inc.
 510 McCarthy Blvd.
 Milpitas, CA 95035
 US

 Phone: (408) 525 8651
 EMail: mcgrew@cisco.com
 URI: http://www.mindspring.com/˜dmcgrew/dam.htm

McGrew Standards Track [Page 21]

RFC 5116 Authenticated Encryption January 2008

Full Copyright Statement

 Copyright (C) The IETF Trust (2008).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

McGrew Standards Track [Page 22]

