Net wor k Wor ki ng Group J. Klensin
Request for Comments: 5137 February 2008
BCP: 137

Category: Best Current Practice

ASCI | Escaping of Unicode Characters
Status of This Meno

This docunent specifies an Internet Best Current Practices for the
Internet Conmmunity, and requests discussion and suggestions for
i mprovenents. Distribution of this neno is unlimted.

Abstract

There are a nunber of circunstances in which an escape nechanismis
needed in conjunction with a protocol to encode characters that
cannot be represented or transnmitted directly. Wth ASCI | coding
the traditional escape has been either the decimal or hexadeci nmal
nuneric value of the character, witten in a variety of different
ways. The nove to Unicode, where characters occupy two or nore
octets and may be coded in several different forns, has further
conplicated the question of escapes. This docunent di scusses sone
options now in use and di scusses considerations for selecting one for
use in new | ETF protocols, and protocols that are now being

i nternationalized

Kl ensin Best Current Practice [Page 1]

RFC 513

Table o

1.

9.
9.

Appe
A,
A.
A.

Kl ensin

7 Uni code Escapes

f Contents

I nt roduction .

.1. Context and Background .
. 2. Term nol ogy .
.3. Discussion List . S
Encodi ngs that Represent Un| code Oode P0| nts Oode

Posi tion versus UTF-8 or UTF-16 Cctets .
Referring to Uni code Characters
Syntax for Code Point Escapes

February 2008

ArbhOOW

o ol h~

Recommended Presentation Vari ant s. for Uﬁi é:oge. ngé iDOi ni

Escapes

1. Backsiaéh U V\nth Dellmters
.2. XML and HTM .

Fornms that Are Nor rrﬁlly Not RecomTended

.1. The C Programm ng Language: Backsl ash; UI
.2. Perl: A Hexadecimal String . -
.3. Java: Escaped UTF-16 .

Security Considerations
Acknowl edgrent s

Ref erences . .
1. Nor mati ve Ref erences .

2. Informative References .

ndix A Fornal Synt ax for Forns Not i?e;:o}méngeg

1. The C Progranm ng Language Form
2. Perl Form .o e
3. Java Form

Best Current Practice

©O©WOWOoOoOo~N~NN

RPRRREERR
NNODNNO OO

[Page 2]

RFC 5137 Uni code Escapes February 2008

1. Introduction
1.1. Context and Background

There are a nunber of circunstances in which an escape nechanismis
needed in conjunction with a protocol to encode characters that
cannot be represented or transnmitted directly. Wth ASCI| [ASCI]
coding, the traditional escape has been either the decinal or
hexadeci mal numeric value of the character, witten in a variety of
different ways. For exanple, in different contexts, we have seen
%INN or 9%\N for the decimal form 9NN, %NN, X nn’, and %< NN for
the hexadecinmal form "9\N' has becone popular in recent years to
represent a hexadeci mal val ue without further qualification, perhaps
as a consequence of its use in URLs and their prevalence. There are
even sone applications around in which octal fornms are used and,
while they do not generalize well, the M ME Quoted-Printable and
Encoded-word fornms can be thought of as yet another set of escapes.
So, even for the fairly sinple cases of ASCIlI and standard built by
extending ASCI I, such as the | SO 8859 fam |y, we have been |iving
with several different escaping forns, each the result of sone

hi story.

When one noves to Uni code [Unicode] [ISOL0646], where characters
occupy two or nore octets and nay be coded in several different
forns, the question of escapes becones even nore conpli cat ed.

Uni code represents characters as code points: nuneric values fromO
to hex 10FFFF. \When referencing code points in flowing text, they
are represented using the so-called "W" notation, as values from
U+0000 to W1O0FFFF. \When serialized into octets, these code points
can be represented in different forns:

o in UF-8 with one to four octets [RFC3629]

o in UTF-16 with two or four octets (or one or two seizets -- 16-bit
units)

0 in UTF-32 with exactly four octets (or one 32-bit unit)

When escapi ng characters, we have seen fairly extensive use of
hexadeci mal representations of both the serialized forns and
variations on the W notation, known as code poi nt escapes.

In accordance with existing best-practices recomendations [RFC2277],
new protocols that are required to carry textual content for human
use SHOULD be designed in such a way that the full repertoire of

Uni code characters may be represented in that text.

Kl ensin Best Current Practice [Page 3]

RFC 5137 Uni code Escapes February 2008

Thi s docunent proposes that existing protocols being

i nternationalized, and those that need an escape nechani sm SHOULD
use sonme contextually appropriate variation on references to code

poi nts as described in Section 2 unless other considerations outweigh
t hose descri bed here.

This recommendation is not applicable to protocols that already
accept native UTF-8 or sonme other encoding of Unicode. |n general
when protocols are internationalized, it is preferable to accept
those fornms rather than using escapes. This recommendation applies
to cases, including transition arrangenments, in which that is not
practical .

In addition to the protocol contexts addressed in this specification
escapes to represent Unicode characters al so appear in presentations

to users, i.e., in user interfaces (U). The formats specified in,
and the reasoning of, this document may be applicable in U contexts
as well, but this is not a proposal to standardize U or presentation
forns.

Thi s docunent does not make general reconmendations for processing
Uni code strings or for their contents. It assunes that the strings
that one might want to escape are valid and reasonable and that the
definition of "valid and reasonable" is the province of other
docunents. Recomendati ons about general treatnment of Unicode
strings may be found in many places, including the Unicode Standard
itself and the WBC Character Mdel [WBC CharMd], as well as specific
rules in individual protocols.

1.2. Term nol ogy
The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOWENDED', "MAY", and "OPTIONAL" in this

docunent are to be interpreted as described in [RFC2119].

Addi tional Unicode-specific term nol ogy appears in [Uni coded ossary],
but is not necessary for understanding this specification

1.3. Discussion List

Di scussion of this docunent should be addressed to the
di scuss@pps.ietf.org mailing |ist.

2. Encodi ngs that Represent Unicode Code Points: Code Position versus
UTF-8 or UTF-16 Cctets

There are two major fanmlies of ways to escape Uni code characters.
One uses the code point in sonme representation (see the next

Kl ensin Best Current Practice [Page 4]

RFC 5137 Uni code Escapes February 2008

section), the other encodes the octets of the UTF-8 encoding or sone
other encoding in sone representation. Some other options are
possi bl e, but they have been rare in practice. This specification
recomends that, in the absence of compelling reasons to do

ot herwi se, the Unicode code points SHOULD be used rather than a
representation of UTF-8 (or UTF-16) octets. There are severa
reasons for this, including:

0 One reason for the success of many | ETF protocols is that they use
human-interpretable text forns to conmuni cate, rather than
encodi ngs that generally require conputer prograns (or hand
simulation of algorithns) to decode. This suggests that the
presentation form should reference the Unicode tables for
characters and to do so as sinply as possible.

0 Because of the nature of UTF-8, for a hunan to interpret a deci nal
or hexadeci mal nuneral representation of UTF-8 octets requires one
or nore decoding steps to deternmine a Unicode code point that can
used to | ook up the character in a table. That nmay be appropriate
in sone cases where the goal is really to represent the UTF-8 form
but, in general, it just obscures desired informati on and makes
errors nore |likely and debuggi ng harder.

0 Except for characters in the ASCI| subset of Unicode (U+0000
t hrough W007F), the code point formis generally nore conpact
than forns based on coding UTF-8 octets, sonetinmes much nore
conpact .

The sane considerations that apply to representation of the octets of
UTF-8 encoding also apply to nore conpact ACE encodi ngs such as the
"bootstring" encoding [RFC3492] with or without its "Punycode"
profile.

Simlar considerations apply to UTF-16 encodi ng, such as the \ uNNNN
formused in Java (See Section 6.3). Wiile those forns are

equi val ent to code point references for the Basic Miltilingual Plane
(BWP, Plane 0), a two-stage decoding process is needed to handl e
surrogates to access hi gher planes.

3. Referring to Unicode Characters

Regar dl ess of what decisions are nmade about escapes for Unicode
characters in protocol or simlar contexts, text referring to a

Uni code code point SHOULD use the U+NNNN[N[N]] syntax, as specified
in the Unicode Standard, where the NNNN... string consists of
hexadeci mal nunbers. Text actually containing a Unicode character
SHOULD use a syntax nore suitable for autonated processing.

Kl ensin Best Current Practice [Page 5]

RFC 5137 Uni code Escapes February 2008

4.

Syntax for Code Point Escapes

There are many options for code point escapes, sonme of which are
summari zed below. Al are equivalent in content and semantics -- the
differences lie in syntax. The best choice of syntax for a
particul ar protocol or other application depends on that application
one formmay sinply "fit" better in a given context than others. It
is clear, however, that hexadecinal values are preferable to other
alternatives: Systens based on decinmal or octal offsets SHOULD NOT be
used.

Since this specification does not reconmend one specific syntax,
protocol specifications that use escapes MJUST define the syntax they
are using, including any necessary escapes to pernit the escape
sequence to be used literally.

The application designer selecting a format shoul d consi der at | east
the follow ng factors:

o If simlar or related protocols already use one form it may be
best to select that formfor consistency and predictability.

0 A Unicode code point can fall in the range from U+0000 to
U+10FFFF. Different escape systenms may use four, five, six, or
ei ght hexadecimal digits. To avoid clever syntax tricks and the
consequent risk of confusion and errors, fornms that use explicit
string delinmters are generally preferred over other alternatives.
In many contexts, symetric paired deliniters are easier to
recogni ze and understand than visually unrel ated ones.

0 Syntax forns starting in "\u", without explicit delinters, have
been used in several different escape systens, including the four
or eight digit syntax of C[I1SOC] (see Section 6.1), the UTF-16
encodi ng of Java [Java] (see Section 6.3), and sone arrangenents
that may follow the "\u" with four, five, or six digits. The
possi bl e confusion about which option is actually being used nmay
argue agai nst use of any of these forns.

o Forns that require decoding surrogate pairs share nost of the
probl ens that appear with encoding of UTF-8 octets. |nternet
protocol s SHOULD NOT use surrogate pairs.

Kl ensin Best Current Practice [Page 6]

RFC 5137 Uni code Escapes February 2008

5.

5.

5.

Recommended Presentation Variants for Uni code Code Point Escapes

There are a nunber of different ways to represent a Uni code code
point position. No one of them appears to be "best" for al
contexts. In addition, when an escape is needed for the escape
mechanismitself, the optinmal one of those might differ fromone
context to another.

Some fornms that are in popular use and that might reasonably be
considered for use in a given protocol are described bel ow and
identified with a current-use context when feasible. The two in this
section are recommended for use in Internet Protocols. O her popul ar
ones appear in Section 6 with sone discussion of their disadvantages.

1. Backslash-U with Delimters

One of the recommended fornms is a variation of the many forns that
start in "\u" (See, e.g., Section 6.1, below>), but uses explicit
delimters for the reasons discussed el sewhere.

Specifically, in ABNF [RFC5234],

EnbeddedUni codeChar = W5C. 75. 27 4*6HEXDI G %27
; starting with | owercase "\u" and "'"
; Note that the encodings are considered to be abstractions
; for the relevant characters, not designations of specific
; octets.

and ending with .

HEXDIG = "o / "1" / "2" ["3" ["4 ["5 ["e" ["7" ["8" ["9" [
"A/ "B" ["C | "D/ "E'" ["F
; effectively identical with definition in RFC 5234,
Prot ocol designers of applications using this formshould specify a
way to escape the introducing backslash ("\"), if needed. "\\" is one
obvi ous possibility, but not the only one.

2. XM. and HTM

The other reconmended formis the one used in XM.. It uses the form
"E&H#XNNNN; ". Like the Perl form (Section 6.2), this formhas a cl ear
ending delimter, reducing anmbiguity. HIM uses a simlar form but
the senicolon nmay be onmtted in sone cases. |If that is done, the

advant ages of the delimter disappear so that the HTM. form wi t hout
t he senicol on SHOULD NOT be used. However, this format is often
consi dered ugly and awkward outside of its native HTM, XM, and
simlar contexts.

Kl ensin Best Current Practice [Page 7]

RFC 5137 Uni code Escapes February 2008

6.

6.

6.

I n ABNF:

EnbeddedUni codeChar = 0x26. 23. 78 2*6HEXDI G % 3B

; starts with "&#x" and ends with

Note that a literal "&" can be expressed by "&" when using this
style.

Forms that Are Nornally Not Recomrended
1. The C Programm ng Language: Backsl ash-U
The forns
\ UNNNNNNNN (f or any Uni code character) and
\uUNNNN (for Unicode characters in plane 0)

are utilized in the C Progranm ng Language [|1 SO C] when an ASCI
escape for enbedded Uni code characters i s needed.

There are disadvantages of this formthat nmay be significant. First,
the use of a case variation (between "u" for the four-digit formand
"U' for the eight-digit forn) nay not seem natural in environnents
wher e uppercase and | owercase characters are generally consi dered
equi val ent and mi ght be confusing to people who are not very faniliar
wi th Latin-based al phabets (although those people night have even
nmore troubl e reading rel evant English text and expl anations).

Second, as discussed in Section 4, the very fact that there are
several different conventions that start in \u or \U nay becone a
source of confusion as people nake incorrect assunptions about what
they are | ooking at.

2. Perl: A Hexadecimal String

Perl uses the form\x{NNNN...}. The advantage of this formis that
there are explicit delimters, resolving the issue of having
variabl e-l ength strings or using the case-change nechani sm of the
proposed formto distinguish between Plane 0 and nore general forns.
Some ot her progranm ng | anguages would tend to favor X NNNN...’ forns
for hexadeci mal strings and perhaps U NNNN...’' for Unicode-specific
strings, but those forns do not seemto be in use around the | ETF.

Note that there is a possible anbiguity in how two-character or |ow
nurmber ed sequences in this notation are understood, i.e., that octets
in the range \x(00) through \x(FF) may be construed as being in the

| ocal character set, not as Unicode code points. Because of this
apparent anbi guity, and because | ETF docunments do not contain

Kl ensin Best Current Practice [Page 8]

RFC 5137 Uni code Escapes February 2008

provision for pragnas (see [PERLUniIntro] for nore information about
the "encodi ng" pragma in Perl and other details), the Perl formns
shoul d be used with extreme caution, if at all.

6.3. Java: Escaped UTF-16

Java [Java] uses the form\uNNNN, but as a reference to UTF-16

val ues, not to Unicode code points. While it uses a syntax simlar
to that described in Section 6.1, this relationship to UTF-16 makes
it, in many respects, nore simlar to the encodings of UTF-8

di scussed above than to an escape that designates Uni code code
points. Note that the UTF-16 form and hence, the Java escape
notation, can represent characters outside Plane 0 (i.e., above
UFFFF) only by the use of surrogate pairs, raising some of the same
i ssues as the use of UTF-8 octets discussed above. For characters in
Plane 0, the Java formis indistinguishable fromthe Plane 0-only
formdescribed in Section 6.1. If only for that reason, it SHOULD
NOT be used as an escape except in those Java contexts in which it is
nat ur al

7. Security Considerations

Thi s docunment proposes a set of rules for encodi ng Uni code characters
when ot her considerations do not apply. Since all of the recomended
encodi ngs are unanbi guous and nornalization i ssues are not invol ved,
it should not introduce any security issues that are not present as a
result of sinple use of non-ASCI| characters, no nmatter how they are
encoded. The nechani sns suggested should slightly [ower the risks of
confusing users with encoded characters by nmaking the identity of the
characters being used somewhat nore obvi ous than sone of the
alternatives

An escape nechani sm such as the one specified in this docunent can
all ow characters to be represented in nore than one way. \Where
software interprets the escaped form there is a risk that security
checks, and any necessary checks for, e.g., mninmal or nornmalized
forns, are done at the wong point.

8. Acknow edgnents

Thi s docunment was produced in response to a series of discussions
within the | ETF Applications Area and as part of work on enai
internationalization and internationalized donain nane updates. It
is a synthesis of a large nunber of discussions, the conments of the
participants in which are gratefully acknow edged. The help of Mark
Davis in constructing a list of alternative presentations and

sel ecti ng anong them was especially inportant.

Kl ensin Best Current Practice [Page 9]

RFC 5137 Uni code Escapes February 2008

Ti m Bray, Peter Constable, Stephane Bortzneyer, Chris Newran, Frank
Ell ermann, Clive D.W Feather, Philip Guenther, Bjoern Hoehrnann,

Si mon Josefsson, Bill MQillan, der Muse, Phil Pennock, and Julian
Reschke provided careful reading and sone corrections and suggestions
on the various working drafts that preceded this docunment. Taken
together, their suggestions notivated the significant revision of
this docunent and its reconmendati ons between version -00 and version
-01 and further inprovenents in the subsequent versions.

9. References
9.1. Normative References
[1S0OL0646] I nternational O ganization for Standardization
"I nformati on Technol ogy -- Universal Miltiple-

Cct et Coded Character Set (UCS)", |SO
| EC 10646: 2003, Decenber 2003.

[RFC2119] Bradner, S., "Key words for use in RFCs to
I ndi cat e Requi renent Level s", BCP 14, RFC 2119,
March 1997.

[RFC3629] Yergeau, F., "UTF-8, a transformation format of

| SO 10646", STD 63, RFC 3629, Novenber 2003.

[RFC5234] Crocker, D. and P. Overell, "Augnented BNF for
Synt ax Specifications: ABNF', STD 68, RFC 5234,
January 2008.

[Uni code] The Uni code Consortium "The Uni code Standard
Version 5.0", 2006.
(Addi son- Wesl ey, 2006. | SBN 0-321-48091-0).

9. 2. I nformati ve References

[ASCI 1] Anerican National Standards Institute (fornerly
United States of Anerica Standards Institute),
"USA Code for Information Interchange", ANSI X3.4-
1968, 1968.

ANSI X3.4-1968 has been replaced by newer versions
with slight nodifications, but the 1968 version
remai ns definitive for the Internet.

[1SOC I nternational O ganization for Standardization

"Information technol ogy -- Progranmm ng | anguages
-- C', 1SOIEC 9899: 1999, 1999.

Kl ensin Best Current Practice [Page 10]

RFC 5137

[Java]

[PERLUni | ntr 0]

[RFC2277]

[RFC3492]

[Uni coded ossary]

[VBC- Char Mbd]

Kl ensin

Uni code Escapes February 2008

Sun M crosystens, Inc., "Java Language

Speci fication, Third Edition", 2005, <http://

j ava. sun. com docs/ books/jls/third_edition/htm/
| exi cal . ht M #95413p>.

H etanieni, J., "perluniintro", Perl
docunmentation 5.8.8, 2002,
<http://perldoc.perl.org/perluniintro.htm >.

Alvestrand, H., "IETF Policy on Character Sets and
Languages", BCP 18, RFC 2277, January 1998.

Costello, A, "Punycode: A Bootstring encoding of
Uni code for Internationalized Domain Nanes in
Applications (IDNA)", RFC 3492, March 2003

The Uni code Consortium "d ossary of Uni code
Ternms", June 2007,
<ht t p: // ww. uni code. or g/ gl ossary>.

Duerst, M, "Character Mdel for the Wrld Wde

Web 1. 0", WBC Recommendati on, February 2005,
<ht t p: // www. wW3. or g/ TR/ char nod/ >

Best Current Practice [Page 11]

RFC 5137 Uni code Escapes February 2008

Appendi x A, Formal Syntax for Forns Not Reconmended

A 1.

A 2.

A 3.

Aut

Kl e

Wil e the syntax for the escape fornms that are not recomrended above
(see Section 6) are not given inline in the hope of discouraging
their use, they are provided in this appendix in the hope that those
who choose to use themwi |l do so consistently. The reader is
cautioned that sone of these fornms are not defined precisely in the
original specifications and that others have evolved over tinme in
ways that are not precisely consistent. Consequently, these
definitions are not normative and rmay not even precisely match
reasonabl e interpretations of their sources.

The definition of "HEXDIG' for the forns that foll ow appears in
Section 5. 1.

The C Programm ng Language Form

Specifically, in ABNF [RFC5234],

EnbeddedUni codeChar = BMP-form/ Full-form

BMP-form= 9%5C. 75 4HEXDI G ; starting with | owercase "\u"

; The encodings are considered to be abstractions for the

; relevant characters, not designations of specific octets.

Full -form= 9%&5C. 55 8HEXDIG ; starting with uppercase "\U'

Perl Form

EnbeddedUni codeChar = %5C. 78 "{" 2*6HEXDIG "}" ; starts with "\x"
Java Form

EnbeddedUni codeChar = %5C. 7A 4HEXDI G ; starts with "\u"

hor’ s Address

John C Kl ensin

1770 Massachusetts Ave, #322
Canbri dge, MA 02140

USA

Phone: +1 617 245 1457
EMai | . john-ietf@ck.com

nsin Best Current Practice [Page 12]

RFC 5137 Uni code Escapes February 2008

Ful I Copyright Statenent
Copyright (C The | ETF Trust (2008).

This docunment is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights

Thi s docunent and the information contained herein are provided on an
"AS | S" basis and THE CONTRI BUTOR, THE ORGAN ZATI ON HE/ SHE REPRESENTS
OR |'S SPONSCORED BY (I F ANY), THE | NTERNET SCCI ETY, THE | ETF TRUST AND
THE | NTERNET ENG NEERI NG TASK FORCE DI SCLAI M ALL WARRANTI ES, EXPRESS
OR | MPLI ED, | NCLUDI NG BUT NOT LIM TED TO ANY WARRANTY THAT THE USE OF
THE | NFORVATI ON HEREI'N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED
WARRANTI ES OF MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE.

Intell ectual Property

The | ETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that nmight be clained to
pertain to the inplenentation or use of the technol ogy described in
this docunent or the extent to which any |icense under such rights

m ght or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. [Information
on the procedures with respect to rights in RFC docunents can be
found in BCP 78 and BCP 79.

Copi es of I PR disclosures nmade to the | ETF Secretariat and any
assurances of licenses to be nade available, or the result of an
attenpt nade to obtain a general |icense or permission for the use of
such proprietary rights by inplenenters or users of this
specification can be obtained fromthe | ETF on-line |IPR repository at
http://ww.ietf.org/ipr.

The 1ETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to inpl enent
this standard. Please address the information to the |ETF at
ietf-ipr@etf.org.

Kl ensin Best Current Practice [Page 13]

