
Network Working Group G. Camarillo
Request for Comments: 5621 Ericsson
Updates: 3204, 3261, 3459 September 2009
Category: Standards Track

 Message Body Handling in the Session Initiation Protocol (SIP)

Abstract

 This document specifies how message bodies are handled in SIP.
 Additionally, this document specifies SIP user agent support for MIME
 (Multipurpose Internet Mail Extensions) in message bodies.

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (c) 2009 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents in effect on the date of
 publication of this document (http://trustee.ietf.org/license-info).
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document.

Camarillo Standards Track [Page 1]

RFC 5621 Message Body Handling in SIP September 2009

Table of Contents

 1. Introduction . 3
 2. Terminology . 3
 3. Message Body Encoding . 3
 3.1. Background on Message Body Encoding 3
 3.2. UA Behavior to Encode Binary Message Bodies 5
 4. ’multipart’ Message Bodies 6
 4.1. Background on ’multipart’ Message Bodies 6
 4.2. Mandatory Support for ’multipart’ Message Bodies 7
 4.3. UA Behavior to Generate ’multipart’ Message Bodies 7
 5. ’multipart/mixed’ Message Bodies 7
 6. ’multipart/alternative’ Message Bodies 8
 6.1. Background on ’multipart/alternative’ Message Bodies . . . 8
 6.2. UA Behavior to Generate ’multipart/alternative’
 Message Bodies . 8
 6.3. UA Behavior to Process ’multipart/alternative’ Message
 Bodies . 9
 7. ’multipart/related’ Message Bodies 9
 7.1. Background on ’multipart/related’ Message Bodies 9
 7.2. UA Behavior to Generate ’multipart/related’ Message
 Bodies . 9
 7.3. UA Behavior to Process ’multipart/related’ Message
 Bodies . 9
 8. Disposition Types . 10
 8.1. Background on Content and Disposition Types in SIP 10
 8.2. UA Behavior to Set the ’handling’ Parameter 12
 8.3. UA Behavior to Process ’multipart/alternative’ 13
 8.4. UAS Behavior to Report Unsupported Message Bodies 13
 9. Message Body Processing 14
 9.1. Background on References to Message Body Parts 14
 9.2. UA Behavior to Generate References to Message Bodies . . . 14
 9.3. UA Behavior to Process Message Bodies 14
 9.4. The ’by-reference’ Disposition Type 15
 10. Guidelines to Authors of SIP Extensions 16
 11. Security Considerations 16
 12. IANA Considerations . 17
 12.1. Registration of the ’by-reference’ Disposition Type . . . 17
 12.2. Update of the ’handling’ Parameter Registration 17
 13. Acknowledgements . 17
 14. References . 17
 14.1. Normative References 17
 14.2. Informative References 18

Camarillo Standards Track [Page 2]

RFC 5621 Message Body Handling in SIP September 2009

1. Introduction

 Message body handling in SIP was originally specified in [RFC3261],
 which relied on earlier specifications (e.g., MIME) to describe some
 areas. This document contains background material on how bodies are
 handled in SIP and normative material on areas that had not been
 specified before or whose specifications needed to be completed.
 Sections containing background material are clearly identified as
 such by their titles. The material on the normative sections is
 based on experience gained since [RFC3261] was written. Implementers
 need to implement what is specified in [RFC3261] (and its references)
 in addition to what is specified in this document.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 The following abbreviations are used in this document.

 UA: User Agent

 UAC: User Agent Client

 UAS: User Agent Server

 URL: Uniform Resource Locator

3. Message Body Encoding

 This section deals with the encoding of message bodies in SIP.

3.1. Background on Message Body Encoding

 SIP [RFC3261] messages consist of an initial line (request line in
 requests and status line in responses), a set of header fields, and
 an optional message body. The message body is described using header
 fields such as Content-Disposition, Content-Encoding, and Content-
 Type, which provide information on its contents. Figure 1 shows a
 SIP message that carries a body. Some of the header fields are not
 shown for simplicity:

Camarillo Standards Track [Page 3]

RFC 5621 Message Body Handling in SIP September 2009

 INVITE sip:conf-fact@example.com SIP/2.0
 Content-Type: application/sdp
 Content-Length: 192

 v=0
 o=alice 2890844526 2890842807 IN IP4 atlanta.example.com
 s=-
 c=IN IP4 192.0.2.1
 t=0 0
 m=audio 20000 RTP/AVP 0
 a=rtpmap:0 PCMU/8000
 m=video 20002 RTP/AVP 31
 a=rtpmap:31 H261/90000

 Figure 1: SIP message carrying a body

 The message body of a SIP message can be divided into various body
 parts. Multipart message bodies are encoded using the MIME
 (Multipurpose Internet Mail Extensions) [RFC2045] format. Body parts
 are also described using header fields such as Content-Disposition,
 Content-Encoding, and Content-Type, which provide information on the
 contents of a particular body part. Figure 2 shows a SIP message
 that carries two body parts. Some of the header fields are not shown
 for simplicity:

Camarillo Standards Track [Page 4]

RFC 5621 Message Body Handling in SIP September 2009

 INVITE sip:conf-fact@example.com SIP/2.0
 Content-Type: multipart/mixed;boundary="boundary1"
 Content-Length: 619

 --boundary1
 Content-Type: application/sdp

 v=0
 o=alice 2890844526 2890842807 IN IP4 atlanta.example.com
 s=-
 c=IN IP4 192.0.2.1
 t=0 0
 m=audio 20000 RTP/AVP 0
 a=rtpmap:0 PCMU/8000
 m=video 20002 RTP/AVP 31
 a=rtpmap:31 H261/90000

 --boundary1
 Content-Type: application/resource-lists+xml
 Content-Disposition: recipient-list

 <?xml version="1.0" encoding="UTF-8"?>
 <resource-lists xmlns="urn:ietf:params:xml:ns:resource-lists">
 <list>
 <entry uri="sip:bill@example.com"/>
 <entry uri="sip:randy@example.net"/>
 <entry uri="sip:joe@example.org"/>
 </list>
 </resource-lists>
 --boundary1--

 Figure 2: SIP message carrying a body

 SIP uses S/MIME [RFC3851] to protect message bodies. As specified in
 [RFC3261], UASs that cannot decrypt a message body or a body part can
 use the 493 (Undecipherable) response to report the error.

3.2. UA Behavior to Encode Binary Message Bodies

 SIP messages can carry binary message bodies such as legacy
 signalling objects [RFC3204]. SIP proxy servers are 8-bit safe.
 That is, they are able to handle binary bodies. Therefore, there is
 no need to use encodings such as base64 to transport binary bodies in
 SIP messages. Consequently, UAs SHOULD use the binary transfer
 encoding [RFC4289] for all payloads in SIP, including binary
 payloads. The only case where a UA MAY use a different encoding is
 when transferring application data between applications that only
 handle a different encoding (e.g., base64).

Camarillo Standards Track [Page 5]

RFC 5621 Message Body Handling in SIP September 2009

4. ’multipart’ Message Bodies

 This section deals with ’multipart’ message bodies and their
 handling.

4.1. Background on ’multipart’ Message Bodies

 [RFC3261] did not mandate support for ’multipart’ message bodies in
 MIME format [RFC2046]. However, since [RFC3261] was written, many
 SIP extensions rely on them.

 The use of ’multipart/mixed’ MIME bodies is a useful tool to build
 SIP extensions. An example of such an extension could be the
 inclusion of location information in an INVITE request. Such an
 INVITE request would use the ’multipart/mixed’ MIME type [RFC2046] to
 carry two body parts: a session description and a location object.
 An example of an existing extension that uses ’multipart/mixed’ to
 send a session description and a legacy-signalling object is defined
 in [RFC3204].

 Another MIME type that is useful to build SIP extensions is
 ’multipart/alternative’ [RFC2046]. Each body part within a
 ’multipart/alternative’ carries an alternative version of the same
 information.

 The transition from SDP to new session description protocols could be
 implemented using ’multipart/alternative’ bodies. SIP messages
 (e.g., INVITE requests) could carry a ’multipart/alternative’ body
 with two body parts: a session description written in SDP and a
 session description written in a newer session description format.
 Legacy recipient UAs would use the session description written in
 SDP. New recipient UAs would use the one written in the newer
 format.

 Nested MIME bodies are yet another useful tool to build and combine
 SIP extensions. Using the extensions in the previous examples, a UA
 that supported a new session description format and that needed to
 include a location object in an INVITE request would include a
 ’multipart/mixed’ body with two body parts: a location object and a
 ’multipart/alternative’. The ’multipart/alternative’ body part
 would, in turn, have two body parts: a session description written in
 SDP and a session description written in the newer session
 description format.

Camarillo Standards Track [Page 6]

RFC 5621 Message Body Handling in SIP September 2009

4.2. Mandatory Support for ’multipart’ Message Bodies

 For all MIME-based extensions to work, the recipient needs to be able
 to decode the multipart bodies. Therefore, SIP UAs MUST support
 parsing ’multipart’ MIME bodies, including nested body parts.
 Additionally, UAs MUST support the ’multipart/mixed’ and ’multipart/
 alternative’ MIME types. Support for other MIME types such as
 ’multipart/related’ is OPTIONAL.

 Note that, by default, unknown ’multipart’ subtypes are treated as
 ’multipart/mixed’. Also note that SIP extensions can also include
 ’multipart’ MIME bodies in responses. That is why both UACs and
 UASs need to support ’multipart’ bodies.

 Legacy SIP UAs without support for ’multipart’ bodies generate a 415
 (Unsupported Media Type) response when they receive a ’multipart’
 body in a request. A UAC sending a ’multipart’ body can receive such
 an error response when communicating with a legacy SIP UA that
 predates this specification.

 It has been observed in the field that a number of legacy SIP UAs
 without support for ’multipart’ bodies simply ignored those bodies
 when they were received. These UAs did not return any error
 response. Unsurprisingly, SIP UAs not being able to report this
 type of error have caused serious interoperability problems in the
 past.

4.3. UA Behavior to Generate ’multipart’ Message Bodies

 UAs SHOULD avoid unnecessarily nesting body parts because doing so
 would, unnecessarily, make processing the body more laborious for the
 receiver. However, [RFC2046] states that a ’multipart’ media type
 with a single body part is useful in some circumstances (e.g., for
 sending non-text media types). In any case, UAs SHOULD NOT nest one
 ’multipart/mixed’ within another unless there is a need to reference
 the nested one (i.e., using the Content ID of the nested body part).
 Additionally, UAs SHOULD NOT nest one ’multipart/alternative’ within
 another.

 Note that UAs receiving unnecessarily nested body parts treat them
 as if they were not nested.

5. ’multipart/mixed’ Message Bodies

 This section does not specify any additional behavior regarding how
 to generate and process ’multipart/mixed’ bodies. This section is
 simply included for completeness.

Camarillo Standards Track [Page 7]

RFC 5621 Message Body Handling in SIP September 2009

6. ’multipart/alternative’ Message Bodies

 This section deals with ’multipart/alternative’ message bodies and
 their handling.

6.1. Background on ’multipart/alternative’ Message Bodies

 Each body part within a ’multipart/alternative’ carries an
 alternative version of the same information. The body parts are
 ordered so that the last one is the richest representation of the
 information. The recipient of a ’multipart/alternative’ body chooses
 the last body part it understands.

 Note that within a body part encoded in a given format (i.e., of a
 given content type), there can be optional elements that can
 provide richer information to the recipient in case the recipient
 supports them. For example, in SDP (Session Description Protocol)
 [RFC4566], those optional elements are encoded in ’a’ lines.
 These types of optional elements are internal to a body part and
 are not visible at the MIME level. That is, a body part is
 understood if the recipient understands its content type,
 regardless of whether or not the body part’s optional elements are
 understood.

 Note as well that each part of a ’multipart/alternative’ body
 represents the same data, but the mapping between any two parts is
 not necessarily without information loss. For example,
 information can be lost when translating ’text/html’ to ’text/
 plain’. [RFC2046] recommends that each part should have a
 different Content-ID value in the case where the information
 content of the two parts is not identical.

6.2. UA Behavior to Generate ’multipart/alternative’ Message Bodies

 Section 8.2 mandates all the top-level body parts within a
 ’multipart/alternative’ to have the same disposition type.

 The ’session’ and ’early-session’ [RFC3959] disposition types require
 that all the body parts of a ’multipart/alternative’ body have
 different content types. Consequently, for the ’session’ and ’early-
 session’ disposition types, UAs MUST NOT place more than one body
 part with a given content type in a ’multipart/alternative’ body.
 That is, for ’session’ and ’early-session’, no body part within a
 ’multipart/alternative’ can have the same content type as another
 body part within the same ’multipart/alternative’.

Camarillo Standards Track [Page 8]

RFC 5621 Message Body Handling in SIP September 2009

6.3. UA Behavior to Process ’multipart/alternative’ Message Bodies

 This section does not specify any additional behavior regarding how
 to process ’multipart/alternative’ bodies. This section is simply
 included for completeness.

7. ’multipart/related’ Message Bodies

 This section deals with ’multipart/related’ message bodies and their
 handling.

7.1. Background on ’multipart/related’ Message Bodies

 Compound objects in MIME are represented using the ’multipart/
 related’ content type [RFC2387]. The body parts within a particular
 ’multipart/related’ body are all part of a compound object and are
 processed as such. The body part within a ’multipart/related’ body
 that needs to be processed first is referred to as the ’root’ body
 part. The root body part of a ’multipart/related’ body is identified
 by the ’start’ parameter, which is a Content-Type header field
 parameter and contains a Content-ID URL pointing to the root body
 part. If the start parameter is not present, the root body part is,
 by default, the first body part of the ’multipart/related’. An
 example of a compound object is a web page that contains images. The
 html body part would be the root. The remaining body parts would
 contain the images. An example of a SIP extension using ’multipart/
 related’ is specified in [RFC4662].

7.2. UA Behavior to Generate ’multipart/related’ Message Bodies

 This section does not specify any additional behavior regarding how
 to generate ’multipart/related’ bodies. This section is simply
 included for completeness.

7.3. UA Behavior to Process ’multipart/related’ Message Bodies

 Per [RFC2387], a UA processing a ’multipart/related’ body processes
 the body as a compound object ignoring the disposition types of the
 body parts within it. Ignoring the disposition types of the
 individual body parts makes sense in the context in which ’multipart/
 related’ was originally specified. For instance, in the example of
 the web page, the implicit disposition type for the images would be
 ’inline’, since the images are displayed as indicated by the root
 html file. However, in SIP, the disposition types of the individual
 body parts within a ’multipart/related’ play an important role and,
 thus, need to be considered by the UA processing the ’multipart/
 related’. Different SIP extensions that use the same disposition
 type for the ’multipart/related’ body can be distinguished by the

Camarillo Standards Track [Page 9]

RFC 5621 Message Body Handling in SIP September 2009

 disposition types of the individual body parts within the ’multipart/
 related’. Consequently, SIP UAs processing a ’multipart/related’
 body with a given disposition type MUST process the disposition types
 of the body parts within it according to the SIP extension making use
 the disposition type of the ’multipart/related’.

 Note that UAs that do not understand ’multipart/related’ will
 treat ’multipart/related’ bodies as ’multipart/mixed’ bodies.
 These UAs will not be able to process a given body as a compound
 object. Instead, they will process the body parts according to
 their disposition type as if each body part was independent from
 each other.

8. Disposition Types

 This section deals with disposition types in message bodies.

8.1. Background on Content and Disposition Types in SIP

 The Content-Disposition header field, defined in [RFC2183] and
 extended by [RFC3261], describes how to handle a SIP message’s body
 or an individual body part. Examples of disposition types used in
 SIP in the Content-Disposition header field are ’session’ and
 ’render’.

 [RFC3204] and [RFC3459] define the ’handling’ parameter for the
 Content-Disposition header field. This parameter describes how a UAS
 reacts if it receives a message body whose content type or
 disposition type it does not understand. If the parameter has the
 value ’optional’, the UAS ignores the message body; if the parameter
 has the value ’required’, the UAS returns a 415 (Unsupported Media
 Type) response. The default value for the ’handling’ parameter is
 ’required’. The following is an example of a Content-Disposition
 header field:

 Content-Disposition: signal; handling=optional

 [RFC3204] identifies two situations where a UAS (User Agent Server)
 needs to reject a request with a body part whose handling is
 required:

 1. if it has an unknown content type.

 2. if it has an unknown disposition type.

 If the UAS did not understand the content type of the body part, the
 UAS can add an Accept header field to its 415 (Unsupported Media
 Type) response listing the content types that the UAS does

Camarillo Standards Track [Page 10]

RFC 5621 Message Body Handling in SIP September 2009

 understand. Nevertheless, there is no mechanism for a UAS that does
 not understand the disposition type of a body part to inform the UAC
 about which disposition type was not understood or about the
 disposition types that are understood by the UAS.

 The reason for not having such a mechanism is that disposition types
 are typically supported within a context. Outside that context, a UA
 need not support the disposition type. For example, a UA can support
 the ’session’ disposition type for body parts in INVITE and UPDATE
 requests and their responses. However, the same UA would not support
 the ’session’ disposition type in MESSAGE requests.

 In another example, a UA can support the ’render’ disposition type
 for ’text/plain’ and ’text/html’ body parts in MESSAGE requests.
 Additionally, the UA can support the ’session’ disposition type for
 ’application/sdp’ body parts in INVITE and UPDATE requests and their
 responses. However, the UA might not support the ’render’
 disposition type for ’application/sdp’ body parts in MESSAGE
 requests, even if, in different contexts, the UA supported all of the
 following: the ’render’ disposition type, the ’application/sdp’
 content type, and the MESSAGE method.

 A given context is generally (but not necessarily) defined by a
 method, a disposition type, and a content type. Support for a
 specific context is usually defined within an extension. For
 example, the extension for instant messaging in SIP [RFC3428]
 mandates support for the MESSAGE method, the ’render’ disposition
 type, and the ’text/plain’ content type.

 Note that, effectively, content types are also supported within a
 context. Therefore, the use of the Accept header field in a 415
 (Unsupported Media Type) response is not enough to describe in
 which contexts a particular content type is supported.

 Therefore, support for a particular disposition type within a given
 context is typically signalled by the use of a particular method or
 an option-tag in a Supported or a Require header field. When support
 for a particular disposition type within a context is mandated,
 support for a default content type is also mandated (e.g., a UA that
 supports the ’session’ disposition type in an INVITE request needs to
 support the ’application/sdp’ content type).

Camarillo Standards Track [Page 11]

RFC 5621 Message Body Handling in SIP September 2009

8.2. UA Behavior to Set the ’handling’ Parameter

 As stated earlier, the ’handling’ Content-Disposition parameter can
 take two values: ’required’ or ’optional’. While it is typically
 easy for a UA to decide which type of handling an individual body
 part requires, setting the ’handling’ parameter of ’multipart’ bodies
 requires extra considerations.

 If the handling of a ’multipart/mixed’ body as a whole is required
 for processing its enclosing body part or message, the UA MUST set
 the ’handling’ parameter of the ’multipart/mixed’ body to ’required’.
 Otherwise, the UA MUST set it to ’optional’. The ’handling’
 parameters of the top-level body parts within the ’multipart/mixed’
 body are set independently from the ’handling’ parameter of the
 ’multipart/mixed’ body. If the handling of a particular top-level
 body part is required, the UA MUST set the ’handling’ parameter of
 that body part ’required’. Otherwise, the UA MUST set it to
 ’optional’.

 Per the previous rules, a ’multipart/mixed’ body whose handling is
 optional can contain body parts whose handling is required. In
 such case, the receiver is required to process the body parts
 whose handling is required if and only if the receiver decides to
 process the optional ’multipart/mixed’ body.

 Also per the previous rules, a ’multipart/mixed’ body whose
 handling is required can contain only body parts whose handling is
 optional. In such case, the receiver is required to process the
 body as a whole but, when processing it, the receiver may decide
 (based on its local policy) not to process any of the body parts.

 The ’handling’ parameter is a Content-Disposition parameter.
 Therefore, in order to set this parameter, it is necessary to provide
 the ’multipart/mixed’ body with a disposition type. Per [RFC3261],
 the default disposition type for ’application/sdp’ is ’session’ and
 for other bodies is ’render’. UAs SHOULD assign ’multipart/mixed’
 bodies a disposition type of ’render’.

 Note that the fact that ’multipart/mixed’ bodies have a default
 disposition type of ’render’ does not imply that they will be
 rendered to the user. The way the body parts within the
 ’multipart/mixed’ are handled depends on the disposition types of
 the individual body parts. The actual disposition type of the
 whole ’multipart/mixed’ is irrelevant. The ’render’ disposition
 type has been chosen for ’multipart/mixed’ bodies simply because
 ’render’ is the default disposition type in SIP.

Camarillo Standards Track [Page 12]

RFC 5621 Message Body Handling in SIP September 2009

 If the handling of a ’multipart/alternative’ body as a whole is
 required for processing its enclosing body part or message, the UA
 MUST set the ’handling’ parameter of the ’multipart/alternative’ body
 to ’required’. Otherwise, the UA MUST set it to ’optional’. The UA
 SHOULD also set the ’handling’ parameter of all the top-level body
 part within the ’multipart/alternative’ to ’optional’.

 The receiver will process the body parts based on the handling
 parameter of the ’multipart/alternative’ body. The receiver will
 ignore the handling parameters of the body parts. That is why
 setting them to ’optional’ is at the "SHOULD" level and not at the
 "MUST" level -- their value is irrelevant.

 The UA MUST use the same disposition type for the ’multipart/
 alternative’ body and all its top-level body parts.

 If the handling of a ’multipart/related’ body as a whole is required
 for processing its enclosing body part or message, the UA MUST set
 the ’handling’ parameter of the ’multipart/related’ body to
 ’required’. Otherwise, the UA MUST set it to ’optional’. The
 ’handling’ parameters of the top-level body parts within the
 ’multipart/related’ body are set independently from the ’handling’
 parameter of the ’multipart/related’ body. If the handling of a
 particular top-level body part is required, the UA MUST set the
 ’handling’ parameter of that body part to ’required’. Otherwise, the
 UA MUST set it to ’optional’. If at least one top-level body part
 within a ’multipart/related’ body has a ’handling’ parameter of
 ’required’, the UA SHOULD set the ’handling’ parameter of the root
 body part to ’required’.

8.3. UA Behavior to Process ’multipart/alternative’

 The receiver of a ’multipart/alternative’ body MUST process the body
 based on its handling parameter. The receiver SHOULD ignore the
 handling parameters of the body parts within the ’multipart/
 alternative’.

8.4. UAS Behavior to Report Unsupported Message Bodies

 If a UAS cannot process a request because, in the given context, the
 UAS does not support the content type or the disposition type of a
 body part whose handling is required, the UAS SHOULD return a 415
 (Unsupported Media Type) response even if the UAS supported the
 content type, the disposition type, or both in a different context.

 Consequently, it is possible to receive a 415 (Unsupported Media
 Type) response with an Accept header field containing all the
 content types used in the request.

Camarillo Standards Track [Page 13]

RFC 5621 Message Body Handling in SIP September 2009

 If a UAS receives a request with a body part whose disposition type
 is not compatible with the way the body part is supposed to be
 handled according to other parts of the SIP message (e.g., a Refer-To
 header field with a Content-ID URL pointing to a body part whose
 disposition type is ’session’), the UAS SHOULD return a 415
 (Unsupported Media Type) response.

9. Message Body Processing

 This section deals with the processing of message bodies and how that
 processing is influenced by the presence of references to them.

9.1. Background on References to Message Body Parts

 Content-ID URLs allow creating references to body parts. A given
 Content-ID URL [RFC2392], which can appear in a header field or
 within a body part (e.g., in an SDP attribute), points to a
 particular body part. The way to handle that body part is defined by
 the field the Content-ID URL appears. For example, the extension to
 refer to multiple resources in SIP [RFC5368] places a Content-ID URL
 in a Refer-To header field. Such a Content-ID URL points to a body
 part that carries a URI list. In another example, the extension for
 file transfer in SDP [RFC5547] places a Content-ID URL in a ’file-
 icon’ SDP attribute. This Content-ID URL points to a body part that
 carries a (typically small) picture.

9.2. UA Behavior to Generate References to Message Bodies

 UAs MUST only include forward references in the SIP messages they
 generate. That is, an element in a SIP message can reference a body
 part only if the body part appears after the element. Consequently,
 a given body part can only be referenced by another body part that
 appears before it or by a header field. Having only forward
 references allows recipients to process body parts as they parse
 them. They do not need to parse the remainder of the message in
 order to process a body part.

 It was considered to only allow (forward) references among body
 parts that belonged to the same ’multipart/related’ [RFC2387]
 wrapper. However, it was finally decided that this extra
 constraint was not necessary.

9.3. UA Behavior to Process Message Bodies

 In order to process a message body or a body part, a UA needs to know
 whether a SIP header field or another body part contains a reference
 to the message body or body part (e.g., a Content-ID URL pointing to
 it). If the body part is not referenced in any way (e.g., there are

Camarillo Standards Track [Page 14]

RFC 5621 Message Body Handling in SIP September 2009

 no header fields or other body parts with a Content-ID URL pointing
 to it), the UA processes the body part as indicated by its
 disposition type and the context in which the body part was received.

 If the SIP message contains a reference to the body part, the UA
 processes the body part according to the reference. If the SIP
 message contains more than one reference to the body part (e.g., two
 header fields contain Content-ID URLs pointing to the body part), the
 UA processes the body part as many times as references are.

 Note that, following the rules in [RFC3204], if a UA does not
 understand a body part whose handling is optional, the UA ignores
 it. Also note that the content indirection mechanism in SIP
 [RFC4483] allows UAs to point to external bodies. Therefore, a UA
 receiving a SIP message that uses content indirection could need
 to fetch a body part (e.g., using HTTP [RFC2616]) in order to
 process it.

9.4. The ’by-reference’ Disposition Type

 Per the rules in Section 9.3, if a SIP message contains a reference
 to a body part, the UA processes the body part according to the
 reference. Since the reference provides the context in which the
 body part needs to be processed, the disposition type of the body
 part is irrelevant. However, a UA that missed a reference to a body
 part (e.g., because the reference was in a header field the UA did
 not support) would attempt to process the body part according to its
 disposition type alone. To keep this from happening, we define a new
 disposition type for the Content-Disposition header field: by-
 reference.

 A body part whose disposition type is ’by-reference’ needs to be
 handled according to a reference to the body part that is located in
 the same SIP message as the body part (given that SIP only allows
 forward references, the reference will appear in the same SIP message
 before the body part). A recipient of a body part whose disposition
 type is ’by-reference’ that cannot find any reference to the body
 part (e.g., the reference was in a header field the recipient does
 not support and, thus, did not process) MUST NOT process the body
 part. Consequently, if the handling of the body part was required,
 the UA needs to report an error.

 Note that extensions that predate this specification use
 references to body parts whose disposition type is not ’by-
 reference’. Those extensions use option-tags to make sure the
 recipient understands the whole extension and, thus, cannot miss
 the reference and attempt to process the body part according to
 its disposition type alone.

Camarillo Standards Track [Page 15]

RFC 5621 Message Body Handling in SIP September 2009

10. Guidelines to Authors of SIP Extensions

 These guidelines are intended for authors of SIP extensions that
 involve, in some way, message bodies or body parts. These guidelines
 discuss aspects that authors of such extensions need to consider when
 designing them.

 This specification mandates support for ’multipart/mixed’ and
 ’multipart/alternative’. At present, there are no SIP extensions
 that use different ’multipart’ subtypes such as parallel [RFC2046] or
 digest [RFC2046]. If such extensions were to be defined in the
 future, their authors would need to make sure (e.g., by using an
 option-tag or by other means) that entities receiving those
 ’multipart’ subtypes were able to process them. As stated earlier,
 UAs treat unknown ’multipart’ subtypes as ’multipart/mixed’.

 Authors of SIP extensions making use of ’multipart/related’ bodies
 have to explicitly address the handling of the disposition types of
 the body parts within the ’multipart/related’ body. Authors wishing
 to make use of ’multipart/related’ bodies should keep in mind that
 UAs that do not understand ’multipart/related’ will treat it as
 ’multipart/mixed’. If such treatment by a recipient is not
 acceptable for a particular extension, the authors of such extension
 would need to make sure (e.g., by using an option-tag or by other
 means) that entities receiving the ’multipart/related’ body were able
 to correctly process them.

 As stated earlier, SIP extensions can also include ’multipart’ MIME
 bodies in responses. Hence, a response can be extremely complex and
 the UAC receiving the response might not be able to process it
 correctly. Because UACs receiving a response cannot report errors to
 the UAS that generated the response (i.e., error responses can only
 be generated for requests), authors of SIP extensions need to make
 sure that requests clearly indicate (e.g., by using an option-tag or
 by other means) the capabilities of the UAC so that UASs can decide
 what to include in their responses.

11. Security Considerations

 This document specifies how SIP entities handle message bodies.
 [RFC3261] discusses what type of information is encoded in SIP
 message bodies and how SIP entities can protect that information. In
 addition to the hop-by-hop security SIP can provide, SIP can also
 secure information in an end-to-end fashion. SIP message bodies can
 be end-to-end encrypted and integrity protected using S/MIME
 [RFC3851], as described in [RFC3261].

Camarillo Standards Track [Page 16]

RFC 5621 Message Body Handling in SIP September 2009

12. IANA Considerations

 This document contains two actions that have been completed by IANA.

12.1. Registration of the ’by-reference’ Disposition Type

 This document defines a new Content-Disposition header field
 disposition type (by-reference) Section 9.4. This value has been
 registered in the IANA registry for Mail Content Disposition Values
 with the following description:

 by-reference The body needs to be handled according to a
 reference to the body that is located in
 the same SIP message as the body.

12.2. Update of the ’handling’ Parameter Registration

 References to this specification, to [RFC3204], and to [RFC3459] have
 been added to the entry for the Content-Disposition ’handling’
 parameter in the Header Field Parameters and Parameter Values
 registry. The following is the resulting entry.

 Predefined
 Header Field Parameter Name Values Reference
 ------------------- --------------- --------- -------------------
 Content-Disposition handling Yes [RFC3204] [RFC3261]
 [RFC3459] [RFC5621]

13. Acknowledgements

 The ideas in this document were originally discussed with Paul
 Kyzivat. Christer Holmberg, Francois Audet, Dan Wing, Adam Roach,
 Keith Drage, and Dale Worley provided comments on it. Dave Crocker
 performed a thorough review on the whole document.

14. References

14.1. Normative References

 [RFC2045] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message
 Bodies", RFC 2045, November 1996.

 [RFC2046] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part Two: Media Types", RFC 2046,
 November 1996.

Camarillo Standards Track [Page 17]

RFC 5621 Message Body Handling in SIP September 2009

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2183] Troost, R., Dorner, S., and K. Moore, "Communicating
 Presentation Information in Internet Messages: The
 Content-Disposition Header Field", RFC 2183, August 1997.

 [RFC2387] Levinson, E., "The MIME Multipart/Related Content-type",
 RFC 2387, August 1998.

 [RFC2392] Levinson, E., "Content-ID and Message-ID Uniform Resource
 Locators", RFC 2392, August 1998.

 [RFC3204] Zimmerer, E., Peterson, J., Vemuri, A., Ong, L., Audet,
 F., Watson, M., and M. Zonoun, "MIME media types for ISUP
 and QSIG Objects", RFC 3204, December 2001.

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 June 2002.

 [RFC3459] Burger, E., "Critical Content Multi-purpose Internet Mail
 Extensions (MIME) Parameter", RFC 3459, January 2003.

 [RFC3851] Ramsdell, B., "Secure/Multipurpose Internet Mail
 Extensions (S/MIME) Version 3.1 Message Specification",
 RFC 3851, July 2004.

 [RFC3959] Camarillo, G., "The Early Session Disposition Type for the
 Session Initiation Protocol (SIP)", RFC 3959,
 December 2004.

 [RFC4483] Burger, E., "A Mechanism for Content Indirection in
 Session Initiation Protocol (SIP) Messages", RFC 4483,
 May 2006.

14.2. Informative References

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC3428] Campbell, B., Rosenberg, J., Schulzrinne, H., Huitema, C.,
 and D. Gurle, "Session Initiation Protocol (SIP) Extension
 for Instant Messaging", RFC 3428, December 2002.

Camarillo Standards Track [Page 18]

RFC 5621 Message Body Handling in SIP September 2009

 [RFC4289] Freed, N. and J. Klensin, "Multipurpose Internet Mail
 Extensions (MIME) Part Four: Registration Procedures",
 BCP 13, RFC 4289, December 2005.

 [RFC4566] Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
 Description Protocol", RFC 4566, July 2006.

 [RFC4662] Roach, A., Campbell, B., and J. Rosenberg, "A Session
 Initiation Protocol (SIP) Event Notification Extension for
 Resource Lists", RFC 4662, August 2006.

 [RFC5368] Camarillo, G., Niemi, A., Isomaki, M., Garcia-Martin, M.,
 and H. Khartabil, "Referring to Multiple Resources in the
 Session Initiation Protocol (SIP)", RFC 5368,
 October 2008.

 [RFC5547] Garcia-Martin, M., Isomaki, M., Camarillo, G., Loreto, S.,
 and P. Kyzivat, "A Session Description Protocol (SDP)
 Offer/Answer Mechanism to Enable File Transfer", RFC 5547,
 May 2009.

Author’s Address

 Gonzalo Camarillo
 Ericsson
 Hirsalantie 11
 Jorvas 02420
 Finland

 EMail: Gonzalo.Camarillo@ericsson.com

Camarillo Standards Track [Page 19]

