
Network Working Group K. Igoe
Request for Comments: 5647 J. Solinas
Category: Informational National Security Agency
 August 2009

 AES Galois Counter Mode for
 the Secure Shell Transport Layer Protocol

Abstract

 Secure shell (SSH) is a secure remote-login protocol. SSH provides
 for algorithms that provide authentication, key agreement,
 confidentiality, and data-integrity services. The purpose of this
 document is to show how the AES Galois Counter Mode can be used to
 provide both confidentiality and data integrity to the SSH Transport
 Layer Protocol.

Status of This Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (c) 2009 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents in effect on the date of
 publication of this document (http://trustee.ietf.org/license-info).
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document.

Igoe & Solinas Informational [Page 1]

RFC 5647 AES-GCM for Secure Shell August 2009

Table of Contents

 1. Introduction ..2
 2. Requirements Terminology ..2
 3. Applicability Statement ...3
 4. Properties of Galois Counter Mode3
 4.1. AES GCM Authenticated Encryption3
 4.2. AES GCM Authenticated Decryption3
 5. Review of Secure Shell ..4
 5.1. Key Exchange ...4
 5.2. Secure Shell Binary Packets5
 6. AES GCM Algorithms for Secure Shell6
 6.1. AEAD_AES_128_GCM ...6
 6.2. AEAD_AES_256_GCM ...6
 6.3. Size of the Authentication Tag6
 7. Processing Binary Packets in AES-GCM Secure Shell7
 7.1. IV and Counter Management7
 7.2. Formation of the Binary Packet7
 7.3. Treatment of the Packet Length Field8
 8. Security Considerations ...8
 8.1. Use of the Packet Sequence Number in the AT8
 8.2. Non-Encryption of Packet Length8
 9. IANA Considerations ...9
 10. References ..10
 10.1. Normative References10

1. Introduction

 Galois Counter Mode (GCM) is a block-cipher mode of operation that
 provides both confidentiality and data-integrity services. GCM uses
 counter mode to encrypt the data, an operation that can be
 efficiently pipelined. Further, GCM authentication uses operations
 that are particularly well suited to efficient implementation in
 hardware, making it especially appealing for high-speed
 implementations or for implementations in an efficient and compact
 circuit. The purpose of this document is to show how GCM with either
 AES-128 or AES-256 can be integrated into the Secure Shell Transport
 Layer Protocol [RFC4253].

2. Requirements Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

Igoe & Solinas Informational [Page 2]

RFC 5647 AES-GCM for Secure Shell August 2009

3. Applicability Statement

 Using AES-GCM to provide both confidentiality and data integrity is
 generally more efficient than using two separate algorithms to
 provide these security services.

4. Properties of Galois Counter Mode

 Galois Counter Mode (GCM) is a mode of operation for block ciphers
 that provides both confidentiality and data integrity. National
 Institute of Standards and Technology (NIST) Special Publication SP
 800 38D [GCM] gives an excellent explanation of Galois Counter Mode.
 In this document, we shall focus on AES GCM, the use of the Advanced
 Encryption Algorithm (AES) in Galois Counter Mode. AES-GCM is an
 example of an "algorithm for authenticated encryption with associated
 data" (AEAD algorithm) as described in [RFC5116].

4.1. AES GCM Authenticated Encryption

 An invocation of AES GCM to perform an authenticated encryption has
 the following inputs and outputs:

 GCM Authenticated Encryption

 Inputs:
 octet_string PT ; // Plain Text, to be both
 // authenticated and encrypted
 octet_string AAD; // Additional Authenticated Data,
 // authenticated but not encrypted
 octet_string IV; // Initialization Vector
 octet_string BK; // Block Cipher Key

 Outputs:
 octet_string CT; // Cipher Text
 octet_string AT; // Authentication Tag

 Note: in [RFC5116], the IV is called the nonce.

 For a given block-cipher key BK, it is critical that no IV be used
 more than once. Section 7.1 addresses how this goal is to be
 achieved in secure shell.

4.2. AES GCM Authenticated Decryption

 An invocation of AES GCM to perform an authenticated decryption has
 the following inputs and outputs:

Igoe & Solinas Informational [Page 3]

RFC 5647 AES-GCM for Secure Shell August 2009

 GCM Authenticated Decryption

 Inputs:
 octet_string CT ; // Cipher text, to be both
 // authenticated and decrypted
 octet_string AAD; // Additional Authenticated Data,
 // authenticated only
 octet_string AT; // Authentication Tag
 octet_string IV; // Initialization Vector
 octet_string BK; // Block Cipher Key

 Output:
 Failure_Indicator; // Returned if the authentication tag
 // is invalid
 octet_string PT; // Plain Text, returned if and only if
 // the authentication tag is valid

 AES-GCM is prohibited from returning any portion of the plaintext
 until the authentication tag has been validated. Though this feature
 greatly simplifies the security analysis of any system using AES-GCM,
 this creates an incompatibility with the requirements of secure
 shell, as we shall see in Section 7.3.

5. Review of Secure Shell

 The goal of secure shell is to establish two secure tunnels between a
 client and a server, one tunnel carrying client-to-server
 communications and the other carrying server-to-client
 communications. Each tunnel is encrypted, and a message
 authentication code is used to ensure data integrity.

5.1. Key Exchange

 These tunnels are initialized using the secure shell key exchange
 protocol as described in Section 7 of [RFC4253]. This protocol
 negotiates a mutually acceptable set of cryptographic algorithms and
 produces a secret value K and an exchange hash H that are shared by
 the client and server. The initial value of H is saved for use as
 the session_id.

 If AES-GCM is selected as the encryption algorithm for a given
 tunnel, AES-GCM MUST also be selected as the Message Authentication
 Code (MAC) algorithm. Conversely, if AES-GCM is selected as the MAC
 algorithm, it MUST also be selected as the encryption algorithm.

 As described in Section 7.2 of [RFC4253], a hash-based key derivation
 function (KDF) is applied to the shared secret value K to generate
 the required symmetric keys. Each tunnel gets a distinct set of

Igoe & Solinas Informational [Page 4]

RFC 5647 AES-GCM for Secure Shell August 2009

 symmetric keys. The keys are generated as shown in Figure 1. The
 sizes of these keys varies depending upon which cryptographic
 algorithms are being used.

 Initial IV
 Client-to-Server HASH(K || H ||"A"|| session_id)
 Server-to-Client HASH(K || H ||"B"|| session_id)
 Encryption Key
 Client-to-Server HASH(K || H ||"C"|| session_id)
 Server-to-Client HASH(K || H ||"D"|| session_id)
 Integrity Key
 Client-to-Server HASH(K || H ||"E"|| session_id)
 Server-to-Client HASH(K || H ||"F"|| session_id)

 Figure 1: Key Derivation in Secure Shell

 As we shall see below, SSH AES-GCM requires a 12-octet Initial IV and
 an encryption key of either 16 or 32 octets. Because an AEAD
 algorithm such as AES-GCM uses the encryption key to provide both
 confidentiality and data integrity, the integrity key is not used
 with AES-GCM.

 Either the server or client may at any time request that the secure
 shell session be rekeyed. The shared secret value K, the exchange
 hash H, and all the above symmetric keys will be updated. Only the
 session_id will remain unchanged.

5.2. Secure Shell Binary Packets

 Upon completion of the key exchange protocol, all further secure
 shell traffic is parsed into a data structure known as a secure shell
 binary packet as shown below in Figure 2 (see also Section 6 of
 [RFC4253]).

 uint32 packet_length; // 0 <= packet_length < 2^32
 byte padding_length; // 4 <= padding_length < 256
 byte[n1] payload; // n1 = packet_length-padding_length-1
 byte[n2] random_padding; // n2 = padding_length
 byte[m] mac; // m = mac_length

 Figure 2: Structure of a Secure Shell Binary Packet

 The authentication tag produced by AES-GCM authenticated encryption
 will be placed in the MAC field at the end of the secure shell binary
 packet.

Igoe & Solinas Informational [Page 5]

RFC 5647 AES-GCM for Secure Shell August 2009

6. AES GCM Algorithms for Secure Shell

6.1. AEAD_AES_128_GCM

 AEAD_AES_128_GCM is specified in Section 5.1 of [RFC5116]. Due to
 the format of secure shell binary packets, the buffer sizes needed to
 implement AEAD_AES_128_GCM are smaller than those required in
 [RFC5116]. Using the notation defined in [RFC5116], the input and
 output lengths for AEAD_AES_128_GCM in secure shell are as follows:

 PARAMETER Meaning Value

 K_LEN AES key length 16 octets
 P_MAX maximum plaintext length 2^32 - 32 octets
 A_MAX maximum additional 4 octets
 authenticated data length
 N_MIN minimum nonce (IV) length 12 octets
 N_MAX maximum nonce (IV) length 12 octets
 C_MAX maximum cipher length 2^32 octets

6.2. AEAD_AES_256_GCM

 AEAD_AES_256_GCM is specified in Section 5.2 of [RFC5116]. Due to
 the format of secure shell binary packets, the buffer sizes needed
 to implement AEAD_AES_256_GCM are smaller than those required in
 [RFC5116]. Using the notation defined in [RFC5116], the input and
 output lengths for AEAD_AES_256_GCM in secure shell are as follows:

 PARAMETER Meaning Value

 K_LEN AES key length 32 octets
 P_MAX maximum plaintext length 2^32 - 32 octets
 A_MAX maximum additional 4 octets
 authenticated data length
 N_MIN minimum nonce (IV) length 12 octets
 N_MAX maximum nonce (IV) length 12 octets
 C_MAX maximum cipher length 2^32 octets

6.3. Size of the Authentication Tag

 Both AEAD_AES_128_GCM and AEAD_AES_256_GCM produce a 16-octet
 Authentication Tag ([RFC5116] calls this a "Message Authentication
 Code"). Some applications allow use of a truncated version of this
 tag. This is not allowed in AES-GCM secure shell. All
 implementations of AES-GCM secure shell MUST use the full 16-octet
 Authentication Tag.

Igoe & Solinas Informational [Page 6]

RFC 5647 AES-GCM for Secure Shell August 2009

7. Processing Binary Packets in AES-GCM Secure Shell

7.1. IV and Counter Management

 With AES-GCM, the 12-octet IV is broken into two fields: a 4-octet
 fixed field and an 8-octet invocation counter field. The invocation
 field is treated as a 64-bit integer and is incremented after each
 invocation of AES-GCM to process a binary packet.

 uint32 fixed; // 4 octets
 uint64 invocation_counter; // 8 octets

 Figure 3: Structure of an SSH AES-GCM Nonce

 AES-GCM produces a keystream in blocks of 16-octets that is used to
 encrypt the plaintext. This keystream is produced by encrypting the
 following 16-octet data structure:

 uint32 fixed; // 4 octets
 uint64 invocation_counter; // 8 octets
 uint32 block_counter; // 4 octets

 Figure 4: Structure of an AES Input for SSH AES-GCM

 The block_counter is initially set to one (1) and incremented as each
 block of key is produced.

 The reader is reminded that SSH requires that the data to be
 encrypted MUST be padded out to a multiple of the block size
 (16-octets for AES-GCM).

7.2. Formation of the Binary Packet

 In AES-GCM secure shell, the inputs to the authenticated encryption
 are:

 PT (Plain Text)
 byte padding_length; // 4 <= padding_length < 256
 byte[n1] payload; // n1 = packet_length-padding_length-1
 byte[n2] random_padding; // n2 = padding_length
 AAD (Additional Authenticated Data)
 uint32 packet_length; // 0 <= packet_length < 2^32
 IV (Initialization Vector)
 As described in section 7.1.
 BK (Block Cipher Key)
 The appropriate Encryption Key formed during the Key Exchange.

Igoe & Solinas Informational [Page 7]

RFC 5647 AES-GCM for Secure Shell August 2009

 As required in [RFC4253], the random_padding MUST be at least 4
 octets in length but no more than 255 octets. The total length of
 the PT MUST be a multiple of 16 octets (the block size of AES). The
 binary packet is the concatenation of the 4-octet packet_length, the
 cipher text (CT), and the 16-octet authentication tag (AT).

7.3. Treatment of the Packet Length Field

 Section 6.3 of [RFC4253] requires that the packet length, padding
 length, payload, and padding fields of each binary packet be
 encrypted. This presents a problem for SSH AES-GCM because:

 1) The tag cannot be verified until we parse the binary packet.

 2) The packet cannot be parsed until the packet_length has been
 decrypted.

 3) The packet_length cannot be decrypted until the tag has been
 verified.

 When using AES-GCM with secure shell, the packet_length field is to
 be treated as additional authenticated data, not as plaintext. This
 violates the requirements of [RFC4253]. The repercussions of this
 decision are discussed in the following Security Considerations
 section.

8. Security Considerations

 The security considerations in [RFC4251] apply.

8.1. Use of the Packet Sequence Number in the AT

 [RFC4253] requires that the formation of the AT involve the packet
 sequence_number, a 32-bit value that counts the number of binary
 packets that have been sent on a given SSH tunnel. Since the
 sequence_number is, up to an additive constant, just the low 32 bits
 of the invocation_counter, the presence of the invocation_counter
 field in the IV ensures that the sequence_number is indeed involved
 in the formation of the integrity tag, though this involvement
 differs slightly from the requirements in Section 6.4 of [RFC4253].

8.2. Non-Encryption of Packet Length

 As discussed in Section 7.3, there is an incompatibility between
 GCM’s requirement that no plaintext be returned until the
 authentication tag has been verified, secure shell’s requirement that
 the packet length be encrypted, and the necessity of decrypting the
 packet length field to locate the authentication tag. This document

Igoe & Solinas Informational [Page 8]

RFC 5647 AES-GCM for Secure Shell August 2009

 addresses this dilemma by requiring that, in AES-GCM, the packet
 length field will not be encrypted but will instead be processed as
 additional authenticated data.

 In theory, one could argue that encryption of the entire binary
 packet means that the secure shell dataflow becomes a featureless
 octet stream. But in practice, the secure shell dataflow will come
 in bursts, with the length of each burst strongly correlated to the
 length of the underlying binary packets. Encryption of the packet
 length does little in and of itself to disguise the length of the
 underlying binary packets. Secure shell provides two other
 mechanisms, random padding and SSH_MSG_IGNORE messages, that are far
 more effective than encrypting the packet length in masking any
 structure in the underlying plaintext stream that might be revealed
 by the length of the binary packets.

9. IANA Considerations

 IANA added the following two entries to the secure shell Encryption
 Algorithm Names registry described in [RFC4250]:

 +--------------------+-------------+
 | | |
 | Name | Reference |
 +--------------------+-------------+
 | AEAD_AES_128_GCM | Section 6.1 |
 | | |
 | AEAD_AES_256_GCM | Section 6.2 |
 +--------------------+-------------+

 IANA added the following two entries to the secure shell MAC
 Algorithm Names registry described in [RFC4250]:

 +--------------------+-------------+
 | | |
 | Name | Reference |
 +--------------------+-------------+
 | AEAD_AES_128_GCM | Section 6.1 |
 | | |
 | AEAD_AES_256_GCM | Section 6.2 |
 +--------------------+-------------+

Igoe & Solinas Informational [Page 9]

RFC 5647 AES-GCM for Secure Shell August 2009

10. References

10.1. Normative References

 [GCM] Dworkin, M, "Recommendation for Block Cipher Modes of
 Operation: Galois/Counter Mode (GCM) and GMAC", NIST
 Special Publication 800-30D, November 2007.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC4250] Lehtinen, S. and C. Lonvick, Ed., "The Secure Shell (SSH)
 Protocol Assigned Numbers", RFC 4250, January 2006.

 [RFC4251] Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
 Protocol Architecture", RFC 4251, January 2006.

 [RFC4253] Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
 Transport Layer Protocol", RFC 4253, January 2006.

 [RFC5116] McGrew, D., "An Interface and Algorithms for Authenticated
 Encryption", RFC 5116, January 2008.

Authors’ Addresses

 Kevin M. Igoe
 NSA/CSS Commercial Solutions Center
 National Security Agency
 USA

 EMail: kmigoe@nsa.gov

 Jerome A. Solinas
 National Information Assurance Research Laboratory
 National Security Agency
 USA

 EMail: jasolin@orion.ncsc.mil

Igoe & Solinas Informational [Page 10]

