
Internet Engineering Task Force (IETF) T. Talpey
Request for Comments: 5667 Unaffiliated
Category: Standards Track B. Callaghan
ISSN: 2070-1721 Apple
 January 2010

 Network File System (NFS) Direct Data Placement

Abstract

 This document defines the bindings of the various Network File System
 (NFS) versions to the Remote Direct Memory Access (RDMA) operations
 supported by the RPC/RDMA transport protocol. It describes the use
 of direct data placement by means of server-initiated RDMA operations
 into client-supplied buffers for implementations of NFS versions 2,
 3, 4, and 4.1 over such an RDMA transport.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc5667.

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Talpey & Callaghan Standards Track [Page 1]

RFC 5667 NFS Direct Data Placement January 2010

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

 1. Introduction ..2
 1.1. Requirements Language2
 2. Transfers from NFS Client to NFS Server3
 3. Transfers from NFS Server to NFS Client3
 4. NFS Versions 2 and 3 Mapping4
 5. NFS Version 4 Mapping ...6
 5.1. NFS Version 4 Callbacks7
 6. Port Usage Considerations8
 7. Security Considerations ...9
 8. Acknowledgments ...9
 9. References ..9
 9.1. Normative References9
 9.2. Informative References10

1. Introduction

 The Remote Direct Memory Access (RDMA) Transport for Remote Procedure
 Call (RPC) [RFC5666] allows an RPC client application to post buffers
 in a Chunk list for specific arguments and results from an RPC call.
 The RDMA transport header conveys this list of client buffer
 addresses to the server where the application can associate them with
 client data and use RDMA operations to transfer the results directly
 to and from the posted buffers on the client. The client and server
 must agree on a consistent mapping of posted buffers to RPC. This
 document details the mapping for each version of the NFS protocol
 [RFC1094] [RFC1813] [RFC3530] [RFC5661].

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

Talpey & Callaghan Standards Track [Page 2]

RFC 5667 NFS Direct Data Placement January 2010

2. Transfers from NFS Client to NFS Server

 The RDMA Read list, in the RDMA transport header, allows an RPC
 client to marshal RPC call data selectively. Large chunks of data,
 such as the file data of an NFS WRITE request, MAY be referenced by
 an RDMA Read list and be moved efficiently and directly placed by an
 RDMA Read operation initiated by the server.

 The process of identifying these chunks for the RDMA Read list can be
 implemented entirely within the RPC layer. It is transparent to the
 upper-level protocol, such as NFS. For instance, the file data
 portion of an NFS WRITE request can be selected as an RDMA "chunk"
 within the eXternal Data Representation (XDR) marshaling code of RPC
 based on a size criterion, independently of the NFS protocol layer.
 The XDR unmarshaling on the receiving system can identify the
 correspondence between Read chunks and protocol elements via the XDR
 position value encoded in the Read chunk entry.

 RPC RDMA Read chunks are employed by this NFS mapping to convey
 specific NFS data to the server in a manner that may be directly
 placed. The following sections describe this mapping for versions of
 the NFS protocol.

3. Transfers from NFS Server to NFS Client

 The RDMA Write list, in the RDMA transport header, allows the client
 to post one or more buffers into which the server will RDMA Write
 designated result chunks directly. If the client sends a null Write
 list, then results from the RPC call will be returned either as an
 inline reply, as chunks in an RDMA Read list of server-posted
 buffers, or in a client-posted reply buffer.

 Each posted buffer in a Write list is represented as an array of
 memory segments. This allows the client some flexibility in
 submitting discontiguous memory segments into which the server will
 scatter the result. Each segment is described by a triplet
 consisting of the segment handle or steering tag (STag), segment
 length, and memory address or offset.

 struct xdr_rdma_segment {
 uint32 handle; /* Registered memory handle */
 uint32 length; /* Length of the chunk in bytes */
 uint64 offset; /* Chunk virtual address or offset */
 };

 struct xdr_write_chunk {
 struct xdr_rdma_segment target<>;
 };

Talpey & Callaghan Standards Track [Page 3]

RFC 5667 NFS Direct Data Placement January 2010

 struct xdr_write_list {
 struct xdr_write_chunk entry;
 struct xdr_write_list *next;
 };

 The sum of the segment lengths yields the total size of the buffer,
 which MUST be large enough to accept the result. If the buffer is
 too small, the server MUST return an XDR encode error. The server
 MUST return the result data for a posted buffer by progressively
 filling its segments, perhaps leaving some trailing segments unfilled
 or partially full if the size of the result is less than the total
 size of the buffer segments.

 The server returns the RDMA Write list to the client with the segment
 length fields overwritten to indicate the amount of data RDMA written
 to each segment. Results returned by direct placement MUST NOT be
 returned by other methods, e.g., by Read chunk list or inline. If no
 result data at all is returned for the element, the server places no
 data in the buffer(s), but does return zeros in the segment length
 fields corresponding to the result.

 The RDMA Write list allows the client to provide multiple result
 buffers -- each buffer maps to a specific result in the reply. The
 NFS client and server implementations agree by specifying the mapping
 of results to buffers for each RPC procedure. The following sections
 describe this mapping for versions of the NFS protocol.

 Through the use of RDMA Write lists in NFS requests, it is not
 necessary to employ the RDMA Read lists in the NFS replies, as
 described in the RPC/RDMA protocol. This enables more efficient
 operation, by avoiding the need for the server to expose buffers for
 RDMA, and also avoiding "RDMA_DONE" exchanges. Clients MAY
 additionally employ RDMA Reply chunks to receive entire messages, as
 described in [RFC5666].

4. NFS Versions 2 and 3 Mapping

 A single RDMA Write list entry MAY be posted by the client to receive
 either the opaque file data from a READ request or the pathname from
 a READLINK request. The server MUST ignore a Write list for any
 other NFS procedure, as well as any Write list entries beyond the
 first in the list.

 Similarly, a single RDMA Read list entry MAY be posted by the client
 to supply the opaque file data for a WRITE request or the pathname
 for a SYMLINK request. The server MUST ignore any Read list for
 other NFS procedures, as well as additional Read list entries beyond
 the first in the list.

Talpey & Callaghan Standards Track [Page 4]

RFC 5667 NFS Direct Data Placement January 2010

 Because there are no NFS version 2 or 3 requests that transfer bulk
 data in both directions, it is not necessary to post requests
 containing both Write and Read lists. Any unneeded Read or Write
 lists are ignored by the server.

 In the case where the outgoing request or expected incoming reply is
 larger than the maximum size supported on the connection, it is
 possible for the RPC layer to post the entire message or result in a
 special "RDMA_NOMSG" message type that is transferred entirely by
 RDMA. This is implemented in RPC, below NFS, and therefore has no
 effect on the message contents.

 Non-RDMA (inline) WRITE transfers MAY OPTIONALLY employ the
 "RDMA_MSGP" padding method described in the RPC/RDMA protocol, if the
 appropriate value for the server is known to the client. Padding
 allows the opaque file data to arrive at the server in an aligned
 fashion, which may improve server performance.

 The NFS version 2 and 3 protocols are frequently limited in practice
 to requests containing less than or equal to 8 kilobytes and 32
 kilobytes of data, respectively. In these cases, it is often
 practical to support basic operation without employing a
 configuration exchange as discussed in [RFC5666]. The server MUST
 post buffers large enough to receive the largest possible incoming
 message (approximately 12 KB for NFS version 2, or 36 KB for NFS
 version 3, would be vastly sufficient), and the client can post
 buffers large enough to receive replies based on the "rsize" it is
 using to the server, plus a fixed overhead for the RPC and NFS
 headers. Because the server MUST NOT return data in excess of this
 size, the client can be assured of the adequacy of its posted buffer
 sizes.

 Flow control is handled dynamically by the RPC RDMA protocol, and
 write padding is OPTIONAL and therefore MAY remain unused.

 Alternatively, if the server is administratively configured to values
 appropriate for all its clients, the same assurance of
 interoperability within the domain can be made.

 The use of a configuration protocol with NFS v2 and v3 is therefore
 OPTIONAL. Employing a configuration exchange may allow some
 advantage to server resource management through accurately sizing
 buffers, enabling the server to know exactly how many RDMA Reads may
 be in progress at once on the client connection, and enabling client
 write padding, which may be desirable for certain servers when RDMA
 Read is impractical.

Talpey & Callaghan Standards Track [Page 5]

RFC 5667 NFS Direct Data Placement January 2010

5. NFS Version 4 Mapping

 This specification applies to the first minor version of NFS version
 4 (NFSv4.0) and any subsequent minor versions that do not override
 this mapping.

 The Write list MUST be considered only for the COMPOUND procedure.
 This procedure returns results from a sequence of operations. Only
 the opaque file data from an NFS READ operation and the pathname from
 a READLINK operation MUST utilize entries from the Write list.

 If there is no Write list, i.e., the list is null, then any READ or
 READLINK operations in the COMPOUND MUST return their data inline.
 The NFSv4.0 client MUST ensure in this case that any result of its
 READ and READLINK requests will fit within its receive buffers, in
 order to avoid a resulting RDMA transport error upon transfer. The
 server is not required to detect this.

 The first entry in the Write list MUST be used by the first READ or
 READLINK in the COMPOUND request. The next Write list entry is used
 by the next READ or READLINK, and so on. If there are more READ or
 READLINK operations than Write list entries, then any remaining
 operations MUST return their results inline.

 If a Write list entry is presented, then the corresponding READ or
 READLINK MUST return its data via an RDMA Write to the buffer
 indicated by the Write list entry. If the Write list entry has zero
 RDMA segments, or if the total size of the segments is zero, then the
 corresponding READ or READLINK operation MUST return its result
 inline.

 The following example shows an RDMA Write list with three posted
 buffers A, B, and C. The designated operations in the compound
 request, READ and READLINK, consume the posted buffers by writing
 their results back to each buffer.

 RDMA Write list:

 A --> B --> C

 Compound request:

 PUTFH LOOKUP READ PUTFH LOOKUP READLINK PUTFH LOOKUP READ
 | | |
 v v v
 A B C

Talpey & Callaghan Standards Track [Page 6]

RFC 5667 NFS Direct Data Placement January 2010

 If the client does not want to have the READLINK result returned
 directly, then it provides a zero-length array of segment triplets
 for buffer B or sets the values in the segment triplet for buffer B
 to zeros so that the READLINK result MUST be returned inline.

 The situation is similar for RDMA Read lists sent by the client and
 applies to the NFSv4.0 WRITE and SYMLINK procedures as for v3.
 Additionally, inline segments too large to fit in posted buffers MAY
 be transferred in special "RDMA_NOMSG" messages.

 Non-RDMA (inline) WRITE transfers MAY OPTIONALLY employ the
 "RDMA_MSGP" padding method described in the RPC/RDMA protocol, if the
 appropriate value for the server is known to the client. Padding
 allows the opaque file data to arrive at the server in an aligned
 fashion, which may improve server performance. In order to ensure
 accurate alignment for all data, it is likely that the client will
 restrict its use of OPTIONAL padding to COMPOUND requests containing
 only a single WRITE operation.

 Unlike NFS versions 2 and 3, the maximum size of an NFS version 4
 COMPOUND is not bounded, even when RDMA chunks are in use. While it
 might appear that a configuration protocol exchange (such as the one
 described in [RFC5666]) would help, in fact the layering issues
 involved in building COMPOUNDs by NFS make such a mechanism
 unworkable.

 However, typical NFS version 4 clients rarely issue such problematic
 requests. In practice, they behave in much more predictable ways, in
 fact most still support the traditional rsize/wsize mount parameters.
 Therefore, most NFS version 4 clients function over RPC/RDMA in the
 same way as NFS versions 2 and 3, operationally.

 There are however advantages to allowing both client and server to
 operate with prearranged size constraints, for example, use of the
 sizes to better manage the server’s response cache. An extension to
 NFS version 4 supporting a more comprehensive exchange of upper-layer
 parameters is part of [RFC5661].

5.1. NFS Version 4 Callbacks

 The NFS version 4 protocols support server-initiated callbacks to
 selected clients, in order to notify them of events such as recalled
 delegations, etc. These callbacks present no particular issue to
 being framed over RPC/RDMA, since such callbacks do not carry bulk
 data such as NFS READ or NFS WRITE. They MAY be transmitted inline
 via RDMA_MSG, or if the callback message or its reply overflow the

Talpey & Callaghan Standards Track [Page 7]

RFC 5667 NFS Direct Data Placement January 2010

 negotiated buffer sizes for a callback connection, they MAY be
 transferred via the RDMA_NOMSG method as described above for other
 exchanges.

 One special case is noteworthy: in NFS version 4.1, the callback
 channel is optionally negotiated to be on the same connection as one
 used for client requests. In this case, and because the transaction
 ID (XID) is present in the RPC/RDMA header, the client MUST ascertain
 whether the message is in fact an RPC REPLY, and therefore a reply to
 a prior request and carrying its XID, before processing it as such.
 By the same token, the server MUST ascertain whether an incoming
 message on such a callback-eligible connection is an RPC CALL, before
 optionally processing the XID.

 In the callback case, the XID present in the RPC/RDMA header will
 potentially have any value, which may (or may not) collide with an
 XID used by the client for a previous or future request. The client
 and server MUST inspect the RPC component of the message to determine
 its potential disposition as either an RPC CALL or RPC REPLY, prior
 to processing this XID, and MUST NOT reject or accept it without also
 determining the proper context.

6. Port Usage Considerations

 NFS use of direct data placement introduces a need for an additional
 NFS port number assignment for networks that share traditional UDP
 and TCP port spaces with RDMA services. The iWARP [RFC5041]
 [RFC5040] protocol is such an example (InfiniBand is not).

 NFS servers for versions 2 and 3 [RFC1094] [RFC1813] traditionally
 listen for clients on UDP and TCP port 2049, and additionally, they
 register these with the portmapper and/or rpcbind [RFC1833] service.
 However, [RFC3530] requires NFS servers for version 4 to listen on
 TCP port 2049, and they are not required to register.

 An NFS version 2 or version 3 server supporting RPC/RDMA on such a
 network and registering itself with the RPC portmapper MAY choose an
 arbitrary port, or MAY use the alternative well-known port number for
 its RPC/RDMA service. The chosen port MAY be registered with the RPC
 portmapper under the netid assigned by the requirement in [RFC5666].

 An NFS version 4 server supporting RPC/RDMA on such a network MUST
 use the alternative well-known port number for its RPC/RDMA service.
 Clients SHOULD connect to this well-known port without consulting the
 RPC portmapper (as for NFSv4/TCP).

 The port number assigned to an NFS service over an RPC/RDMA transport
 is available from the IANA port registry [RFC3232].

Talpey & Callaghan Standards Track [Page 8]

RFC 5667 NFS Direct Data Placement January 2010

7. Security Considerations

 The RDMA transport for RPC [RFC5666] supports all RPC [RFC5531]
 security models, including RPCSEC_GSS [RFC2203] security and link-
 level security. The choice of RDMA Read and RDMA Write to return RPC
 argument and results, respectively, does not affect this, since it
 only changes the method of data transfer. Specifically, the
 requirements of [RFC5666] ensure that this choice does not introduce
 new vulnerabilities.

 Because this document defines only the binding of the NFS protocols
 atop [RFC5666], all relevant security considerations are therefore to
 be described at that layer.

8. Acknowledgments

 The authors would like to thank Dave Noveck and Chet Juszczak for
 their contributions to this document.

9. References

9.1. Normative References

 [RFC1094] Sun Microsystems, "NFS: Network File System Protocol
 specification", RFC 1094, March 1989.

 [RFC1813] Callaghan, B., Pawlowski, B., and P. Staubach, "NFS
 Version 3 Protocol Specification", RFC 1813, June 1995.

 [RFC1833] Srinivasan, R., "Binding Protocols for ONC RPC Version 2",
 RFC 1833, August 1995.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2203] Eisler, M., Chiu, A., and L. Ling, "RPCSEC_GSS Protocol
 Specification", RFC 2203, September 1997.

 [RFC3530] Shepler, S., Callaghan, B., Robinson, D., Thurlow, R.,
 Beame, C., Eisler, M., and D. Noveck, "Network File System
 (NFS) version 4 Protocol", RFC 3530, April 2003.

 [RFC5531] Thurlow, R., "RPC: Remote Procedure Call Protocol
 Specification Version 2", RFC 5531, May 2009.

 [RFC5661] Shepler, S., Ed., Eisler, M., Ed., and D. Noveck, Ed.,
 "Network File System (NFS) Version 4 Minor Version 1
 Protocol", RFC 5661, January 2010.

Talpey & Callaghan Standards Track [Page 9]

RFC 5667 NFS Direct Data Placement January 2010

9.2. Informative References

 [RFC3232] Reynolds, J., Ed., "Assigned Numbers: RFC 1700 is Replaced
 by an On-line Database", RFC 3232, January 2002.

 [RFC5040] Recio, R., Metzler, B., Culley, P., Hilland, J., and D.
 Garcia, "A Remote Direct Memory Access Protocol
 Specification", RFC 5040, October 2007.

 [RFC5041] Shah, H., Pinkerton, J., Recio, R., and P. Culley, "Direct
 Data Placement over Reliable Transports", RFC 5041,
 October 2007.

 [RFC5666] Talpey, T. and B. Callaghan, "Remote Direct Memory Access
 Transport for Remote Procedure Call", RFC 5666, January
 2010.

Authors’ Addresses

 Tom Talpey
 170 Whitman St.
 Stow, MA 01775 USA

 EMail: tmtalpey@gmail.com

 Brent Callaghan
 Apple Computer, Inc.
 MS: 302-4K
 2 Infinite Loop
 Cupertino, CA 95014 USA

 EMail: brentc@apple.com

Talpey & Callaghan Standards Track [Page 10]

