
Internet Engineering Task Force (IETF) R. Housley
Request for Comments: 5934 Vigil Security, LLC
Category: Standards Track S. Ashmore
ISSN: 2070-1721 National Security Agency
 C. Wallace
 Cygnacom Solutions
 August 2010

 Trust Anchor Management Protocol (TAMP)

Abstract

 This document describes a transport independent protocol for the
 management of trust anchors (TAs) and community identifiers stored in
 a trust anchor store. The protocol makes use of the Cryptographic
 Message Syntax (CMS), and a digital signature is used to provide
 integrity protection and data origin authentication. The protocol
 can be used to manage trust anchor stores containing trust anchors
 represented as Certificate, TBSCertificate, or TrustAnchorInfo
 objects.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc5934.

Housley, et al. Standards Track [Page 1]

RFC 5934 TAMP August 2010

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Housley, et al. Standards Track [Page 2]

RFC 5934 TAMP August 2010

Table of Contents

 1. Introduction ..4
 1.1. Terminology ..5
 1.2. Trust Anchors ..5
 1.2.1. Apex Trust Anchors6
 1.2.2. Management Trust Anchors7
 1.2.3. Identity Trust Anchors7
 1.3. Architectural Elements8
 1.3.1. Cryptographic Module8
 1.3.2. Trust Anchor Store9
 1.3.3. TAMP Processing Dependencies9
 1.3.4. Application-Specific Protocol Processing10
 1.4. ASN.1 Encoding ..11
 2. Cryptographic Message Syntax Profile12
 2.1. ContentInfo ...13
 2.2. SignedData Info ...14
 2.2.1. SignerInfo ...15
 2.2.2. EncapsulatedContentInfo16
 2.2.3. Signed Attributes16
 2.2.4. Unsigned Attributes18
 3. Trust Anchor Formats ...18
 4. Trust Anchor Management Protocol Messages19
 4.1. TAMP Status Query ...21
 4.2. TAMP Status Query Response24
 4.3. Trust Anchor Update27
 4.3.1. Trust Anchor List31
 4.4. Trust Anchor Update Confirm32
 4.5. Apex Trust Anchor Update34
 4.6. Apex Trust Anchor Update Confirm36
 4.7. Community Update ..38
 4.8. Community Update Confirm40
 4.9. Sequence Number Adjust42
 4.10. Sequence Number Adjust Confirm43
 4.11. TAMP Error ...44
 5. Status Codes ...45
 6. Sequence Number Processing50
 7. Subordination Processing51
 8. Implementation Considerations54
 9. Wrapped Apex Contingency Key Certificate Extension54
 10. Security Considerations55
 11. IANA Considerations ...58
 12. References ..58
 12.1. Normative References58
 12.2. Informative References59

Housley, et al. Standards Track [Page 3]

RFC 5934 TAMP August 2010

 Appendix A. ASN.1 Modules ..61
 A.1. ASN.1 Module Using 1993 Syntax61
 A.2. ASN.1 Module Using 1988 Syntax70
 Appendix B. Media Type Registrations77
 B.1. application/tamp-status-query77
 B.2. application/tamp-status-response78
 B.3. application/tamp-update79
 B.4. application/tamp-update-confirm80
 B.5. application/tamp-apex-update81
 B.6. application/tamp-apex-update-confirm82
 B.7. application/tamp-community-update83
 B.8. application/tamp-community-update-confirm84
 B.9. application/tamp-sequence-adjust85
 B.10. application/tamp-sequence-adjust-confirm86
 B.11. application/tamp-error87
 Appendix C. TAMP over HTTP88
 C.1. TAMP Status Query Message89
 C.2. TAMP Status Response Message89
 C.3. Trust Anchor Update Message89
 C.4. Trust Anchor Update Confirm Message89
 C.5. Apex Trust Anchor Update Message89
 C.6. Apex Trust Anchor Update Confirm Message90
 C.7. Community Update Message90
 C.8. Community Update Confirm Message90
 C.9. Sequence Number Adjust Message90
 C.10. Sequence Number Adjust Confirm Message90
 C.11. TAMP Error Message ..91

1. Introduction

 This document describes the Trust Anchor Management Protocol (TAMP).
 TAMP may be used to manage the trust anchors and community
 identifiers in any device that uses digital signatures; however, this
 specification was written with the requirements of cryptographic
 modules in mind. For example, TAMP can support signed firmware
 packages [RFC4108], where the trust anchor public key can be used to
 validate digital signatures on firmware packages or validate the
 X.509 certification path [RFC5280][X.509] of the firmware package
 signer.

 Most TAMP messages are digitally signed to provide integrity
 protection and data origin authentication. Both signed and unsigned
 TAMP messages employ the Cryptographic Message Syntax (CMS)
 [RFC5652]. The CMS is a data protection encapsulation syntax that
 makes use of ASN.1 [X.680].

Housley, et al. Standards Track [Page 4]

RFC 5934 TAMP August 2010

 This specification does not provide for confidentiality of TAMP
 messages. If confidentiality is required, then the communications
 environment that is used to transfer TAMP messages must provide it.
 This specification is intended to satisfy the protocol-related
 requirements expressed in "Trust Anchor Management Requirements"
 [TA-MGMT-REQS] and uses vocabulary from that document.

 TAMP messages may be exchanged in real time over a network, such as
 via HTTP as described in Appendix A, or may be stored and transferred
 using other means. TAMP exchanges consist of a request message that
 includes instructions for a trust anchor store and, optionally, a
 corresponding response message that reports the result of carrying
 out the instructions in the request. Response messages need not be
 propagated in all cases. For example, a GPS receiver may be unable
 to transmit a response and may instead use an attached display to
 indicate the results of processing a TAMP request.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

1.2. Trust Anchors

 TAMP manages trust anchors. A trust anchor contains a public key
 that is used to validate digital signatures. TAMP recognizes three
 formats for representing trust anchor information: Certificate
 [RFC5280], TBSCertificate [RFC5280], and TrustAnchorInfo [RFC5914].

 All trust anchors are distinguished by the public key, and all trust
 anchors consist of the following components:

 o A public key signature algorithm identifier and associated public
 key, which MAY include parameters

 o A public key identifier

 Other information may appear in a trust anchor, including
 certification path processing controls and a human readable name.

 TAMP recognizes three types of trust anchors based on functionality:
 apex trust anchors, management trust anchors, and identity trust
 anchors.

 In addition to the information described above, apex trust anchors
 and management trust anchors that sign TAMP messages have an
 associated sequence number that is used for replay detection.

Housley, et al. Standards Track [Page 5]

RFC 5934 TAMP August 2010

 The public key is used to name a trust anchor, and the public key
 identifier is used to identify the trust anchor as a signer of a
 particular object, such as a SignedData object or a public key
 certificate. This public key identifier can be stored with the trust
 anchor, or in most public key identifier assignment methods, it can
 be computed from the public key whenever needed.

 A trust anchor public key can be used in two different ways to
 support digital signature validation. In the first approach, the
 trust anchor public key is used directly to validate the digital
 signature. In the second approach, the trust anchor public key is
 used to validate an X.509 certification path, and then the subject
 public key in the final certificate in the certification path is used
 to validate the digital signature. When the second approach is
 employed, the certified public key may be used for things other than
 digital signature validation; the other possible actions are
 constrained by the key usage certificate extension.

 TAMP implementations MUST support validation of TAMP messages that
 are directly validated using a trust anchor. Support for TAMP
 messages validated using an X.509 certificate validated using a trust
 anchor, or using longer certification paths, is OPTIONAL. The CMS
 provides a location to carry X.509 certificates, and this facility
 can be used to transfer certificates to aid in the construction of
 the certification path.

1.2.1. Apex Trust Anchors

 Within the context of a single trust anchor store, one trust anchor
 is superior to all others. This trust anchor is referred to as the
 apex trust anchor. This trust anchor represents the ultimate
 authority over the trust anchor store. Much of this authority can be
 delegated to other trust anchors.

 The apex trust anchor private key is expected to be controlled by an
 entity with information assurance responsibility for the trust anchor
 store. The apex trust anchor is by definition unconstrained and
 therefore does not have explicit authorization information associated
 with it.

 Due to the special nature of the apex trust anchor, TAMP includes
 separate facilities to change it. In particular, TAMP includes a
 facility to securely replace the apex trust anchor. This action
 might be taken for one or more of the following reasons:

 o The crypto period for the apex trust anchor public/private key
 pair has come to an end

Housley, et al. Standards Track [Page 6]

RFC 5934 TAMP August 2010

 o The apex trust anchor private key is no longer available

 o The apex trust anchor public/private key pair needs to be revoked

 o The authority has decided to use a different digital signature
 algorithm or the same digital signature algorithm with different
 parameters, such as a different elliptic curve

 o The authority has decided to use a different key size

 o The authority has decided to transfer control to another authority

 To accommodate these requirements, the apex trust anchor MAY include
 two public keys. Whenever the apex trust anchor is updated, both
 public keys will be replaced. The first public key, called the
 operational public key, is used in the same manner as other trust
 anchors. Any type of TAMP message, including an Apex Trust Anchor
 Update message, can be validated with the operational public key.
 The second public key, called the contingency public key, can only be
 used to update the apex trust anchor. The contingency private key
 SHOULD be used at only one point in time; it is used only to sign an
 Apex Trust Anchor Update message that results in its own replacement
 (as well as the replacement of the operational public key). The
 contingency public key is distributed in encrypted form. When the
 contingency public key is used to validate an Apex Trust Anchor
 Update message, the symmetric key needed to decrypt the contingency
 public key is provided as part of the signed Apex Trust Anchor Update
 message that is to be verified with the contingency public key.

1.2.2. Management Trust Anchors

 Management trust anchors are used in the management of cryptographic
 modules. For example, the TAMP messages specified in this document
 are validated to a management trust anchor. Likewise, a signed
 firmware package as specified in [RFC4108] is validated to a
 management trust anchor.

1.2.3. Identity Trust Anchors

 Identity trust anchors are used to validate certification paths, and
 they represent the trust anchor for a public key infrastructure.
 They are most often used in the validation of certificates associated
 with non-management applications.

Housley, et al. Standards Track [Page 7]

RFC 5934 TAMP August 2010

1.3. Architectural Elements

 TAMP does not assume any particular architecture. However, TAMP
 REQUIRES the following architectural elements: a cryptographic
 module, a trust anchor store, TAMP protocol processing, and other
 application-specific protocol processing.

 A globally unique algorithm identifier MUST be assigned for each one-
 way hash function, digital signature generation/validation algorithm,
 and symmetric key unwrapping algorithm that is implemented. To
 support CMS, an object identifier (OID) is assigned to name a one-way
 hash function, and another OID is assigned to name each combination
 of a one-way hash function when used with a digital signature
 algorithm. Similarly, certificates associate OIDs assigned to public
 key algorithms with subject public keys, and certificates make use of
 an OID that names both the one-way hash function and the digital
 signature algorithm for the certificate issuer digital signature.
 [RFC3279], [RFC3370], [RFC5753], and [RFC5754] provide OIDs for a
 number of commonly used algorithms; however, OIDs may be defined in
 later or different specifications.

1.3.1. Cryptographic Module

 The cryptographic module MUST include the following capabilities:

 o The cryptographic module SHOULD support the secure storage of a
 digital signature private key to sign TAMP responses and either a
 certificate containing the associated public key or a certificate
 designator. In the latter case, the certificate is stored
 elsewhere but is available to parties that need to validate
 cryptographic module digital signatures. The designator is a
 public key identifier.

 o The cryptographic module MUST support at least one one-way hash
 function, one digital signature validation algorithm, one digital
 signature generation algorithm, and, if contingency keys are
 supported, one symmetric key unwrapping algorithm. If only one
 one-way hash function is present, it MUST be consistent with the
 digital signature validation and digital signature generation
 algorithms. If only one digital signature validation algorithm is
 present, it MUST be consistent with the apex trust anchor
 operational public key. If only one digital signature generation
 algorithm is present, it MUST be consistent with the cryptographic
 module digital signature private key. These algorithms MUST be
 available for processing TAMP messages, including the content
 types defined in [RFC5652], and for validation of X.509

Housley, et al. Standards Track [Page 8]

RFC 5934 TAMP August 2010

 certification paths. As with similar specifications, such as
 RFC 5280, this specification does not mandate support for any
 cryptographic algorithms. However, algorithm requirements may be
 imposed by specifications that use trust anchors managed via TAMP.

1.3.2. Trust Anchor Store

 The trust anchor store MUST include the following capabilities:

 o Each trust anchor store MUST have a unique name. For example, a
 cryptographic module containing a single trust anchor store may be
 identified by a unique serial number with respect to other modules
 within the same family where the family is represented as an ASN.1
 object identifier (OID) and the unique serial number is
 represented as a string of octets. Other means of establishing a
 unique name are also possible.

 o Each trust anchor store SHOULD have the capability to securely
 store one or more community identifiers. The community identifier
 is an OID, and it identifies a collection of cryptographic modules
 that can be the target of a single TAMP message or the intended
 recipients for a particular management message.

 o The trust anchor store SHOULD support the use of an apex trust
 anchor. If apex support is provided, the trust anchor store MUST
 support the secure storage of exactly one apex trust anchor. The
 trust anchor store SHOULD support the secure storage of at least
 one additional trust anchor. Each trust anchor MUST contain a
 unique public key. A public key MUST NOT appear more than once in
 a trust anchor store.

 o The trust anchor store MUST have the capability to securely store
 a sequence number for each trust anchor authorized to generate
 TAMP messages and be able to report the sequence number along with
 the key identifier of the trust anchor.

1.3.3. TAMP Processing Dependencies

 TAMP processing MUST include the following capabilities:

 o TAMP processing MUST have a means of locating an appropriate trust
 anchor. Two mechanisms are available. The first mechanism is
 based on the public key identifier for digital signature
 verification, and the second mechanism is based on the trust
 anchor X.500 distinguished name and other X.509 certification path
 controls for certificate path discovery and validation. The first
 mechanism MUST be supported, but the second mechanism MAY be
 supported.

Housley, et al. Standards Track [Page 9]

RFC 5934 TAMP August 2010

 o TAMP processing MUST be able to invoke the digital signature
 validation algorithm using the public key held in secure storage
 for trust anchors.

 o TAMP processing MUST have read and write access to secure storage
 for sequence numbers associated with each TAMP message signer as
 described in Section 6.

 o TAMP processing MUST have read and write access to secure storage
 for trust anchors in order to update them. Update operations
 include adding trust anchors, removing trust anchors, and
 modifying trust anchors. Application-specific constraints MUST be
 securely stored with each management trust anchor as described in
 Section 1.3.4.

 o TAMP processing MUST have read access to secure storage for the
 community membership list, if any, to determine whether a targeted
 message ought to be accepted.

 o To implement the OPTIONAL community identifier update feature,
 TAMP processing MUST have read and write access to secure storage
 for the community membership list.

 o To generate signed confirmation messages, TAMP processing MUST be
 able to invoke the digital signature generation algorithm using
 the cryptographic module digital signature private key, and it
 MUST have read access to the cryptographic module certificate or
 its designator. TAMP uses X.509 certificates [RFC5280].

 o The TAMP processing MUST have read access to the trust anchor
 store unique name.

1.3.4. Application-Specific Protocol Processing

 The apex trust anchor and management trust anchors managed with TAMP
 can be used by the TAMP application. Other management applications
 MAY make use of all three types of trust anchors, but non-management
 applications SHOULD only make use of identity trust anchors.
 Applications MUST ensure that usage of a trust anchor is consistent
 with any constraints associated with the trust anchor. For example,
 if name constraints are associated with a trust anchor, certification
 paths that start with the trust anchor and contain certificates with
 names that violate the name constraints MUST be rejected.

 The application-specific protocol processing MUST be provided with
 the following services:

Housley, et al. Standards Track [Page 10]

RFC 5934 TAMP August 2010

 o The application-specific protocol processing MUST have a means of
 locating an appropriate trust anchor. Two mechanisms are
 available to applications. The first mechanism is based on the
 public key identifier for digital signature verification, and the
 second mechanism is based on the trust anchor X.500 distinguished
 name and other X.509 certification path controls for certificate
 path discovery and validation.

 o The application-specific protocol processing MUST be able to
 invoke the digital signature validation algorithm using the public
 key held in secure storage for trust anchors.

 o The application-specific protocol processing MUST have read access
 to data associated with trust anchors to ensure that constraints
 can be enforced appropriately. For example, an application MUST
 have read access to any name constraints associated with a TA to
 ensure that certification paths terminated by that TA do not
 include certificates issued to entities outside the TA manager-
 designated namespace.

 o The application-specific protocol processing MUST have read access
 to secure storage for the community membership list, if any, to
 determine whether a targeted message ought to be accepted.

 o If the application-specific protocol requires digital signatures
 on confirmation messages or receipts, then the application-
 specific protocol processing MUST be able to invoke the digital
 signature generation algorithm with the cryptographic module
 digital signature private key and its associated certificate or
 certificate designator. Digital signature generation MUST be
 controlled in a manner that ensures that the content type of
 signed confirmation messages or receipts is appropriate for the
 application-specific protocol processing.

 o The application-specific protocol processing MUST have read access
 to the trust anchor store unique name.

1.4. ASN.1 Encoding

 The CMS uses Abstract Syntax Notation One (ASN.1) [X.680]. ASN.1 is
 a formal notation used for describing data protocols, regardless of
 the programming language used by the implementation. Encoding rules
 describe how the values defined in ASN.1 will be represented for
 transmission. The Basic Encoding Rules (BER) [X.690] are the most
 widely employed rule set, but they offer more than one way to
 represent data structures. For example, definite-length encoding and
 indefinite-length encoding are supported. This flexibility is not
 desirable when digital signatures are used. As a result, the

Housley, et al. Standards Track [Page 11]

RFC 5934 TAMP August 2010

 Distinguished Encoding Rules (DER) [X.690] were invented. DER is a
 subset of BER that ensures a single way to represent a given value.
 For example, DER always employs definite-length encoding.

 Digitally signed structures MUST be encoded with DER. In other
 specifications, structures that are not digitally signed do not
 require DER, but in this specification, DER is REQUIRED for all
 structures. By always using DER, the TAMP processor will have fewer
 options to implement.

 ASN.1 is used throughout the text of this document for illustrative
 purposes. The authoritative source of ASN.1 for the structures
 defined in this document is Appendix A.

2. Cryptographic Message Syntax Profile

 TAMP makes use of signed and unsigned messages. The Cryptographic
 Message Syntax (CMS) is used in both cases. A digital signature is
 used to protect the message from undetected modification and provide
 data origin authentication. TAMP makes no general provision for
 encryption of content.

 CMS is used to construct a signed TAMP message. The CMS ContentInfo
 content type MUST always be present. For signed messages,
 ContentInfo MUST encapsulate the CMS SignedData content type; for
 unsigned messages, ContentInfo MUST encapsulate the TAMP message
 directly. The CMS SignedData content type MUST encapsulate the TAMP
 message. A unique content type identifier identifies the particular
 type of TAMP message. The CMS encapsulation of a signed TAMP message
 is summarized by:

 ContentInfo {
 contentType id-signedData, -- (1.2.840.113549.1.7.2)
 content SignedData
 }

 SignedData {
 version CMSVersion, -- Always set to 3
 digestAlgorithms DigestAlgorithmIdentifiers, -- Only one
 encapContentInfo EncapsulatedContentInfo,
 certificates CertificateSet, -- OPTIONAL signer certificates
 crls CertificateRevocationLists, -- OPTIONAL
 signerInfos SET OF SignerInfo -- Only one
 }

Housley, et al. Standards Track [Page 12]

RFC 5934 TAMP August 2010

 SignerInfo {
 version CMSVersion, -- Always set to 3
 sid SignerIdentifier,
 digestAlgorithm DigestAlgorithmIdentifier,
 signedAttrs SignedAttributes,
 -- REQUIRED in TAMP messages
 signatureAlgorithm SignatureAlgorithmIdentifier,
 signature SignatureValue,
 unsignedAttrs UnsignedAttributes -- OPTIONAL; may only be
 } -- present in Apex Trust
 -- Anchor Update messages

 EncapsulatedContentInfo {
 eContentType OBJECT IDENTIFIER, -- Names TAMP message type
 eContent OCTET STRING -- Contains TAMP message
 }

 When a TAMP message is used to update the apex trust anchor, this
 same structure is used; however, the digital signature will be
 validated with either the apex trust anchor operational public key or
 the contingency public key. When the contingency public key is used,
 the symmetric key needed to decrypt the previously stored contingency
 public key is provided as a contingency-public-key-decrypt-key
 unsigned attribute. Section 4.5 of this document describes the Apex
 Trust Anchor Update message.

 CMS is also used to construct an unsigned TAMP message. The CMS
 ContentInfo structure MUST always be present, and it MUST be the
 outermost layer of encapsulation. A unique content type identifier
 identifies the particular TAMP message. The CMS encapsulation of an
 unsigned TAMP message is summarized by:

 ContentInfo {
 contentType OBJECT IDENTIFIER, -- Names TAMP message type
 content OCTET STRING -- Contains TAMP message
 }

2.1. ContentInfo

 CMS requires the outermost encapsulation to be ContentInfo [RFC5652].
 The fields of ContentInfo are used as follows:

 o contentType indicates the type of the associated content, and for
 TAMP, the encapsulated type is either SignedData or the content
 type identifier associated with an unsigned TAMP message. When
 the id-signedData (1.2.840.113549.1.7.2) object identifier is
 present in this field, then a signed TAMP message is in the
 content. Otherwise, an unsigned TAMP message is in the content.

Housley, et al. Standards Track [Page 13]

RFC 5934 TAMP August 2010

 o content holds the content, and for TAMP, the content is either a
 SignedData content or an unsigned TAMP message.

2.2. SignedData Info

 The SignedData content type [RFC5652] contains the signed TAMP
 message and a digital signature value; the SignedData content type
 MAY also contain the certificates needed to validate the digital
 signature. The fields of SignedData are used as follows:

 o version is the syntax version number, and for TAMP, the version
 number MUST be set to 3.

 o digestAlgorithms is a collection of one-way hash function
 identifiers, and for TAMP, it contains a single one-way hash
 function identifier. The one-way hash function employed by the
 TAMP message originator in generating the digital signature MUST
 be present.

 o encapContentInfo is the signed content, consisting of a content
 type identifier and the content itself. The use of the
 EncapsulatedContentInfo type is discussed further in
 Section 2.2.2.

 o certificates is an OPTIONAL collection of certificates. It MAY be
 omitted, or it MAY include the X.509 certificates needed to
 construct the certification path of the TAMP message originator.
 For TAMP messages sent to a trust anchor store where an apex trust
 anchor or management trust anchor is used directly to validate the
 TAMP message digital signature, this field SHOULD be omitted.
 When an apex trust anchor or management trust anchor is used to
 validate an X.509 certification path [RFC5280], and the subject
 public key from the final certificate in the certification path is
 used to validate the TAMP message digital signature, the
 certificate of the TAMP message originator SHOULD be included, and
 additional certificates to support certification path construction
 MAY be included. For TAMP messages sent by a trust anchor store,
 this field SHOULD include only the signer’s certificate or should
 be omitted. A TAMP message recipient MUST NOT reject a valid TAMP
 message that contains certificates that are not needed to validate
 the digital signature. PKCS#6 extended certificates [PKCS#6] and
 attribute certificates (either version 1 or version 2) [RFC5755]
 MUST NOT be included in the set of certificates; these certificate
 formats are not used in TAMP. Certification authority (CA)
 certificates and end entity certificates MUST conform to the
 profiles defined in [RFC5280].

Housley, et al. Standards Track [Page 14]

RFC 5934 TAMP August 2010

 o crls is an OPTIONAL collection of certificate revocation lists
 (CRLs).

 o signerInfos is a collection of per-signer information, and for
 TAMP, the collection MUST contain exactly one SignerInfo. The use
 of the SignerInfo type is discussed further in Section 2.2.1.

2.2.1. SignerInfo

 The TAMP message originator is represented in the SignerInfo type.
 The fields of SignerInfo are used as follows:

 o version is the syntax version number. With TAMP, the version MUST
 be set to 3.

 o sid identifies the TAMP message originator’s public key. The
 subjectKeyIdentifier alternative is always used with TAMP, which
 identifies the public key directly. When the public key is
 included in a TrustAnchorInfo object, this identifier is included
 in the keyId field. When the public key is included in a
 Certificate or TBSCertificate, this identifier is included in the
 subjectKeyIdentifier certificate extension.

 o digestAlgorithm identifies the one-way hash function, and any
 associated parameters, used by the TAMP message originator. It
 MUST contain the one-way hash functions employed by the
 originator. This message digest algorithm identifier MUST match
 the one carried in the digestAlgorithms field in SignedData. The
 message digest algorithm identifier is carried in two places to
 facilitate stream processing by the receiver.

 o signedAttrs is an OPTIONAL set of attributes that are signed along
 with the content. The signedAttrs are OPTIONAL in the CMS, but
 signedAttrs is REQUIRED for all signed TAMP messages. The SET OF
 Attribute MUST be encoded with the Distinguished Encoding Rules
 (DER) [X.690]. Section 2.2.3 of this document lists the signed
 attributes that MUST be included in the collection. Other signed
 attributes MAY be included, but any unrecognized signed attributes
 MUST be ignored.

 o signatureAlgorithm identifies the digital signature algorithm, and
 any associated parameters, used by the TAMP message originator to
 generate the digital signature.

 o signature is the digital signature value generated by the TAMP
 message originator.

Housley, et al. Standards Track [Page 15]

RFC 5934 TAMP August 2010

 o unsignedAttrs is an OPTIONAL set of attributes that are not
 signed. For TAMP, this field is usually omitted. It is present
 only in Apex Trust Anchor Update messages that are to be validated
 using the apex trust anchor contingency public key. In this case,
 the SET OF Attribute MUST include the symmetric key needed to
 decrypt the contingency public key in the contingency-public-key-
 decrypt-key unsigned attribute. Section 2.2.4 of this document
 describes this unsigned attribute.

2.2.2. EncapsulatedContentInfo

 The EncapsulatedContentInfo structure contains the TAMP message. The
 fields of EncapsulatedContentInfo are used as follows:

 o eContentType is an object identifier that uniquely specifies the
 content type, and for TAMP, the value identifies the TAMP message.
 The list of TAMP message content types is provided in Section 4.

 o eContent is the TAMP message, encoded as an octet string. In
 general, the CMS does not require the eContent to be DER-encoded
 before constructing the octet string. However, TAMP messages MUST
 be DER-encoded.

2.2.3. Signed Attributes

 The TAMP message originator MUST digitally sign a collection of
 attributes along with the TAMP message. Each attribute in the
 collection MUST be DER-encoded. The syntax for attributes is defined
 in [RFC5912].

 Each of the attributes used with this CMS profile has a single
 attribute value. Even though the syntax is defined as a SET OF
 AttributeValue, there MUST be exactly one instance of AttributeValue
 present.

 The SignedAttributes syntax within SignerInfo is defined as a SET OF
 Attribute. The SignedAttributes MUST include only one instance of
 any particular attribute. TAMP messages that violate this rule MUST
 be rejected as malformed.

 The TAMP message originator MUST include the content-type and
 message-digest attributes. The TAMP message originator MAY also
 include the binary-signing-time attribute.

Housley, et al. Standards Track [Page 16]

RFC 5934 TAMP August 2010

 The TAMP message originator MAY include any other attribute that it
 deems appropriate. The intent is to allow additional signed
 attributes to be included if a future need is identified. This does
 not cause an interoperability concern because unrecognized signed
 attributes MUST be ignored.

 The following summarizes the signed attribute requirements for TAMP
 messages:

 o content-type MUST be supported.

 o message-digest MUST be supported.

 o binary-signing-time MAY be supported. When present, it is
 generally ignored by the recipient.

 o other attributes MAY be supported. Unrecognized attributes MUST
 be ignored by the recipient.

2.2.3.1. Content-Type Attribute

 The TAMP message originator MUST include a content-type attribute; it
 is an object identifier that uniquely specifies the content type.
 Section 11.1 of [RFC5652] defines the content-type attribute. For
 TAMP, the value identifies the TAMP message. The list of TAMP
 message content types and their identifiers is provided in Section 4.

 A content-type attribute MUST contain the same object identifier as
 the content type contained in the EncapsulatedContentInfo.

2.2.3.2. Message-Digest Attribute

 The TAMP message originator MUST include a message-digest attribute,
 having as its value the output of a one-way hash function computed on
 the TAMP message that is being signed. Section 11.2 of [RFC5652]
 defines the message-digest attribute.

2.2.3.3. Binary-Signing-Time Attribute

 The TAMP message originator MAY include a binary-signing-time
 attribute, specifying the time at which the digital signature was
 applied to the TAMP message. The binary-signing-time attribute is
 defined in [RFC4049].

 No processing of the binary-signing-time attribute is REQUIRED of a
 TAMP message recipient; however, the binary-signing-time attribute
 MAY be included by the TAMP message originator as a form of message
 identifier.

Housley, et al. Standards Track [Page 17]

RFC 5934 TAMP August 2010

2.2.4. Unsigned Attributes

 For TAMP, unsigned attributes are usually omitted. An unsigned
 attribute is present only in Apex Trust Anchor Update messages that
 are to be validated by the apex trust anchor contingency public key.
 In this case, the symmetric key to decrypt the previous contingency
 public key is provided in the contingency-public-key-decrypt-key
 unsigned attribute. This attribute MUST be supported, and it is
 described in Section 2.2.4.1.

 The TAMP message originator SHOULD NOT include other unsigned
 attributes, and any unrecognized unsigned attributes MUST be ignored.

 The UnsignedAttributes syntax within SignerInfo is defined as a SET
 OF Attribute. The UnsignedAttributes MUST include only one instance
 of any particular attribute. TAMP messages that violate this rule
 MUST be rejected as malformed.

2.2.4.1. Contingency-Public-Key-Decrypt-Key Attribute

 The contingency-public-key-decrypt-key attribute provides the
 plaintext symmetric key needed to decrypt the previously distributed
 apex trust anchor contingency public key. The symmetric key MUST be
 useable with the symmetric algorithm used to previously encrypt the
 contingency public key.

 The contingency-public-key-decrypt-key attribute has the following
 syntax:

 contingency-public-key-decrypt-key ATTRIBUTE ::= {
 WITH SYNTAX PlaintextSymmetricKey
 SINGLE VALUE TRUE
 ID id-aa-TAMP-contingencyPublicKeyDecryptKey }

 id-aa-TAMP-contingencyPublicKeyDecryptKey
 OBJECT IDENTIFIER ::= { id-attributes 63 }

 PlaintextSymmetricKey ::= OCTET STRING

3. Trust Anchor Formats

 TAMP recognizes three formats for representing trust anchor
 information within the protocol itself: Certificate [RFC5280],
 TBSCertificate [RFC5280], and TrustAnchorInfo [RFC5914]. The
 TrustAnchorChoice structure, defined in [RFC5914], is used to select
 one of these options.

Housley, et al. Standards Track [Page 18]

RFC 5934 TAMP August 2010

 TrustAnchorChoice ::= CHOICE {
 certificate Certificate,
 tbsCert [1] EXPLICIT TBSCertificate,
 taInfo [2] EXPLICIT TrustAnchorInfo }

 The Certificate structure is commonly used to represent trust
 anchors. Certificates include a signature, which removes the ability
 for relying parties to customize the information within the structure
 itself. TBSCertificate contains all of the information of the
 Certificate structure except for the signature, enabling tailoring of
 the information. TrustAnchorInfo is intended to serve as a
 minimalist representation of trust anchor information for scenarios
 where storage or bandwidth is highly constrained.

 Implementations are not required to support all three options. The
 unsupportedTrustAnchorFormat error code should be indicated when
 generating a TAMPError due to receipt of an unsupported trust anchor
 format.

4. Trust Anchor Management Protocol Messages

 TAMP makes use of signed and unsigned messages. The CMS is used in
 both cases. An object identifier is assigned to each TAMP message
 type, and this object identifier is used as a content type in the
 CMS.

 TAMP specifies eleven message types. The following provides the
 content type identifier for each TAMP message type, and it indicates
 whether a digital signature is required. If the following indicates
 that the TAMP message MUST be signed, then implementations MUST
 reject a message of that type that is not signed.

 o The TAMP Status Query message MUST be signed. It uses the
 following object identifier: { id-tamp 1 }.

 o The TAMP Status Response message SHOULD be signed. It uses the
 following object identifier: { id-tamp 2 }.

 o The Trust Anchor Update message MUST be signed. It uses the
 following object identifier: { id-tamp 3 }.

 o The Trust Anchor Update Confirm message SHOULD be signed. It uses
 the following object identifier: { id-tamp 4 }.

 o The Apex Trust Anchor Update message MUST be signed. It uses the
 following object identifier: { id-tamp 5 }.

Housley, et al. Standards Track [Page 19]

RFC 5934 TAMP August 2010

 o The Apex Trust Anchor Update Confirm message SHOULD be signed. It
 uses the following object identifier: { id-tamp 6 }.

 o The Community Update message MUST be signed. It uses the
 following object identifier: { id-tamp 7 }.

 o The Community Update Confirm message SHOULD be signed. It uses
 the following object identifier: { id-tamp 8 }.

 o The Sequence Number Adjust MUST be signed. It uses the following
 object identifier: { id-tamp 10 }.

 o The Sequence Number Adjust Confirm message SHOULD be signed. It
 uses the following object identifier: { id-tamp 11 }.

 o The TAMP Error message SHOULD be signed. It uses the following
 object identifier: { id-tamp 9 }.

 Trust anchor managers generate TAMP Status Query, Trust Anchor
 Update, Apex Trust Anchor Update, Community Update, and Sequence
 Number Adjust messages. Trust anchor stores generate TAMP Status
 Response, Trust Anchor Update Confirm, Apex Trust Anchor Update
 Confirm, Community Update Confirm, Sequence Number Adjust Confirm,
 and TAMP Error messages.

 Support for Trust Anchor Update messages is REQUIRED. Support for
 all other message formats is RECOMMENDED. Implementations that
 support the HTTP binding described in Appendix C MUST additionally
 support Trust Anchor Update Confirm and TAMP Error messages and MAY
 support 0 or more of the following pairs of messages: TAMP Status
 Query and TAMP Status Query Response; Apex Trust Anchor Update and
 Apex Trust Anchor Update Confirm; Community Update and Community
 Update Confirm; Sequence Number Adjust and Sequence Number Adjust
 Confirm. Implementations that operate in a disconnected manner MUST
 NOT assume a response will be received from each consumer of a TAMP
 message.

 A typical interaction between a trust anchor manager and a trust
 anchor store will follow the message flow shown in Figure 1. Figure
 1 does not illustrate a flow where an error occurs.

Housley, et al. Standards Track [Page 20]

RFC 5934 TAMP August 2010

 +---------+ +----------+
 | | Trust Anchor Status Query | |
 | |------------------------------->| |
 | | | |
 | | Trust Anchor Status Response | |
 | Trust |<-------------------------------| Trust |
 | Anchor | | Anchor |
 | Manager | Trust Anchor Update | Store |
 | |------------------------------->| |
 | | | |
 | | Trust Anchor Update Confirm | |
 | |<-------------------------------| |
 | | | |
 +---------+ +----------+

 Figure 1. Typical TAMP Message Flow

 Each TAMP query and update message includes an indication of the type
 of response that is desired. The response can either be terse or
 verbose. All trust anchor stores MUST support both the terse and
 verbose responses and SHOULD generate a response of the type
 indicated in the corresponding request. TAMP response processors
 MUST support processing of both terse and verbose responses.

 Trust anchor stores SHOULD be able to process and properly act upon
 the valid payload of the TAMP Status Query message, the Trust Anchor
 Update message, the Apex Trust Anchor Update message, and the
 Sequence Number Adjust message. TAMP implementations MAY also
 process and act upon the valid payload of the Community Update
 message.

 TAMP implementations SHOULD support generation of the TAMP Status
 Response message, the Trust Anchor Update Confirm message, the Apex
 Trust Anchor Update Confirm message, the Sequence Number Adjust
 Confirm message, and the TAMP Error message. If a TAMP
 implementation supports the Community Update message, then generation
 of Community Update Confirm messages SHOULD also be supported.

4.1. TAMP Status Query

 The TAMP Status Query message is used to request information about
 the trust anchors that are currently installed in a trust anchor
 store, and for the list of communities to which the store belongs.
 The TAMP Status Query message MUST be signed. For the query message
 to be valid, the trust anchor store MUST be an intended recipient of
 the query; the sequence number checking described in Section 6 MUST
 be successful when the TAMP message signer is a trust anchor; and the
 digital signature MUST be validated by the apex trust anchor

Housley, et al. Standards Track [Page 21]

RFC 5934 TAMP August 2010

 operational public key, an authorized management trust anchor, or via
 an authorized X.509 certification path originating with such a trust
 anchor.

 If the digital signature on the TAMP Status Query message is valid,
 sequence number checking is successful, the signer is authorized, and
 the trust anchor store is an intended recipient of the TAMP message,
 then a TAMP Status Response message SHOULD be returned. If a TAMP
 Status Response message is not returned, then a TAMP Error message
 SHOULD be returned.

 The TAMP Status Query content type has the following syntax:

 CONTENT-TYPE ::= TYPE-IDENTIFIER

 tamp-status-query CONTENT-TYPE ::=
 { TAMPStatusQuery IDENTIFIED BY id-ct-TAMP-statusQuery }

 id-ct-TAMP-statusQuery OBJECT IDENTIFIER ::= { id-tamp 1 }

 TAMPStatusQuery ::= SEQUENCE {
 Version [0] TAMPVersion DEFAULT v2,
 terse [1] TerseOrVerbose DEFAULT verbose,
 query TAMPMsgRef }

 TAMPVersion ::= INTEGER { v1(1), v2(2) }

 TerseOrVerbose ::= ENUMERATED { terse(1), verbose(2) }

 TAMPMsgRef ::= SEQUENCE {
 target TargetIdentifier,
 seqNum SeqNumber }

 SeqNumber ::= INTEGER (0..9223372036854775807)

 TargetIdentifier ::= CHOICE {
 hwModules [1] HardwareModuleIdentifierList,
 communities [2] CommunityIdentifierList,
 allModules [3] NULL,
 uri [4] IA5String,
 otherName [5] AnotherName }

 HardwareModuleIdentifierList ::= SEQUENCE SIZE (1..MAX) OF
 HardwareModules

 HardwareModules ::= SEQUENCE {
 hwType OBJECT IDENTIFIER,
 hwSerialEntries SEQUENCE SIZE (1..MAX) OF HardwareSerialEntry }

Housley, et al. Standards Track [Page 22]

RFC 5934 TAMP August 2010

 HardwareSerialEntry ::= CHOICE {
 all NULL,
 single OCTET STRING,
 block SEQUENCE {
 low OCTET STRING,
 high OCTET STRING } }

 CommunityIdentifierList ::= SEQUENCE SIZE (0..MAX) OF Community

 Community ::= OBJECT IDENTIFIER

 The fields of TAMPStatusQuery are used as follows:

 o version identifies version of TAMP. For this version of the
 specification, the default value, v2, MUST be used.

 o terse indicates the type of response that is desired. A terse
 response is indicated by a value of 1, and a verbose response is
 indicated by a value of 2, which is omitted during encoding since
 it is the default value.

 o query contains two items: the target and the seqNum. target
 identifies the target(s) of the query message. seqNum is a
 single-use value that will be used to match the TAMP Status Query
 message with the TAMP Status Response message. The sequence
 number is also used to detect TAMP message replay. The sequence
 number processing described in Section 6 MUST successfully
 complete before a response is returned.

 The fields of TAMPMsgRef are used as follows:

 o target identifies the target(s) of the query. Several
 alternatives for naming a target are provided. To identify a
 cryptographic module, a combination of a cryptographic type and
 serial number are used. The cryptographic type is represented as
 an ASN.1 object identifier, and the unique serial number is
 represented as a string of octets. To facilitate compact
 representation of serial numbers, a contiguous block can be
 specified by the lowest included serial number and the highest
 included serial number. When present, the high and low octet
 strings MUST have the same length. The
 HardwareModuleIdentifierList sequence MUST NOT contain duplicate
 hwType values, so that each member of the sequence names all of
 the cryptographic modules of this type. Object identifiers are
 also used to identify communities of trust anchor stores. A
 sequence of these object identifiers is used if more than one
 community is the target of the message. A trust anchor store is
 considered a target if it is a member of any of the listed

Housley, et al. Standards Track [Page 23]

RFC 5934 TAMP August 2010

 communities. An explicit NULL value is used to identify all
 modules that consider the signer of the TAMP message to be an
 authorized source for that message type. The uri field can be
 used to identify a target, i.e., a trust anchor store, using a
 Uniform Resource Identifier [RFC3986]. Additional name types are
 supported via the otherName field, which is of type AnotherName.
 AnotherName is defined in [RFC5280]. The format and semantics of
 the name are indicated through the OBJECT IDENTIFIER in the type-
 id field. The name itself is conveyed as a value field in
 otherName. Implementations MUST support the allModules option and
 SHOULD support all TargetIdentifier options.

 o seqNum contains a single-use value that will be used to match the
 TAMP Status Query message with the successful TAMP Status Response
 message. The sequence number processing described in Section 6
 MUST successfully complete before a response is returned.

 To determine whether a particular cryptographic module serial number
 is considered part of a specified block, all of the following
 conditions MUST be met. First, the cryptographic module serial
 number MUST be the same length as both the high and low octet
 strings. Second, the cryptographic module serial number MUST be
 greater than or equal to the low octet string. Third, the
 cryptographic module serial number MUST be less than or equal to the
 high octet string.

 One octet string is equal to another if they are of the same length
 and are the same at each octet position. An octet string, S1, is
 greater than another, S2, where S1 and S2 have the same length, if
 and only if S1 and S2 have different octets in one or more positions,
 and in the first such position, the octet in S1 is greater than that
 in S2, considering the octets as unsigned binary numbers. Note that
 these octet string comparison definitions are consistent with those
 in clause 6 of [X.690].

4.2. TAMP Status Query Response

 The TAMP Status Response message is a reply by a trust anchor store
 to a valid TAMP Status Query message. The TAMP Status Response
 message provides information about the trust anchors that are
 currently installed in the trust anchor store and the list of
 communities to which the trust anchor store belongs, if any. The
 TAMP Status Response message MAY be signed or unsigned. A TAMP
 Status Response message MUST be signed if the implementation is
 capable of signing it.

Housley, et al. Standards Track [Page 24]

RFC 5934 TAMP August 2010

 The TAMP Status Response content type has the following syntax:

 tamp-status-response CONTENT-TYPE ::=
 { TAMPStatusResponse IDENTIFIED BY id-ct-TAMP-statusResponse }

 id-ct-TAMP-statusResponse OBJECT IDENTIFIER ::= { id-tamp 2 }

 TAMPStatusResponse ::= SEQUENCE {
 version [0] TAMPVersion DEFAULT v2,
 query TAMPMsgRef,
 response StatusResponse,
 usesApex BOOLEAN DEFAULT TRUE }

 StatusResponse ::= CHOICE {
 terseResponse [0] TerseStatusResponse,
 verboseResponse [1] VerboseStatusResponse }

 TerseStatusResponse ::= SEQUENCE {
 taKeyIds KeyIdentifiers,
 communities CommunityIdentifierList OPTIONAL }

 KeyIdentifiers ::= SEQUENCE SIZE (1..MAX) OF KeyIdentifier

 VerboseStatusResponse ::= SEQUENCE {
 taInfo TrustAnchorChoiceList,
 continPubKeyDecryptAlg [0] AlgorithmIdentifier OPTIONAL,
 communities [1] CommunityIdentifierList OPTIONAL,
 tampSeqNumbers [2] TAMPSequenceNumbers OPTIONAL }

 TrustAnchorChoiceList ::= SEQUENCE SIZE (1..MAX) OF
 TrustAnchorChoice

 TAMPSequenceNumbers ::= SEQUENCE SIZE (1..MAX) OF TAMPSequenceNumber

 TAMPSequenceNumber ::= SEQUENCE {
 keyId KeyIdentifier,
 seqNumber SeqNumber }

 The fields of TAMPStatusResponse are used as follows:

 o version identifies version of TAMP. For this version of the
 specification, the default value, v2, MUST be used.

 o query identifies the TAMPStatusQuery to which the trust anchor
 store is responding. The query structure repeats the TAMPMsgRef
 from the TAMP Status Query message (see Section 4.1). The
 sequence number processing described in Section 6 MUST
 successfully complete before any response is returned.

Housley, et al. Standards Track [Page 25]

RFC 5934 TAMP August 2010

 o response contains either a terse response or a verbose response.
 The terse response is represented by TerseStatusResponse, and the
 verbose response is represented by VerboseStatusResponse.

 o usesApex is a Boolean value that indicates whether the first item
 in the TerseStatusResponse.taKeyIds or
 VerboseStatusResponse.taInfo field identifies the apex TA.

 The fields of TerseStatusResponse are used as follows:

 o taKeyIds contains a sequence of key identifiers. Each trust
 anchor contained in the trust anchor store is represented by one
 key identifier. When TAMPStatusResponse.usesApex is TRUE, the
 apex trust anchor is represented by the first key identifier in
 the sequence, which contains the key identifier of the operational
 public key.

 o communities is OPTIONAL. When present, it contains a sequence of
 object identifiers. Each object identifier names one community to
 which this trust anchor store belongs. When the trust anchor
 store belongs to no communities, this field is omitted.

 The fields of VerboseStatusResponse are used as follows:

 o taInfo contains a sequence of TrustAnchorChoice structures. One
 entry in the sequence is provided for each trust anchor contained
 in the trust anchor store. When TAMPStatusResponse.usesApex is
 TRUE, the apex trust anchor is the first trust anchor in the
 sequence.

 o continPubKeyDecryptAlg is OPTIONAL. When present, it indicates
 the decryption algorithm needed to decrypt the currently installed
 apex trust anchor contingency public key, if a contingency key is
 associated with the apex trust anchor. When present,
 TAMPStatusResponse.usesApex MUST be TRUE.

 o communities is OPTIONAL. When present, it contains a sequence of
 object identifiers. Each object identifier names one community to
 which this trust anchor store belongs. When the trust anchor
 store belongs to no communities, this field is omitted.

 o tampSeqNumbers is OPTIONAL. When present, it is used to indicate
 the currently held sequence number for each trust anchor
 authorized to sign TAMP messages. The keyId field identifies the
 trust anchor, and the seqNumber field provides the current
 sequence number associated with the trust anchor.

Housley, et al. Standards Track [Page 26]

RFC 5934 TAMP August 2010

4.3. Trust Anchor Update

 The Trust Anchor Update message is used to add, remove, and change
 management and identity trust anchors. The Trust Anchor Update
 message cannot be used to update the apex trust anchor. The Trust
 Anchor Update message MUST be signed. For a Trust Anchor Update
 message to be valid, the trust anchor store MUST be an intended
 recipient of the update; the sequence number checking described in
 Section 6 MUST be successful when the TAMP message signer is a trust
 anchor; and the digital signature MUST be validated using the apex
 trust anchor operational public key, an authorized management trust
 anchor, or via an authorized X.509 certification path originating
 with such a trust anchor.

 If the digital signature on the Trust Anchor Update message is valid,
 sequence number checking is successful, the signer is authorized, and
 the trust anchor store is an intended recipient of the TAMP message,
 then the trust anchor store MUST perform the specified updates and
 return a Trust Anchor Update Confirm message. If a Trust Anchor
 Update Confirm message is not returned, then a TAMP Error message
 SHOULD be returned.

 The Trust Anchor Update content type has the following syntax:

 tamp-update CONTENT-TYPE ::=
 { TAMPUpdate IDENTIFIED BY id-ct-TAMP-update }

 id-ct-TAMP-update OBJECT IDENTIFIER ::= { id-tamp 3 }

 TAMPUpdate ::= SEQUENCE {
 version [0] TAMPVersion DEFAULT v2,
 terse [1] TerseOrVerbose DEFAULT verbose,
 msgRef TAMPMsgRef,
 updates SEQUENCE SIZE (1..MAX) OF TrustAnchorUpdate,
 tampSeqNumbers [2]TAMPSequenceNumbers OPTIONAL }

 TrustAnchorUpdate ::= CHOICE {
 add [1] TrustAnchorChoice,
 remove [2] SubjectPublicKeyInfo,
 change [3] EXPLICIT TrustAnchorChangeInfoChoice }

 TrustAnchorChangeInfoChoice ::= CHOICE {
 tbsCertChange [0] TBSCertificateChangeInfo,
 taChange [1] TrustAnchorChangeInfo }

Housley, et al. Standards Track [Page 27]

RFC 5934 TAMP August 2010

 TBSCertificateChangeInfo ::= SEQUENCE {
 serialNumber CertificateSerialNumber OPTIONAL,
 signature [0] AlgorithmIdentifier OPTIONAL,
 issuer [1] Name OPTIONAL,
 validity [2] Validity OPTIONAL,
 subject [3] Name OPTIONAL,
 subjectPublicKeyInfo [4] SubjectPublicKeyInfo,
 exts [5] EXPLICIT Extensions OPTIONAL }

 TrustAnchorChangeInfo ::= SEQUENCE {
 pubKey SubjectPublicKeyInfo,
 keyId KeyIdentifier OPTIONAL,
 taTitle TrustAnchorTitle OPTIONAL,
 certPath CertPathControls OPTIONAL,
 exts [1] Extensions OPTIONAL }

 The fields of TAMPUpdate are used as follows:

 o version identifies version of TAMP. For this version of the
 specification, the default value, v2, MUST be used.

 o terse indicates the type of response that is desired. A terse
 response is indicated by a value of 1, and a verbose response is
 indicated by a value of 2, which is omitted during encoding since
 it is the default value.

 o msgRef contains two items: the target and the seqNum. target
 identifies the target(s) of the update message. The
 TargetIdentifier syntax is described in Section 4.1. seqNum is a
 single-use value that will be used to match the Trust Anchor
 Update message with the Trust Anchor Update Confirm message. The
 sequence number is also used to detect TAMP message replay. The
 sequence number processing described in Section 6 MUST
 successfully complete before any of the updates are processed.

 o updates contains a sequence of updates, which are used to add,
 remove, and change management or identity trust anchors. Each
 entry in the sequence represents one of these actions, and is
 indicated by an instance of TrustAnchorUpdate. The actions are a
 batch of updates that MUST be processed in the order that they
 appear, but each of the updates is processed independently. Each
 of the updates MUST satisfy the subordination checks described in
 Section 7. Even if one or more of the updates fail, then the
 remaining updates MUST be processed. These updates MUST NOT make
 any changes to the apex trust anchor.

Housley, et al. Standards Track [Page 28]

RFC 5934 TAMP August 2010

 o tampSeqNumbers MAY be included to provide the initial or new
 sequence numbers for trust anchors added or changed by the updates
 field. Elements included in the tampSeqNumbers field that do not
 correspond to an element in the updates field are ignored.
 Elements included in the tampSeqNumbers field that do correspond
 to an element in the updates field and contain a sequence number
 less than or equal to the most recently stored sequence number for
 the trust anchor are ignored. Elements included in the
 tampSeqNumbers field that do correspond to an element in the
 updates field and contain a sequence number greater than the most
 recently stored sequence number for the indicated trust anchor are
 processed by setting the stored sequence number for the trust
 anchor equal to the new value.

 The TrustAnchorUpdate is a choice of three structures, and each
 alternative represents one of the three possible actions: add,
 remove, and change. A description of the syntax associated with each
 of these actions follows:

 o add is used to insert a new management or identity trust anchor
 into the trust anchor store. The TrustAnchorChoice structure is
 used to provide the trusted public key and all of the information
 associated with it. However, the action MUST fail with the error
 code notAuthorized if the subordination checks described in
 Section 7 are not satisfied. See Section 3 for a discussion of
 the TrustAnchorChoice structure. The apex trust anchor cannot be
 introduced into a trust anchor store using this action; therefore,
 the id-pe-wrappedApexContinKey MUST NOT be present in the
 extensions field. The constraints of the existing trust anchors
 are unchanged by this action. An attempt to add a management or
 identity trust anchor that is already in place with the same
 values for every field in the TrustAnchorChoice structure MUST be
 treated as a successful addition. An attempt to add a management
 or identity trust anchor that is already present with the same
 pubKey values, but with different values for any of the fields in
 the TrustAnchorChoice structure, MUST fail with the error code
 improperTAAddition. This means a trust anchor may not be added
 twice using different TrustAnchorChoice options. If a different
 format is desired, the existing trust anchor must be removed and
 the new format added.

 o remove is used to delete an existing management or identity trust
 anchor from the trust anchor store, including the deletion of the
 management trust anchor associated with the TAMP message signer.
 However, the action MUST fail with the error code notAuthorized if
 the subordination checks described in Section 7 are not satisfied.
 The public key contained in SubjectPublicKeyInfo names the
 management or identity trust anchor to be deleted. An attempt to

Housley, et al. Standards Track [Page 29]

RFC 5934 TAMP August 2010

 delete a trust anchor that is not present MUST be treated as a
 successful deletion. The constraints of the deleted trust anchor
 are not distributed to other trust anchors in any manner. The
 apex trust anchor cannot be removed using this action, which
 ensures that this action cannot place the trust anchor store in an
 unrecoverable configuration.

 o change is used to update the information associated with an
 existing management or identity trust anchor in the trust anchor
 store. Attempts to change a trust anchor added as a Certificate
 MUST fail with the error code improperTAChange. The public key
 contained in the SubjectPublicKeyInfo field of
 TrustAnchorChangeInfo or in the subjectPublicKeyInfo field of a
 TBSCertificateChangeInfo names the to-be-updated trust anchor.
 However, the action MUST fail with the error code notAuthorized if
 the subordination checks described in Section 7 are not satisfied.
 An attempt to change a trust anchor that is not present MUST
 result in a failure with the trustAnchorNotFound status code. The
 TrustAnchorChangeInfo structure or the TBSCertificateChangeInfo
 structure is used to provide the revised configuration of the
 management or identity trust anchor. If the update fails for any
 reason, then the original trust anchor configuration MUST be
 preserved. The apex trust anchor information cannot be changed
 using this action. Attempts to change a trust anchor added as a
 TBSCertificate using a TrustAnchorChangeInfo MUST fail with an
 improperTAChange error. Attempts to change a trust anchor added
 as a TrustAnchorInfo using a TBSCertificateChangeInfo MUST fail
 with an improperTAChange error.

 The fields of TrustAnchorChangeInfo are used as follows:

 o pubKey contains the algorithm identifier and the public key of the
 management or identity trust anchor. It is used to locate the
 to-be-updated trust anchor in the trust anchor store.

 o keyId is OPTIONAL, and when present, it contains the public key
 identifier of the trust anchor public key, which is contained in
 the pubKey field. If this field is not present, then the public
 key identifier remains unchanged. If this field is present, the
 provided public key identifier replaces the previous one.

 o taTitle is OPTIONAL, and when present, it provides a human
 readable name for the management or identity trust anchor. When
 absent in a change trust anchor update, any title that was
 previously associated with the trust anchor is removed.
 Similarly, when present in a change trust anchor update, the title

Housley, et al. Standards Track [Page 30]

RFC 5934 TAMP August 2010

 in the message is associated with the trust anchor. If a previous
 title was associated with the trust anchor, then the title is
 replaced. If a title was not previously associated with the trust
 anchor, then the title from the update message is added.

 o certPath is OPTIONAL, and when present, it provides the controls
 needed to construct and validate an X.509 certification path.
 When absent in a change trust anchor update, any controls that
 were previously associated with the management or identity trust
 anchor are removed, which means that delegation is no longer
 permitted. Similarly, when present in a change trust anchor
 update, the controls in the message are associated with the
 management or identity trust anchor. If previous controls,
 including the trust anchor distinguished name, were associated
 with the trust anchor, then the controls are replaced, which means
 that delegation continues to be supported, but that different
 certification paths will be valid. If controls were not
 previously associated with the management or identity trust
 anchor, then the controls from the update message are added, which
 enables delegation. The syntax and semantics of CertPathControls
 are discussed in [RFC5914].

 o exts is OPTIONAL, and when present, it provides the extensions
 values that are associated with the trust anchor. When absent in
 a change trust anchor update, any extensions that were previously
 associated with the trust anchor are removed. Similarly, when
 present in a change trust anchor update, the extensions in the
 message are associated with the trust anchor. Any extensions
 previously associated with the trust anchor are replaced or
 removed.

 The fields of TBSCertificateChangeInfo are used to alter the fields
 within a TBSCertificate structure. TBSCertificate is described in
 [RFC5280]. For all fields except exts, if the field is absent in a
 change trust anchor update, then any previous value associated with a
 trust anchor is unchanged. For the exts field, if the field is
 absent in a change trust anchor update, then any previous value
 associated with a trust anchor is removed. For all fields, if the
 field is present in a change trust anchor update, then any previous
 value associated with a trust anchor is replaced with the value from
 the update message.

4.3.1. Trust Anchor List

 [RFC5914] defines the TrustAnchorList structure to convey a list of
 trust anchors. TAMP implementations MAY process TrustAnchorList
 objects (with eContentType (or contentType) using the id-ct-
 trustAnchorList OID defined in [RFC5914]) as equivalent to TAMPUpdate

Housley, et al. Standards Track [Page 31]

RFC 5934 TAMP August 2010

 objects with terse set to terse, msgRef set to allModules (with a
 suitable sequence number), and all elements within the list contained
 within the add field. This alternative to TrustAnchorUpdate is
 provided for implementations that perform integrity and authorization
 checks out-of-band as a simple means of transferring trust anchors
 from one trust anchor store to another. It does not provide a means
 of removing or changing trust anchors and has no HTTP binding.

4.4. Trust Anchor Update Confirm

 The Trust Anchor Update Confirm message is a reply by a trust anchor
 store to a valid Trust Anchor Update message. The Trust Anchor
 Update Confirm message provides success and failure information for
 each of the requested updates. The Trust Anchor Update Confirm
 message MAY be signed or unsigned. A Trust Anchor Update Confirm
 message MUST be signed if the implementation is capable of
 signing it.

 The Trust Anchor Update Confirm content type has the following
 syntax:

 tamp-update-confirm CONTENT-TYPE ::=
 { TAMPUpdateConfirm IDENTIFIED BY id-ct-TAMP-updateConfirm }

 id-ct-TAMP-updateConfirm OBJECT IDENTIFIER ::= { id-tamp 4 }

 TAMPUpdateConfirm ::= SEQUENCE {
 version [0] TAMPVersion DEFAULT v2,
 update TAMPMsgRef,
 confirm UpdateConfirm }

 UpdateConfirm ::= CHOICE {
 terseConfirm [0] TerseUpdateConfirm,
 verboseConfirm [1] VerboseUpdateConfirm }

 TerseUpdateConfirm ::= StatusCodeList

 StatusCodeList ::= SEQUENCE SIZE (1..MAX) OF StatusCode

 VerboseUpdateConfirm ::= SEQUENCE {
 status StatusCodeList,
 taInfo TrustAnchorChoiceList,
 tampSeqNumbers TAMPSequenceNumbers OPTIONAL,
 usesApex BOOLEAN DEFAULT TRUE }

Housley, et al. Standards Track [Page 32]

RFC 5934 TAMP August 2010

 The fields of TAMPUpdateConfirm are used as follows:

 o version identifies version of TAMP. For this version of the
 specification, the default value, v2, MUST be used.

 o update identifies the TAMPUpdate message to which the trust anchor
 store is responding. The update structure repeats the TAMPMsgRef
 from the Trust Anchor Update message (see Section 4.3). The
 sequence number processing described in Section 6 MUST
 successfully complete before any of the updates are processed.

 o confirm contains either a terse update confirmation or a verbose
 update confirmation. The terse update confirmation is represented
 by TerseUpdateConfirm, and the verbose response is represented by
 VerboseUpdateConfirm.

 The TerseUpdateConfirm contains a sequence of status codes, one for
 each TrustAnchorUpdate structure in the Trust Anchor Update message.
 The status codes MUST appear in the same order as the
 TrustAnchorUpdate structures to which they apply, and the number of
 elements in the status code list MUST be the same as the number of
 elements in the trust anchor update list. Each of the status codes
 is discussed in Section 5.

 The fields of VerboseUpdateConfirm are used as follows:

 o status contains a sequence of status codes, one for each
 TrustAnchorUpdate structure in the Trust Anchor Update message.
 The status codes appear in the same order as the TrustAnchorUpdate
 structures to which they apply, and the number of elements in the
 status code list MUST be the same as the number of elements in the
 trust anchor update list. Each of the status codes is discussed
 in Section 5.

 o taInfo contains a sequence of TrustAnchorChoice structures. One
 entry in the sequence is provided for each trust anchor contained
 in the trust anchor store. These represent the state of the trust
 anchors after the updates have been processed. When usesApex is
 true, the apex trust anchor is the first trust anchor in the
 sequence.

 o tampSeqNumbers is used to indicate the currently held sequence
 number for each trust anchor authorized to sign TAMP messages.
 The keyId field identifies the trust anchor, and the seqNumber
 field provides the current sequence number associated with the
 trust anchor.

Housley, et al. Standards Track [Page 33]

RFC 5934 TAMP August 2010

 o usesApex is a Boolean value that indicates whether the first item
 in the taInfo field identifies the apex TA.

4.5. Apex Trust Anchor Update

 The Apex Trust Anchor Update message replaces the operational public
 key and, optionally, the contingency public key associated with the
 apex trust anchor. Each trust anchor store has exactly one apex
 trust anchor. No constraints are associated with the apex trust
 anchor. The public key identifier of the operational public key is
 used to identify the apex trust anchor in subsequent TAMP messages.
 The digital signature on the Apex Trust Anchor Update message is
 validated with either the current operational public key or the
 current contingency public key. For the Apex Trust Anchor Update
 message that is validated with the operational public key to be
 valid, the trust anchor store MUST be a target of the update, the
 sequence number MUST be larger than the most recently stored sequence
 number for the operational public key, and the digital signature MUST
 be validated directly with the operational public key. That is, no
 delegation via a certification path is permitted. For the Apex Trust
 Anchor Update message that is validated with the contingency public
 key to be valid, the trust anchor store MUST be a target of the
 update, the provided decryption key MUST properly decrypt the
 contingency public key, and the digital signature MUST be validated
 directly with the decrypted contingency public key. Again, no
 delegation via a certification path is permitted.

 If the Apex Trust Anchor Update message is validated using the
 operational public key, then sequence number processing is handled
 normally, as described in Section 6. If the Apex Trust Anchor Update
 message is validated using the contingency public key, then the
 TAMPMsgRef sequence number MUST contain a zero value. A sequence
 number for subsequent messages that will be validated with the new
 operational public key can optionally be provided. If no value is
 provided, then the trust anchor store MUST be prepared to accept any
 sequence number in the next TAMP message validated with the newly
 installed apex trust anchor operational public key. If the Apex
 Trust Anchor Update message is valid and the clearTrustAnchors flag
 is set to TRUE, then all of the management and identity trust anchors
 stored in the trust anchor store MUST be deleted. That is, the new
 apex trust anchor MUST be the only trust anchor remaining in the
 trust anchor store. If the Apex Trust Anchor Update message is valid
 and the clearCommunities flag is set to TRUE, then all community
 identifiers stored in the trust anchor store MUST be deleted.

 The SignedData structure includes a SignerInfo.sid value, and it
 identifies the apex trust anchor public key that will be used to
 validate the digital signature on this TAMP message. The public key

Housley, et al. Standards Track [Page 34]

RFC 5934 TAMP August 2010

 identifier for the operational public key is known in advance, and it
 is stored as part of the apex trust anchor. The public key
 identifier for the contingency public key is not known in advance;
 however, the presence of the unsigned attribute containing the
 symmetric key needed to decrypt the contingency public key
 unambiguously indicates that the TAMP message signer used the
 contingency private key to sign the Apex Trust Anchor Update message.

 If the digital signature on the Apex Trust Anchor Update message is
 valid using either the apex trust anchor operational public key or
 the apex trust anchor contingency public key, sequence number
 checking is successful, and the trust anchor store is an intended
 recipient of the TAMP message, then the trust anchor store MUST
 update the apex trust anchor and return an Apex Trust Anchor Update
 Confirm message. If an Apex Trust Anchor Update Confirm message is
 not returned, then a TAMP Error message SHOULD be returned. Note
 that the sequence number MUST be zero if the Apex Trust Anchor Update
 message is validated with the apex trust anchor contingency public
 key.

 The Apex Trust Anchor Update content type has the following syntax:

 tamp-apex-update CONTENT-TYPE ::=
 { TAMPApexUpdate IDENTIFIED BY id-ct-TAMP-apexUpdate }

 id-ct-TAMP-apexUpdate OBJECT IDENTIFIER ::= { id-tamp 5 }

 TAMPApexUpdate ::= SEQUENCE {
 version [0] TAMPVersion DEFAULT v2,
 terse [1] TerseOrVerbose DEFAULT verbose,
 msgRef TAMPMsgRef,
 clearTrustAnchors BOOLEAN,
 clearCommunities BOOLEAN,
 seqNumber SeqNumber OPTIONAL,
 apexTA TrustAnchorChoice }

 The fields of TAMPApexUpdate are used as follows:

 o version identifies version of TAMP. For this version of the
 specification, the default value, v2, MUST be used.

 o terse indicates the type of response that is desired. A terse
 response is indicated by a value of 1, and a verbose response is
 indicated by a value of 2, which is omitted during encoding since
 it is the default value.

 o msgRef contains two items: the target and the seqNum. target
 identifies the target(s) of the Apex Trust Anchor Update message.

Housley, et al. Standards Track [Page 35]

RFC 5934 TAMP August 2010

 The TargetIdentifier syntax as described in Section 4.1 is used.
 seqNum is a single-use value that will be used to match the Apex
 Trust Anchor Update message with the Apex Trust Anchor Update
 Confirm message. The sequence number is also used to detect TAMP
 message replay if the message is validated with the apex trust
 anchor operational public key. The sequence number processing
 described in Section 6 MUST successfully complete before any
 action is taken. However, seqNum MUST contain a zero value if the
 message is validated with the apex trust anchor contingency
 public key.

 o clearTrustAnchors is a Boolean. If the value is set to TRUE, then
 all of the management and identity trust anchors stored in the
 trust anchor store MUST be deleted, leaving the newly installed
 apex trust anchor as the only trust anchor in the trust anchor
 store. If the value is set to FALSE, the other trust anchors MUST
 NOT be changed.

 o clearCommunities is a Boolean. If the value is set to TRUE, then
 all of the community identifiers stored in the trust anchor store
 MUST be deleted, leaving none. If the value is set to FALSE, the
 list of community identifiers MUST NOT be changed.

 o seqNumber is OPTIONAL, and when present, it provides the initial
 sequence number for the apex trust anchor. If seqNumber is
 absent, the trust anchor store is prepared to accept any sequence
 number value for the apex trust anchor operational public key.

 o apexTA provides the information for the replacement apex trust
 anchor. The TrustAnchorChoice structure is used to provide the
 trusted public key and all of the information associated with it.
 The pubKey, keyId, taTitle, certPath, and exts fields apply to the
 operational public key of the apex trust anchor. The
 ApexTrustAnchorInfo certificate extension MAY appear as an
 extension. Section 9 describes the WrappedApexContingencyKey
 certificate extension.

4.6. Apex Trust Anchor Update Confirm

 The Apex Trust Anchor Update Confirm message is a reply by a trust
 anchor store to a valid Apex Trust Anchor Update message. The Apex
 Trust Anchor Update Confirm message provides success or failure
 information for the apex trust anchor update. The Apex Trust Anchor
 Update Confirm message MAY be signed or unsigned. An Apex Trust
 Anchor Update Confirm message MUST be signed if the trust anchor
 store is capable of signing it.

Housley, et al. Standards Track [Page 36]

RFC 5934 TAMP August 2010

 The Apex Trust Anchor Update Confirm content type has the following
 syntax:

 tamp-apex-update-confirm CONTENT-TYPE ::=
 { TAMPApexUpdateConfirm IDENTIFIED BY
 id-ct-TAMP-apexUpdateConfirm }

 id-ct-TAMP-apexUpdateConfirm OBJECT IDENTIFIER ::= { id-tamp 6 }

 TAMPApexUpdateConfirm ::= SEQUENCE {
 version [0] TAMPVersion DEFAULT v2,
 apexReplace TAMPMsgRef,
 apexConfirm ApexUpdateConfirm }

 ApexUpdateConfirm ::= CHOICE {
 terseApexConfirm [0] TerseApexUpdateConfirm,
 verboseApexConfirm [1] VerboseApexUpdateConfirm }

 TerseApexUpdateConfirm ::= StatusCode

 VerboseApexUpdateConfirm ::= SEQUENCE {
 status StatusCode,
 taInfo TrustAnchorChoiceList,
 communities [0] CommunityIdentifierList OPTIONAL,
 tampSeqNumbers [1] TAMPSequenceNumbers OPTIONAL }

 The fields of TAMPApexUpdateConfirm are used as follows:

 o version identifies version of TAMP. For this version of the
 specification, the default value, v2, MUST be used.

 o apexReplace identifies the Apex Trust Anchor Update message to
 which the trust anchor store is responding. The apexReplace
 structure repeats the TAMPMsgRef from the beginning of the Apex
 Trust Anchor Update message (see Section 4.5). When the Apex
 Trust Anchor Update message is validated with the operational
 public key, the sequence number processing described in Section 6
 MUST successfully complete before an Apex Trust Anchor Update
 Confirm message is generated. When the Apex Trust Anchor Update
 message is validated with the contingency public key, normal
 sequence number processing is ignored, but the seqNum MUST be
 zero.

 o apexConfirm contains either a terse update confirmation or a
 verbose update confirmation. The terse update confirmation is
 represented by TerseApexUpdateConfirm, and the verbose response is
 represented by VerboseApexUpdateConfirm.

Housley, et al. Standards Track [Page 37]

RFC 5934 TAMP August 2010

 The TerseApexUpdateConfirm contains a single status code, indicating
 the success or failure of the apex trust anchor update. If the apex
 trust anchor update failed, then the status code provides the reason
 for the failure. Each of the status codes is discussed in Section 5.

 The fields of VerboseApexUpdateConfirm are used as follows:

 o status contains a single status code, indicating the success or
 failure of the apex trust anchor update. If the apex trust anchor
 update failed, then the status code provides the reason for the
 failure. Each of the status codes is discussed in Section 5.

 o taInfo contains a sequence of TrustAnchorChoice structures. One
 entry in the sequence is provided for each trust anchor contained
 in the trust anchor store. These represent the state of the trust
 anchors after the apex trust anchor update has been processed.
 See [RFC5914] for a description of the TrustAnchorInfo structure.
 The apex trust anchor is the first trust anchor in the sequence.

 o communities is OPTIONAL. When present, it contains a sequence of
 object identifiers. Each object identifier names one community to
 which this trust anchor store belongs. When the trust anchor
 store belongs to no communities, this field is omitted.

 o tampSeqNumbers is used to indicate the currently held sequence
 number for each trust anchor authorized to sign TAMP messages.
 The keyId field identifies the trust anchor, and the seqNumber
 field provides the current sequence number associated with the
 trust anchor.

4.7. Community Update

 The trust anchor store maintains a list of identifiers for the
 communities of which it is a member. The Community Update message
 can be used to remove or add community identifiers from this list.
 The Community Update message MUST be signed. For the Community
 Update message to be valid, the trust anchor store MUST be a target
 of the update; the sequence number checking described in Section 6
 MUST be successful when the TAMP message signer is a trust anchor;
 and the digital signature MUST be validated by the apex trust anchor
 operational public key, an authorized management trust anchor, or via
 an authorized X.509 certification path originating with such a trust
 anchor.

 If the trust anchor store supports the Community Update message, the
 digital signature on the Community Update message is valid, sequence
 number checking is successful, the signer is authorized, and the
 trust anchor store is an intended recipient of the TAMP message, then

Housley, et al. Standards Track [Page 38]

RFC 5934 TAMP August 2010

 the trust anchor store MUST make the specified updates and return a
 Community Update Confirm message. If a Community Update Confirm
 message is not returned, then a TAMP Error message SHOULD be
 returned.

 The Community Update message contains a batch of updates, and all of
 the updates MUST be accepted for the trust anchor store to return a
 successful Community Update Confirm message. The remove updates, if
 present, MUST be processed before the add updates. Where remove is
 present with an empty list, all community identifiers MUST be
 removed. This approach prevents community identifiers that are
 intended to be mutually exclusive from being installed by a
 successful addition and a failed removal. Where add is present, at
 least one community identifier MUST appear in the list.

 The Community Update content type has the following syntax:

 tamp-community-update CONTENT-TYPE ::=
 { TAMPCommunityUpdate IDENTIFIED BY id-ct-TAMP-communityUpdate }

 id-ct-TAMP-communityUpdate OBJECT IDENTIFIER ::= { id-tamp 7 }

 TAMPCommunityUpdate ::= SEQUENCE {
 version [0] TAMPVersion DEFAULT v2,
 terse [1] TerseOrVerbose DEFAULT verbose,
 msgRef TAMPMsgRef,
 updates CommunityUpdates }

 CommunityUpdates ::= SEQUENCE {
 remove [1] CommunityIdentifierList OPTIONAL,
 add [2] CommunityIdentifierList OPTIONAL }
 -- At least one MUST be present

 The fields of TAMPCommunityUpdate are used as follows:

 o version identifies version of TAMP. For this version of the
 specification, the default value, v2, MUST be used.

 o terse indicates the type of response that is desired. A terse
 response is indicated by a value of 1, and a verbose response is
 indicated by a value of 2, which is omitted during encoding since
 it is the default value.

 o msgRef contains two items: the target and the seqNum. target
 identifies the target(s) of the update message. The
 TargetIdentifier syntax as described in Section 4.1 is used.
 seqNum is a single-use value that will be used to match the
 Community Update message with the Community Update Confirm

Housley, et al. Standards Track [Page 39]

RFC 5934 TAMP August 2010

 message. The sequence number is also used to detect TAMP message
 replay. The sequence number processing described in Section 6
 MUST successfully complete before any of the updates are
 processed.

 o updates contains a sequence of community identifiers to be removed
 and a sequence of community identifiers to be added. These are
 represented by the CommunityUpdates structure.

 The CommunityUpdates is a sequence of two OPTIONAL sequences, but at
 least one of these sequences MUST be present. The first sequence
 contains community identifiers to be removed, and if there are none,
 it is absent. Where remove is present with an empty list, all
 community identifiers MUST be removed. The second sequence contains
 community identifiers to be added, and if there are none, it is
 absent. The remove updates, if present, MUST be processed before the
 add updates. An error is generated if any of the requested removals
 or additions cannot be accomplished. However, requests to remove
 community identifiers that are not present are treated as successful
 removals. Likewise, requests to add community identifiers that are
 already present are treated as successful additions. If an error is
 generated, the trust anchor store community list MUST NOT be changed.

 A description of the syntax associated with each of these actions
 follows:

 o remove is used to remove one, multiple, or all community
 identifiers from the trust anchor store.

 o add is used to insert one or more new community identifiers into
 the trust anchor store.

4.8. Community Update Confirm

 The Community Update Confirm message is a reply by a trust anchor
 store to a valid Community Update message. The Community Update
 Confirm message provides success or failure information for the
 requested updates. Success is returned only if the whole batch of
 updates is successfully processed. If any of the requested updates
 cannot be performed, then a failure is indicated, and the set of
 community identifiers stored in the trust anchor store is unchanged.
 The Community Update Confirm message MAY be signed or unsigned. A
 Community Update Confirm message MUST be signed if the trust anchor
 store is capable of signing it.

Housley, et al. Standards Track [Page 40]

RFC 5934 TAMP August 2010

 The Community Update Confirm content type has the following syntax:

 tamp-community-update-confirm CONTENT-TYPE ::=
 { TAMPCommunityUpdateConfirm IDENTIFIED BY
 id-ct-TAMP-communityUpdateConfirm }

 id-ct-TAMP-communityUpdateConfirm OBJECT IDENTIFIER ::=
 { id-tamp 8 }

 TAMPCommunityUpdateConfirm ::= SEQUENCE {
 version [0] TAMPVersion DEFAULT v2,
 update TAMPMsgRef,
 commConfirm CommunityConfirm }

 CommunityConfirm ::= CHOICE {
 terseCommConfirm [0] TerseCommunityConfirm,
 verboseCommConfirm [1] VerboseCommunityConfirm }

 TerseCommunityConfirm ::= StatusCode

 VerboseCommunityConfirm ::= SEQUENCE {
 status StatusCode,
 communities CommunityIdentifierList OPTIONAL }

 The fields of TAMPCommunityUpdateConfirm are used as follows:

 o version identifies version of TAMP. For this version of the
 specification, the default value, v2, MUST be used.

 o update identifies the Community Update message to which the trust
 anchor store is responding. The update structure repeats the
 TAMPMsgRef from the Community Update message (see Section 4.7).
 The sequence number processing described in Section 6 MUST
 successfully complete before any of the updates are processed.

 o commConfirm contains either a terse community update confirmation
 or a verbose community update confirmation. The terse response is
 represented by TerseCommunityConfirm, and the verbose response is
 represented by VerboseCommunityConfirm.

 The TerseCommunityConfirm contains a single status code, indicating
 the success or failure of the Community Update message processing.
 If the community update failed, then the status code indicates the
 reason for the failure. Each of the status codes is discussed in
 Section 5.

Housley, et al. Standards Track [Page 41]

RFC 5934 TAMP August 2010

 The fields of VerboseCommunityConfirm are used as follows:

 o status contains a single status code, indicating the success or
 failure of the Community Update message processing. If the
 community update failed, then the status code indicates the reason
 for the failure. Each of the status codes is discussed in
 Section 5.

 o communities is OPTIONAL. When present, it contains the sequence
 of community identifiers present in the trust anchor store after
 the update is processed. When the trust anchor store belongs to
 no communities, this field is omitted.

4.9. Sequence Number Adjust

 The trust anchor store maintains the current sequence number for the
 apex trust anchor and each management trust anchor authorized for
 TAMP messages. Sequence number processing is discussed in Section 6.
 The Sequence Number Adjust message can be used to provide the most
 recently used sequence number to one or more targets, thereby
 reducing the possibility of replay. The Sequence Number Adjust
 message MUST be signed. For the Sequence Number Adjust message to be
 valid, the trust anchor store MUST be an intended recipient of the
 Sequence Number Adjust message, the sequence number MUST be equal to
 or larger than the most recently stored sequence number for the
 originating trust anchor, and the digital signature MUST be validated
 by the apex trust anchor operational public key or an authorized
 management trust anchor.

 If the digital signature on the Sequence Number Adjust message is
 valid, the sequence number is equal to or larger than the most
 recently stored sequence number for the originating trust anchor, the
 signer is authorized, and the trust anchor store is an intended
 recipient of the TAMP message, then the trust anchor store MUST
 update the sequence number associated with the originating trust
 anchor and return a Sequence Number Adjust Confirm message. If a
 Sequence Number Adjust Confirm message is not returned, then a TAMP
 Error message SHOULD be returned.

 The Sequence Number Adjust message contains an adjustment for the
 sequence number of the TAMP message signer.

Housley, et al. Standards Track [Page 42]

RFC 5934 TAMP August 2010

 The Sequence Number Adjust content type has the following syntax:

 tamp-sequence-number-adjust CONTENT-TYPE ::=
 { SequenceNumberAdjust IDENTIFIED BY id-ct-TAMP-seqNumAdjust }

 id-ct-TAMP-seqNumAdjust OBJECT IDENTIFIER ::= { id-tamp 10 }

 SequenceNumberAdjust ::= SEQUENCE {
 Version [0] TAMPVersion DEFAULT v2,
 msgRef TAMPMsgRef }

 The fields of SequenceNumberAdjust are used as follows:

 o version identifies version of TAMP. For this version of the
 specification, the default value, v2, MUST be used.

 o msgRef contains two items: the target and the seqNum. target
 identifies the target(s) of the sequence number adjust message.
 The TargetIdentifier syntax as described in Section 4.1 is used.
 The allModules target is expected to be used for Sequence Number
 Adjust messages. seqNum MUST be equal to or larger than the most
 recently stored sequence number for this TAMP message signer, and
 the value will be used to match the Sequence Number Adjust message
 with the Sequence Number Adjust Confirm message. The sequence
 number processing described in Section 6 applies, except that the
 sequence number in a Sequence Number Adjust message is acceptable
 if it matches the most recently stored sequence number for this
 TAMP message signer. If sequence number checking completes
 successfully, then the sequence number is adjusted; otherwise, it
 remains unchanged.

4.10. Sequence Number Adjust Confirm

 The Sequence Number Adjust Confirm message is a reply by a trust
 anchor store to a valid Sequence Number Adjust message. The Sequence
 Number Adjust Confirm message provides success or failure
 information. Success is returned only if the sequence number for the
 trust anchor that signed the Sequence Number Adjust message
 originator is adjusted. If the sequence number cannot be adjusted,
 then a failure is indicated, and the sequence number stored in the
 trust anchor store is unchanged. The Sequence Number Adjust Confirm
 message MAY be signed or unsigned. A Sequence Number Adjust Confirm
 message MUST be signed if the trust anchor store is capable of
 signing it.

Housley, et al. Standards Track [Page 43]

RFC 5934 TAMP August 2010

 The Sequence Number Adjust Confirm content type has the following
 syntax:

 tamp-sequence-number-adjust-confirm CONTENT-TYPE ::=
 { SequenceNumberAdjustConfirm IDENTIFIED BY
 id-ct-TAMP-seqNumAdjustConfirm }

 id-ct-TAMP-seqNumAdjustConfirm OBJECT IDENTIFIER ::=
 { id-tamp 11 }

 SequenceNumberAdjustConfirm ::= SEQUENCE {
 version [0] TAMPVersion DEFAULT v2,
 adjust TAMPMsgRef,
 status StatusCode }

 The fields of SequenceNumberAdjustConfirm are used as follows:

 o version identifies version of TAMP. For this version of the
 specification, the default value, v2, MUST be used.

 o adjust identifies the Sequence Number Adjust message to which the
 trust anchor store is responding. The adjust structure repeats
 the TAMPMsgRef from the Sequence Number Adjust message (see
 Section 4.9). The sequence number processing described in
 Section 6 MUST successfully complete to adjust the sequence number
 associated with the Sequence Number Adjust message originator.

 o status contains a single status code, indicating the success or
 failure of the Sequence Number Adjust message processing. If the
 adjustment failed, then the status code indicates the reason for
 the failure. Each of the status codes is discussed in Section 5.

4.11. TAMP Error

 The TAMP Error message is a reply by a trust anchor store to any
 invalid TAMP message. The TAMP Error message provides an indication
 of the reason for the error. The TAMP Error message MAY be signed or
 unsigned. A TAMP Error message MUST be signed if the trust anchor
 store is capable of signing it. For the request types defined in
 this specification, TAMP Error messages MUST NOT be used to indicate
 a request message was successfully processed. Each TAMP Error
 message identifies the type of TAMP message that caused the error.
 In cases where the TAMP message type cannot be determined, errors MAY
 be returned via other means, such as at the protocol level, via an
 attached display, etc.

Housley, et al. Standards Track [Page 44]

RFC 5934 TAMP August 2010

 The TAMP Error message content type has the following syntax:

 tamp-error CONTENT-TYPE ::=
 { TAMPError IDENTIFIED BY id-ct-TAMP-error }

 id-ct-TAMP-error OBJECT IDENTIFIER ::= { id-tamp 9 }

 TAMPError ::= SEQUENCE {
 version [0] TAMPVersion DEFAULT v2,
 msgType OBJECT IDENTIFIER,
 status StatusCode,
 msgRef TAMPMsgRef OPTIONAL }

 The fields of TAMPError are used as follows:

 o version identifies version of TAMP. For this version of the
 specification, the default value, v2, MUST be used.

 o msgType indicates the content type of the TAMP message that caused
 the error.

 o status contains a status code that indicates the reason for the
 error. Each of the status codes is discussed in Section 5.

 o msgRef is OPTIONAL, but whenever possible it SHOULD be present.
 It identifies the TAMP message that caused the error. It repeats
 the target and seqNum from the TAMP message that caused the error
 (see Sections 4.1, 4.3, 4.5, 4.7, and 4.9).

5. Status Codes

 The Trust Anchor Update Confirm, the Apex Trust Anchor Update
 Confirm, the Community Update Confirm, the Sequence Number Adjust
 Confirm, and the TAMP Error messages include status codes. The
 syntax for the status codes is:

 StatusCode ::= ENUMERATED {
 success (0),
 decodeFailure (1),
 badContentInfo (2),
 badSignedData (3),
 badEncapContent (4),
 badCertificate (5),
 badSignerInfo (6),
 badSignedAttrs (7),
 badUnsignedAttrs (8),
 missingContent (9),
 noTrustAnchor (10),

Housley, et al. Standards Track [Page 45]

RFC 5934 TAMP August 2010

 notAuthorized (11),
 badDigestAlgorithm (12),
 badSignatureAlgorithm (13),
 unsupportedKeySize (14),
 unsupportedParameters (15),
 signatureFailure (16),
 insufficientMemory (17),
 unsupportedTAMPMsgType (18),
 apexTAMPAnchor (19),
 improperTAAddition (20),
 seqNumFailure (21),
 contingencyPublicKeyDecrypt (22),
 incorrectTarget (23),
 communityUpdateFailed (24),
 trustAnchorNotFound (25),
 unsupportedTAAlgorithm (26),
 unsupportedTAKeySize (27),
 unsupportedContinPubKeyDecryptAlg (28),
 missingSignature (29),
 resourcesBusy (30),
 versionNumberMismatch (31),
 missingPolicySet (32),
 revokedCertificate (33),
 unsupportedTrustAnchorFormat (34),
 improperTAChange (35),
 malformed (36),
 cmsError (37),
 unsupportedTargetIdentifier (38),
 other (127) }

 The various values of StatusCode are used as follows:

 o success is used to indicate that an update, portion of an update,
 or adjust was processed successfully.

 o decodeFailure is used to indicate that the trust anchor store was
 unable to successfully decode the provided message. The specified
 content type and the provided content do not match.

 o badContentInfo is used to indicate that the ContentInfo syntax is
 invalid or that the contentType carried within the ContentInfo is
 unknown or unsupported.

 o badSignedData is used to indicate that the SignedData syntax is
 invalid, the version is unknown or unsupported, or more than one
 entry is present in digestAlgorithms.

Housley, et al. Standards Track [Page 46]

RFC 5934 TAMP August 2010

 o badEncapContent is used to indicate that the
 EncapsulatedContentInfo syntax is invalid. This error can be
 generated due to problems located in SignedData.

 o badCertificate is used to indicate that the syntax for one or more
 certificates in CertificateSet is invalid.

 o badSignerInfo is used to indicate that the SignerInfo syntax is
 invalid, or the version is unknown or unsupported.

 o badSignedAttrs is used to indicate that the signedAttrs syntax
 within SignerInfo is invalid.

 o badUnsignedAttrs is used to indicate that the unsignedAttrs syntax
 within SignerInfo is invalid.

 o missingContent is used to indicate that the OPTIONAL eContent is
 missing in EncapsulatedContentInfo, which is REQUIRED in this
 specification. This error can be generated due to problems
 located in SignedData.

 o noTrustAnchor is used to indicate one of two possible error
 situations. In one case, the subjectKeyIdentifier does not
 identify the public key of a trust anchor or a certification path
 that terminates with an installed trust anchor. In the other
 case, the issuerAndSerialNumber is used to identify the TAMP
 message signer, which is prohibited by this specification.

 o notAuthorized is used to indicate one of two possible error
 situations. In one case, the sid within SignerInfo leads to an
 installed trust anchor, but that trust anchor is not an authorized
 signer for the received TAMP message content type. Identity trust
 anchors are not authorized signers for any of the TAMP message
 content types. In the other case, the signer of a Trust Anchor
 Update message is not authorized to manage the to-be-updated trust
 anchor as determined by a failure of the subordination processing
 in Section 7.

 o badDigestAlgorithm is used to indicate that the digestAlgorithm in
 either SignerInfo or SignedData is unknown or unsupported.

 o badSignatureAlgorithm is used to indicate that the
 signatureAlgorithm in SignerInfo is unknown or unsupported.

 o unsupportedKeySize is used to indicate that the signatureAlgorithm
 in SignerInfo is known and supported, but the TAMP message digital
 signature could not be validated because an unsupported key size
 was employed by the signer.

Housley, et al. Standards Track [Page 47]

RFC 5934 TAMP August 2010

 o unsupportedParameters is used to indicate that the
 signatureAlgorithm in SignerInfo is known, but the TAMP message
 digital signature could not be validated because unsupported
 parameters were employed by the signer.

 o signatureFailure is used to indicate that the signatureAlgorithm
 in SignerInfo is known and supported, but the digital signature in
 the signature field within SignerInfo could not be validated.

 o insufficientMemory indicates that the update could not be
 processed because the trust anchor store did not have sufficient
 memory to store the resulting trust anchor configuration or
 community identifier.

 o unsupportedTAMPMsgType indicates that the TAMP message could not
 be processed because the trust anchor store does not support the
 provided TAMP message type. This code will be used if the
 id-ct-TAMP-communityUpdate content type is provided and the trust
 anchor store does not support the Community Update message. This
 status code will also be used if the contentType value within
 eContentType is not one that is defined in this specification.

 o apexTAMPAnchor indicates that the update could not be processed
 because the Trust Anchor Update message tried to remove the apex
 trust anchor.

 o improperTAAddition indicates that a trust anchor update is trying
 to add a new trust anchor that may already exist, but some
 attributes of the to-be-added trust anchor are being modified in
 an improper manner. The desired trust anchor configuration may be
 attainable with a change operation instead of an add operation.

 o seqNumFailure indicates that the TAMP message could not be
 processed because the processing of the sequence number, which is
 described in Section 6, resulted in an error.

 o contingencyPublicKeyDecrypt indicates that the update could not be
 processed because an error occurred while decrypting the
 contingency public key.

 o incorrectTarget indicates that the query, update, or adjust
 message could not be processed because the trust anchor store is
 not the intended recipient.

 o communityUpdateFailed indicates that the community update
 requested the addition of a community identifier or the removal of
 a community identifier, but the request could not be honored.

Housley, et al. Standards Track [Page 48]

RFC 5934 TAMP August 2010

 o trustAnchorNotFound indicates that a change to a trust anchor was
 requested, but the referenced trust anchor is not represented in
 the trust anchor store.

 o unsupportedTAAlgorithm indicates that an update message would
 result in the trust anchor with a public key associated with a
 digital signature validation algorithm that is not implemented.
 In addition, this status code is used if the algorithm is
 supported, but the parameters associated with the algorithm are
 not supported.

 o unsupportedTAKeySize indicates that the trust anchor would include
 a public key of a size that is not supported.

 o unsupportedContinPubKeyDecryptAlg indicates that the decryption
 algorithm for the apex trust anchor contingency public key is not
 supported.

 o missingSignature indicates that an unsigned TAMP message was
 received, but the received TAMP message type MUST be signed.

 o resourcesBusy indicates that the resources necessary to process
 the TAMP message are not available at the present time, but the
 resources might be available at some point in the future.

 o versionNumberMismatch indicates that the version number in a
 received TAMP message is not acceptable.

 o missingPolicySet indicates that the policyFlags associated with a
 trust anchor are set in a fashion that requires the policySet to
 be present, but the policySet is missing.

 o revokedCertificate indicates that one or more of the certificates
 needed to properly process the TAMP message have been revoked.

 o unsupportedTrustAnchorFormat indicates that an unsupported trust
 anchor format was presented or the version is unknown or
 unsupported.

 o improperTAChange indicates that a trust anchor update is trying to
 change a new trust anchor using a format different than the format
 of the existing trust anchor.

 o malformed indicates an error in the composition of the CMS
 structure encapsulating a TAMP message.

Housley, et al. Standards Track [Page 49]

RFC 5934 TAMP August 2010

 o cmsError indicates an error processing a CMS structure that
 encapsulated a TAMP message, such as an error processing
 ContentType or MessageDigest attributes.

 o unsupportedTargetIdentifier indicates that a msgRef with an
 unsupported TargetIdentifier option was encountered.

 o other indicates that the update could not be processed, but the
 reason is not covered by any of the assigned status codes. Use of
 this status code SHOULD be avoided.

6. Sequence Number Processing

 The sequence number processing facilities in TAMP represent a balance
 between replay protection, operational considerations, and trust
 anchor store memory management. The goal is to provide replay
 protection without making TAMP difficult to use, creating an
 environment where surprising error conditions occur on a regular
 basis, or imposing onerous memory management requirements on
 implementations. This balance is achieved by performing sequence
 number checking on TAMP messages that are validated directly using a
 trust anchor, and allowing these checks to be skipped whenever the
 TAMP message originator is not represented by a trust anchor.
 Implementations MUST perform sequence number checking on TAMP
 messages that are validated directly using a trust anchor and MAY
 perform sequence number checking for TAMP messages validated using a
 certification path.

 The TAMP Status Query, Trust Anchor Update, Apex Trust Anchor Update,
 Community Update, and Sequence Number Adjust messages include a
 sequence number. This single-use identifier is used to match a TAMP
 message with the response to that TAMP message. When the TAMP
 message is validated directly using a trust anchor, the sequence
 number is also used to detect TAMP message replay.

 To provide replay protection, each TAMP message originator MUST treat
 the sequence number as a monotonically increasing non-negative
 integer. The sequence number counter is associated with the signing
 operation performed by the private key. The trust anchor store MUST
 ensure that a newly received TAMP message that is validated directly
 by a trust anchor public key contains a sequence number that is
 greater than the most recent successfully processed TAMP message from
 that originator. Note that the Sequence Number Adjust message is
 considered valid if the sequence number is greater than or equal to
 the most recent successfully processed TAMP message from that

Housley, et al. Standards Track [Page 50]

RFC 5934 TAMP August 2010

 originator. If the sequence number in a received TAMP message does
 not meet these conditions, then the trust anchor store MUST reject
 the TAMP message, returning a sequence number failure (seqNumFailure)
 error.

 Whenever a trust anchor is authorized for TAMP messages, either as a
 newly installed trust anchor or as a modification to an existing
 trust anchor, if a sequence number value is not provided in the Trust
 Anchor Update message, memory MUST be allocated for the sequence
 number and set to zero. The first TAMP message received that is
 validated using that trust anchor is not rejected based on sequence
 number checks, and the sequence number from that first TAMP message
 is stored. The TAMP message recipient MUST maintain a database of
 the most recent sequence number from a successfully processed TAMP
 message from a trust anchor. The index for this database is the
 trust anchor public key. This could be the apex trust anchor
 operational public key or a management trust anchor public key. In
 the first case, the apex trust anchor operational public key is used
 directly to validate the TAMP message digital signature. In the
 second case, a management trust anchor public key is used directly to
 validate the TAMP message digital signature.

 Sequence number values MUST be 64-bit non-negative integers. Since
 ASN.1 encoding of an INTEGER always includes a sign bit, a TAMP
 message signer can generate 9,223,372,036,854,775,807 TAMP messages
 before exhausting the 64-bit sequence number space, before which the
 TAMP message signer MUST transition to a different public/private key
 pair. The ability to reset a sequence number provided by the Trust
 Anchor Update and Sequence Number Adjust messages is not intended to
 avoid the transition to a different key pair; rather, it is intended
 to aid recovery from operational errors. A relatively small non-
 volatile storage requirement is imposed on the trust anchor store for
 the apex trust anchor and each management trust anchor authorized for
 TAMP messages.

 When the apex trust anchor or a management trust anchor is replaced
 or removed from the trust anchor store, the associated sequence
 number storage SHOULD be reclaimed.

7. Subordination Processing

 When a TAMP update message is processed, several checks are
 performed:

 o TAMP message authentication is checked including, if necessary,
 building and validating a certification path to the signer.

Housley, et al. Standards Track [Page 51]

RFC 5934 TAMP August 2010

 o The signer’s authorization is checked, including authorization to
 manage trust anchors included in the update message.

 o Calculation of the trust anchor information to be stored.

 This section describes how to perform the second and third steps.
 Section 1.2 discusses authentication of TAMP messages. Where a trust
 anchor is represented as a certificate and the calculation of the
 trust anchor information to be stored is different than the
 information in the certificate, the TAMP update fails. The TAMP
 message signer may then wrap the certificate inside a TrustAnchorInfo
 structure to assert the intended information.

 The apex trust anchor is unconstrained, which means that
 subordination checking need not be performed on Trust Anchor Update
 messages signed with the apex trust anchor operational public key and
 that trust anchor information can be stored as it appears in the
 update message. Subordination checking is performed as part of the
 validation process of all other Trust Anchor Update messages.

 For a Trust Anchor Update message that is not signed with the apex
 trust anchor operational public key to be valid, the digital
 signature MUST be validated using an authorized trust anchor, either
 directly or via an X.509 certification path originating with the apex
 trust anchor operational public key or an authorized management trust
 anchor. The following subordination checks MUST also be performed as
 part of validation of the update message.

 Each Trust Anchor Update message contains one or more individual
 updates, each of which is used to add, modify, or remove a trust
 anchor. For each individual update, the constraints of the TAMP
 message signer MUST be greater than or equal to the constraints of
 the trust anchor in the update. Specifically, constraints included
 in the CertPathControls field of a TrustAnchorInfo object (or
 equivalent extensions in Certificate or TBSCertificate objects) must
 be checked as described below. [RFC5280] describes how the
 intersection and union operations referenced below are performed.

 o The values of the policy flags stored with a trust anchor as the
 result of a TAMPUpdate are either true or equal to the value of
 the policy flags associated with the TAMP message signer, i.e., an
 update may set a flag to false only if the value associated with
 the TAMP message signer is false. The policy flags associated
 with the TAMP message signer are read from the policyFlags field
 or policyConstraints and inhibitAnyPolicy extensions if the signer

Housley, et al. Standards Track [Page 52]

RFC 5934 TAMP August 2010

 is represented as a trust anchor or from the explicit_policy,
 policy_mapping, and inhibit_anyPolicy state variables following
 path validation if the signer is not represented as a trust
 anchor.

 o The certificate policies stored with a trust anchor as the result
 of a TAMPUpdate are equal to the intersection of the value of the
 certificate policies associated with the TAMP message signer and
 the value of the policySet field or certificatePolicies extension
 from the update. The certificate policies associated with the
 TAMP message signer are read from the policySet field in a
 TrustAnchorInfo or certificatePolicies extension in a Certificate
 or TBSCertificate if the signer is represented as a trust anchor
 or from the valid_policy_tree returned following path validation
 if the signer is not represented by a trust anchor. Where the
 TAMP message signer is represented as a trust anchor, no policy
 mapping is performed. If the intersection is NULL and the
 to-be-stored requireExplicitPolicy value is true, the TAMP update
 fails.

 o The excluded names stored with a trust anchor as the result of a
 TAMPUpdate are equal to the union of the excluded names associated
 with the TAMP message signer and the value from the nameConstr
 field or nameConstraints extension from the update. The name
 constraints associated with the TAMP message signer are read from
 the nameConstr field in a TrustAnchorInfo or nameConstraints
 extension in a Certificate or TBSCertificate if the signer is a
 trust anchor or from the excludedSubtrees state variable following
 path validation if the signer is not a trust anchor. The name of
 the trust anchor included in the update MUST NOT fall within the
 excluded name space of the TAMP signer. If the name of the trust
 anchor falls within the excluded name space of the TAMP signer,
 the TAMP update fails.

 o The permitted names stored with a trust anchor as the result of a
 TAMPUpdate are equal to the intersection of the permitted names
 associated with the TAMP message signer and the value from the
 nameConstr field or nameConstraints extension from the update.
 The name constraints associated with the TAMP message signer are
 read from the nameConstr field in a TrustAnchorInfo or
 nameConstraints extension in a Certificate or TBSCertificate if
 the signer is a trust anchor or from the permittedSubtrees state
 variable following path validation if the signer is not a trust
 anchor. The name of the trust anchor included in the update MUST
 fall within the permitted name space of the TAMP signer. If the
 name of the trust anchor does not fall within the permitted name
 space of the TAMP signer, the TAMP update fails. If the
 intersection is NULL for all name forms, the TAMP update fails.

Housley, et al. Standards Track [Page 53]

RFC 5934 TAMP August 2010

 No other extensions defined in [RFC5280] must be processed as part of
 subordination processing. Other extensions may define subordination
 rules.

8. Implementation Considerations

 A public key identifier is used to identify a TAMP message signer.
 Since there is no guarantee that the same public key identifier is
 not associated with more than one public key, implementations MUST be
 prepared for one or more trust anchors to have the same public key
 identifier. In practical terms, this means that when a digital
 signature validation fails, the implementation MUST see if there is
 another trust anchor with the same public key identifier that can be
 used to validate the digital signature. While duplicate public key
 identifiers are expected to be rare, implementations MUST NOT fail to
 find the correct trust anchor when they do occur.

 An X.500 distinguished name is used to identify certificate issuers
 and certificate subjects. The same X.500 distinguished name can be
 associated with more than one trust anchor. However, the trust
 anchor public key will be different. The probability that two trust
 anchors will have the same X.500 distinguished name and the same
 public key identifier but a different public key is diminishingly
 small. Therefore, the authority key identifier certificate extension
 can be used to resolve X.500 distinguished name collisions.

 TAMP assumes a reliable underlying transport protocol.

9. Wrapped Apex Contingency Key Certificate Extension

 An apex trust anchor MAY contain contingency key information using
 the WrappedApexContingencyKey extension. The extension uses the
 ApexContingencyKey structure as defined below.

 ApexContingencyKey ::= SEQUENCE {
 wrapAlgorithm AlgorithmIdentifier OPTIONAL,
 wrappedContinPubKey OCTET STRING OPTIONAL }

 The fields of ApexContingencyKey are used as described below. When
 one field is present, both MUST be present. When one field is
 absent, both MUST be absent. The fields are allowed to be absent to
 enable usage of this extension as a means of indicating that the
 corresponding public key is recognized as an apex trust anchor by
 some relying parties.

 o wrapAlgorithm identifies the symmetric algorithm used to encrypt
 the apex trust anchor contingency public key. If this public key
 is ever needed, the symmetric key needed to decrypt it will be

Housley, et al. Standards Track [Page 54]

RFC 5934 TAMP August 2010

 provided in the message that is to be validated using it. The
 algorithm identifier is an AlgorithmIdentifier, which contains an
 object identifier and OPTIONAL parameters. The object identifier
 indicates the syntax of the parameters, if present.

 o wrappedContinPubKey is the encrypted apex trust anchor contingency
 public key. Once decrypted, it yields the PublicKeyInfo
 structure, which consists of the algorithm identifier followed by
 the public key itself. The algorithm identifier is an
 AlgorithmIdentifier that contains an object identifier and
 OPTIONAL parameters. The object identifier indicates the format
 of the public key and the syntax of the parameters, if present.
 The public key is encoded as a BIT STRING.

 The WrappedApexContingencyKey certificate extension MAY be critical,
 and it MUST appear at most one time in a set of extensions. The apex
 trust anchor info extension is identified by the
 id-pe-wrappedApexContinKey object identifier:

 id-pe-wrappedApexContinKey OBJECT IDENTIFIER ::=
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) pe(1) 20 }

10. Security Considerations

 The majority of this specification is devoted to the syntax and
 semantics of TAMP messages. It relies on other specifications,
 especially [RFC5914], [RFC3852], and [RFC5280], for the syntax and
 semantics of trust anchors, intermediate CMS content types, and X.509
 certificates, respectively. Since TAMP messages that change the
 trust anchor state of a trust anchor store are always signed by a
 Trust Anchor Manager, no further data integrity or data origin
 authentication mechanisms are needed; however, no confidentiality for
 these messages is provided. Similarly, certificates are digitally
 signed, and no additional data integrity or data origin
 authentication mechanisms are needed. Trust anchor configurations,
 Trust Anchor Manager certificates, and trust anchor store
 certificates are not intended to be sensitive. As a result, this
 specification does not provide for confidentiality of TAMP messages.

 Security factors outside the scope of this specification greatly
 affect the assurance provided. The procedures used by certification
 authorities (CAs) to validate the binding of the subject identity to
 their public key greatly affect the assurance associated with the
 resulting certificate. This is particularly important when issuing
 certificates to other CAs. In the context of TAMP, the issuance of
 an end entity certificate under a management trust anchor is an act
 of delegation. However, such end entities cannot further delegate.

Housley, et al. Standards Track [Page 55]

RFC 5934 TAMP August 2010

 On the other hand, issuance of a CA certificate under a management
 trust anchor is an act of delegation where the CA can perform further
 delegation. The scope of the delegation can be constrained by
 including appropriate certificate extensions in a CA certificate.

 X.509 certification path construction involves comparison of X.500
 distinguished names. Inconsistent application of name comparison
 rules can result in acceptance of invalid X.509 certification paths
 or rejection of valid ones. Name comparison can be extremely
 complex. To avoid imposing this complexity on trust anchor stores,
 any certificate profile used with TAMP SHOULD employ simple name
 structures and impose rigorous restrictions on acceptable
 distinguished names, including the way that they are encoded. The
 goal of that certificate profile should be to enable simple binary
 comparison. That is, case conversion, character set conversion,
 white space compression, and leading and trailing white space
 trimming SHOULD be avoided.

 Some digital signature algorithms (DSAs) require the generation of
 random one-time values. For example, when generating a DSA digital
 signature, the signer MUST generate a random k value [DSS]. Also,
 the generation of public/private key pairs relies on random numbers.

 The use of an inadequate random number generator (RNG) or an
 inadequate pseudo-random number generator (PRNG) to generate such
 cryptographic values can result in little or no security. An
 attacker may find it much easier to reproduce the random number
 generation environment, searching the resulting small set of
 possibilities, rather than brute-force searching the whole space.

 Compromise of an identity trust anchor private key permits
 unauthorized parties to issue certificates that will be acceptable to
 all trust anchor stores configured with the corresponding identity
 trust anchor. The unauthorized private key holder will be limited by
 the certification path controls associated with the identity trust
 anchor. For example, clearance constraints in the identity trust
 anchor will determine the clearances that will be accepted in
 certificates that are issued by the unauthorized private key holder.

 Compromise of a management trust anchor private key permits
 unauthorized parties to generate signed messages that will be
 acceptable to all trust anchor stores configured with the
 corresponding management trust anchor. All devices that include the
 compromised management trust anchor can be configured as desired by
 the unauthorized private key holder within the limits of the
 subordination checks described in Section 7. If the management trust
 anchor is associated with content types other than TAMP, then the
 unauthorized private key holder can generate signed messages of that

Housley, et al. Standards Track [Page 56]

RFC 5934 TAMP August 2010

 type. For example, if the management trust anchor is associated with
 firmware packages, then the unauthorized private key holder can
 install different firmware.

 Compromise of the apex trust anchor operational private key permits
 unauthorized parties to generate signed messages that will be
 acceptable to all trust anchor stores configured with the
 corresponding apex trust anchor. All devices that include that apex
 trust anchor can be configured as desired by the unauthorized private
 key holder, and the unauthorized private key holder can generate
 signed messages of any content type. The optional contingency
 private key offers a potential way to recover from such a compromise.

 The compromise of a CA’s private key leads to the same type of
 problems as the compromise of an identity or a management trust
 anchor private key. The unauthorized private key holder will be
 limited by the certification path controls and extensions associated
 with the trust anchor.

 The compromise of an end entity private key leads to the same type of
 problems as the compromise of an identity or a management trust
 anchor private key, except that the end entity is unable to issue any
 certificates. The unauthorized private key holder will be limited by
 the certification path controls and extensions associated with the
 trust anchor.

 Compromise of a trust anchor store’s digital signature private key
 permits unauthorized parties to generate signed TAMP response
 messages, masquerading as the trust anchor store.

 Premature disclosure of the key-encryption key used to encrypt the
 apex trust anchor contingency public key may result in early exposure
 of the apex trust anchor contingency public key.

 TAMP implementations need to be able to parse messages and
 certificates. Care must be taken to ensure that there are no
 implementation defects in the TAMP message parser or the processing
 that acts on the message content. A validation suite is one way to
 increase confidence in the parsing of TAMP messages, CMS content
 types, attributes, certificates, and extensions.

 TrustAnchorList messages do not provide a replay detection mechanism.
 Where TrustAnchorList messages are accepted as an alternative means
 of adding trust anchors to a trust anchor store, applications may
 require additional mechanisms to address the risks associated with
 replay of old TrustAnchorList messages.

Housley, et al. Standards Track [Page 57]

RFC 5934 TAMP August 2010

 As sequence number values are used to detect replay attempts, trust
 anchor store managers must take care to maintain their own sequence
 number state, i.e., knowledge of which sequence number to include in
 the next TAMP message generated by the trust anchor store manager.
 Loss of sequence number state can result in generation of TAMP
 messages that cannot be processed due to seqNumFailure. In the event
 of loss, sequence number state can be restored by inspecting the most
 recently generated TAMP message, provided the messages are logged, or
 in collaboration with a trust anchor store manager who can
 successfully issue a TAMPStatusQuery message.

11. IANA Considerations

 The details of TAMP requests and responses are communicated using
 object identifiers (OIDs). The objects are defined in an arc
 delegated by IANA to the PKIX working group. This document also
 includes eleven media type registrations in Appendix B. No further
 action by IANA is necessary for this document or any anticipated
 updates.

12. References

12.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee,
 "Hypertext Transfer Protocol -- HTTP/1.1", RFC 2616,
 June 1999.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter,
 "Uniform Resource Identifier (URI): Generic Syntax",
 STD 66, RFC 3986, January 2005.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation
 List (CRL) Profile", RFC 5280, May 2008.

 [RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)",
 RFC 5652, September 2009.

 [RFC5912] Hoffman, P. and J. Schaad, "New ASN.1 Modules for the
 Public Key Infrastructure Using X.509 (PKIX)", RFC
 5912, June 2010.

Housley, et al. Standards Track [Page 58]

RFC 5934 TAMP August 2010

 [RFC5914] Housley, R., Ashmore, S., and C. Wallace, "Trust
 Anchor Format", RFC 5914, June 2010.

 [X.680] "ITU-T Recommendation X.680 - Information Technology
 - Abstract Syntax Notation One", 1997.

 [X.690] "ITU-T Recommendation X.690 - Information Technology
 - ASN.1 encoding rules: Specification of Basic
 Encoding Rules (BER), Canonical Encoding Rules (CER)
 and Distinguished Encoding Rules (DER)", 1997.

12.2. Informative References

 [DSS] "FIPS Pub 186: Digital Signature Standard", May 1994.

 [PKCS#6] "PKCS #6: Extended-Certificate Syntax Standard,
 Version 1.5", November 1993.

 [RFC3279] Bassham, L., Polk, W., and R. Housley, "Algorithms
 and Identifiers for the Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation
 List (CRL) Profile", RFC 3279, April 2002.

 [RFC3370] Housley, R., "Cryptographic Message Syntax (CMS)
 Algorithms", RFC 3370, August 2002.

 [RFC4049] Housley, R., "BinaryTime: An Alternate Format for
 Representing Date and Time in ASN.1", RFC 4049, April
 2005.

 [RFC4108] Housley, R., "Using Cryptographic Message Syntax
 (CMS) to Protect Firmware Packages", RFC 4108, August
 2005.

 [RFC5753] Turner, S. and D. Brown, "Use of Elliptic Curve
 Cryptography (ECC) Algorithms in Cryptographic
 Message Syntax (CMS)", RFC 5753, January 2010.

 [RFC5754] Turner, S., "Using SHA2 Algorithms with Cryptographic
 Message Syntax", RFC 5754, January 2010.

 [RFC5755] Farrell, S., Housley, R., and S. Turner, "An Internet
 Attribute Certificate Profile for Authorization", RFC
 5755, January 2010.

 [TA-MGMT-REQS] Reddy, R. and C. Wallace, "Trust Anchor Management
 Requirements", Work in Progress, March 2010.

Housley, et al. Standards Track [Page 59]

RFC 5934 TAMP August 2010

 [X.208] "ITU-T Recommendation X.208 - Specification of
 Abstract Syntax Notation One (ASN.1)", 1988.

 [X.509] "ITU-T Recommendation X.509 - The Directory -
 Authentication Framework", 2000.

Housley, et al. Standards Track [Page 60]

RFC 5934 TAMP August 2010

Appendix A. ASN.1 Modules

 Appendix A.1 provides the normative ASN.1 definitions for the
 structures described in this specification using ASN.1 as defined in
 [X.680]. Appendix A.2 provides a module using ASN.1 as defined in
 [X.208]. The module in Appendix A.2 removes usage of newer ASN.1
 features that provide support for limiting the types of elements that
 may appear in certain SEQUENCE and SET constructions. Otherwise, the
 modules are compatible in terms of encoded representation, i.e., the
 modules are bits-on-the-wire compatible aside from the limitations on
 SEQUENCE and SET constituents. Extension markers are not used due to
 lack of support in [X.208]. Appendix A.2 is included as a courtesy
 to developers using ASN.1 compilers that do not support current
 ASN.1. Appendix A.1 includes definitions imported from [RFC5280],
 [RFC5912], and [RFC5914].

A.1. ASN.1 Module Using 1993 Syntax

 TAMP-Protocol-v2
 { joint-iso-ccitt(2) country(16) us(840) organization(1)
 gov(101) dod(2) infosec(1) modules(0) 30 }

 DEFINITIONS IMPLICIT TAGS ::=
 BEGIN

 IMPORTS
 TrustAnchorChoice, TrustAnchorTitle, CertPathControls
 FROM TrustAnchorInfoModule
 { joint-iso-ccitt(2) country(16) us(840)
 organization(1) gov(101) dod(2) infosec(1)
 modules(0) 33 }
 AlgorithmIdentifier{}, SIGNATURE-ALGORITHM, KEY-WRAP
 FROM AlgorithmInformation-2009
 {iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-algorithmInformation-02(58)}
 Certificate, Name, TBSCertificate,
 CertificateSerialNumber, Validity, SubjectPublicKeyInfo
 FROM PKIX1Explicit-2009 -- from [RFC5912]
 {iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-pkix1-explicit-02(51)}
 KeyIdentifier, OTHER-NAME
 FROM PKIX1Implicit-2009 -- from [RFC5912]
 {iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-pkix1-implicit-02(59)}
 EXTENSION, Extensions {}, ATTRIBUTE, SingleAttribute{}

Housley, et al. Standards Track [Page 61]

RFC 5934 TAMP August 2010

 FROM PKIX-CommonTypes-2009 -- from [RFC5912]
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-pkixCommon-02(57) } ;

 -- Object Identifier Arc for TAMP Message Content Types

 id-tamp OBJECT IDENTIFIER ::= {
 joint-iso-ccitt(2) country(16) us(840) organization(1)
 gov(101) dod(2) infosec(1) formats(2) 77 }

 SupportedSigAlgorithms SIGNATURE-ALGORITHM ::= {
 -- add any locally defined algorithms here
 ...
 }

 SupportedWrapAlgorithms KEY-WRAP ::= {
 -- add any locally defined algorithms here
 ...
 }

 -- CMS Content Types

 CONTENT-TYPE ::= TYPE-IDENTIFIER

 TAMPContentTypes CONTENT-TYPE ::= {
 tamp-status-query |
 tamp-status-response |
 tamp-update |
 tamp-update-confirm |
 tamp-apex-update |
 tamp-apex-update-confirm |
 tamp-community-update |
 tamp-community-update-confirm |
 tamp-sequence-number-adjust |
 tamp-sequence-number-adjust-confirm |
 tamp-error,
 ... -- Expect additional content types --
 }

 -- TAMP Status Query Message
 tamp-status-query CONTENT-TYPE ::=
 { TAMPStatusQuery IDENTIFIED BY id-ct-TAMP-statusQuery }

 id-ct-TAMP-statusQuery OBJECT IDENTIFIER ::= { id-tamp 1 }

Housley, et al. Standards Track [Page 62]

RFC 5934 TAMP August 2010

 TAMPStatusQuery ::= SEQUENCE {
 version [0] TAMPVersion DEFAULT v2,
 terse [1] TerseOrVerbose DEFAULT verbose,
 query TAMPMsgRef }

 TAMPVersion ::= INTEGER { v1(1), v2(2) }

 TerseOrVerbose ::= ENUMERATED { terse(1), verbose(2) }

 SeqNumber ::= INTEGER (0..9223372036854775807)

 TAMPMsgRef ::= SEQUENCE {
 target TargetIdentifier,
 seqNum SeqNumber }

 TargetIdentifier ::= CHOICE {
 hwModules [1] HardwareModuleIdentifierList,
 communities [2] CommunityIdentifierList,
 allModules [3] NULL,
 uri [4] IA5String,
 otherName [5] INSTANCE OF OTHER-NAME }

 HardwareModuleIdentifierList ::= SEQUENCE SIZE (1..MAX) OF
 HardwareModules

 HardwareModules ::= SEQUENCE {
 hwType OBJECT IDENTIFIER,
 hwSerialEntries SEQUENCE SIZE (1..MAX) OF HardwareSerialEntry }

 HardwareSerialEntry ::= CHOICE {
 all NULL,
 single OCTET STRING,
 block SEQUENCE {
 low OCTET STRING,
 high OCTET STRING } }

 CommunityIdentifierList ::= SEQUENCE SIZE (0..MAX) OF Community

 Community ::= OBJECT IDENTIFIER

 -- TAMP Status Response Message

 tamp-status-response CONTENT-TYPE ::=
 { TAMPStatusResponse IDENTIFIED BY id-ct-TAMP-statusResponse }

 id-ct-TAMP-statusResponse OBJECT IDENTIFIER ::= { id-tamp 2 }

Housley, et al. Standards Track [Page 63]

RFC 5934 TAMP August 2010

 TAMPStatusResponse ::= SEQUENCE {
 version [0] TAMPVersion DEFAULT v2,
 query TAMPMsgRef,
 response StatusResponse,
 usesApex BOOLEAN DEFAULT TRUE }

 StatusResponse ::= CHOICE {
 terseResponse [0] TerseStatusResponse,
 verboseResponse [1] VerboseStatusResponse }

 TerseStatusResponse ::= SEQUENCE {
 taKeyIds KeyIdentifiers,
 communities CommunityIdentifierList OPTIONAL }

 KeyIdentifiers ::= SEQUENCE SIZE (1..MAX) OF KeyIdentifier

 VerboseStatusResponse ::= SEQUENCE {
 taInfo TrustAnchorChoiceList,
 continPubKeyDecryptAlg [0] AlgorithmIdentifier
 {KEY-WRAP, {SupportedWrapAlgorithms}} OPTIONAL,
 communities [1] CommunityIdentifierList OPTIONAL,
 tampSeqNumbers [2] TAMPSequenceNumbers OPTIONAL }

 TrustAnchorChoiceList ::= SEQUENCE SIZE (1..MAX) OF
 TrustAnchorChoice

 TAMPSequenceNumber ::= SEQUENCE {
 keyId KeyIdentifier,
 seqNumber SeqNumber }

 TAMPSequenceNumbers ::= SEQUENCE SIZE (1..MAX) OF TAMPSequenceNumber

 -- Trust Anchor Update Message

 tamp-update CONTENT-TYPE ::=
 { TAMPUpdate IDENTIFIED BY id-ct-TAMP-update }

 id-ct-TAMP-update OBJECT IDENTIFIER ::= { id-tamp 3 }

 TAMPUpdate ::= SEQUENCE {
 version [0] TAMPVersion DEFAULT v2,
 terse [1] TerseOrVerbose DEFAULT verbose,
 msgRef TAMPMsgRef,
 updates SEQUENCE SIZE (1..MAX) OF TrustAnchorUpdate,
 tampSeqNumbers [2]TAMPSequenceNumbers OPTIONAL }

Housley, et al. Standards Track [Page 64]

RFC 5934 TAMP August 2010

 TrustAnchorUpdate ::= CHOICE {
 add [1] TrustAnchorChoice,
 remove [2] SubjectPublicKeyInfo,
 change [3] EXPLICIT TrustAnchorChangeInfoChoice }

 TrustAnchorChangeInfoChoice ::= CHOICE {
 tbsCertChange [0] TBSCertificateChangeInfo,
 taChange [1] TrustAnchorChangeInfo }

 TBSCertificateChangeInfo ::= SEQUENCE {
 serialNumber CertificateSerialNumber OPTIONAL,
 signature [0] AlgorithmIdentifier
 {SIGNATURE-ALGORITHM, {SupportedSigAlgorithms}} OPTIONAL,
 issuer [1] Name OPTIONAL,
 validity [2] Validity OPTIONAL,
 subject [3] Name OPTIONAL,
 subjectPublicKeyInfo [4] SubjectPublicKeyInfo,
 exts [5] EXPLICIT Extensions{{...}} OPTIONAL }

 TrustAnchorChangeInfo ::= SEQUENCE {
 pubKey SubjectPublicKeyInfo,
 keyId KeyIdentifier OPTIONAL,
 taTitle TrustAnchorTitle OPTIONAL,
 certPath CertPathControls OPTIONAL,
 exts [1] Extensions{{...}} OPTIONAL }

 -- Trust Anchor Update Confirm Message

 tamp-update-confirm CONTENT-TYPE ::=
 { TAMPUpdateConfirm IDENTIFIED BY id-ct-TAMP-updateConfirm }

 id-ct-TAMP-updateConfirm OBJECT IDENTIFIER ::= { id-tamp 4 }

 TAMPUpdateConfirm ::= SEQUENCE {
 version [0] TAMPVersion DEFAULT v2,
 update TAMPMsgRef,
 confirm UpdateConfirm }

 UpdateConfirm ::= CHOICE {
 terseConfirm [0] TerseUpdateConfirm,
 verboseConfirm [1] VerboseUpdateConfirm }

 TerseUpdateConfirm ::= StatusCodeList

 StatusCodeList ::= SEQUENCE SIZE (1..MAX) OF StatusCode

Housley, et al. Standards Track [Page 65]

RFC 5934 TAMP August 2010

 VerboseUpdateConfirm ::= SEQUENCE {
 status StatusCodeList,
 taInfo TrustAnchorChoiceList,
 tampSeqNumbers TAMPSequenceNumbers OPTIONAL,
 usesApex BOOLEAN DEFAULT TRUE }

 -- Apex Trust Anchor Update Message

 tamp-apex-update CONTENT-TYPE ::=
 { TAMPApexUpdate IDENTIFIED BY id-ct-TAMP-apexUpdate }

 id-ct-TAMP-apexUpdate OBJECT IDENTIFIER ::= { id-tamp 5 }

 TAMPApexUpdate ::= SEQUENCE {
 version [0] TAMPVersion DEFAULT v2,
 terse [1] TerseOrVerbose DEFAULT verbose,
 msgRef TAMPMsgRef,
 clearTrustAnchors BOOLEAN,
 clearCommunities BOOLEAN,
 seqNumber SeqNumber OPTIONAL,
 apexTA TrustAnchorChoice }

 -- Apex Trust Anchor Update Confirm Message

 tamp-apex-update-confirm CONTENT-TYPE ::=
 { TAMPApexUpdateConfirm IDENTIFIED BY
 id-ct-TAMP-apexUpdateConfirm }

 id-ct-TAMP-apexUpdateConfirm OBJECT IDENTIFIER ::= { id-tamp 6 }

 TAMPApexUpdateConfirm ::= SEQUENCE {
 version [0] TAMPVersion DEFAULT v2,
 apexReplace TAMPMsgRef,
 apexConfirm ApexUpdateConfirm }

 ApexUpdateConfirm ::= CHOICE {
 terseApexConfirm [0] TerseApexUpdateConfirm,
 verboseApexConfirm [1] VerboseApexUpdateConfirm }

 TerseApexUpdateConfirm ::= StatusCode

 VerboseApexUpdateConfirm ::= SEQUENCE {
 status StatusCode,
 taInfo TrustAnchorChoiceList,
 communities [0] CommunityIdentifierList OPTIONAL,
 tampSeqNumbers [1] TAMPSequenceNumbers OPTIONAL }

Housley, et al. Standards Track [Page 66]

RFC 5934 TAMP August 2010

 -- Community Update Message

 tamp-community-update CONTENT-TYPE ::=
 { TAMPCommunityUpdate IDENTIFIED BY id-ct-TAMP-communityUpdate }

 id-ct-TAMP-communityUpdate OBJECT IDENTIFIER ::= { id-tamp 7 }

 TAMPCommunityUpdate ::= SEQUENCE {
 version [0] TAMPVersion DEFAULT v2,
 terse [1] TerseOrVerbose DEFAULT verbose,
 msgRef TAMPMsgRef,
 updates CommunityUpdates }

 CommunityUpdates ::= SEQUENCE {
 remove [1] CommunityIdentifierList OPTIONAL,
 add [2] CommunityIdentifierList OPTIONAL }
 -- At least one must be present

 -- Community Update Confirm Message

 tamp-community-update-confirm CONTENT-TYPE ::=
 { TAMPCommunityUpdateConfirm IDENTIFIED BY
 id-ct-TAMP-communityUpdateConfirm }

 id-ct-TAMP-communityUpdateConfirm OBJECT IDENTIFIER ::=
 { id-tamp 8 }

 TAMPCommunityUpdateConfirm ::= SEQUENCE {
 version [0] TAMPVersion DEFAULT v2,
 update TAMPMsgRef,
 commConfirm CommunityConfirm }

 CommunityConfirm ::= CHOICE {
 terseCommConfirm [0] TerseCommunityConfirm,
 verboseCommConfirm [1] VerboseCommunityConfirm }

 TerseCommunityConfirm ::= StatusCode

 VerboseCommunityConfirm ::= SEQUENCE {
 status StatusCode,
 communities CommunityIdentifierList OPTIONAL }

 -- Sequence Number Adjust Message

 tamp-sequence-number-adjust CONTENT-TYPE ::=
 { SequenceNumberAdjust IDENTIFIED BY id-ct-TAMP-seqNumAdjust }

 id-ct-TAMP-seqNumAdjust OBJECT IDENTIFIER ::= { id-tamp 10 }

Housley, et al. Standards Track [Page 67]

RFC 5934 TAMP August 2010

 SequenceNumberAdjust ::= SEQUENCE {
 version [0] TAMPVersion DEFAULT v2,

 msgRef TAMPMsgRef }

 -- Sequence Number Adjust Confirm Message

 tamp-sequence-number-adjust-confirm CONTENT-TYPE ::=
 { SequenceNumberAdjustConfirm IDENTIFIED BY
 id-ct-TAMP-seqNumAdjustConfirm }

 id-ct-TAMP-seqNumAdjustConfirm OBJECT IDENTIFIER ::= { id-tamp 11 }

 SequenceNumberAdjustConfirm ::= SEQUENCE {
 version [0] TAMPVersion DEFAULT v2,
 adjust TAMPMsgRef,
 status StatusCode }

 -- TAMP Error Message

 tamp-error CONTENT-TYPE ::=
 { TAMPError IDENTIFIED BY id-ct-TAMP-error }

 id-ct-TAMP-error OBJECT IDENTIFIER ::= { id-tamp 9 }

 TAMPError ::= SEQUENCE {
 version [0] TAMPVersion DEFAULT v2,
 msgType OBJECT IDENTIFIER,
 status StatusCode,
 msgRef TAMPMsgRef OPTIONAL }

 -- Status Codes

 StatusCode ::= ENUMERATED {
 success (0),
 decodeFailure (1),
 badContentInfo (2),
 badSignedData (3),
 badEncapContent (4),
 badCertificate (5),
 badSignerInfo (6),
 badSignedAttrs (7),
 badUnsignedAttrs (8),
 missingContent (9),
 noTrustAnchor (10),
 notAuthorized (11),
 badDigestAlgorithm (12),
 badSignatureAlgorithm (13),

Housley, et al. Standards Track [Page 68]

RFC 5934 TAMP August 2010

 unsupportedKeySize (14),
 unsupportedParameters (15),
 signatureFailure (16),
 insufficientMemory (17),
 unsupportedTAMPMsgType (18),
 apexTAMPAnchor (19),
 improperTAAddition (20),
 seqNumFailure (21),
 contingencyPublicKeyDecrypt (22),
 incorrectTarget (23),
 communityUpdateFailed (24),
 trustAnchorNotFound (25),
 unsupportedTAAlgorithm (26),
 unsupportedTAKeySize (27),
 unsupportedContinPubKeyDecryptAlg (28),
 missingSignature (29),
 resourcesBusy (30),
 versionNumberMismatch (31),
 missingPolicySet (32),
 revokedCertificate (33),
 unsupportedTrustAnchorFormat (34),
 improperTAChange (35),
 malformed (36),
 cmsError (37),
 unsupportedTargetIdentifier (38),
 other (127) }

 -- Object Identifier Arc for Attributes

 id-attributes OBJECT IDENTIFIER ::= { joint-iso-ccitt(2) country(16)
 us(840) organization(1) gov(101) dod(2) infosec(1) 5 }

 -- TAMP Unsigned Attributes
 -- These attributes are unsigned attributes and go into the
 -- UnsignedAttributes set in [RFC5652]

 TAMPUnsignedAttributes ATTRIBUTE ::= {
 contingency-public-key-decrypt-key,
 ... -- Expect additional attributes --
 }

 -- contingency-public-key-decrypt-key unsigned attribute

 contingency-public-key-decrypt-key ATTRIBUTE ::= {
 TYPE PlaintextSymmetricKey IDENTIFIED BY
 id-aa-TAMP-contingencyPublicKeyDecryptKey }

Housley, et al. Standards Track [Page 69]

RFC 5934 TAMP August 2010

 id-aa-TAMP-contingencyPublicKeyDecryptKey OBJECT IDENTIFIER ::= {
 id-attributes 63 }

 PlaintextSymmetricKey ::= OCTET STRING

 -- id-pe-wrappedApexContinKey extension

 wrappedApexContinKey EXTENSION ::= {
 SYNTAX ApexContingencyKey
 IDENTIFIED BY id-pe-wrappedApexContinKey }

 id-pe-wrappedApexContinKey OBJECT IDENTIFIER ::=
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) pe(1) 20 }

 ApexContingencyKey ::= SEQUENCE {
 wrapAlgorithm
 AlgorithmIdentifier{KEY-WRAP, {SupportedWrapAlgorithms}},
 wrappedContinPubKey OCTET STRING }

 END

A.2. ASN.1 Module Using 1988 Syntax

 TAMP-Protocol-v2-88
 { joint-iso-ccitt(2) country(16) us(840) organization(1)
 gov(101) dod(2) infosec(1) modules(0) 31 }

 DEFINITIONS IMPLICIT TAGS ::=
 BEGIN

 IMPORTS
 TrustAnchorChoice, TrustAnchorTitle, CertPathControls
 FROM TrustAnchorInfoModule-88 -- from [RFC5914]
 { joint-iso-ccitt(2) country(16) us(840) organization(1)
 gov(101) dod(2) infosec(1) modules(0) 37 }
 AlgorithmIdentifier, Certificate, Name, Attribute, TBSCertificate,
 SubjectPublicKeyInfo, CertificateSerialNumber, Validity, Extensions
 FROM PKIX1Explicit88 -- from [RFC5280]
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-pkix1-explicit(18) }
 KeyIdentifier, AnotherName
 FROM PKIX1Implicit88 -- from [RFC5280]
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-pkix1-implicit(19) } ;

Housley, et al. Standards Track [Page 70]

RFC 5934 TAMP August 2010

 -- Object Identifier Arc for TAMP Message Content Types

 id-tamp OBJECT IDENTIFIER ::= { joint-iso-ccitt(2) country(16)
 us(840) organization(1) gov(101) dod(2) infosec(1) formats(2) 77 }

 -- CMS Content Types

 -- TAMP Status Query Message

 id-ct-TAMP-statusQuery OBJECT IDENTIFIER ::= { id-tamp 1 }

 TAMPStatusQuery ::= SEQUENCE {
 version [0] TAMPVersion DEFAULT v2,
 terse [1] TerseOrVerbose DEFAULT verbose,
 query TAMPMsgRef }

 TAMPVersion ::= INTEGER { v1(1), v2(2) }

 TerseOrVerbose ::= ENUMERATED { terse(1), verbose(2) }

 SeqNumber ::= INTEGER (0..9223372036854775807)

 TAMPMsgRef ::= SEQUENCE {
 target TargetIdentifier,
 seqNum SeqNumber }

 TargetIdentifier ::= CHOICE {
 hwModules [1] HardwareModuleIdentifierList,
 communities [2] CommunityIdentifierList,
 allModules [3] NULL,
 uri [4] IA5String,
 otherName [5] AnotherName }

 HardwareModuleIdentifierList ::= SEQUENCE SIZE (1..MAX) OF
 HardwareModules

 HardwareModules ::= SEQUENCE {
 hwType OBJECT IDENTIFIER,
 hwSerialEntries SEQUENCE SIZE (1..MAX) OF HardwareSerialEntry }

 HardwareSerialEntry ::= CHOICE {
 all NULL,
 single OCTET STRING,
 block SEQUENCE {
 low OCTET STRING,
 high OCTET STRING } }

Housley, et al. Standards Track [Page 71]

RFC 5934 TAMP August 2010

 CommunityIdentifierList ::= SEQUENCE SIZE (0..MAX) OF Community

 Community ::= OBJECT IDENTIFIER

 -- TAMP Status Response Message

 id-ct-TAMP-statusResponse OBJECT IDENTIFIER ::= { id-tamp 2 }

 TAMPStatusResponse ::= SEQUENCE {
 version [0] TAMPVersion DEFAULT v2,
 query TAMPMsgRef,
 response StatusResponse,
 usesApex BOOLEAN DEFAULT TRUE }

 StatusResponse ::= CHOICE {
 terseResponse [0] TerseStatusResponse,
 verboseResponse [1] VerboseStatusResponse }

 TerseStatusResponse ::= SEQUENCE {
 taKeyIds KeyIdentifiers,
 communities CommunityIdentifierList OPTIONAL }

 KeyIdentifiers ::= SEQUENCE SIZE (1..MAX) OF KeyIdentifier

 VerboseStatusResponse ::= SEQUENCE {
 taInfo TrustAnchorChoiceList,
 continPubKeyDecryptAlg [0] AlgorithmIdentifier OPTIONAL,
 communities [1] CommunityIdentifierList OPTIONAL,
 tampSeqNumbers [2] TAMPSequenceNumbers OPTIONAL }

 TrustAnchorChoiceList ::= SEQUENCE SIZE (1..MAX) OF
 TrustAnchorChoice

 TAMPSequenceNumber ::= SEQUENCE {
 keyId KeyIdentifier,
 seqNumber SeqNumber }

 TAMPSequenceNumbers ::= SEQUENCE SIZE (1..MAX) OF
 TAMPSequenceNumber

 -- Trust Anchor Update Message

 id-ct-TAMP-update OBJECT IDENTIFIER ::= { id-tamp 3 }

Housley, et al. Standards Track [Page 72]

RFC 5934 TAMP August 2010

 TAMPUpdate ::= SEQUENCE {
 version [0] TAMPVersion DEFAULT v2,
 terse [1] TerseOrVerbose DEFAULT verbose,
 msgRef TAMPMsgRef,
 updates SEQUENCE SIZE (1..MAX) OF TrustAnchorUpdate,
 tampSeqNumbers [2]TAMPSequenceNumbers OPTIONAL }

 TrustAnchorUpdate ::= CHOICE {
 add [1] TrustAnchorChoice,
 remove [2] SubjectPublicKeyInfo,
 change [3] EXPLICIT TrustAnchorChangeInfoChoice }

 TrustAnchorChangeInfoChoice ::= CHOICE {
 tbsCertChange [0] TBSCertificateChangeInfo,
 taChange [1] TrustAnchorChangeInfo }

 TBSCertificateChangeInfo ::= SEQUENCE {
 serialNumber CertificateSerialNumber OPTIONAL,
 signature [0] AlgorithmIdentifier OPTIONAL,
 issuer [1] Name OPTIONAL,
 validity [2] Validity OPTIONAL,
 subject [3] Name OPTIONAL,
 subjectPublicKeyInfo [4] SubjectPublicKeyInfo,
 exts [5] EXPLICIT Extensions OPTIONAL }

 TrustAnchorChangeInfo ::= SEQUENCE {
 pubKey SubjectPublicKeyInfo,
 keyId KeyIdentifier OPTIONAL,
 taTitle TrustAnchorTitle OPTIONAL,
 certPath CertPathControls OPTIONAL,
 exts [1] Extensions OPTIONAL }

 -- Trust Anchor Update Confirm Message

 id-ct-TAMP-updateConfirm OBJECT IDENTIFIER ::= { id-tamp 4 }

 TAMPUpdateConfirm ::= SEQUENCE {
 version [0] TAMPVersion DEFAULT v2,
 update TAMPMsgRef,
 confirm UpdateConfirm }

 UpdateConfirm ::= CHOICE {
 terseConfirm [0] TerseUpdateConfirm,
 verboseConfirm [1] VerboseUpdateConfirm }

 TerseUpdateConfirm ::= StatusCodeList

 StatusCodeList ::= SEQUENCE SIZE (1..MAX) OF StatusCode

Housley, et al. Standards Track [Page 73]

RFC 5934 TAMP August 2010

 VerboseUpdateConfirm ::= SEQUENCE {
 status StatusCodeList,
 taInfo TrustAnchorChoiceList,
 tampSeqNumbers TAMPSequenceNumbers OPTIONAL,
 usesApex BOOLEAN DEFAULT TRUE }

 -- Apex Trust Anchor Update Message

 id-ct-TAMP-apexUpdate OBJECT IDENTIFIER ::= { id-tamp 5 }

 TAMPApexUpdate ::= SEQUENCE {
 version [0] TAMPVersion DEFAULT v2,
 terse [1] TerseOrVerbose DEFAULT verbose,
 msgRef TAMPMsgRef,
 clearTrustAnchors BOOLEAN,
 clearCommunities BOOLEAN,
 seqNumber SeqNumber OPTIONAL,
 apexTA TrustAnchorChoice }

 -- Apex Trust Anchor Update Confirm Message

 id-ct-TAMP-apexUpdateConfirm OBJECT IDENTIFIER ::= { id-tamp 6 }

 TAMPApexUpdateConfirm ::= SEQUENCE {
 version [0] TAMPVersion DEFAULT v2,
 apexReplace TAMPMsgRef,
 apexConfirm ApexUpdateConfirm }

 ApexUpdateConfirm ::= CHOICE {
 terseApexConfirm [0] TerseApexUpdateConfirm,
 verboseApexConfirm [1] VerboseApexUpdateConfirm }

 TerseApexUpdateConfirm ::= StatusCode

 VerboseApexUpdateConfirm ::= SEQUENCE {
 status StatusCode,
 taInfo TrustAnchorChoiceList,
 communities [0] CommunityIdentifierList OPTIONAL,
 tampSeqNumbers [1] TAMPSequenceNumbers OPTIONAL }

 -- Community Update Message

 id-ct-TAMP-communityUpdate OBJECT IDENTIFIER ::= { id-tamp 7 }

Housley, et al. Standards Track [Page 74]

RFC 5934 TAMP August 2010

 TAMPCommunityUpdate ::= SEQUENCE {
 version [0] TAMPVersion DEFAULT v2,
 terse [1] TerseOrVerbose DEFAULT verbose,
 msgRef TAMPMsgRef,
 updates CommunityUpdates }

 CommunityUpdates ::= SEQUENCE {
 remove [1] CommunityIdentifierList OPTIONAL,
 add [2] CommunityIdentifierList OPTIONAL }
 -- At least one must be present

 -- Community Update Confirm Message

 id-ct-TAMP-communityUpdateConfirm OBJECT IDENTIFIER ::= { id-tamp 8 }

 TAMPCommunityUpdateConfirm ::= SEQUENCE {
 version [0] TAMPVersion DEFAULT v2,
 update TAMPMsgRef,
 commConfirm CommunityConfirm }

 CommunityConfirm ::= CHOICE {
 terseCommConfirm [0] TerseCommunityConfirm,
 verboseCommConfirm [1] VerboseCommunityConfirm }

 TerseCommunityConfirm ::= StatusCode

 VerboseCommunityConfirm ::= SEQUENCE {
 status StatusCode,
 communities CommunityIdentifierList OPTIONAL }

 -- Sequence Number Adjust Message

 id-ct-TAMP-seqNumAdjust OBJECT IDENTIFIER ::= { id-tamp 10 }

 SequenceNumberAdjust ::= SEQUENCE {
 version [0] TAMPVersion DEFAULT v2,
 msgRef TAMPMsgRef }

 -- Sequence Number Adjust Confirm Message

 id-ct-TAMP-seqNumAdjustConfirm OBJECT IDENTIFIER ::= { id-tamp 11 }

 SequenceNumberAdjustConfirm ::= SEQUENCE {
 version [0] TAMPVersion DEFAULT v2,
 adjust TAMPMsgRef,
 status StatusCode }

Housley, et al. Standards Track [Page 75]

RFC 5934 TAMP August 2010

 -- TAMP Error Message

 id-ct-TAMP-error OBJECT IDENTIFIER ::= { id-tamp 9 }

 TAMPError ::= SEQUENCE {
 version [0] TAMPVersion DEFAULT v2,
 msgType OBJECT IDENTIFIER,
 status StatusCode,
 msgRef TAMPMsgRef OPTIONAL }

 -- Status Codes

 StatusCode ::= ENUMERATED {
 success (0),
 decodeFailure (1),
 badContentInfo (2),
 badSignedData (3),
 badEncapContent (4),
 badCertificate (5),
 badSignerInfo (6),
 badSignedAttrs (7),
 badUnsignedAttrs (8),
 missingContent (9),
 noTrustAnchor (10),
 notAuthorized (11),
 badDigestAlgorithm (12),
 badSignatureAlgorithm (13),
 unsupportedKeySize (14),
 unsupportedParameters (15),
 signatureFailure (16),
 insufficientMemory (17),
 unsupportedTAMPMsgType (18),
 apexTAMPAnchor (19),
 improperTAAddition (20),
 seqNumFailure (21),
 contingencyPublicKeyDecrypt (22),
 incorrectTarget (23),
 communityUpdateFailed (24),
 trustAnchorNotFound (25),
 unsupportedTAAlgorithm (26),
 unsupportedTAKeySize (27),
 unsupportedContinPubKeyDecryptAlg (28),
 missingSignature (29),
 resourcesBusy (30),
 versionNumberMismatch (31),
 missingPolicySet (32),
 revokedCertificate (33),
 unsupportedTrustAnchorFormat (34),

Housley, et al. Standards Track [Page 76]

RFC 5934 TAMP August 2010

 improperTAChange (35),
 malformed (36),
 cmsError (37),
 unsupportedTargetIdentifier (38),
 other (127) }

 -- Object Identifier Arc for Attributes

 id-attributes OBJECT IDENTIFIER ::= { joint-iso-ccitt(2) country(16)
 us(840) organization(1) gov(101) dod(2) infosec(1) 5 }

 -- id-aa-TAMP-contingencyPublicKeyDecryptKey uses
 -- PlaintextSymmetricKey syntax
 id-aa-TAMP-contingencyPublicKeyDecryptKey OBJECT IDENTIFIER ::= {
 id-attributes 63 }

 PlaintextSymmetricKey ::= OCTET STRING

 -- id-pe-wrappedApexContinKey extension

 id-pe-wrappedApexContinKey OBJECT IDENTIFIER ::=
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) pe(1) 20 }

 ApexContingencyKey ::= SEQUENCE {
 wrapAlgorithm AlgorithmIdentifier,
 wrappedContinPubKey OCTET STRING }

 END

Appendix B. Media Type Registrations

 Eleven media type registrations are provided in this appendix, one
 for each content type defined in this specification. As noted in
 Section 2, in all cases TAMP messages are encapsulated within
 ContentInfo structures. Signed messages are additionally
 encapsulated within a SignedData structure.

B.1. application/tamp-status-query

 Media type name: application

 Subtype name: tamp-status-query

 Required parameters: None

 Optional parameters: None

Housley, et al. Standards Track [Page 77]

RFC 5934 TAMP August 2010

 Encoding considerations: binary

 Security considerations: Carries a signed request for status
 information. Integrity protection is discussed in Section 4.1.
 Replay detection is discussed in Section 6.

 Interoperability considerations: None

 Published specification: RFC 5934

 Applications that use this media type: TAMP clients responding to
 requests for status information.

 Additional information:

 Magic number(s): None

 File extension(s): .tsq

 Macintosh File Type Code(s):

 Person & email address to contact for further information:

 Sam Ashmore - srashmo@radium.ncsc.mil

 Intended usage: LIMITED USE

 Restrictions on usage: None

 Author: Sam Ashmore - srashmo@radium.ncsc.mil

 Change controller: IESG

B.2. application/tamp-status-response

 Media type name: application

 Subtype name: tamp-status-response

 Required parameters: None

 Optional parameters: None

 Encoding considerations: binary

 Security considerations: Carries optionally signed status
 information. Integrity protection is discussed in Section 4.2.

Housley, et al. Standards Track [Page 78]

RFC 5934 TAMP August 2010

 Interoperability considerations: None

 Published specification: RFC 5934

 Applications that use this media type: TAMP clients responding to
 requests for status information.

 Additional information:

 Magic number(s): None

 File extension(s): .tsr

 Macintosh File Type Code(s):

 Person & email address to contact for further information:

 Sam Ashmore - srashmo@radium.ncsc.mil

 Intended usage: LIMITED USE

 Restrictions on usage: None

 Author: Sam Ashmore - srashmo@radium.ncsc.mil

 Change controller: IESG

B.3. application/tamp-update

 Media type name: application

 Subtype name: tamp-update

 Required parameters: None

 Optional parameters: None

 Encoding considerations: binary

 Security considerations: Carries a signed trust anchor update
 message. Integrity protection is discussed in Section 4.3. Replay
 detection is discussed in Section 6.

 Interoperability considerations: None

 Published specification: RFC 5934

Housley, et al. Standards Track [Page 79]

RFC 5934 TAMP August 2010

 Applications that use this media type: TAMP clients responding to
 requests to update trust anchor information.

 Additional information:

 Magic number(s): None

 File extension(s): .tur

 Macintosh File Type Code(s):

 Person & email address to contact for further information:

 Sam Ashmore - srashmo@radium.ncsc.mil

 Intended usage: LIMITED USE

 Restrictions on usage: None

 Author: Sam Ashmore - srashmo@radium.ncsc.mil

 Change controller: IESG

B.4. application/tamp-update-confirm

 Media type name: application

 Subtype name: tamp-update-confirm

 Required parameters: None

 Optional parameters: None

 Encoding considerations: binary

 Security considerations: Carries an optionally signed TAMP update
 response. Integrity protection is discussed in Section 4.4.

 Interoperability considerations: None

 Published specification: RFC 5934

 Applications that use this media type: TAMP clients responding to
 requests to update trust anchor information.

Housley, et al. Standards Track [Page 80]

RFC 5934 TAMP August 2010

 Additional information:

 Magic number(s): None

 File extension(s): .tuc

 Macintosh File Type Code(s):

 Person & email address to contact for further information:

 Sam Ashmore - srashmo@radium.ncsc.mil

 Intended usage: LIMITED USE

 Restrictions on usage: None

 Author: Sam Ashmore - srashmo@radium.ncsc.mil

 Change controller: IESG

B.5. application/tamp-apex-update

 Media type name: application

 Subtype name: tamp-apex-update

 Required parameters: None

 Optional parameters: None

 Encoding considerations: binary

 Security considerations: Carries a signed request to update an apex
 trust anchor information. Integrity protection is discussed in
 Section 4.5. Replay detection is discussed in Section 6.

 Interoperability considerations: None

 Published specification: RFC 5934

 Applications that use this media type: TAMP clients responding to
 requests to update an apex trust anchor.

Housley, et al. Standards Track [Page 81]

RFC 5934 TAMP August 2010

 Additional information:

 Magic number(s): None

 File extension(s): .tau

 Macintosh File Type Code(s):

 Person & email address to contact for further information:

 Sam Ashmore - srashmo@radium.ncsc.mil

 Intended usage: LIMITED USE

 Restrictions on usage: None

 Author: Sam Ashmore - srashmo@radium.ncsc.mil

 Change controller: IESG

B.6. application/tamp-apex-update-confirm

 Media type name: application

 Subtype name: tamp-apex-update-confirm

 Required parameters: None

 Optional parameters: None

 Encoding considerations: binary

 Security considerations: Carries an optionally signed response to an
 apex update request. Integrity protection is discussed in
 Section 4.6.

 Interoperability considerations: None

 Published specification: RFC 5934

 Applications that use this media type: TAMP clients responding to
 requests to update an apex trust anchor.

Housley, et al. Standards Track [Page 82]

RFC 5934 TAMP August 2010

 Additional information:

 Magic number(s): None

 File extension(s): .auc

 Macintosh File Type Code(s):

 Person & email address to contact for further information:

 Sam Ashmore - srashmo@radium.ncsc.mil

 Intended usage: LIMITED USE

 Restrictions on usage: None

 Author: Sam Ashmore - srashmo@radium.ncsc.mil

 Change controller: IESG

B.7. application/tamp-community-update

 Media type name: application

 Subtype name: tamp-community-update

 Required parameters: None

 Optional parameters: None

 Encoding considerations: binary

 Security considerations: Carries a signed request to update community
 membership information. Integrity protection is discussed in
 Section 4.7. Replay detection is discussed in Section 6.

 Interoperability considerations: None

 Published specification: RFC 5934

 Applications that use this media type: TAMP clients responding to
 requests to update community membership.

Housley, et al. Standards Track [Page 83]

RFC 5934 TAMP August 2010

 Additional information:

 Magic number(s): None

 File extension(s): .tcu

 Macintosh File Type Code(s):

 Person & email address to contact for further information:

 Sam Ashmore - srashmo@radium.ncsc.mil

 Intended usage: LIMITED USE

 Restrictions on usage: None

 Author: Sam Ashmore - srashmo@radium.ncsc.mil

 Change controller: IESG

B.8. application/tamp-community-update-confirm

 Media type name: application

 Subtype name: tamp-community-update-confirm

 Required parameters: None

 Optional parameters: None

 Encoding considerations: binary

 Security considerations: Carries an optionally signed response to a
 community update request. Integrity protection is discussed in
 Section 4.8.

 Interoperability considerations: None

 Published specification: RFC 5934

 Applications that use this media type: TAMP clients responding to
 requests to update community membership.

Housley, et al. Standards Track [Page 84]

RFC 5934 TAMP August 2010

 Additional information:

 Magic number(s): None

 File extension(s): .cuc

 Macintosh File Type Code(s):

 Person & email address to contact for further information:

 Sam Ashmore - srashmo@radium.ncsc.mil

 Intended usage: LIMITED USE

 Restrictions on usage: None

 Author: Sam Ashmore - srashmo@radium.ncsc.mil

 Change controller: IESG

B.9. application/tamp-sequence-adjust

 Media type name: application

 Subtype name: tamp-sequence-adjust

 Required parameters: None

 Optional parameters: None

 Encoding considerations: binary

 Security considerations: Carries a signed request to update sequence
 number information. Integrity protection is discussed in
 Section 4.9. Replay detection is discussed in Section 6.

 Interoperability considerations: None

 Published specification: RFC 5934

 Applications that use this media type: TAMP clients responding to
 requests to update sequence number information.

Housley, et al. Standards Track [Page 85]

RFC 5934 TAMP August 2010

 Additional information:

 Magic number(s): None

 File extension(s): .tsa

 Macintosh File Type Code(s):

 Person & email address to contact for further information:

 Sam Ashmore - srashmo@radium.ncsc.mil

 Intended usage: LIMITED USE

 Restrictions on usage: None

 Author: Sam Ashmore - srashmo@radium.ncsc.mil

 Change controller: IESG

B.10. application/tamp-sequence-adjust-confirm

 Media type name: application

 Subtype name: tamp-sequence-adjust-confirm

 Required parameters: None

 Optional parameters: None

 Encoding considerations: binary

 Security considerations: Carries an optionally signed sequence number
 adjust confirmation message. Integrity protection is discussed in
 Section 4.10.

 Interoperability considerations: None

 Published specification: RFC 5934

 Applications that use this media type: TAMP clients responding to
 requests to update sequence number information.

Housley, et al. Standards Track [Page 86]

RFC 5934 TAMP August 2010

 Additional information:

 Magic number(s): None

 File extension(s): .sac

 Macintosh File Type Code(s):

 Person & email address to contact for further information:

 Sam Ashmore - srashmo@radium.ncsc.mil

 Intended usage: LIMITED USE

 Restrictions on usage: None

 Author: Sam Ashmore - srashmo@radium.ncsc.mil

 Change controller: IESG

B.11. application/tamp-error

 Media type name: application

 Subtype name: tamp-error

 Required parameters: None

 Optional parameters: None

 Encoding considerations: binary

 Security considerations: Carries optionally signed error information
 collecting during TAMP processing. Integrity protection is discussed
 in Section 4.11.

 Interoperability considerations: None

 Published specification: RFC 5934

 Applications that use this media type: TAMP clients processing TAMP
 messages.

Housley, et al. Standards Track [Page 87]

RFC 5934 TAMP August 2010

 Additional information:

 Magic number(s): None

 File extension(s): .ter

 Macintosh File Type Code(s):

 Person & email address to contact for further information:

 Sam Ashmore - srashmo@radium.ncsc.mil

 Intended usage: LIMITED USE

 Restrictions on usage: None

 Author: Sam Ashmore - srashmo@radium.ncsc.mil

 Change controller: IESG

Appendix C. TAMP over HTTP

 This appendix describes the formatting and transportation conventions
 for the TAMP messages when carried by HTTP [RFC2616]. Each TAMP
 message type is covered by a subsection below. Each TAMP request
 message sent via HTTP is responded to either with an HTTP response
 containing a TAMP response or error or, if failure occurs prior to
 invoking TAMP, an HTTP error. TAMP response, confirmation, and error
 messages are not suitable for caching. In order for TAMP clients and
 servers using HTTP to interoperate, the following rules apply.

 o Clients MUST use the POST method to submit their requests.

 o Servers MUST use the 200 response code for successful responses.

 o Clients MAY attempt to send HTTPS requests using Transport Layer
 Security (TLS) 1.0 or later, although servers are not required to
 support TLS.

 o Servers MUST NOT assume client support for any type of HTTP
 authentication such as cookies, Basic authentication, or Digest
 authentication.

 o Clients and servers are expected to follow the other rules and
 restrictions in [RFC2616]. Note that some of those rules are for
 HTTP methods other than POST; clearly, only the rules that apply
 to POST are relevant for this specification.

Housley, et al. Standards Track [Page 88]

RFC 5934 TAMP August 2010

C.1. TAMP Status Query Message

 A TAMP Status Query Message using the POST method is constructed as
 follows: The Content-Type header MUST have the value "application/
 tamp-status-query".

 The body of the message is the binary value of the DER encoding of
 the TAMPStatusQuery, wrapped in a CMS body as described in Section 2.

C.2. TAMP Status Response Message

 An HTTP-based TAMP Status Response message is composed of the
 appropriate HTTP headers, followed by the binary value of the DER
 encoding of the TAMPStatusResponse, wrapped in a CMS body as
 described in Section 2.

 The Content-Type header MUST have the value "application/
 tamp-status-response."

C.3. Trust Anchor Update Message

 A Trust Anchor Update Message using the POST method is constructed as
 follows: The Content-Type header MUST have the value "application/
 tamp-update".

 The body of the message is the binary value of the DER encoding of
 the TAMPUpdate, wrapped in a CMS body as described in Section 2.

C.4. Trust Anchor Update Confirm Message

 An HTTP-based Trust Anchor Update Confirm message is composed of the
 appropriate HTTP headers, followed by the binary value of the DER
 encoding of the TAMPUpdateConfirm, wrapped in a CMS body as described
 in Section 2.

 The Content-Type header MUST have the value "application/
 tamp-update-confirm".

C.5. Apex Trust Anchor Update Message

 An Apex Trust Anchor Update Message using the POST method is
 constructed as follows: The Content-Type header MUST have the value
 "application/tamp-apex-update".

 The body of the message is the binary value of the DER encoding of
 the TAMPApexUpdate, wrapped in a CMS body as described in Section 2.

Housley, et al. Standards Track [Page 89]

RFC 5934 TAMP August 2010

C.6. Apex Trust Anchor Update Confirm Message

 An HTTP-based Apex Trust Anchor Update Confirm message is composed of
 the appropriate HTTP headers, followed by the binary value of the DER
 encoding of the TAMPApexUpdateConfirm, wrapped in a CMS body as
 described in Section 2.

 The Content-Type header MUST have the value "application/
 tamp-apex-update-confirm".

C.7. Community Update Message

 A Community Update Message using the POST method is constructed as
 follows: The Content-Type header MUST have the value "application/
 tamp-community-update".

 The body of the message is the binary value of the DER encoding of
 the TAMPCommunityUpdate, wrapped in a CMS body as described in
 Section 2.

C.8. Community Update Confirm Message

 An HTTP-based Community Update Confirm message is composed of the
 appropriate HTTP headers, followed by the binary value of the DER
 encoding of the TAMPCommunityUpdateConfirm, wrapped in a CMS body as
 described in Section 2.

 The Content-Type header MUST have the value "application/
 tamp-community-update-confirm".

C.9. Sequence Number Adjust Message

 A Sequence Number Adjust Message using the POST method is constructed
 as follows: The Content-Type header MUST have the value "application/
 tamp-sequence-adjust".

 The body of the message is the binary value of the DER encoding of
 the SequenceNumberAdjust, wrapped in a CMS body as described in
 Section 2.

C.10. Sequence Number Adjust Confirm Message

 An HTTP-based Sequence Number Adjust Confirm message is composed of
 the appropriate HTTP headers, followed by the binary value of the DER
 encoding of the SequenceNumberAdjustConfirm, wrapped in a CMS body as
 described in Section 2.

Housley, et al. Standards Track [Page 90]

RFC 5934 TAMP August 2010

 The Content-Type header MUST have the value "application/
 tamp-sequence-adjust-confirm".

C.11. TAMP Error Message

 An HTTP-based TAMP Error message is composed of the appropriate HTTP
 headers, followed by the binary value of the DER encoding of the
 TAMPError, wrapped in a CMS body as described in Section 2.

 The Content-Type header MUST have the value "application/tamp-error".

Authors’ Addresses

 Russ Housley
 Vigil Security, LLC
 918 Spring Knoll Drive
 Herndon, VA 20170
 USA

 EMail: housley@vigilsec.com

 Sam Ashmore
 National Security Agency
 Suite 6751
 9800 Savage Road
 Fort Meade, MD 20755
 USA

 EMail: srashmo@radium.ncsc.mil

 Carl Wallace
 Cygnacom Solutions
 Suite 5400
 7925 Jones Branch Drive
 McLean, VA 22102
 USA

 EMail: cwallace@cygnacom.com

Housley, et al. Standards Track [Page 91]

