
Internet Engineering Task Force (IETF) R. Housley
Request for Comments: 6010 Vigil Security, LLC
Category: Standards Track S. Ashmore
ISSN: 2070-1721 National Security Agency
 C. Wallace
 Cygnacom Solutions
 September 2010

 Cryptographic Message Syntax (CMS) Content Constraints Extension

Abstract

 This document specifies the syntax and semantics for the
 Cryptographic Message Syntax (CMS) content constraints extension.
 This extension is used to determine whether a public key is
 appropriate to use in the processing of a protected content. In
 particular, the CMS content constraints extension is one part of the
 authorization decision; it is used when validating a digital
 signature on a CMS SignedData content or validating a message
 authentication code (MAC) on a CMS AuthenticatedData content or CMS
 AuthEnvelopedData content. The signed or authenticated content type
 is identified by an ASN.1 object identifier, and this extension
 indicates the content types that the public key is authorized to
 validate. If the authorization check is successful, the CMS content
 constraints extension also provides default values for absent
 attributes.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6010.

Housley, et al. Standards Track [Page 1]

RFC 6010 CMS Content Constraints September 2010

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Housley, et al. Standards Track [Page 2]

RFC 6010 CMS Content Constraints September 2010

Table of Contents

 1. Introduction . 4
 1.1. CMS Data Structures 5
 1.2. CMS Content Constraints Model 10
 1.3. Attribute Processing 11
 1.4. Abstract Syntax Notation 13
 1.5. Terminology . 13
 2. CMS Content Constraints Extension 13
 3. Certification Path Processing 16
 3.1. Inputs . 17
 3.2. Initialization . 18
 3.3. Basic Certificate Processing 19
 3.4. Preparation for Certificate i+1 20
 3.5. Wrap-Up Procedure . 20
 3.6. Outputs . 21
 4. CMS Content Constraints Processing 21
 4.1. CMS Processing and CCC Information Collection 22
 4.1.1. Collection of Signer or Originator Information 24
 4.1.2. Collection of Attributes 25
 4.1.3. Leaf Node Classification 25
 4.2. Content Type and Constraint Checking 26
 4.2.1. Inputs . 27
 4.2.2. Processing . 27
 4.2.3. Outputs . 27
 5. Subordination Processing in TAMP 28
 6. Security Considerations 29
 7. Acknowledgments . 32
 8. References . 33
 8.1. Normative References 33
 8.2. Informative References 34
 Appendix A. ASN.1 Modules . 35
 A.1. ASN.1 Module Using 1993 Syntax 35
 A.2. ASN.1 Module Using 1988 Syntax 37

Housley, et al. Standards Track [Page 3]

RFC 6010 CMS Content Constraints September 2010

1. Introduction

 The Cryptographic Message Syntax (CMS) SignedData [RFC5652] construct
 is used to sign many things, including cryptographic module firmware
 packages [RFC4108] and certificate management messages [RFC5272].
 Similarly, the CMS AuthenticatedData and CMS AuthEnvelopedData
 constructs provide authentication, which can be affiliated with an
 originator’s static public key. CMS Content Constraints (CCC)
 information is conveyed via an extension in a certificate or trust
 anchor object that contains the originator’s or signer’s public key.

 This document assumes a particular authorization model, where each
 originator is associated with one or more authorized content types.
 A CMS SignedData, AuthenticatedData, or AuthEnvelopedData will be
 considered valid only if the signature or message authentication code
 (MAC) verification process is successful and the originator is
 authorized for the encapsulated content type. For example, one
 originator might be acceptable for verifying signatures on firmware
 packages, but that same originator may be unacceptable for verifying
 signatures on certificate management messages.

 An originator’s constraints are derived from the certification path
 used to validate the originator’s public key. Constraints are
 associated with trust anchors [RFC5914], and constraints are
 optionally included in public key certificates [RFC5280]. Using the
 CMS Content Constraints (CCC) extension, a trust anchor lists the
 content types for which it may be used. A trust anchor may also
 include further constraints associated with each of the content
 types. Certificates in a certification path may contain a CCC
 extension that further constrains the authorization for subordinate
 certificates in the certification path.

 Delegation of authorizations is accomplished using the CCC
 certificate extension. An entity may delegate none, some, or all of
 its authorizations to another entity by issuing it a certificate with
 an appropriate CCC extension. Absence of a CCC certificate extension
 in a certificate means that the subject is not authorized for any
 content type. If the entity is an end entity, it may perform CCC
 delegation, i.e., through the use of proxy certificates. However,
 usage of proxy certificates is not described in this specification.

 While processing the certification path, relying parties MUST ensure
 that authorizations of a subject of a certificate are constrained by
 the authorizations of the issuer of that certificate. In other
 words, when a content signature or MAC is validated, checks MUST be
 performed to ensure that the encapsulated content type is within the
 permitted set for the trust anchor (TA) and each certificate in the

Housley, et al. Standards Track [Page 4]

RFC 6010 CMS Content Constraints September 2010

 path and that the constraints associated with the specific content
 type, if any, are satisfied by the TA and each certificate in the
 path.

 Additionally, this document provides subordination rules for
 processing CCC extensions within the Trust Anchor Management Protocol
 (TAMP) and relies on vocabulary from that document [RFC5934].

1.1. CMS Data Structures

 CMS encapsulation can be used to compose structures of arbitrary
 breadth and depth. This is achieved using a variety of content types
 that achieve different compositional goals. A content type is an
 arbitrary structure that is identified using an object identifier.
 This document defines two categories of content types: intermediate
 content types and leaf content types. Intermediate content types are
 those designed specifically to encapsulate one or more additional
 content types with the addition of some service (such as a
 signature). Leaf content types are those designed to carry specific
 information. (Leaf content types may contain other content types.)
 CCC is not used to constrain MIME encapsulated data, i.e., CCC
 processing stops when a MIME encapsulation layer is encountered.
 SignedData [RFC5652] and ContentCollection [RFC4073] are examples of
 intermediate content types. FirmwarePkgData [RFC4108] and TSTInfo
 [RFC3161] are examples of leaf content types. Protocol designers may
 provide an indication regarding the classification of content types
 within the protocol. Four documents define the primary intermediate
 content types:

 RFC 5652 [RFC5652]: Cryptographic Message Syntax (CMS)

 - SignedData

 - EnvelopedData

 - EncryptedData

 - DigestedData

 - AuthenticatedData

 RFC 5083 [RFC5083]: The Cryptographic Message Syntax (CMS)
 AuthEnvelopedData Content Type

 - AuthEnvelopedData

Housley, et al. Standards Track [Page 5]

RFC 6010 CMS Content Constraints September 2010

 RFC 4073 [RFC4073]: Protecting Multiple Contents with the
 Cryptographic Message Syntax (CMS)

 - ContentCollection

 - ContentWithAttributes

 RFC 3274 [RFC3274]: Compressed Data Content Type for Cryptographic
 Message Syntax (CMS)

 - CompressedData

 Some intermediate nodes can also function as leaf nodes in some
 situations. EncryptedData, EnvelopedData, and AuthEnvelopedData
 nodes will function as intermediate nodes for recipients that can
 decrypt the content and as encrypted leaf nodes for recipients who
 cannot decrypt the content.

 When using CMS, the outermost structure is always ContentInfo.
 ContentInfo consists of an object identifier and an associated
 content. The object identifier describes the structure of the
 content. Object identifiers are used throughout the CMS family of
 specifications to identify structures.

 Using the content types listed above, ignoring for the moment
 ContentCollection, encapsulation can be used to create structures of
 arbitrary depth. Two examples based on [RFC4108] are shown in Figure
 1 and Figure 2.

 When ContentCollection is used in conjunction with the other content
 types, tree-like structures can be defined, as shown in Figure 3.

 The examples in Figures 1, 2, and 3 can each be represented as a
 tree: the root node is the outermost ContentInfo, and the leaf nodes
 are the encapsulated contents. The trees are shown in Figure 4.

Housley, et al. Standards Track [Page 6]

RFC 6010 CMS Content Constraints September 2010

 +---+
 | ContentInfo |
 | |
 | +---+ |
 | | SignedData | | | |
 | | | |
 | | +---+ | |
 | | | FirmwarePackage | | |
 | | | | | |
 | | | | | |
 | | +---+ | |
 | +---+ |
 +---+

 Figure 1. Example of a Signed Firmware Package

 +---+
 | ContentInfo |
 | |
 | +---+ |
 | | SignedData | | | | | |
 | | | |
 | | +---+ | |
 | | | EncryptedData | | |
 | | | | | |
 | | | +---+ | | |
 | | | | FirmwarePackage | | | |
 | | | | | | | |
 | | | | | | | |
 | | | +---+ | | |
 | | +---+ | |
 | +---+ |
 +---+

 Figure 2. Example of a Signed and Encrypted Firmware Package

Housley, et al. Standards Track [Page 7]

RFC 6010 CMS Content Constraints September 2010

 +---+
 | ContentInfo |
 | |
 | +---+ |
 | | SignedData | | | | | | | | | | | |
 | | | |
 | | +---+ | |
 | | | ContentCollection | | |
 | | | | | |
 | | | +----------------------+ +--------------------+ | | |
 | | | | SignedData | | SignedData | | | |
 | | | | | | | | | |
 | | | | +------------------+ | | +----------------+ | | | |
 | | | | | EncryptedData | | | | Firmware | | | | |
 | | | | | | | | | Package | | | | |
 | | | | | +--------------+ | | | | | | | | |
 | | | | | | Firmware | | | | +----------------+ | | | |
 | | | | | | Package | | | +--------------------+ | | |
 | | | | | | | | | | | |
 | | | | | +--------------+ | | | | |
 | | | | +------------------+ | | | |
 | | | +----------------------+ | | |
 | | +---+ | |
 | +---+ |
 +---+

 Figure 3. Example of Two Firmware Packages in a Collection

Housley, et al. Standards Track [Page 8]

RFC 6010 CMS Content Constraints September 2010

 +---+
 | |
 | CMS PATH RESULTING CMS PATH RESULTING |
 | FROM FIGURE 1. FROM FIGURE 2. |
 | |
 | ContentInfo ContentInfo |
 | | | |
 | V V |
 | SignedData SignedData |
 | | | |
 | V V |
 | FirmwarePackage EncryptedData |
 | | |
 | V |
 | FirmwarePackage |
 | |
 | |
 | CMS PATHS RESULTING FROM FIGURE 3. |
 | |
 | ContentInfo |
 | | |
 | V |
 | SignedData |
 | | |
 | V |
 | ContentCollection |
 | | |
 | +----------+--------------+ |
 | | | |
 | V V |
 | SignedData SignedData |
 | | | |
 | V V |
 | EncryptedData FirmwarePackage |
 | | |
 | V |
 | FirmwarePackage |
 | |
 +---+

 Figure 4. Example CMS Path Structures

 These examples do not illustrate all of the details of CMS
 structures; most CMS protecting content types, and some leaf-node
 content types, contain attributes. Attributes from intermediate
 nodes can influence processing and handling of the CMS protecting
 content type or the encapsulated content type. Attributes from leaf
 nodes may be checked independent of the CCC processing, but such

Housley, et al. Standards Track [Page 9]

RFC 6010 CMS Content Constraints September 2010

 processing is not addressed in this document. Throughout this
 document, paths through the tree structure from a root node to a leaf
 node in a CMS-protected message are referred to as CMS paths.

1.2. CMS Content Constraints Model

 The CCC extension is used to restrict the types of content for which
 a particular public key can be used to verify a signature or MAC.
 Trust in a public key is established by building and validating a
 certification path from a trust anchor to the subject public key.
 Section 6 of [RFC5280] describes the algorithm for certification path
 validation, and the basic path validation algorithm is augmented, as
 described in Section 3 of this document, to include processing
 required to determine the CMS content constraints that have been
 delegated to the subject public key. If the subject public key is
 explicitly trusted (the public key belongs to a trust anchor), then
 any CMS content constraints associated with the trust anchor are used
 directly. If the subject public key is not explicitly trusted, then
 the CMS content constraints are determined by calculating the
 intersection of the CMS content constraints included in all the
 certificates in a valid certification path from the trust anchor to
 the subject public key, including those associated with the trust
 anchor.

 CMS enables the use of multiple nested signatures or MACs. Each
 signature or MAC can protect and associate attributes with an
 encapsulated data object. The CMS content constraints extension is
 associated with a public key, and that public key is used to verify a
 signature or a MAC.

 The CMS content constraints mechanism can be used to place limits on
 the use of the subject public key used for authentication or
 signature verification for one or more specific content types.
 Furthermore, within each permitted content type, a permitted set of
 values can be expressed for one or more specific attribute types.

 When a leaf content type is encapsulated by multiple intermediate
 authentication layers, the signer or originator closest to a leaf
 node must be authorized to serve as a source for the leaf content
 type; outer signers or originators need not be authorized to serve as
 a source, but must be authorized for the leaf content type. All
 signers or originators must be authorized for the attributes that
 appear in a CMS path.

 A signer or originator may be constrained to use a specific set of
 attribute values for some attribute types when producing a particular
 content type. If a signer or originator is constrained for a
 particular attribute that does not appear in a protected content of

Housley, et al. Standards Track [Page 10]

RFC 6010 CMS Content Constraints September 2010

 the type for which the constraint is defined, the constraint serves
 as a default attribute, i.e., the payload should be processed as if
 an attribute equal to the constraint appeared in the protected
 content. However, in some cases, the processing rules for a
 particular content type may disallow the usage of default values for
 some attribute types and require a signer to explicitly assert the
 attribute to satisfy the constraint. Signer constraints are output
 for use in leaf node processing or other processing not addressed by
 this specification.

 Three models for processing attributes were considered:

 o Each signer or originator must be authorized for attributes it
 asserts.

 o Each signer or originator must be authorized for attributes it
 asserts and attributes contained in the content it authenticates.

 o Each signer or originator must be authorized for attributes it
 asserts, attributes contained in the content it authenticates, and
 attributes contained in content that authenticates it, i.e., all
 signers or originators must be authorized for all attributes
 appearing in the CMS path.

 The third model is used in this specification.

1.3. Attribute Processing

 This specification defines a mechanism for enforcing constraints on
 content types and attributes. Where content types are
 straightforward to process because there is precisely one content
 type of interest for a given CMS path, attributes are more
 challenging. Attributes can be asserted at many different points in
 a CMS path. Some attributes may, by their nature, be applicable to a
 specific node of a CMS path; for example, ContentType and
 MessageDigest attributes apply to a specific SignerInfo object.
 Other attributes may apply to a less well-defined target; for
 example, a ContentCollection may appear as the payload within a
 ContentWithAttributes object.

 Since there is no automated means of determining what an arbitrary
 attribute applies to or how the attribute should be used, CCC
 processing simply collects attributes and makes them available for
 applications to use during leaf node processing. Implementations
 SHOULD refrain from collecting attributes that are known to be
 inapplicable to leaf node processing, for example, ContentType and
 MessageDigest attributes.

Housley, et al. Standards Track [Page 11]

RFC 6010 CMS Content Constraints September 2010

 Some attributes contain multiple values. Attribute constraints
 expressed in a CCC extension may contain multiple values. Attributes
 expressed in a constraint that do not appear in a CMS path are
 returned as default attributes. Default attributes may have multiple
 values. Attributes are returned to an application via two output
 variables: cms_effective_attributes and cms_default_attributes. An
 attribute may be absent, present with one value, or present with
 multiple values in a CMS path and/or in CMS content constraints. A
 summary of the resulting nine possible combinations is below.

 Attribute absent in CMS path; absent in cms_constraints: no
 action.

 Attribute absent in CMS path; single value in cms_constraints: the
 value from cms_constraints is added to cms_default_attributes.

 Attribute absent in CMS path; multiple values in cms_constraints:
 the values from cms_constraints are added to
 cms_default_attributes.

 Attribute is present with a single value in CMS path; absent in
 cms_constraints: the value from CMS path is returned in
 cms_effective_attributes.

 Attribute is present with a single value in CMS path; single value
 in cms_constraints: the value from CMS path must match the value
 from cms_constraints. If successful match, the value is returned
 in cms_effective_attribute. If no match, constraints processing
 fails.

 Attribute is present with a single value in CMS path; multiple
 values in cms_constraints: the value from CMS path must match a
 value from cms_constraints. If successful match, the value from
 the CMS path is returned in cms_effective_attribute. If no match,
 constraints processing fails.

 Attribute is present with multiple values in CMS path; absent in
 cms_constraints: the values from CMS path are returned in
 cms_effective_attributes.

 Attribute is present with multiple values; single value in
 cms_constraints: the values from CMS path must match the value
 from cms_constraints (i.e., all values must be identical). If
 successful match, the values from the CMS path are returned in
 cms_effective_attribute. If no match, constraints processing
 fails.

Housley, et al. Standards Track [Page 12]

RFC 6010 CMS Content Constraints September 2010

 Attribute is present with multiple values; multiple values in
 cms_constraints: each value from CMS path must match a value from
 cms_constraints. If each comparison is successful, the values
 from the CMS path are returned in cms_effective_attribute. If a
 comparison fails, constraints processing fails.

1.4. Abstract Syntax Notation

 All X.509 certificate [RFC5280] extensions are defined using ASN.1
 [X.680][X.690].

 CMS content types [RFC5652] are also defined using ASN.1.

 CMS uses the Attribute type. The syntax of Attribute is compatible
 with X.501 [X.501].

1.5. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. CMS Content Constraints Extension

 The CMS content constraints extension provides a mechanism to
 constrain authorization during delegation. If the CMS content
 constraints extension is not present, then the subject of the trust
 anchor or certificate is not authorized for any content type, with an
 exception for apex trust anchors, which are implicitly authorized for
 all content types. A certificate issuer may use the CMS content
 constraints extension for one or more of the following purposes:

 o Limit the certificate subject to a subset of the content types for
 which the certificate issuer is authorized.

 o Add constraints to a previously unconstrained content type.

 o Add additional constraints to a previously constrained content
 type.

 The CMS content constraints extension MAY be critical, and it MUST
 appear at most one time in a trust anchor or certificate. The CMS
 content constraints extension is identified by the
 id-pe-cmsContentConstraints object identifier:

 id-pe-cmsContentConstraints OBJECT IDENTIFIER ::=
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) pe(1) 18 }

Housley, et al. Standards Track [Page 13]

RFC 6010 CMS Content Constraints September 2010

 The syntax for the CMS content constraints extension is:

 CMSContentConstraints ::= SEQUENCE SIZE (1..MAX) OF
 ContentTypeConstraint

 ContentTypeGeneration ::= ENUMERATED {
 canSource(0),
 cannotSource(1)}

 ContentTypeConstraint ::= SEQUENCE {
 contentType OBJECT IDENTIFIER,
 canSource ContentTypeGeneration DEFAULT canSource,
 attrConstraints AttrConstraintList OPTIONAL }

 AttrConstraintList ::= SEQUENCE SIZE (1..MAX) OF AttrConstraint

 AttrConstraint ::= SEQUENCE {
 attrType AttributeType,
 attrValues SET SIZE (1..MAX) OF AttributeValue }

 id-ct-anyContentType OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16)
 ct(1) 0 }

 The CMSContentConstraints is a list of permitted content types and
 associated constraints. A particular content type MUST NOT appear
 more than once in a CMSContentConstraints. When the extension is
 present, the certificate subject is being authorized by the
 certificate issuer to sign or authenticate the content types in the
 permitted list as long as the provided constraints, if any, are met.
 The relying party MUST ensure that the certificate issuer is
 authorized to delegate the privileges. When the extension is absent,
 the certificate subject is not authorized for any content type.

 The special id-ct-anyContentType value indicates the certificate
 subject is being authorized for any content type without any
 constraints. Where id-ct-anyContentType appears alongside a specific
 content type, the specific content type is authoritative. The
 id-ct-anyContentType object identifier can be used in trust anchors
 when the trust anchor is unconstrained. Where id-ct-anyContentType
 is asserted in the contentType field, the canSource field MUST be
 equal to the canSource enumerated value and attrConstraints MUST be
 absent, indicating that the trust anchor can serve as a source for
 any content type without any constraints.

Housley, et al. Standards Track [Page 14]

RFC 6010 CMS Content Constraints September 2010

 The fields of the ContentTypeConstraint type have the following
 meanings:

 contentType is an object identifier that specifies a permitted
 content type. When the extension appears in an end entity
 certificate, it indicates that a content of this type can be
 verified using the public key in the certificate. When the
 extension appears in a certification authority (CA) certificate,
 it indicates that a content of this type can be verified using the
 public key in the CA certificate or the public key in an
 appropriately authorized subordinate certificate. For example,
 this field contains id-ct-firmwarePackage when the public key can
 be used to verify digital signatures on firmware packages defined
 in [RFC4108]. A particular content type MUST NOT appear more than
 once in the list. Intermediate content types MUST NOT be included
 in the list of permitted content types. Since the content type of
 intermediate nodes is not subject to CMS Constraint Processing,
 originators need not be authorized for intermediate node content
 types. The intermediate content types are:

 id-signedData,

 id-envelopedData,

 id-digestedData,

 id-encryptedData,

 id-ct-authEnvelopedData,

 id-ct-authData,

 id-ct-compressedData,

 id-ct-contentCollection, and

 id-ct-contentWithAttrs.

 canSource is an enumerated value. If the canSource field is equal
 to canSource, then the subject can be the innermost authenticator
 of the specified content type. For a subject to be authorized to
 source a content type, the issuer of the subject certificate MUST
 also be authorized to source the content type. Regardless of the
 flag value, a subject can sign or authenticate a content that is
 already authenticated (when SignedData, AuthenticatedData, or
 AuthEnvelopedData is already present).

Housley, et al. Standards Track [Page 15]

RFC 6010 CMS Content Constraints September 2010

 attrConstraints is an optional field that contains constraints that
 are specific to the content type. If the attrConstraints field is
 absent, the public key can be used to verify the specified content
 type without further checking. If the attrConstraints field is
 present, then the public key can only be used to verify the
 specified content type if all of the constraints are satisfied. A
 particular constraint type, i.e., attrValues structure for a
 particular attribute type, MUST NOT appear more than once in the
 attrConstraints for a specified content type. Constraints are
 checked by matching the values in the constraint against the
 corresponding attribute value(s) in the CMS path. Constraints
 processing fails if the attribute is present and the value is not
 one of the values provided in the constraint. Constraint checking
 is described fully in Section 4.

 The fields of the AttrConstraint type have the following meanings:

 attrType is an AttributeType, which is an object identifier that
 names an attribute. For a content encapsulated in a CMS
 SignedData, AuthenticatedData, or AuthEnvelopedData to satisfy
 the constraint, if the attributes that are covered by the
 signature or MAC include an attribute of the same type, then
 the attribute value MUST be equal to one of the values supplied
 in the attrValues field. Attributes that are not covered by
 the signature or MAC are not checked against constraints.
 Attribute types that do not appear as an AttrConstraint are
 unconstrained, i.e., the signer or originator is free to assert
 any value.

 attrValues is a set of AttributeValue. The structure of each of
 the values in attrValues is determined by attrType. Constraint
 checking is described fully in Section 4.

3. Certification Path Processing

 When CMS content constraints are used for authorization, the
 processing described in this section SHOULD be included in the
 certification path validation. The processing is presented as an
 augmentation to the certification path validation algorithm described
 in Section 6 of [RFC5280], as shown in the figure below. Alternative
 implementations are allowed but MUST yield the same results as
 described below.

Housley, et al. Standards Track [Page 16]

RFC 6010 CMS Content Constraints September 2010

 CCC-related inputs
 + inhibitAnyContentType flag
 + absenceEqualsUnconstrained flag
 + Trust anchor CCC extension
 + Content type of interest (cms_content_type)
 + Attributes of interest (cms_effective_attributes)
 |
 |
 _______________V________________________
 | |
 | CCC-aware Certification Path Processor |
 |__|
 |
 |
 V
 CCC-related outputs upon success
 + Applicable content type constraints (subject_constraints)
 + Constrained attributes not present in cms_effective_attributes
 (subject_default_attributes)
 + Content types not propagated to end entity (excluded_content_types)

 Figure 5. Certification Path Processing Inputs and Outputs

 Certification path processing validates the binding between the
 subject and subject public key. If a valid certification path cannot
 be found, then the corresponding CMS path MUST be rejected.

3.1. Inputs

 Two boolean values are provided as input: inhibitAnyContentType and
 absenceEqualsUnconstrained.

 The inhibitAnyContentType flag is used to govern processing of the
 special id-ct-anyContentType value. When inhibitAnyContentType is
 true, id-ct-anyContentType is not considered to match a content type.
 When inhibitAnyContentType is false, id-ct-anyContentType is
 considered to match any content type.

 The absenceEqualsUnconstrained flag is used to govern the meaning of
 CCC absence. When absenceEqualsUnconstrained is true, a trust anchor
 without a CCC extension is considered to be unconstrained and a
 certificate without a CCC extension is considered to have the same
 CCC privileges as its issuer. When absenceEqualsUnconstrained is
 false, a trust anchor or certificate without a CCC extension is not
 authorized for any content types.

 Neither of these flags has any bearing on an apex trust anchor, which
 is always unconstrained by definition.

Housley, et al. Standards Track [Page 17]

RFC 6010 CMS Content Constraints September 2010

 If a trust anchor used for path validation is authorized, then the
 trust anchor MAY include a CCC extension. A trust anchor may be
 constrained or unconstrained. If unconstrained, the trust anchor
 MUST either include a CMS Content Constraints extension containing
 the special id-ct-anyContentType value and inhibitAnyContentType is
 false or the trust anchor MUST have no CCC extension and
 absenceEqualsUnconstrained is true. If the trust anchor does not
 contain a CMS Content Constraints structure and
 absenceEqualsUnconstrained is false, the CMS content constraints
 processing fails. If the trust anchor contains a CCC extension with
 a single entry containing id-ct-anyContentType and
 inhibitAnyContentType is true, the CMS content constraints processing
 fails.

 The content type of the protected content being verified can be
 provided as input along with the set of attributes collected from the
 CMS path in order to determine if the certification path is valid for
 a given context. Alternatively, the id-ct-anyContentType value can
 be provided as the content type input, along with an empty set of
 attributes, to determine the full set of constraints associated with
 a public key in the end entity certificate in the certification path
 being validated.

 Trust anchors may produce CMS-protected contents. When validating
 messages originated by a trust anchor, certification path validation
 as described in Section 6 of [RFC5280] is not necessary, but
 constraints processing MUST still be performed for the trust anchor.
 In such cases, the initialization and wrap-up steps described below
 can be performed to determine if the public key in the trust anchor
 is appropriate to use in the processing of a protected content.

3.2. Initialization

 Create an input variable named cms_content_type and set it equal to
 the content type provided as input.

 Create an input variable named cms_effective_attributes and set it
 equal to the set of attributes provided as input.

 Create a state variable named working_permitted_content_types. The
 initial value of working_permitted_content_types is the permitted
 content type list from the trust anchor, including any associated
 constraints.

 Create a state variable named excluded_content_types. The initial
 value of excluded_content_types is empty.

Housley, et al. Standards Track [Page 18]

RFC 6010 CMS Content Constraints September 2010

 Create a state variable of type SEQUENCE OF AttrConstraint named
 subject_default_attributes and initialize it to empty.

 Create a state variable of type SEQUENCE OF ContentTypeConstraint
 named subject_constraints and initialize it to empty.

3.3. Basic Certificate Processing

 If the CCC extension is not present in the certificate, check the
 value of absenceEqualsUnconstrained. If false, set
 working_permitted_content_types to empty. If true,
 working_permitted_content_types is unchanged. In either case, no
 further CCC processing is required for the certificate.

 If inhibitAnyContenType is true, discard any entries in the CCC
 extension with a content type value equal to id-ct-anyContentType.

 For each entry in the permitted content type list sequence in the CMS
 content constraints extension, the following steps are performed:

 - If the entry contains the special id-ct-anyContentType value, skip
 to the next entry.

 - If the entry contains a content type that is present in
 excluded_content_types, skip to the next entry.

 - If the entry includes a content type that is not present in
 working_permitted_content_types, determine if
 working_permitted_content_types contains an entry equal to the
 special id-ct-anyContentType value. If no, no action is taken and
 working_permitted_content_types is unchanged. If yes, add the
 entry to working_permitted_content_types.

 - If the entry includes a content type that is already present in
 working_permitted_content_types, then the constraints in the entry
 can further reduce the authorization by adding constraints to
 previously unconstrained attributes or by removing attribute
 values from the attrValues set of a constrained attribute. The
 canSource flag is set to cannotSource unless it is canSource in
 the working_permitted_content_types entry and in the entry. The
 processing actions to be performed for each constraint in the
 AttrConstraintList follow:

 -- If the constraint includes an attribute type that is not
 present in the corresponding working_permitted_content_types
 entry, add the attribute type and the associated set of
 attribute values to working_permitted_content_types entry.

Housley, et al. Standards Track [Page 19]

RFC 6010 CMS Content Constraints September 2010

 -- If the constraint includes an attribute type that is already
 present in the corresponding working_permitted_content_types
 entry, then compute the intersection of the set of attribute
 values from the working_permitted_content_types entry and the
 constraint. If the intersection contains at least one
 attribute value, then the set of attribute values in
 working_permitted_content_types entry is assigned the
 intersection. If the intersection is empty, then the entry is
 removed from working_permitted_content_types and the content
 type from the entry is added to excluded_content_types.

 Remove each entry in working_permitted_content_types that includes a
 content type that is not present in the CMS content constraints
 extension. For values other than id-ct-anyContentType, add the
 removed content type to excluded_content_types.

3.4. Preparation for Certificate i+1

 No additional action associated with the CMS content constraints
 extension is taken during this phase of certification path validation
 as described in Section 6 of [RFC5280].

3.5. Wrap-Up Procedure

 If cms_content_type equals the special value anyContentType, the CCC
 processing portion of path validation succeeds. Set
 subject_constraints equal to working_permitted_content_types. If
 cms_content_type is not equal to the special value anyContentType,
 perform the following steps:

 - If cms_content_type is present in excluded_content_types, the CCC
 processing portion of path validation fails.

 - If working_permitted_content_types is equal to the special value
 anyContentType, set subject_constraints equal to
 working_permitted_content_types; the CCC processing portion of
 path validation succeeds.

 - If cms_content_type does not equal the content type of an entry in
 working_permitted_content_types, constraints processing fails and
 path validation fails.

Housley, et al. Standards Track [Page 20]

RFC 6010 CMS Content Constraints September 2010

 - If cms_content_type equals the content type of an entry in
 working_permitted_content_types, add the entry from
 working_permitted_content_types to subject_constraints. If the
 corresponding entry in working_permitted_content_types contains
 the special value anyContentType, set subject_constraints equal to
 cms_content_type; the CCC processing portion of path validation
 succeeds.

 - If the attrConstraints field of the corresponding entry in
 working_permitted_content_types is absent; the CCC processing
 portion of path validation succeeds.

 - If the attrConstraints field of the corresponding entry in
 working_permitted_content_types is present, then the constraints
 MUST be checked. For each attrType in the attrConstraints, the
 constraint is satisfied if either the attribute type is absent
 from cms_effective_attributes or each attribute value in the
 attrValues field of the corresponding entry in
 cms_effective_attributes is equal to one of the values for this
 attribute type in the attrConstraints field. If
 cms_effective_attributes does not contain an attribute of that
 type, then the entry from attrConstraints is added to the
 subject_default_attributes for use in processing the payload.

3.6. Outputs

 If certification path validation processing succeeds, return the
 value of the subject_constraints, subject_default_attributes, and
 excluded_content_types variables.

4. CMS Content Constraints Processing

 CMS contents constraints processing is performed on a per-CMS-path
 basis. The processing consists of traditional CMS processing
 augmented by collection of information required to perform content
 type and constraint checking. Content type and constraint checking
 uses the collected information to build and validate a certification
 path to each public key used to authenticate nodes in the CMS path
 per the certification path processing steps described above.

Housley, et al. Standards Track [Page 21]

RFC 6010 CMS Content Constraints September 2010

4.1. CMS Processing and CCC Information Collection

 Traditional CMS content processing is augmented by the following
 three steps to support enforcement of CMS content constraints:

 Collection of signer or originator keys

 Collection of attributes

 Leaf node classification

 CMS processing and CCC information collection takes a CMS path as
 input and returns a collection of public keys used to authenticate
 protected content, a collection of authenticated attributes, and the
 leaf node, as shown in the figure below.

 Inputs
 + CMS path
 |
 |
 _________V___________________
 | |
 | CMS processing and CCC |
 | information collection |
 |_____________________________|
 |
 |
 V
 Outputs upon success
 + Leaf node
 + Public keys used to authenticate content (cms_public_keys)
 + Authenticated attributes (cms_effective_attributes)

 Figure 6. CMS Processing and CCC Information Collection

 Processing is performed for each CMS path from the root node of a
 CMS-protected content to a leaf node, proceeding from the root node
 to the leaf node. Each path is processed independently of the other
 paths. Thus, it is possible that some leaf nodes in a content
 collection may be acceptable while other nodes are not acceptable.
 The processing described in this section applies to CMS paths that
 contain at least one SignedData, AuthEnvelopedData, or
 AuthenticatedData node. Since countersignatures are defined as not
 having a content, CMS content constraints are not used with
 countersignatures.

Housley, et al. Standards Track [Page 22]

RFC 6010 CMS Content Constraints September 2010

 Signer or originator public keys are collected when verifying
 signatures or message authentication codes (MACs). These keys will
 be used to determine the constraints of each signer or originator by
 building and validating a certification path to the public key.
 Public key values, public key certificates, or public key identifiers
 are accumulated in a state variable named cms_public_keys, which is
 either initialized to empty or to an application-provided set of keys
 when processing begins. The variable will be updated each time a
 SignedData, AuthEnvelopedData, or AuthenticatedData node is
 encountered in the CMS path.

 All authenticated attributes appearing in a CMS path are collected,
 beginning with the attributes protected by the outermost SignedData,
 AuthEnvelopedData, or AuthenticatedData and proceeding to the leaf
 node. During processing, attributes collected from the nodes in the
 CMS path are maintained in a state variable named
 cms_effective_attributes, and default attributes derived from message
 originator authorizations are collected in a state variable named
 cms_default_attributes. A default attribute value comes from a
 constraint that does not correspond to an attribute contained in the
 CMS path and may be used during payload processing in lieu of an
 explicitly included attribute. This prevents an originator from
 avoiding a constraint through omission. When processing begins,
 cms_effective_attributes and cms_default_attributes are initialized
 to empty. Alternatively, cms_effective_attributes may be initialized
 to an application-provided sequence of attributes. The
 cms_effective_attributes value will be updated each time an attribute
 set is encountered in a SignedData, AuthEnvelopedData,
 AuthenticatedData, or (authenticated) ContentWithAttributes node
 while processing a CMS path.

 The output of content type and constraint checking always includes a
 set of attributes collected from the various nodes in a CMS path.
 When processing terminates at an encrypted node, the set of signer or
 originator public keys is also returned. When processing terminates
 at a leaf node, a set of default attribute values is also returned
 along with a set of constraints that apply to the CMS-protected
 content.

 The output from CMS Content Constraints processing will depend on the
 type of the leaf node that terminates the CMS path. Four different
 output variables are possible. The conditions under which each is
 returned is described in the following sections. The variables are:

Housley, et al. Standards Track [Page 23]

RFC 6010 CMS Content Constraints September 2010

 cms_public_keys is a list of public key values, public key
 certificates, or public key identifiers. Information maintained
 in cms_public_keys will be used to perform the certification path
 operations required to determine if a particular signer or
 originator is authorized to produce a specific object.

 cms_effective_attributes contains the attributes collected from the
 nodes in a CMS path. cms_effective_attributes is a SEQUENCE OF
 Attribute, which is the same as the AttrConstraintList structure
 except that it may have zero entries in the sequence. An
 attribute can occur multiple times in the cms_effective_attribute
 set, potentially with different values.

 cms_default_attributes contains default attributes derived from
 message signer or originator authorizations. A default attribute
 value is taken from a constraint that does not correspond to an
 attribute contained in the CMS path. cms_default_attributes is a
 SEQUENCE OF Attribute, which is the same as the AttrConstraintList
 structure except that it may have zero entries in the sequence.

 cms_constraints contains the constraints associated with the message
 signer or originator for the content type of the leaf node.
 cms_constraints is a SEQUENCE OF Attribute, which is the same as
 the AttrConstraintList structure except that it may have zero
 entries in the sequence.

4.1.1. Collection of Signer or Originator Information

 Signer or originator constraints are identified using the public keys
 to verify each SignedData, AuthEnvelopedData, or AuthenticatedData
 layer encountered in a CMS path. The public key value, public key
 certificate, or public key identifier of each signer or originator
 are collected in a state variable named cms_public_keys. Constraints
 are determined by building and validating a certification path for
 each public key after the content type and attributes of the CMS-
 protected object have been identified. If the CMS path has no
 SignedData, AuthEnvelopedData, or AuthenticatedData nodes, CCC
 processing succeeds and all output variables are set to empty.

 The signature or MAC generated by the originator MUST be verified.
 If signature or MAC verification fails, then the CMS path containing
 the signature or MAC MUST be rejected. Signature and MAC
 verification procedures are defined in [RFC5652] [RFC5083]. The
 public key or public key certificate used to verify each signature or
 MAC in a CMS path is added to the cms_public_keys state variable for
 use in content type and constraint checking. Additional checks may
 be performed during this step, such as timestamp verification
 [RFC3161] and ESSCertId [RFC5035] processing.

Housley, et al. Standards Track [Page 24]

RFC 6010 CMS Content Constraints September 2010

4.1.1.1. Handling Multiple SignerInfo Elements

 CMS content constraints MAY be applied to CMS-protected contents
 featuring multiple parallel signers, i.e., SignedData contents
 containing more than one SignerInfo. When multiple SignerInfo
 elements are present, each may represent a distinct entity or each
 may represent the same entity via different keys or certificates,
 e.g., in the event of key rollover or when the entity has been issued
 certificates from multiple organizations. For simplicity, signers
 represented by multiple SignerInfos within a single SignedData are
 not considered to be collaborating with regard to a particular
 content, unlike signers represented in distinct SignedData contents.
 Thus, for the purposes of CCC processing, each SignerInfo is treated
 as if it were the only SignerInfo. A content is considered valid if
 there is at least one valid CMS path employing one SignerInfo within
 each SignedData content. Where collaboration is desired, usage of
 multiple SignedData contents is RECOMMENDED.

 Though not required by this specification, some applications may
 require successful processing of all or multiple SignerInfo elements
 within a single SignedData content. There are a number of potential
 ways of treating the evaluation process, including the following two
 possibilities:

 - All signatures are meant to be collaborative: In this case, the
 public keys associated with each SignerInfo are added to the
 cms_public_keys variable, the attributes from each SignerInfo are
 added to the cms_effective_attributes variable, and normal
 processing is performed.

 - All signatures are meant to be completely independent: In this
 case, each of the SignerInfos is processed as if it were a fork in
 the CMS path construction process. The application may require
 more than one CMS path to be valid in order to accept a content.

 The exact processing will be a matter of application and local
 policy. See [RFC5752] for an example of an attribute that requires
 processing multiple SignerInfo elements within a SignedData content.

4.1.2. Collection of Attributes

 Attributes are collected from all authenticated nodes in a CMS path.
 That is, attributes are not collected from content types that are
 unauthenticated, i.e., those that are not covered by a SignedData,
 AuthEnvelopedData, or AuthenticatedData layer. Additionally, an
 application MAY specify a set of attributes that it has
 authenticated, perhaps from processing one or more content types that
 encapsulate a CMS-protected content. Leaf node attributes MAY be

Housley, et al. Standards Track [Page 25]

RFC 6010 CMS Content Constraints September 2010

 checked independent of the CCC processing, but such processing is not
 addressed in this document. Applications are free to perform further
 processing using all or some of the attributes returned from CCC
 processing.

4.1.3. Leaf Node Classification

 The type of leaf node that terminates a CMS path determines the types
 of information that are returned and the type of processing that is
 performed. There are two types of leaf nodes: encrypted leaf nodes
 and payload leaf nodes.

 A node in a CMS path is a leaf node if the content type of the node
 is not one of the following content types:

 id-signedData (SignedData),

 id-digestedData (DigestedData),

 id-ct-authData (AuthenticatedData),

 id-ct-compressedData (CompressedData),

 id-ct-contentCollection (ContentCollection), or

 id-ct-contentWithAttrs (ContentWithAttributes).

 A leaf node is an encrypted leaf node if the content type of the node
 is one of the following content types:

 id-encryptedData (EncryptedData),

 id-envelopedData (EnvelopedData), or

 id-ct-authEnvelopedData (AuthEnvelopedData).

 All other leaf nodes are payload leaf nodes, since no further CMS
 encapsulation can occur beyond that node. However, specifications
 may define content types that provide protection similar to the CMS
 content types, may augment the lists of possible leaf and encrypted
 leaf nodes, or may define some encrypted types as payload leaf nodes.

 When an encrypted leaf node is encountered, processing terminates and
 returns information that may be used as input when processing the
 decrypted contents. Content type and constraints checking are only
 performed for payload leaf nodes. When an encrypted leaf node
 terminates a CMS path, the attributes collected in
 cms_effective_attributes are returned along with the public key

Housley, et al. Standards Track [Page 26]

RFC 6010 CMS Content Constraints September 2010

 information collected in cms_public_keys. When a payload leaf node
 terminates a CMS path, content type and constraint checking MUST be
 performed, as described in the next section.

4.2. Content Type and Constraint Checking

 Content type and constraint checking is performed when a payload leaf
 node is encountered. This section does not apply to CMS paths that
 are terminated by an encrypted leaf node nor to CMS paths that have
 no SignedData, AuthEnvelopedData, or AuthenticatedData nodes.

4.2.1. Inputs

 The inputs to content type and constraint checking are the values
 collected in cms_public_keys and cms_effective_attributes from a CMS
 path, along with the payload leaf node that terminates the CMS path,
 as shown in the figure below.

 Inputs
 + leaf node
 + cms_public_keys
 + cms_effective_attributes
 |
 |
 ________________V___
 | |
 | Content type and constraint checking |
 | (uses CCC-aware Certification Path Processor internally)|
 |__|
 |
 |
 V
 Outputs upon success
 + cms_constraints
 + cms_default_attributes
 + cms_effective_attributes

 Figure 7. Content Type and Constraint Checking

4.2.2. Processing

 When a payload leaf node is encountered in a CMS path and a signed or
 authenticated content type is present in the CMS path, content type
 and constraint checking MUST be performed. Content type and
 constraint checking need not be performed for CMS paths that do not
 contain at least one SignedData, AuthEnvelopedData, or
 AuthenticatedData content type. The cms_effective_attributes and
 cms_public_keys variables are used to perform constraint checking.

Housley, et al. Standards Track [Page 27]

RFC 6010 CMS Content Constraints September 2010

 Two additional state variables are used during the processing:
 cms_constraints and cms_default_attributes, both of which are
 initialized to empty. The steps required to perform content type and
 constraint checking are below.

 For each public key in cms_public_keys, build and validate a
 certification path from a trust anchor to the public key, providing
 the content type of the payload leaf node and
 cms_effective_attributes as input. Observe any limitations imposed
 by intermediate layers. For example, if the SigningCertificateV2
 [RFC5035] attribute is used, the certificate identified by the
 attribute is required to serve as the target certificate.

 o If path validation is successful, add the contents of
 subject_default_attributes to cms_default_attributes. The
 subject_constraints variable returned from certification path
 validation will contain a single entry. If the
 subject_constraints entry is equal to the special value
 anyContentType, content type and constraints checking succeeds.
 If the subject_constraints entry is not equal to the special value
 anyContentType, for each entry in the attrConstraints field of the
 entry in subject_constraints,

 * If there is an entry in cms_constraints with the same attrType
 value, add the value from the attrValues entry to the entry in
 cms_constraints if that value does not already appear.

 * If there is no entry in cms_constraints with the same attrType
 value, add a new entry to cms_constraints equal to the entry
 from the attrConstraints field.

 o If the value of the canSource field of the entry in the
 subject_constraints variable for the public key used to verify the
 signature or MAC closest to the payload leaf node is set to
 cannotSource, constraints checking fails and the CMS path MUST be
 rejected.

 If no valid certification path can be found, constraints checking
 fails and the CMS path MUST be rejected.

4.2.3. Outputs

 When a payload leaf node is encountered and content type and
 constraint checking succeeds, return cms_constraints,
 cms_default_attributes, and cms_effective_attributes for use in leaf
 node payload processing.

Housley, et al. Standards Track [Page 28]

RFC 6010 CMS Content Constraints September 2010

 When an encrypted leaf node is encountered and constraint checking is
 not performed, return cms_public_keys and cms_effective_attributes
 for use in continued processing (as described in Section 4.2.1).

 The cms_effective_attributes list may contain multiple instances of
 the same attribute type. An instance of an attribute may contain
 multiple values. Leaf node processing, which might take advantage of
 these effective attributes, needs to describe the proper handling of
 this situation. Leaf node processing is described in other
 documents, and it is expected to be specific to a particular content
 type.

 The cms_default_attributes list may contain attributes with multiple
 values. Payload processing, which might take advantage of these
 default attributes, needs to describe the proper handling of this
 situation. Payload processing is described in other documents, and
 it is expected to be specific to a particular content type.

5. Subordination Processing in TAMP

 TAMP [RFC5934] does not define an authorization mechanism. CCC can
 be used to authorize TAMP message signers and to delegate TAMP
 message-signing authority. TAMP requires trust anchors managed by a
 TAMP message signer to be subordinate to the signer. This section
 describes subordination processing for CCC extensions of trust
 anchors contained in a TrustAnchorUpdate message where CCC is used to
 authorize TAMP messages.

 For a Trust Anchor Update message that is not signed with the apex
 trust anchor operational public key to be valid, the digital
 signature MUST be validated using a management trust anchor
 associated with the id-ct-TAMP-update content type, either directly
 or via an X.509 certification path originating with an authorized
 trust anchor. The following subordination checks MUST also be
 performed as part of validation.

 Each Trust Anchor Update message contains one or more individual
 updates, each of which is used to add, modify, or remove a trust
 anchor. For each individual update, the constraints of the TAMP
 message signer MUST be greater than or equal to the constraints of
 the trust anchor in the update. The constraints of the TAMP message
 signer and the to-be-updated trust anchor are determined based on the
 applicable CMS Content Constraints. Specifically, the constraints of
 the TAMP message signer are determined as described in Section 3,
 passing the special value id-ct-anyContentType and an empty set of
 attributes as input; the constraints of the to-be-updated trust
 anchor are determined as described below. If the constraints of a
 trust anchor in an update exceed the constraints of the signer, that

Housley, et al. Standards Track [Page 29]

RFC 6010 CMS Content Constraints September 2010

 update MUST be rejected. Each update is considered and accepted or
 rejected individually without regard to other updates in the TAMP
 message. The constraints of the to-be-updated trust anchors are
 determined as follows:

 o If the to-be-updated trust anchor is the subject of an add
 operation, the constraints are read from the CMSContentConstraints
 extension of the corresponding trust anchor in the update.

 o If the to-be-updated trust anchor is the subject of a remove
 operation, the trust anchor is located in the message recipient’s
 trust anchor store using the public key included in the update.

 o If the to-be-updated trust anchor is the subject of a change
 operation, the trust anchor has two distinct sets of constraints
 that MUST be checked. The trust anchor’s pre-change constraints
 are determined by locating the trust anchor in the message
 recipient’s trust anchor store using the public key included in
 the update and reading the constraints from the
 CMSContentConstraints extension in the trust anchor. The trust
 anchor’s post-change constraints are read from the
 CMSContentConstraints extension of the corresponding
 TBSCertificateChangeInfo or the TrustAnchorChangeInfo in the
 update. If the CMSContentConstraints extension is not present,
 then the trust anchor’s post-change constraints are equivalent to
 the trust anchor’s pre-change constraints.

 The following steps can be used to determine if a Trust Anchor Update
 message signer is authorized to manage each to-be-updated trust
 anchor contained in a Trust Anchor Update message.

 o The TAMP message signer’s CMS Content Constraints are determined
 as described in Section 3, passing the special value
 id-ct-anyContentType and an empty set of attributes as input. The
 message signer MUST be authorized for the Trust Anchor Update
 message. This can be confirmed using the steps described in
 Section 4.

 o The constraints of each to-be-updated trust anchor in the TAMP
 message MUST be checked against the message signer’s constraints
 (represented in the message signer’s subject_constraints computed
 above) using the following steps. For change operations, the
 following steps MUST be performed for the trust anchor’s pre-
 change constraints and the trust anchor’s post-change constraints.

 * If the to-be-updated trust anchor is unconstrained, the message
 signer MUST also be unconstrained, i.e., the message signer’s
 subject_constraints MUST be set to the special value

Housley, et al. Standards Track [Page 30]

RFC 6010 CMS Content Constraints September 2010

 anyContentType. If the to-be-updated trust anchor is
 unconstrained and the message signer is not, then the message
 signer is not authorized to manage the trust anchor and the
 update MUST be rejected.

 * The message signer’s authorization for each permitted content
 type MUST be checked using the state variables and procedures
 similar to those described in Sections 3.2 and 3.3. For each
 permitted content type in the to-be-updated trust anchor’s
 constraints,

 + Set cms_effective_attributes equal to the value of the
 attrConstraints field from the permitted content type.

 + If the content type does not match an entry in the message
 signer’s subject_constraints, the message signer is not
 authorized to manage the trust anchor and the update MUST be
 rejected. Note, the special value id-ct-anyContentType
 produces a match for all content types that have the
 resulting matching entry containing the content type,
 canSource set to canSource, and attrConstraints absent.

 + If the content type matches an entry in the message signer’s
 subject_constraints, the canSource field of the entry is
 cannotSource, and the canSource field in the to-be-updated
 trust anchor’s privilege is canSource, the message signer is
 not authorized to manage the trust anchor and the update
 MUST be rejected.

 + If the content type matches an entry in the message signer’s
 subject_constraints and the entry’s attrConstraints field is
 present, then constraints MUST be checked. For each
 attrType in the entry’s attrConstraints, a corresponding
 attribute MUST be present in cms_effective_attributes
 containing values from the entry’s attrConstraints. If
 values appear in the corresponding attribute that are not in
 the entry’s attrConstraints or if there is no corresponding
 attribute, the message signer is not authorized to manage
 the trust anchor and the update MUST be rejected.

 Once these steps are completed, if the update has not been rejected,
 then the message signer is authorized to manage the to-be-updated
 trust anchor.

Housley, et al. Standards Track [Page 31]

RFC 6010 CMS Content Constraints September 2010

 Note that a management trust anchor that has only the
 id-ct-TAMP-update permitted content type is useful only for managing
 identity trust anchors. It can sign a Trust Anchor Update message,
 but it cannot impact a management trust anchor that is associated
 with any other content type.

6. Security Considerations

 For any given certificate, multiple certification paths may exist,
 and each one can yield different results for CMS content constraints
 processing. For example, default attributes can change when multiple
 certification paths exist, as each path can potentially have
 different attribute requirements or default values.

 Compromise of a trust anchor private key permits unauthorized parties
 to generate signed messages that will be acceptable to all
 applications that use a trust anchor store containing the
 corresponding management trust anchor. For example, if the trust
 anchor is authorized to sign firmware packages, then the unauthorized
 private key holder can generate firmware that may be successfully
 installed and used by applications that trust the management trust
 anchor.

 For implementations that support validation of TAMP messages using
 X.509 certificates, it is possible for the TAMP message signer to
 have more than one possible certification path that will authorize it
 to sign Trust Anchor Update messages, with each certification path
 resulting in different CMS Content Constraints. The update is
 authorized if the processing below succeeds for any one certification
 path of the TAMP message signer. The resulting subject_constraints
 variable is used to check each to-be-updated trust anchor contained
 in the update message.

 CMS does not provide a mechanism for indicating that an attribute
 applies to a particular content within a ContentCollection or a set
 CMS layers. For the sake of simplicity, this specification collects
 all attributes that appear in a CMS path. These attributes are
 processed as part of CCC processing and are made available for use in
 processing leaf node contents. This can result in a collection of
 attributes that have no relationship with the leaf node contents.

 CMS does not provide a means for indicating what element within a CMS
 message an attribute applies to. For example, a MessageDigest
 attribute included in a SignedData signedAttributes collection
 applies to a specific signature, but a Firmware Package Identifier
 attribute appearing in the same list of attributes describes the
 encapsulated content. As such, CCC treats all attributes as applying
 to the encapsulated content type. Care should be taken to avoid

Housley, et al. Standards Track [Page 32]

RFC 6010 CMS Content Constraints September 2010

 provisioning trust anchors or certificates that include constraints
 on attribute types that are never used to describe a leaf content
 type, such as a MessageDigest attribute.

 The CMS Constraint Processing algorithm is designed to collect signer
 information for processing when all information for a CMS path is
 available. In cases where the certification path discovered during
 SignedData layer processing is not acceptable, an alternative
 certification path may be discovered that is acceptable. These
 alternatives may include an alternative signer certificate. When the
 ESSCertId attribute is used, alternative signer certificates are not
 permitted. The certificate referenced by ESSCertId must be used,
 possibly resulting in failure where alternative certificates would
 yield success.

7. Acknowledgments

 Thanks to Jim Schaad for thorough review and many suggestions.

8. References

8.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3274] Gutmann, P., "Compressed Data Content Type for
 Cryptographic Message Syntax (CMS)", RFC 3274, June 2002.

 [RFC4073] Housley, R., "Protecting Multiple Contents with the
 Cryptographic Message Syntax (CMS)", RFC 4073, May 2005.

 [RFC5083] Housley, R., "Cryptographic Message Syntax (CMS)
 Authenticated-Enveloped-Data Content Type", RFC 5083,
 November 2007.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, May 2008.

 [RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
 RFC 5652, September 2009.

 [RFC5911] Hoffman, P. and J. Schaad, "New ASN.1 Modules for
 Cryptographic Message Syntax (CMS) and S/MIME", RFC 5911,
 June 2010.

Housley, et al. Standards Track [Page 33]

RFC 6010 CMS Content Constraints September 2010

 [RFC5912] Hoffman, P. and J. Schaad, "New ASN.1 Modules for the
 Public Key Infrastructure Using X.509 (PKIX)", RFC 5912,
 June 2010.

 [X.208] "ITU-T Recommendation X.208 - Specification of Abstract
 Syntax Notation One (ASN.1)", 1988.

 [X.501] ITU-T Recommendation X.501, "Information technology - Open
 Systems Interconnection - The Directory: Models", ISO/
 IEC 9594-2:2005, 2005.

 [X.680] "ITU-T Recommendation X.680: Information Technology -
 Abstract Syntax Notation One", 2002.

 [X.690] "ITU-T Recommendation X.690 Information Technology - ASN.1
 encoding rules: Specification of Basic Encoding Rules
 (BER), Canonical Encoding Rules (CER) and Distinguished
 Encoding Rules (DER)", 2002.

8.2. Informative References

 [RFC3161] Adams, C., Cain, P., Pinkas, D., and R. Zuccherato,
 "Internet X.509 Public Key Infrastructure Time-Stamp
 Protocol (TSP)", RFC 3161, August 2001.

 [RFC4108] Housley, R., "Using Cryptographic Message Syntax (CMS) to
 Protect Firmware Packages", RFC 4108, August 2005.

 [RFC5035] Schaad, J., "Enhanced Security Services (ESS) Update:
 Adding CertID Algorithm Agility", RFC 5035, August 2007.

 [RFC5272] Schaad, J. and M. Myers, "Certificate Management over CMS
 (CMC)", RFC 5272, June 2008.

 [RFC5752] Schaad, J. and S. Turner, "Multiple Signatures in
 Cryptographic Message Syntax (CMS)", December 2009.

 [RFC5914] Housley, R., Ashmore, S., and C. Wallace, "Trust Anchor
 Format", RFC 5914, June 2010.

 [RFC5934] Housley, R., Ashmore, S., and C. Wallace, "Trust Anchor
 Management Protocol (TAMP)", RFC 5934, August 2010.

Housley, et al. Standards Track [Page 34]

RFC 6010 CMS Content Constraints September 2010

Appendix A. ASN.1 Modules

 Appendix A.1 provides the normative ASN.1 definitions for the
 structures described in this specification using ASN.1 as defined in
 [X.680]. Appendix A.2 provides a module using ASN.1 as defined in
 [X.208]. The module in A.2 removes usage of newer ASN.1 features
 that provide support for limiting the types of elements that may
 appear in certain SEQUENCE and SET constructions. Otherwise, the
 modules are compatible in terms of encoded representation, i.e., the
 modules are bits-on-the-wire compatible aside from the limitations on
 SEQUENCE and SET constituents. A.2 is included as a courtesy to
 developers using ASN.1 compilers that do not support current ASN.1.
 A.1 references an ASN.1 module from [RFC5912] and [RFC5911].

A.1. ASN.1 Module Using 1993 Syntax

 CMSContentConstraintsCertExtn
 { iso(1) identified-organization(3) dod(6) internet(1) security(5)
 mechanisms(5) pkix(7) id-mod(0) cmsContentConstr-93(42) }

 DEFINITIONS IMPLICIT TAGS ::= BEGIN

 IMPORTS
 EXTENSION, ATTRIBUTE
 FROM -- from [RFC5912]
 PKIX-CommonTypes-2009
 {iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-pkixCommon-02(57)}

 CONTENT-TYPE, ContentSet, SignedAttributesSet, ContentType
 FROM -- from [RFC5911]
 CryptographicMessageSyntax-2009
 { iso(1) member-body(2) us(840) rsadsi(113549)
 pkcs(1) pkcs-9(9) smime(16) modules(0)
 id-mod-cms-2004-02(41) }
 ;

 id-ct-anyContentType ContentType ::=
 { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16)
 ct(1) 0 }

 ct-Any CONTENT-TYPE ::= {NULL IDENTIFIED BY id-ct-anyContentType }

Housley, et al. Standards Track [Page 35]

RFC 6010 CMS Content Constraints September 2010

 --
 -- Add this to CertExtensions in PKIX1Implicit-2009
 --

 ext-cmsContentConstraints EXTENSION ::= {
 SYNTAX CMSContentConstraints
 IDENTIFIED BY id-pe-cmsContentConstraints }

 id-pe-cmsContentConstraints OBJECT IDENTIFIER ::=
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) pe(1) 18 }

 CMSContentConstraints ::= SEQUENCE SIZE (1..MAX) OF
 ContentTypeConstraint

 ContentTypeGeneration ::= ENUMERATED {
 canSource(0),
 cannotSource(1)}

 ContentTypeConstraint ::= SEQUENCE {
 contentType CONTENT-TYPE.&id ({ContentSet|ct-Any,...}),
 canSource ContentTypeGeneration DEFAULT canSource,
 attrConstraints AttrConstraintList OPTIONAL }

 Constraint { ATTRIBUTE:ConstraintList } ::= SEQUENCE {
 attrType ATTRIBUTE.
 &id({ConstraintList}),
 attrValues SET SIZE (1..MAX) OF ATTRIBUTE.
 &Type({ConstraintList}{@attrType}) }

 SupportedConstraints ATTRIBUTE ::= {SignedAttributesSet, ... }

 AttrConstraintList ::=
 SEQUENCE SIZE (1..MAX) OF Constraint {{ SupportedConstraints }}

 END

Housley, et al. Standards Track [Page 36]

RFC 6010 CMS Content Constraints September 2010

A.2. ASN.1 Module Using 1988 Syntax

 CMSContentConstraintsCertExtn-88
 { iso(1) identified-organization(3) dod(6) internet(1) security(5)
 mechanisms(5) pkix(7) id-mod(0) cmsContentConstr-88(41) }

 DEFINITIONS IMPLICIT TAGS ::=
 BEGIN

 IMPORTS
 AttributeType, AttributeValue
 FROM PKIX1Explicit88 -- from [RFC5280]
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-pkix1-explicit(18) } ;

 id-ct-anyContentType OBJECT IDENTIFIER ::=
 { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16)
 ct(1) 0}

 -- Extension object identifier

 id-pe-cmsContentConstraints OBJECT IDENTIFIER ::=
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) pe(1) 18 }

 -- CMS Content Constraints Extension

 CMSContentConstraints ::= SEQUENCE SIZE (1..MAX) OF
 ContentTypeConstraint

 ContentTypeGeneration ::= ENUMERATED {
 canSource(0),
 cannotSource(1)}

 ContentTypeConstraint ::= SEQUENCE {
 contentType OBJECT IDENTIFIER,
 canSource ContentTypeGeneration DEFAULT canSource,
 attrConstraints AttrConstraintList OPTIONAL }

 AttrConstraintList ::= SEQUENCE SIZE (1..MAX) OF AttrConstraint

 AttrConstraint ::= SEQUENCE {
 attrType AttributeType,
 attrValues SET SIZE (1..MAX) OF AttributeValue }

 END

Housley, et al. Standards Track [Page 37]

RFC 6010 CMS Content Constraints September 2010

Authors’ Addresses

 Russ Housley
 Vigil Security, LLC
 918 Spring Knoll Drive
 Herndon, VA 20170

 EMail: housley@vigilsec.com

 Sam Ashmore
 National Security Agency
 Suite 6751
 9800 Savage Road
 Fort Meade, MD 20755

 EMail: srashmo@radium.ncsc.mil

 Carl Wallace
 Cygnacom Solutions
 Suite 5400
 7925 Jones Branch Drive
 McLean, VA 22102

 EMail: cwallace@cygnacom.com

Housley, et al. Standards Track [Page 38]

