
Internet Engineering Task Force (IETF) C. Boulton
Request for Comments: 6230 NS-Technologies
Category: Standards Track T. Melanchuk
ISSN: 2070-1721 Rainwillow
 S. McGlashan
 Hewlett-Packard
 May 2011

 Media Control Channel Framework

Abstract

 This document describes a framework and protocol for application
 deployment where the application programming logic and media
 processing are distributed. This implies that application
 programming logic can seamlessly gain access to appropriate resources
 that are not co-located on the same physical network entity. The
 framework uses the Session Initiation Protocol (SIP) to establish an
 application-level control mechanism between application servers and
 associated external servers such as media servers.

 The motivation for the creation of this framework is to provide an
 interface suitable to meet the requirements of a centralized
 conference system, where the conference system can be distributed, as
 defined by the XCON working group in the IETF. It is not, however,
 limited to this scope.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6230.

Boulton, et al. Standards Track [Page 1]

RFC 6230 Media Control Channel Framework May 2011

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 4
 2. Conventions and Terminology 4
 3. Overview . 6
 4. Control Channel Setup . 10
 4.1. Control Client SIP UAC Behavior 10
 4.2. Control Server SIP UAS Behavior 13
 5. Establishing Media Streams - Control Client SIP UAC
 Behavior . 14
 6. Control Framework Interactions 15
 6.1. General Behavior for Constructing Requests 17
 6.2. General Behavior for Constructing Responses 17
 6.3. Transaction Processing 18
 6.3.1. CONTROL Transactions 18
 6.3.2. REPORT Transactions 19
 6.3.3. K-ALIVE Transactions 21
 6.3.4. SYNC Transactions 22
 7. Response Code Descriptions 24
 7.1. 200 Response Code . 25
 7.2. 202 Response Code . 25
 7.3. 400 Response Code . 25
 7.4. 403 Response Code . 25
 7.5. 405 Response Code . 25
 7.6. 406 Response Code . 25
 7.7. 420 Response Code . 25
 7.8. 421 Response Code . 25
 7.9. 422 Response Code . 25
 7.10. 423 Response Code . 25
 7.11. 481 Response Code . 26
 7.12. 500 Response Code . 26
 8. Control Packages . 26
 8.1. Control Package Name 26

Boulton, et al. Standards Track [Page 2]

RFC 6230 Media Control Channel Framework May 2011

 8.2. Framework Message Usage 26
 8.3. Common XML Support . 27
 8.4. CONTROL Message Bodies 27
 8.5. REPORT Message Bodies 27
 8.6. Audit . 27
 8.7. Examples . 28
 9. Formal Syntax . 28
 9.1. Control Framework Formal Syntax 28
 9.2. Control Framework Dialog Identifier SDP Attribute 31
 10. Examples . 31
 11. Extensibility . 35
 12. Security Considerations 36
 12.1. Session Establishment 36
 12.2. Transport-Level Protection 36
 12.3. Control Channel Policy Management 37
 13. IANA Considerations . 38
 13.1. Control Packages Registration Information 38
 13.1.1. Control Package Registration Template 39
 13.2. Control Framework Method Names 39
 13.3. Control Framework Status Codes 39
 13.4. Control Framework Header Fields 40
 13.5. Control Framework Port 40
 13.6. Media Type Registrations 40
 13.6.1. Registration of MIME Media Type application/cfw . . . 41
 13.6.2. Registration of MIME Media Type
 application/framework-attributes+xml 42
 13.7. ’cfw-id’ SDP Attribute 42
 13.8. URN Sub-Namespace for
 urn:ietf:params:xml:ns:control:framework-attributes . . . 43
 13.9. XML Schema Registration 43
 14. Contributors . 44
 15. Acknowledgments . 44
 16. References . 44
 16.1. Normative References 44
 16.2. Informative References 46
 Appendix A. Common Package Components 47
 A.1. Common Dialog/Multiparty Reference Schema 47

Boulton, et al. Standards Track [Page 3]

RFC 6230 Media Control Channel Framework May 2011

1. Introduction

 Real-time media applications are often developed using an
 architecture where the application logic and media processing
 activities are distributed. Commonly, the application logic runs on
 "application servers", but the processing runs on external servers,
 such as "media servers". This document focuses on the framework and
 protocol between the application server and external processing
 server. The motivation for this framework comes from a set of
 requirements for Media Server Control, which can be found in "Media
 Server Control Protocol Requirements" [RFC5167]. While the Framework
 is not specific to media server control, it is the primary driver and
 use case for this work. It is intended that the framework contained
 in this document be able to be used for a variety of device control
 scenarios (for example, conference control).

 This document does not define a particular SIP extension for the
 direct control of external components. Rather, other documents,
 known as "Control Packages", extend the Control Framework described
 by this document. Section 8 provides a comprehensive set of
 guidelines for creating such Control Packages.

 Current IETF device control protocols, such as Megaco [RFC5125],
 while excellent for controlling media gateways that bridge separate
 networks, are troublesome for supporting media-rich applications in
 SIP networks. This is because Megaco duplicates many of the
 functions inherent in SIP. Rather than using a single protocol for
 session establishment and application media processing, application
 developers need to translate between two separate mechanisms.
 Moreover, the model provided by the framework presented here, using
 SIP, better matches the application programming model than does
 Megaco.

 SIP [RFC3261] provides the ideal rendezvous mechanism for
 establishing and maintaining control connections to external server
 components. The control connections can then be used to exchange
 explicit command/response interactions that allow for media control
 and associated command response results.

2. Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in BCP 14, [RFC2119], as
 scoped to those conformance targets.

Boulton, et al. Standards Track [Page 4]

RFC 6230 Media Control Channel Framework May 2011

 The following additional terms are defined for use in this document:

 User Agent Client (UAC): As specified in [RFC3261].

 User Agent Server (UAS): As specified in [RFC3261].

 B2BUA: A B2BUA is a Back-to-Back SIP User Agent.

 Control Server: A Control Server is an entity that performs a
 service, such as media processing, on behalf of a Control Client.
 For example, a media server offers mixing, announcement, tone
 detection and generation, and play and record services. The
 Control Server has a direct Real-Time Transport Protocol (RTP)
 [RFC3550] relationship with the source or sink of the media flow.
 In this document, we often refer to the Control Server simply as
 "the Server".

 Control Client: A Control Client is an entity that requests
 processing from a Control Server. Note that the Control Client
 might not have any processing capabilities whatsoever. For
 example, the Control Client may be an application server (B2BUA)
 or other endpoint requesting manipulation of a third party’s media
 stream that terminates on a media server acting in the role of a
 Control Server. In this document, we often refer to the Control
 Client simply as "the Client".

 Control Channel: A Control Channel is a reliable connection between
 a Client and Server that is used to exchange Framework messages.
 The term "Connection" is used synonymously within this document.

 Framework Message: A Framework message is a message on a Control
 Channel that has a type corresponding to one of the Methods
 defined in this document. A Framework message is often referred
 to by its method, such as a "CONTROL message".

 Method: A Method is the type of a Framework message. Four Methods
 are defined in this document: SYNC, CONTROL, REPORT, and K-ALIVE.

 Control Command: A Control Command is an application-level request
 from a Client to a Server. Control Commands are carried in the
 body of CONTROL messages. Control Commands are defined in
 separate specifications known as "Control Packages".

 Framework Transaction: A Framework Transaction is defined as a
 sequence composed of a Control Framework message originated by
 either a Control Client or Control Server and responded to with a
 Control Framework response code message. Note that the Control
 Framework has no "provisional" responses. A Control Framework

Boulton, et al. Standards Track [Page 5]

RFC 6230 Media Control Channel Framework May 2011

 transaction is referenced throughout the document as a
 ’Transaction-Timeout’.

 Transaction-Timeout: The maximum allowed time between a Control
 Client or Server issuing a Framework message and it arriving at
 the destination. The value for ’Transaction-Timeout’ is 10
 seconds.

3. Overview

 This document details mechanisms for establishing, using, and
 terminating a reliable transport connection channel using SIP and the
 Session Description Protocol offer/answer [RFC3264] exchange. The
 established connection is then used for controlling an external
 server. The following text provides a non-normative overview of the
 mechanisms used. Detailed, normative guidelines are provided later
 in the document.

 Control Channels are negotiated using standard SIP mechanisms that
 would be used in a similar manner to creating a SIP multimedia
 session. Figure 1 illustrates a simplified view of the mechanism.
 It highlights a separation of the SIP signaling traffic and the
 associated Control Channel that is established as a result of the SIP
 interactions.

 Initial analysis into the Control Framework, as documented in
 [MSCL-THOUGHTS], established the following. One might ask, "If all
 we are doing is establishing a TCP connection to control the media
 server, why do we need SIP?" This is a reasonable question. The key
 is that we use SIP for media session establishment. If we are using
 SIP for media session establishment, then we need to ensure the URI
 used for session establishment resolves to the same node as the node
 for session control. Using the SIP routing mechanism, and having the
 server initiate the TCP connection back, ensures this works. For
 example, the URI sip:myserver.example.com may resolve to sip:
 server21.farm12.northeast.example.net, whereas the URI
 http://myserver.example.com may resolve to
 http://server41.httpfarm.central.example.net. That is, the host part
 is not necessarily unambiguous.

 The use of SIP to negotiate the Control Channel provides many
 inherent capabilities, which include:

 o Service location - Use SIP Proxies and Back-to-Back User Agents
 for locating Control Servers.

 o Security mechanisms - Leverage established security mechanisms
 such as Transport Layer Security (TLS) and Client Authentication.

Boulton, et al. Standards Track [Page 6]

RFC 6230 Media Control Channel Framework May 2011

 o Connection maintenance - The ability to re-negotiate a connection,
 ensure it is active, and so forth.

 o Application agnostic - Generic protocol allows for easy extension.

 As mentioned in the previous list, one of the main benefits of using
 SIP as the session control protocol is the "Service Location"
 facilities provided. This applies both at a routing level, where
 [RFC3263] provides the physical location of devices, and at the
 service level, using Caller Preferences [RFC3840] and Callee
 Capabilities [RFC3841]. The ability to select a Control Server based
 on service-level capabilities is extremely powerful when considering
 a distributed, clustered architecture containing varying services
 (for example, voice, video, IM). More detail on locating Control
 Server resources using these techniques is outlined in Section 4.1 of
 this document.

 +--------------SIP Traffic--------------+
 | |
 v v
 +-----+ +--+--+
 | SIP | | SIP |
 |Stack| |Stack|
 +---+-----+---+ +---+-----+---+
 | Control | | Control |
 | Client |<----Control Channel---->| Server |
 +-------------+ +-------------+

 Figure 1: Basic Architecture

 The example from Figure 1 conveys a 1:1 connection between the
 Control Client and the Control Server. It is possible, if required,
 for the client to request multiple Control Channels using separate
 SIP INVITE dialogs between the Control Client and the Control Server
 entities. Any of the connections created between the two entities
 can then be used for Server control interactions. The control
 connections are orthogonal to any given media session. Specific
 media session information is incorporated in control interaction
 commands, which themselves are defined in external packages, using
 the XML schema defined in Appendix A. The ability to have multiple
 Control Channels allows for stronger redundancy and the ability to
 manage high volumes of traffic in busy systems.

 Consider the following simple example for session establishment
 between a Client and a Server. (Note: Some lines in the examples are
 removed for clarity and brevity.) Note that the roles discussed are
 logical and can change during a session, if the Control Package
 allows.

Boulton, et al. Standards Track [Page 7]

RFC 6230 Media Control Channel Framework May 2011

 The Client constructs and sends a standard SIP INVITE request, as
 defined in [RFC3261], to the external Server. The Session
 Description Protocol (SDP) payload includes the required information
 for Control Channel negotiation and is the primary mechanism for
 conveying support for this specification. The application/cfw MIME
 type is defined in this document to convey the appropriate SDP format
 for compliance to this specification. The Connection-Oriented Media
 (COMEDIA) [RFC4145] specification for setting up and maintaining
 reliable connections is used as part of the negotiation mechanism
 (more detail available in later sections). The Client also includes
 the ’cfw-id’ SDP attribute, as defined in this specification, which
 is a unique identifier used to correlate the underlying Media Control
 Channel with the offer/answer exchange.

 Client Sends to External Server:

 INVITE sip:External-Server@example.com SIP/2.0
 To: <sip:External-Server@example.com>
 From: <sip:Client@example.com>;tag=64823746
 Via: SIP/2.0/UDP client.example.com;branch=z9hG4bK72d
 Call-ID: 7823987HJHG6
 Max-Forwards: 70
 CSeq: 1 INVITE
 Contact: <sip:Client@clientmachine.example.com>
 Content-Type: application/sdp
 Content-Length: [..]

 v=0
 o=originator 2890844526 2890842808 IN IP4 controller.example.com
 s=-
 c=IN IP4 controller.example.com
 m=application 49153 TCP cfw
 a=setup:active
 a=connection:new
 a=cfw-id:H839quwhjdhegvdga

 On receiving the INVITE request, an external Server supporting this
 mechanism generates a 200 OK response containing appropriate SDP and
 formatted using the application/cfw MIME type specified in this
 document. The Server inserts its own unique ’cfw-id’ SDP attribute,
 which differs from the one received in the INVITE (offer).

 External Server Sends to Client:

SIP/2.0 200 OK
To: <sip:External-Server@example.com>;tag=28943879
From: <sip:Client@example.com>;tag=64823746
Via: SIP/2.0/UDP client.example.com;branch=z9hG4bK72d;received=192.0.2.4

Boulton, et al. Standards Track [Page 8]

RFC 6230 Media Control Channel Framework May 2011

Call-ID: 7823987HJHG6
CSeq: 1 INVITE
Contact: <sip:External-Server@servermachine.example.com>
Content-Type: application/sdp
Content-Length: [..]

v=0
o=responder 2890844526 2890842808 IN IP4 server.example.com
s=-
c=IN IP4 mserver.example.com
m=application 7563 TCP cfw
a=setup:passive
a=connection:new
a=cfw-id:U8dh7UHDushsdu32uha

 The Control Client receives the SIP 200 OK response and extracts the
 relevant information (also sending a SIP ACK). It creates an
 outgoing (as specified by the SDP ’setup’ attribute of ’active’) TCP
 connection to the Control Server. The connection address (taken from
 ’c=’) and port (taken from ’m=’) are used to identify the remote port
 in the new connection.

 Once established, the newly created connection can be used to
 exchange requests and responses as defined in this document. If
 required, after the Control Channel has been set up, media sessions
 can be established using standard SIP Third Party Call Control (3PCC)
 [RFC3725].

 Figure 2 provides a simplified example where the framework is used to
 control a User Agent’s RTP session.

 +--------Control SIP Dialog(1)---------+
 | |
 v v
 +-----+ +--+--+
 +------(2)------>| SIP |---------------(2)------------->| SIP |
 | |Stack| |Stack|
 | +---+-----+---+ +---+-----+---+
 | | | | |
 | | Control |<--Control Channel(1)-->| |
 | | Client | | Control |
 | +-------------+ | Server |
 +--+--+ | |
 |User | | |
 |Agent|<=====================RTP(2)===================>| |
 +-----+ +-------------+

 Figure 2: Participant Architecture

Boulton, et al. Standards Track [Page 9]

RFC 6230 Media Control Channel Framework May 2011

 The link (1) represents the SIP INVITE dialog usage and dedicated
 Control Channel previously described in this overview section. The
 link (2) from Figure 2 represents the User Agent SIP INVITE dialog
 usage interactions and associated media flow. A User Agent creates a
 SIP INVITE dialog usage with the Control Client entity. The Control
 Client entity then creates a SIP INVITE dialog usage to the Control
 Server, using B2BUA type functionality. Using the interaction
 illustrated by (2), the Control Client negotiates media capabilities
 with the Control Server, on behalf of the User Agent, using SIP 3PCC.
 [RFC3725].

4. Control Channel Setup

 This section describes the setup, using SIP, of the dedicated Control
 Channel. Once the Control Channel has been established, commands can
 be exchanged (as discussed in Section 6).

4.1. Control Client SIP UAC Behavior

 When a UAC wishes to establish a Control Channel, it MUST construct
 and transmit a new SIP INVITE request for Control Channel setup. The
 UAC MUST construct the INVITE request as defined in [RFC3261].

 If a reliable response is received (as defined in [RFC3261] and
 [RFC3262]), the mechanisms defined in this document are applicable to
 the newly created SIP INVITE dialog usage.

 The UAC SHOULD include a valid session description (an ’offer’ as
 defined in [RFC3264]) in an INVITE request using the Session
 Description Protocol defined in [RFC4566] but MAY choose an offer-
 less INVITE as per [RFC3261]. The SDP SHOULD be formatted in
 accordance with the steps below and using the MIME type application/
 cfw, which is registered in Section 13. The following information
 defines the composition of specific elements of the SDP payload the
 offerer MUST adhere to when used in a SIP-based offer/answer exchange
 using SDP and the application/cfw MIME type. The SDP being
 constructed MUST contain only a single occurrence of a Control
 Channel definition outlined in this specification but can contain
 other media lines if required.

 The Connection Data line in the SDP payload is constructed as
 specified in [RFC4566]:

 c=<nettype> <addrtype> <connection-address>

 The first sub-field, <nettype>, MUST equal the value "IN". The
 second sub-field, <addrtype>, MUST equal either "IP4" or "IP6". The
 third sub-field for Connection Data is <connection-address>. This

Boulton, et al. Standards Track [Page 10]

RFC 6230 Media Control Channel Framework May 2011

 supplies a representation of the SDP originator’s address, for
 example, DNS/IP representation. The address is the address used for
 connections.

 Example:

 c=IN IP4 controller.example.com

 The SDP MUST contain a corresponding Media Description entry:

 m=<media> <port> <proto> <fmt>

 The first "sub-field", <media>, MUST equal the value "application".
 The second sub-field, <port>, MUST represent a port on which the
 constructing client can receive an incoming connection if required.
 The port is used in combination with the address specified in the
 Connection Data line defined previously to supply connection details.
 If the entity constructing the SDP can’t receive incoming
 connections, it must still enter a valid port entry. The use of the
 port value ’0’ has the same meaning as defined in a SIP offer/answer
 exchange [RFC3264]. The Control Framework has a default port defined
 in Section 13.5. This value is default, although a client is free to
 choose explicit port numbers. However, SDP SHOULD use the default
 port number, unless local policy prohibits its use. Using the
 default port number allows network administrators to manage firewall
 policy for Control Framework interactions. The third sub-field,
 <proto>, compliant to this specification, MUST support the values
 "TCP" and "TCP/TLS". Implementations MUST support TLS as a
 transport-level security mechanism for the Control Channel, although
 use of TLS in specific deployments is optional. Control Framework
 implementations MUST support TCP as a transport protocol. When an
 entity identifies a transport value but is not willing to establish
 the session, it MUST respond using the appropriate SIP mechanism.
 The <fmt> sub-field MUST contain the value "cfw".

 The SDP MUST also contain a number of SDP media attributes (a=) that
 are specifically defined in the COMEDIA [RFC4145] specification. The
 attributes provide connection negotiation and maintenance parameters.
 It is RECOMMENDED that a Controlling UAC initiate a connection to an
 external Server but that an external Server MAY negotiate and
 initiate a connection using COMEDIA, if network topology prohibits
 initiating connections in a certain direction. An example of the
 COMEDIA attributes is:

 a=setup:active
 a=connection:new

Boulton, et al. Standards Track [Page 11]

RFC 6230 Media Control Channel Framework May 2011

 This example demonstrates a new connection that will be initiated
 from the owner of the SDP payload. The connection details are
 contained in the SDP answer received from the UAS. A full example of
 an SDP payload compliant to this specification can be viewed in
 Section 3. Once the SDP has been constructed along with the
 remainder of the SIP INVITE request (as defined in [RFC3261]), it can
 be sent to the appropriate location. The SIP INVITE dialog usage and
 appropriate control connection is then established.

 A SIP UAC constructing an offer MUST include the ’cfw-id’ SDP
 attribute as defined in Section 9.2. The ’cfw-id’ attribute
 indicates an identifier that can be used within the Control Channel
 to correlate the Control Channel with this SIP INVITE dialog usage.
 The ’cfw-id’ attribute MUST be unique in the context of the
 interaction between the UAC and UAS and MUST NOT clash with instances
 of the ’cfw-id’ used in other SIP offer/answer exchanges. The value
 chosen for the ’cfw-id’ attribute MUST be used for the entire
 duration of the associated SIP INVITE dialog usage and not be changed
 during updates to the offer/answer exchange. This applies
 specifically to the ’connection’ attribute as defined in [RFC4145].
 If a SIP UAC wants to change some other parts of the SDP but reuse
 the already established connection, it uses the value of ’existing’
 in the ’connection’ attribute (for example, a=connection:existing).
 If it has noted that a connection has failed and wants to re-
 establish the connection, it uses the value of ’new’ in the
 ’connection’ attribute (for example, a=connection:new). Throughout
 this, the connection identifier specified in the ’cfw-id’ SDP
 parameter MUST NOT change. One is simply negotiating the underlying
 TCP connection between endpoints but always using the same Control
 Framework session, which is 1:1 for the lifetime of the SIP INVITE
 dialog usage.

 A non-2xx-class final SIP response (3xx, 4xx, 5xx, and 6xx) received
 for the INVITE request indicates that no SIP INVITE dialog usage has
 been created and is treated as specified by SIP [RFC3261].
 Specifically, support of this specification is negotiated through the
 presence of the media type defined in this specification. The
 receipt of a SIP error response such as "488" indicates that the
 offer contained in a request is not acceptable. The inclusion of the
 media line associated with this specification in such a rejected
 offer indicates to the client generating the offer that this could be
 due to the receiving client not supporting this specification. The
 client generating the offer MUST act as it would normally on
 receiving this response, as per [RFC3261]. Media streams can also be
 rejected by setting the port to "0" in the "m=" line of the session
 description, as defined in [RFC3264]. A client using this
 specification MUST be prepared to receive an answer where the "m="
 line it inserted for using the Control Framework has been set to "0".

Boulton, et al. Standards Track [Page 12]

RFC 6230 Media Control Channel Framework May 2011

 In this situation, the client will act as it would for any other
 media type with a port set to "0".

4.2. Control Server SIP UAS Behavior

 On receiving a SIP INVITE request, an external Server (SIP UAS)
 inspects the message for indications of support for the mechanisms
 defined in this specification. This is achieved through inspection
 of the session description of the offer message and identifying
 support for the application/cfw MIME type in the SDP. If the SIP UAS
 wishes to construct a reliable response that conveys support for the
 extension, it MUST follow the mechanisms defined in [RFC3261]. If
 support is conveyed in a reliable SIP provisional response, the
 mechanisms in [RFC3262] MUST also be used. It should be noted that
 the SDP offer is not restricted to the initial INVITE request and MAY
 appear in any series of messages that are compliant to [RFC3261],
 [RFC3262], [RFC3311], and [RFC3264].

 When constructing an answer, the SDP payload MUST be constructed
 using the semantic (connection, media, and attribute) defined in
 Section 4.1 using valid local settings and also with full compliance
 to the COMEDIA [RFC4145] specification. For example, the SDP
 attributes included in the answer constructed for the example offer
 provided in Section 4.1 would look as follows:

 a=setup:passive
 a=connection:new

 A client constructing an answer MUST include the ’cfw-id’ SDP
 attribute as defined in Section 9.2. This attribute MUST be unique
 in the context of the interaction between the UAC and UAS and MUST
 NOT clash with instances of the ’cfw-id’ used in other SIP offer/
 answer exchanges. The ’cfw-id’ MUST be different from the ’cfw-id’
 value received in the offer as it is used to uniquely identify and
 distinguish between multiple endpoints that generate SDP answers.
 The value chosen for the ’cfw-id’ attribute MUST be used for the
 entire duration of the associated SIP INVITE dialog usage and not be
 changed during updates to the offer/answer exchange.

 Once the SDP answer has been constructed, it is sent using standard
 SIP mechanisms. Depending on the contents of the SDP payloads that
 were negotiated using the offer/answer exchange, a reliable
 connection will be established between the Controlling UAC and
 External Server UAS entities. The newly established connection is
 now available to exchange Control Command primitives. The state of
 the SIP INVITE dialog usage and the associated Control Channel are
 now implicitly linked. If either party wishes to terminate a Control
 Channel, it simply issues a SIP termination request (for example, a

Boulton, et al. Standards Track [Page 13]

RFC 6230 Media Control Channel Framework May 2011

 SIP BYE request or appropriate response in an early SIP INVITE dialog
 usage). The Control Channel therefore lives for the duration of the
 SIP INVITE dialog usage.

 A UAS receiving a SIP OPTIONS request MUST respond appropriately as
 defined in [RFC3261]. The UAS MUST include the media types supported
 in the SIP 200 OK response in a SIP ’Accept’ header to indicate the
 valid media types.

5. Establishing Media Streams - Control Client SIP UAC Behavior

 It is intended that the Control Framework will be used within a
 variety of architectures for a wide range of functions. One of the
 primary functions will be the use of the Control Channel to apply
 multiple specific Control Package commands to media sessions
 established by SIP INVITE dialogs (media dialogs) with a given remote
 server. For example, the Control Server might send a command to
 generate audio media (such as an announcement) on an RTP stream
 between a User Agent and a media server.

 SIP INVITE dialogs used to establish media sessions (see Figure 2) on
 behalf of User Agents MAY contain more than one Media Description (as
 defined by "m=" in the SDP). The Control Client MUST include a media
 label attribute, as defined in [RFC4574], for each "m=" definition
 received that is to be directed to an entity using the Control
 Framework. This allows the Control Client to later explicitly direct
 commands on the Control Channel at a specific media line (m=).

 This framework identifies the referencing of such associated media
 dialogs as extremely important. A connection reference attribute has
 been specified that can optionally be imported into any Control
 Package. It is intended that this will reduce the repetitive
 specifying of dialog reference language. The schema can be found in
 Appendix A.1.

 Similarly, the ability to identify and apply commands to a group of
 associated media dialogs (multiparty) is also identified as a common
 structure that could be defined and reused, for example, playing a
 prompt to all participants in a Conference. The schema for such
 operations can also be found in Appendix A.1.

 Support for both the common attributes described here is specified as
 part of each Control Package definition, as detailed in Section 8.

Boulton, et al. Standards Track [Page 14]

RFC 6230 Media Control Channel Framework May 2011

6. Control Framework Interactions

 In this document, the use of the COMEDIA specification allows for a
 Control Channel to be set up in either direction as a result of a SIP
 INVITE transaction. SIP provides a flexible negotiation mechanism to
 establish the Control Channel, but there needs to be a mechanism
 within the Control Channel to correlate it with the SIP INVITE dialog
 usage implemented for its establishment. A Control Client receiving
 an incoming connection (whether it be acting in the role of UAC or
 UAS) has no way of identifying the associated SIP INVITE dialog usage
 as it could be simply listening for all incoming connections on a
 specific port. The following steps, which implementations MUST
 support, allow a connecting UA (that is, the UA with the active role
 in COMEDIA) to identify the associated SIP INVITE dialog usage that
 triggered the connection. Unless there is an alternative dialog
 association mechanism used, the UAs MUST carry out these steps before
 any other signaling on the newly created Control Channel.

 o Once the connection has been established, the UA acting in the
 active role (active UA) to initiate the connection MUST send a
 Control Framework SYNC request. The SYNC request MUST be
 constructed as defined in Section 9.1 and MUST contain the
 ’Dialog-ID’ message header.

 o The ’Dialog-ID’ message header is populated with the value of the
 local ’cfw-id’ media-level attribute that was inserted by the same
 client in the SDP offer/answer exchange to establish the Control
 Channel. This allows for a correlation between the Control
 Channel and its associated SIP INVITE dialog usage.

 o On creating the SYNC request, the active UA MUST follow the
 procedures outlined in Section 6.3.3. This provides details of
 connection keep-alive messages.

 o On creating the SYNC request, the active UA MUST also follow the
 procedures outlined in Section 6.3.4.2. This provides details of
 the negotiation mechanism used to determine the Protocol Data
 Units (PDUs) that can be exchanged on the established Control
 Channel connection.

 o The UA in the active role for the connection creation MUST then
 send the SYNC request. If the UA in the active role for the
 connection creation is a SIP UAS and has generated its SDP
 response in a 2xx-class SIP response, it MUST wait for an incoming
 SIP ACK message before issuing the SYNC. If the UA in the active
 role for the connection creation is a SIP UAS and has generated
 its SDP response in a reliable 1XX class SIP response, it MUST
 wait for an incoming SIP PRACK message before issuing the SYNC.

Boulton, et al. Standards Track [Page 15]

RFC 6230 Media Control Channel Framework May 2011

 If the UA in the active role for the connection creation is a SIP
 UAC, it MUST send the SYNC message immediately on establishment of
 the Control Channel. It MUST then wait for a period of at least
 2*’Transaction-Timeout’ to receive a response. It MAY choose a
 longer time to wait, but it MUST NOT be shorter than ’Transaction-
 Timeout’. In general, a Control Framework transaction MUST
 complete within 20 (2*’Transaction-Timeout’) seconds and is
 referenced throughout the document as ’Transaction-Timeout’.

 o If no response is received for the SYNC message, a timeout occurs
 and the Control Channel is terminated along with the associated
 SIP INVITE dialog usage. The active UA MUST issue a BYE request
 to terminate the SIP INVITE dialog usage.

 o If the active UA receives a 481 response from the passive UA, this
 means the SYNC request was received, but the associated SIP INVITE
 dialog usage specified in the SYNC message does not exist. The
 active client MUST terminate the Control Channel. The active UA
 MUST issue a SIP BYE request to terminate the SIP INVITE dialog
 usage.

 o All other error responses received for the SYNC request are
 treated as detailed in this specification and also result in the
 termination of the Control Channel and the associated SIP INVITE
 dialog usage. The active UA MUST issue a BYE request to terminate
 the SIP INVITE dialog usage.

 o The receipt of a 200 response to a SYNC message implies that the
 SIP INVITE dialog usage and control connection have been
 successfully correlated. The Control Channel can now be used for
 further interactions.

 SYNC messages can be sent at any point while the Control Channel is
 open from either side, once the initial exchange is complete. If
 present, the contents of the ’Keep-Alive’ and ’Dialog-ID’ headers
 MUST NOT change. New values of the ’Keep-Alive’ and ’Dialog-ID’
 headers have no relevance as they are negotiated for the lifetime of
 the Media Control Channel Framework session.

 Once a successful Control Channel has been established, as defined in
 Sections 4.1 and 4.2, and the connection has been correlated, as
 described in previous paragraphs, the two entities are now in a
 position to exchange Control Framework messages. The following sub-
 sections specify the general behavior for constructing Control
 Framework requests and responses. Section 6.3 specifies the core
 Control Framework methods and their transaction processing.

Boulton, et al. Standards Track [Page 16]

RFC 6230 Media Control Channel Framework May 2011

6.1. General Behavior for Constructing Requests

 An entity acting as a Control Client that constructs and sends
 requests on a Control Channel MUST adhere to the syntax defined in
 Section 9. Note that either entity can act as a Control Client
 depending on individual package requirements. Control Commands MUST
 also adhere to the syntax defined by the Control Packages negotiated
 in Sections 4.1 and 4.2 of this document. A Control Client MUST
 create a unique transaction and associated identifier for insertion
 in the request. The transaction identifier is then included in the
 first line of a Control Framework message along with the method type,
 as defined in the ABNF in Section 9. The first line starts with the
 "CFW" token for the purpose of easily extracting the transaction
 identifier. The transaction identifier MUST be unique in the context
 of the interaction between the Control Client and Control Server.
 This unique property helps avoid clashes when multiple client
 entities could be creating transactions to be carried out on a single
 receiving server. All required, mandatory, and optional Control
 Framework headers are then inserted into the request with appropriate
 values (see relevant individual header information for explicit
 detail). A ’Control-Package’ header MUST also be inserted with the
 value indicating the Control Package to which this specific request
 applies. Multiple packages can be negotiated per Control Channel
 using the SYNC message discussed in Section 6.3.4.2.

 Any Framework message that contains an associated payload MUST also
 include the ’Content-Type’ and ’Content-Length’ message headers,
 which indicate the MIME type of the payload specified by the
 individual Control Framework packages and the size of the message
 body represented as a whole decimal number of octets, respectively.
 If no associated payload is to be added to the message, the ’Content-
 Length’ header MUST have a value of ’0’.

 A Server receiving a Framework message request MUST respond with an
 appropriate response (as defined in Section 6.2). Control Clients
 MUST wait for a minimum of 2*’Transaction-Timeout’ for a response
 before considering the transaction a failure and tidying state
 appropriately depending on the extension package being used.

6.2. General Behavior for Constructing Responses

 An entity acting as a Control Server, on receiving a request, MUST
 generate a response within the ’Transaction-Timeout’, as measured
 from the Control Client. The response MUST conform to the ABNF
 defined in Section 9. The first line of the response MUST contain
 the transaction identifier used in the first line of the request, as

Boulton, et al. Standards Track [Page 17]

RFC 6230 Media Control Channel Framework May 2011

 defined in Section 6.1. Responses MUST NOT include the ’Status’ or
 ’Timeout’ message headers, and these MUST be ignored if received by a
 Client in a response.

 A Control Server MUST include a status code in the first line of the
 response. If there is no error, the Server responds with a 200
 Control Framework status code, as defined in Section 7.1. The 200
 response MAY include message bodies. If the response contains a
 payload, the message MUST include the ’Content-Length’ and ’Content-
 Type’ headers. When the Control Client receives a 2xx-class
 response, the Control Command transaction is complete.

 If the Control Server receives a request, like CONTROL, that the
 Server understands, but the Server knows processing the command will
 exceed the ’Transaction-Timeout’, then the Server MUST respond with a
 202 status code in the first line of the response. Following the
 initial response, the server will send one or more REPORT messages as
 described in Section 6.3.2. A Control Package MUST explicitly define
 the circumstances under which the server sends 200 and 202 messages.

 If a Control Server encounters problems with a Control Framework
 request (like REPORT or CONTROL), an appropriate error code MUST be
 used in the response, as listed in Section 7. The generation of a
 non-2xx-class response code to a Control Framework request (like
 CONTROL or REPORT) will indicate failure of the transaction, and all
 associated transaction state and resources MUST be terminated. The
 response code may provide an explicit indication of why the
 transaction failed, which might result in a re-submission of the
 request depending on the extension package being used.

6.3. Transaction Processing

 The Control Framework defines four types of requests (methods):
 CONTROL, REPORT, K-ALIVE, and SYNC. Implementations MUST support
 sending and receiving these four methods.

 The following sub-sections specify each Control Framework method and
 its associated transaction processing.

6.3.1. CONTROL Transactions

 A CONTROL message is used by the Control Client to pass control-
 related information to a Control Server. It is also used as the
 event-reporting mechanism in the Control Framework. Reporting events
 is simply another usage of the CONTROL message, which is permitted to
 be sent in either direction between two participants in a session,
 carrying the appropriate payload for an event. The message is
 constructed in the same way as any standard Control Framework

Boulton, et al. Standards Track [Page 18]

RFC 6230 Media Control Channel Framework May 2011

 message, as discussed in Section 6.1 and defined in Section 9. A
 CONTROL message MAY contain a message body. The explicit Control
 Command(s) of the message payload contained in a CONTROL message are
 specified in separate Control Package specifications. Separate
 Control Package specifications MUST conform to the format defined in
 Section 8.4. A CONTROL message containing a payload MUST include a
 ’Content-Type’ header. The payload MUST be one of the payload types
 defined by the Control Package. Individual packages MAY allow a
 CONTROL message that does not contain a payload. This could in fact
 be a valid message exchange within a specific package; if it’s not,
 an appropriate package-level error message MUST be generated.

6.3.2. REPORT Transactions

 A ’REPORT’ message is used by a Control Server when processing of a
 CONTROL command extends beyond the ’Transaction-Timeout’, as measured
 from the Client. In this case, the Server returns a 202 response.
 The Server returns status updates and the final results of the
 command in subsequent REPORT messages.

 All REPORT messages MUST contain the same transaction ID in the
 request start line that was present in the original CONTROL
 transaction. This correlates extended transactions with the original
 CONTROL transaction. A REPORT message containing a payload MUST
 include the ’Content-Type’ and ’Content-Length’ headers indicating
 the payload MIME type [RFC2045] defined by the Control Package and
 the length of the payload, respectively.

6.3.2.1. Reporting the Status of Extended Transactions

 On receiving a CONTROL message, a Control Server MUST respond within
 ’Transaction-Timeout’ with a status code for the request, as
 specified in Section 6.2. If the processing of the command completes
 within that time, a 200 response code MUST be sent. If the command
 does not complete within that time, the response code 202 MUST be
 sent indicating that the requested command is still being processed
 and the CONTROL transaction is being extended. The REPORT method is
 then used to update and terminate the status of the extended
 transaction. The Control Server should not wait until the last
 possible opportunity to make the decision of issuing a 202 response
 code and should ensure that it has plenty of time for the response to
 arrive at the Control Client. If it does not have time, transactions
 will be terminated (timed out) at the Control Client before
 completion.

Boulton, et al. Standards Track [Page 19]

RFC 6230 Media Control Channel Framework May 2011

 A Control Server issuing a 202 response MUST ensure the message
 contains a ’Timeout’ message header. This header MUST have a value
 in seconds that is the amount of time the recipient of the 202
 message MUST wait before assuming that there has been a problem and
 terminating the extended transaction and associated state.

 The initial REPORT message MUST contain a ’Seq’ (Sequence) message
 header with a value equal to ’1’. Note: the ’Seq’ numbers at both
 Control Client and Control Server for Framework messages are
 independent.

 All REPORT messages for an extended CONTROL transaction MUST contain
 a ’Timeout’ message header. This header will contain a value in
 seconds that is the amount of time the recipient of the REPORT
 message MUST wait before assuming that there has been a problem and
 terminating the extended transaction and associated state. On
 receiving a REPORT message with a ’Status’ header of ’update’, the
 Control Client MUST reset the timer for the associated extended
 CONTROL transaction to the indicated timeout period. If the timeout
 period approaches and no intended REPORT messages have been
 generated, the entity acting as a Control Framework UAS for the
 interaction MUST generate a REPORT message containing, as defined in
 this paragraph, a ’Status’ header of ’update’ with no associated
 payload. Such a message acts as a timeout refresh and in no way
 impacts the extended transaction because no message body or semantics
 are permitted. It is RECOMMENDED that a minimum value of 10 and a
 maximum value of 15 seconds be used for the value of the ’Timeout’
 message header. It is also RECOMMENDED that a Control Server refresh
 the timeout period of the CONTROL transaction at an interval that is
 not too close to the expiry time. A value of 80% of the timeout
 period could be used. For example, if the timeout period is 10
 seconds, the Server would refresh the transaction after 8 seconds.

 Subsequent REPORT messages that provide additional information
 relating to the extended CONTROL transaction MUST also include and
 increment by 1 the ’Seq’ header value. A REPORT message received
 that has not been incremented by 1 MUST be responded to with a 406
 response and the extended transaction MUST be considered terminated.
 On receiving a 406 response, the extended transaction MUST be
 terminated. REPORT messages MUST also include a ’Status’ header with
 a value of ’update’. These REPORT messages sent to update the
 extended CONTROL transaction status MAY contain a message body, as
 defined by individual Control Packages and specified in Section 8.5.
 A REPORT message sent updating the extended transaction also acts as
 a timeout refresh, as described earlier in this section. This will
 result in a transaction timeout period at the initiator of the
 original CONTROL request being reset to the interval contained in the
 ’Timeout’ message header.

Boulton, et al. Standards Track [Page 20]

RFC 6230 Media Control Channel Framework May 2011

 When all processing for an extended CONTROL transaction has taken
 place, the entity acting as a Control Server MUST send a terminating
 REPORT message. The terminating REPORT message MUST increment the
 value in the ’Seq’ message header by the value of ’1’ from the
 previous REPORT message. It MUST also include a ’Status’ header with
 a value of ’terminate’ and MAY contain a message body. It MUST also
 contain a ’Timeout’ message header with a valid value. The inclusion
 of the ’Timeout’ header is for consistency, and its value is ignored.
 A Control Framework UAC can then clean up any pending state
 associated with the original CONTROL transaction.

6.3.3. K-ALIVE Transactions

 The protocol defined in this document may be used in various network
 architectures. This includes a wide range of deployments where the
 clients could be co-located in a secured, private domain, or spread
 across disparate domains that require traversal of devices such as
 Network Address Translators (NATs) and firewalls. A keep-alive
 mechanism enables the Control Channel to be kept active during times
 of inactivity. This is because many firewalls have a timeout period
 after which connections are closed. This mechanism also provides the
 ability for application-level failure detection. It should be noted
 that the following procedures apply only to the Control Channel being
 created. For details relating to the SIP keep-alive mechanism,
 implementers should seek guidance from SIP Outbound [RFC5626].

 The following keep-alive procedures MUST be implemented. Specific
 deployments MAY choose not to use the keep-alive mechanism if both
 entities are in a co-located domain. Note that choosing not to use
 the keep-alive mechanism defined in this section, even when in a co-
 located architecture, will reduce the ability to detect application-
 level errors, especially during long periods of inactivity.

 Once the SIP INVITE dialog usage has been established and the
 underlying Control Channel has been set up, including the initial
 correlation handshake using SYNC as discussed in Section 6, both
 entities acting in the active and passive roles, as defined in
 COMEDIA [RFC4145], MUST start a keep-alive timer equal to the value
 negotiated during the Control Channel SYNC request/response exchange.
 This is the value from the ’Keep-Alive’ header in seconds.

6.3.3.1. Behavior for an Entity in an Active Role

 When in an active role, a K-ALIVE message MUST be generated before
 the local keep-alive timer fires. An active entity is free to send
 the K-ALIVE message whenever it chooses. It is RECOMMENDED for the
 entity to issue a K-ALIVE message after 80% of the local keep-alive
 timer. On receiving a 200 OK Control Framework message for the

Boulton, et al. Standards Track [Page 21]

RFC 6230 Media Control Channel Framework May 2011

 K-ALIVE request, the active entity MUST reset the local keep-alive
 timer. If no 200 OK response is received to the K-ALIVE message, or
 a transport-level problem is detected by some other means, before the
 local keep-alive timer fires, the active entity MAY use COMEDIA re-
 negotiation procedures to recover the connection. Otherwise, the
 active entity MUST tear down the SIP INVITE dialog and recover the
 associated Control Channel resources.

6.3.3.2. Behavior for an Entity in a Passive Role

 When acting as a passive entity, a K-ALIVE message must be received
 before the local keep-alive timer fires. When a K-ALIVE request is
 received, the passive entity MUST generate a 200 OK Control Framework
 response and reset the local keep-alive timer. No other Control
 Framework response is valid. If no K-ALIVE message is received (or a
 transport level problem is detected by some other means) before the
 local keep-alive timer fires, the passive entity MUST tear down the
 SIP INVITE dialog and recover the associated Control Channel
 resources.

6.3.4. SYNC Transactions

 The initial SYNC request on a Control Channel is used to negotiate
 the timeout period for the Control Channel keep-alive mechanism and
 to allow clients and servers to learn the Control Packages that each
 supports. Subsequent SYNC requests MAY be used to change the set of
 Control Packages that can be used on the Control Channel.

6.3.4.1. Timeout Negotiation for the Initial SYNC Transaction

 The initial SYNC request allows the timeout period for the Control
 Channel keep-alive mechanism to be negotiated. The following rules
 MUST be followed for the initial SYNC request:

 o If the Client initiating the SDP offer has a COMEDIA ’setup’
 attribute equal to active, the ’Keep-Alive’ header MUST be
 included in the SYNC message generated by the offerer. The value
 of the ’Keep-Alive’ header SHOULD be in the range of 95 to 120
 seconds (this is consistent with SIP Outbound [RFC5626]). The
 value of the ’Keep-Alive’ header MUST NOT exceed 600 seconds. The
 client that generated the SDP "Answer" (the passive client) MUST
 copy the ’Keep-Alive’ header into the 200 response to the SYNC
 message with the same value.

 o If the Client initiating the SDP offer has a COMEDIA ’setup’
 attribute equal to passive, the ’Keep-Alive’ header parameter MUST
 be included in the SYNC message generated by the answerer. The
 value of the ’Keep-Alive’ header SHOULD be in the range of 95 to

Boulton, et al. Standards Track [Page 22]

RFC 6230 Media Control Channel Framework May 2011

 120 seconds. The client that generated the SDP offer (the passive
 client) MUST copy the ’Keep-Alive’ header into the 200 response to
 the SYNC message with the same value.

 o If the Client initiating the SDP offer has a COMEDIA ’setup’
 attribute equal to ’actpass’, the ’Keep-Alive’ header parameter
 MUST be included in the SYNC message of the entity who is the
 active participant in the SDP session. If the client generating
 the subsequent SDP answer places a value of ’active’ in the
 COMEDIA SDP ’setup’ attribute, it will generate the SYNC request
 and include the ’Keep-Alive’ header. The value SHOULD be in the
 range 95 to 120 seconds. If the client generating the subsequent
 SDP answer places a value of ’passive’ in the COMEDIA ’setup’
 attribute, the original UA making the SDP will generate the SYNC
 request and include the ’Keep-Alive’ header. The value SHOULD be
 in the range 95 to 120 seconds.

 o If the initial negotiated offer/answer results in a COMEDIA
 ’setup’ attribute equal to ’holdconn’, the initial SYNC mechanism
 will occur when the offer/answer exchange is updated and the
 active/passive roles are resolved using COMEDIA.

 The previous steps ensure that the entity initiating the Control
 Channel connection is always the one specifying the keep-alive
 timeout period. It will always be the initiator of the connection
 who generates the K-ALIVE messages.

 Once negotiated, the keep-alive timeout applies for the remainder of
 the Control Framework session. Any subsequent SYNC messages
 generated in the Control Channel do not impact the negotiated keep-
 alive property of the session. The ’Keep-Alive’ header MUST NOT be
 included in subsequent SYNC messages, and if it is received, it MUST
 be ignored.

6.3.4.2. Package Negotiation

 As part of the SYNC message exchange, a client generating the request
 MUST include a ’Packages’ header, as defined in Section 9. The
 ’Packages’ header contains a list of all Control Framework packages
 that can be supported within this control session, from the
 perspective of the client creating the SYNC message. All Channel
 Framework package names MUST be tokens that adhere to the rules set
 out in Section 8. The ’Packages’ header of the initial SYNC message
 MUST contain at least one value.

 A server receiving the initial SYNC request MUST examine the contents
 of the ’Packages’ header. If the server supports at least one of the
 packages listed in the request, it MUST respond with a 200 response

Boulton, et al. Standards Track [Page 23]

RFC 6230 Media Control Channel Framework May 2011

 code. The response MUST contain a ’Packages’ header that lists the
 supported packages that are in common with those from the ’Packages’
 header of the request (either all or a subset). This list forms a
 common set of Control Packages that are supported by both parties.
 Any Control Packages supported by the server that are not listed in
 the ’Packages’ header of the SYNC request MAY be placed in the
 ’Supported’ header of the response. This provides a hint to the
 client that generated the SYNC request about additional packages
 supported by the server.

 If no common packages are supported by the server receiving the SYNC
 message, it MUST respond with a 422 error response code. The error
 response MUST contain a ’Supported’ header indicating the packages
 that are supported. The initiating client can then choose to either
 re-submit a new SYNC message based on the 422 response or consider
 the interaction a failure. This would lead to termination of the
 associated SIP INVITE dialog by sending a SIP BYE request, as per
 [RFC3261].

 Once the initial SYNC transaction is completed, either client MAY
 choose to send a subsequent new SYNC message to re-negotiate the
 packages that are supported within the Control Channel. A new SYNC
 message whose ’Packages’ header has different values from the
 previous SYNC message can effectively add and delete the packages
 used in the Control Channel. If a client receiving a subsequent SYNC
 message does not wish to change the set of packages, it MUST respond
 with a 421 Control Framework response code. Subsequent SYNC messages
 MUST NOT change the value of the ’Dialog-ID’ and ’Keep-Alive’ Control
 Framework headers that appeared in the original SYNC negotiation.

 An entity MAY honor Control Framework commands relating to a Control
 Package it no longer supports after package re-negotiation. When the
 entity does not wish to honor such commands, it MUST respond to the
 request with a 420 response.

7. Response Code Descriptions

 The following response codes are defined for transaction responses to
 methods defined in Section 6.1. All response codes in this section
 MUST be supported and can be used in response to both CONTROL and
 REPORT messages except that a 202 MUST NOT be generated in response
 to a REPORT message.

 Note that these response codes apply to Framework Transactions only.
 Success or error indications for Control Commands MUST be treated as
 the result of a Control Command and returned in either a 200 response
 or REPORT message.

Boulton, et al. Standards Track [Page 24]

RFC 6230 Media Control Channel Framework May 2011

7.1. 200 Response Code

 The framework protocol transaction completed successfully.

7.2. 202 Response Code

 The framework protocol transaction completed successfully and
 additional information will be provided at a later time through the
 REPORT mechanism defined in Section 6.3.2.

7.3. 400 Response Code

 The request was syntactically incorrect.

7.4. 403 Response Code

 The server understood the request, but is refusing to fulfill it.
 The client SHOULD NOT repeat the request.

7.5. 405 Response Code

 Method not allowed. The primitive is not supported.

7.6. 406 Response Code

 Message out of sequence.

7.7. 420 Response Code

 Intended target of the request is for a Control Package that is not
 valid for the current session.

7.8. 421 Response Code

 Recipient does not wish to re-negotiate Control Packages at this
 moment in time.

7.9. 422 Response Code

 Recipient does not support any Control Packages listed in the SYNC
 message.

7.10. 423 Response Code

 Recipient has an existing transaction with the same transaction ID.

Boulton, et al. Standards Track [Page 25]

RFC 6230 Media Control Channel Framework May 2011

7.11. 481 Response Code

 The transaction of the request does not exist. In response to a SYNC
 request, the 481 response code indicates that the corresponding SIP
 INVITE dialog usage does not exist.

7.12. 500 Response Code

 The recipient does not understand the request.

8. Control Packages

 Control Packages specify behavior that extends the capability defined
 in this document. Control Packages MUST NOT weaken statements of
 "MUST" and "SHOULD" strength in this document. A Control Package MAY
 strengthen "SHOULD", "RECOMMENDED", and "MAY" to "MUST" if justified
 by the specific usage of the framework.

 In addition to the usual sections expected in Standards-Track RFCs
 and SIP extension documents, authors of Control Packages need to
 address each of the issues detailed in the following sub-sections.
 The following sections MUST be used as a template and included
 appropriately in all Control-Package specifications. To reiterate,
 the following sections do not solely form the basis of all Control-
 Package specifications but are included as a minimum to provide
 essential package-level information. A Control-Package specification
 can take any valid form it wishes as long as it includes at least the
 following information listed in this section.

8.1. Control Package Name

 This section MUST be present in all extensions to this document and
 provides a token name for the Control Package. The section MUST
 include information that appears in the IANA registration of the
 token. Information on registering Control Package tokens is
 contained in Section 13.

8.2. Framework Message Usage

 The Control Framework defines a number of message primitives that can
 be used to exchange commands and information. There are no
 limitations restricting the directionality of messages passed down a
 Control Channel. This section of a Control Package document MUST
 explicitly detail the types of Framework messages (Methods) that can
 be used as well as provide an indication of directionality between
 entities. This will include which role type is allowed to initiate a
 request type.

Boulton, et al. Standards Track [Page 26]

RFC 6230 Media Control Channel Framework May 2011

8.3. Common XML Support

 This optional section is only included in a Control Package if the
 attributes for media dialog or conference reference are required, as
 defined and discussed in Appendix A.1. The Control Package will make
 strong statements (using language from RFC 2119 [RFC2119]) if the XML
 schema defined in Appendix A.1 is to be supported. If only part of
 the schema is required (for example, just ’connectionid’ or
 ’conferenceid’), the Control Package will make equally strong
 statements (using language from RFC 2119 [RFC2119]).

8.4. CONTROL Message Bodies

 This mandatory section of a Control Package defines the control body
 that can be contained within a CONTROL command request, as defined in
 Section 6, or that no Control Package body is required. This section
 MUST indicate the location of detailed syntax definitions and
 semantics for the appropriate MIME [RFC2045] body type that apply to
 a CONTROL command request and, optionally, the associated 200
 response. For Control Packages that do not have a Control Package
 body, making such a statement satisfies the "MUST" strength of this
 section in the Control Package document.

8.5. REPORT Message Bodies

 This mandatory section of a Control Package defines the REPORT body
 that can be contained within a REPORT command request, as defined in
 Section 6, or that no report package body is required. This section
 MUST indicate the location of detailed syntax definitions and
 semantics for the appropriate MIME [RFC2045] body type. It should be
 noted that the Control Framework specification does allow for
 payloads to exist in 200 responses to CONTROL messages (as defined in
 this document). An entity that is prepared to receive a payload type
 in a REPORT message MUST also be prepared to receive the same payload
 in a 200 response to a CONTROL message. For Control Packages that do
 not have a Control Package body, stating such satisfies the "MUST"
 strength of this section in the Control Package document.

8.6. Audit

 Auditing of various Control Package properties such as capabilities
 and resources (package-level meta-information) is extremely useful.
 Such meta-data usually has no direct impact on Control Framework
 interactions but allows for contextual information to be learnt.
 Control Packages are encouraged to make use of Control Framework
 interactions to provide relevant package audit information.

Boulton, et al. Standards Track [Page 27]

RFC 6230 Media Control Channel Framework May 2011

 This section SHOULD include the following information:

 o If an auditing capability is available in this package.

 o How auditing information is triggered (for example, using a
 Control Framework CONTROL message) and delivered (for example, in
 a Control Framework 200 response).

 o The location of the audit query and response format for the
 payload (for example, it could be a separate XML schema OR part of
 a larger XML schema).

8.7. Examples

 It is strongly RECOMMENDED that Control Packages provide a range of
 message flows that represent common flows using the package and this
 framework document.

9. Formal Syntax

9.1. Control Framework Formal Syntax

 The Control Framework interactions use the UTF-8 transformation
 format as defined in [RFC3629]. The syntax in this section uses the
 Augmented Backus-Naur Form (ABNF) as defined in [RFC5234] including
 types ’DIGIT’, ’CRLF’, and ’ALPHA’.

 Unless otherwise stated in the definition of a particular header
 field, field values, parameter names, and parameter values are not
 case-sensitive.

 control-req-or-resp = control-request / control-response
 control-request = control-req-start *headers CRLF [control-content]
 control-response = control-resp-start *headers CRLF [control-content]
 control-req-start = pCFW SP trans-id SP method CRLF
 control-resp-start = pCFW SP trans-id SP status-code CRLF

 pCFW = %x43.46.57; CFW in caps
 trans-id = alpha-num-token
 method = mCONTROL / mREPORT / mSYNC / mK-ALIVE / other-method
 mCONTROL = %x43.4F.4E.54.52.4F.4C ; CONTROL in caps
 mREPORT = %x52.45.50.4F.52.54 ; REPORT in caps
 mSYNC = %x53.59.4E.43 ; SYNC in caps
 mK-ALIVE = %x4B.2D.41.4C.49.56.45 ; K-ALIVE in caps

 other-method = 1*UPALPHA
 status-code = 3*DIGIT ; any code defined in this and other documents

Boulton, et al. Standards Track [Page 28]

RFC 6230 Media Control Channel Framework May 2011

 headers = header-name CRLF

 header-name = (Content-Length
 /Content-Type
 /Control-Package
 /Status
 /Seq
 /Timeout
 /Dialog-ID
 /Packages
 /Supported
 /Keep-alive
 /ext-header)

 Content-Length = "Content-Length:" SP 1*DIGIT
 Control-Package = "Control-Package:" SP 1*alpha-num-token
 Status = "Status:" SP ("update" / "terminate")
 Timeout = "Timeout:" SP 1*DIGIT
 Seq = "Seq:" SP 1*DIGIT
 Dialog-ID = "Dialog-ID:" SP dialog-id-string
 Packages = "Packages:" SP package-name *(COMMA package-name)
 Supported = "Supported:" SP supprtd-alphanum *(COMMA supprtd-alphanum)
 Keep-alive = "Keep-Alive:" SP kalive-seconds

 dialog-id-string = alpha-num-token
 package-name = alpha-num-token
 supprtd-alphanum = alpha-num-token
 kalive-seconds = 1*DIGIT

 alpha-num-token = ALPHANUM 3*31alpha-num-tokent-char
 alpha-num-tokent-char = ALPHANUM / "." / "-" / "+" / "%" / "=" / "/"

 control-content = *OCTET

 Content-Type = "Content-Type:" SP media-type
 media-type = type "/" subtype *(SP ";" gen-param)
 type = token ; Section 4.2 of RFC 4288
 subtype = token ; Section 4.2 of RFC 4288

 gen-param = pname ["=" pval]
 pname = token
 pval = token / quoted-string

 token = 1*(%x21 / %x23-27 / %x2A-2B / %x2D-2E
 / %x30-39 / %x41-5A / %x5E-7E)

Boulton, et al. Standards Track [Page 29]

RFC 6230 Media Control Channel Framework May 2011

 quoted-string = DQUOTE *(qdtext / qd-esc) DQUOTE
 qdtext = SP / HTAB / %x21 / %x23-5B / %x5D-7E
 / UTF8-NONASCII
 qd-esc = (BACKSLASH BACKSLASH) / (BACKSLASH DQUOTE)
 BACKSLASH = "\"
 UPALPHA = %x41-5A
 ALPHANUM = ALPHA / DIGIT

 ext-header = hname ":" SP hval CRLF

 hname = ALPHA *token
 hval = utf8text

 utf8text = *(HTAB / %x20-7E / UTF8-NONASCII)

 UTF8-NONASCII = UTF8-2 / UTF8-3 / UTF8-4 ; From RFC 3629

 The following table details a summary of the headers that can be
 contained in Control Framework interactions.

 Header field Where CONTROL REPORT SYNC K-ALIVE

 Content-Length o o - -
 Control-Package R m - - -
 Seq - m - -
 Status R - m - -
 Timeout R - m - -
 Timeout 202 - m - -
 Dialog-ID R - - m -
 Packages - - m -
 Supported r - - o -
 Keep-Alive R - - o -
 Content-Type o o - -

 Table 1: Summary of Headers in Control Framework Interactions

 The notation used in Table 1 is as follows:

 R: header field may only appear in requests.
 r: header field may only appear in responses.
 2xx, 4xx, etc.: response codes with which the header field can be used.
 [blank]: header field may appear in either requests or responses.
 m: header field is mandatory.
 o: header field is optional.
 -: header field is not applicable (ignored if present).

Boulton, et al. Standards Track [Page 30]

RFC 6230 Media Control Channel Framework May 2011

9.2. Control Framework Dialog Identifier SDP Attribute

 This specification defines a new media-level value attribute:
 ’cfw-id’. Its formatting in SDP is described by the following ABNF
 [RFC5234].

 cfw-dialog-id = "a=cfw-id:" 1*(SP cfw-id-name) CRLF

 cfw-id-name = token

 token = 1*(token-char)

 token-char = %x21 / %x23-27 / %x2A-2B / %x2D-2E / %x30-39
 / %x41-5A / %x5E-7E

 The token-char and token elements are defined in [RFC4566] but
 included here to provide support for the implementer of this SDP
 feature.

10. Examples

 The following examples provide an abstracted flow of Control Channel
 establishment and Control Framework message exchange. The SIP
 signaling is prefixed with the token ’SIP’. All other messages are
 Control Framework interactions defined in this document.

 In this example, the Control Client establishes a Control Channel,
 SYNCs with the Control Server, and issues a CONTROL request that
 can’t be completed within the ’Transaction-Timeout’, so the Control
 Server returns a 202 response code to extend the transaction. The
 Control Server then follows with REPORTs until the requested action
 has been completed. The SIP INVITE dialog is then terminated.

Boulton, et al. Standards Track [Page 31]

RFC 6230 Media Control Channel Framework May 2011

 Control Client Control Server
 | |
 | (1) SIP INVITE |
 | --> |
 | |
 | (2) SIP 200 |
 | <--------------------------------------- |
 | |
 | (3) SIP ACK |
 | --> |
 | |
 |==>=======================================>==|
 | Control Channel Established |
 |==>=======================================>==|
 | |
 | (4) SYNC |
 | --> |
 | |
 | (5) 200 |
 | <--------------------------------------- |
 | |
 | (6) CONTROL |
 | --> |
 | |

 (1) Control Client-->Control Server (SIP): INVITE
 sip:control-server@example.com

 INVITE sip:control-server@example.com SIP/2.0
 To: <sip:control-server@example.com>
 From: <sip:control-client@example.com>;tag=8937498
 Via: SIP/2.0/UDP client.example.com;branch=z9hG4bK123
 CSeq: 1 INVITE
 Max-Forwards: 70
 Call-ID: 893jhoeihjr8392@example.com
 Contact: <sip:control-client@pc1.example.com>
 Content-Type: application/sdp
 Content-Length: 206

 v=0
 o=originator 2890844526 2890842808 IN IP4 controller.example.com
 s=-
 c=IN IP4 control-client.example.com
 m=application 49153 TCP cfw
 a=setup:active
 a=connection:new
 a=cfw-id:fndskuhHKsd783hjdla

Boulton, et al. Standards Track [Page 32]

RFC 6230 Media Control Channel Framework May 2011

 (2) Control Server-->Control Client (SIP): 200 OK

SIP/2.0 200 OK
To: <sip:control-server@example.com>;tag=023983774
From: <sip:control-client@example.com>;tag=8937498
Via: SIP/2.0/UDP client.example.com;branch=z9hG4bK123;received=192.0.2.5
CSeq: 1 INVITE
Call-ID: 893jhoeihjr8392@example.com
Contact: <sip:control-server@pc2.example.com>
Content-Type: application/sdp
Content-Length: 203

v=0
o=responder 2890844600 2890842900 IN IP4 controller.example.com
s=-
c=IN IP4 control-server.example.com
m=application 49153 TCP cfw
a=setup:passive
a=connection:new
a=cfw-id:7JeDi23i7eiysi32

 (3) Control Client-->Control Server (SIP): ACK

 (4) Control Client opens a TCP connection to the Control Server.
 The connection can now be used to exchange Control Framework
 messages. Control Client-->Control Server (Control Framework
 message): SYNC.

 CFW 8djae7khauj SYNC
 Dialog-ID: fndskuhHKsd783hjdla
 Keep-Alive: 100
 Packages: msc-ivr-basic/1.0

 (5) Control Server-->Control Client (Control Framework message):
 200.

 CFW 8djae7khauj 200
 Keep-Alive: 100
 Packages: msc-ivr-basic/1.0
 Supported: msc-ivr-vxml/1.0,msc-conf-audio/1.0

 (6) Once the SYNC process has completed, the connection can now be
 used to exchange Control Framework messages. Control
 Client-->Control Server (Control Framework message): CONTROL.

 CFW i387yeiqyiq CONTROL
 Control-Package: <package-name>
 Content-Type: example_content/example_content

Boulton, et al. Standards Track [Page 33]

RFC 6230 Media Control Channel Framework May 2011

 Content-Length: 11

 <XML BLOB/>

 (7) Control Server-->Control Client (Control Framework message):
 202.

 CFW i387yeiqyiq 202
 Timeout: 10

 (8) Control Server-->Control Client (Control Framework message):
 REPORT.

 CFW i387yeiqyiq REPORT
 Seq: 1
 Status: update
 Timeout: 10

 (9) Control Client-->Control Server (Control Framework message):
 200.

 CFW i387yeiqyiq 200
 Seq: 1

 (10) Control Server-->Control Client (Control Framework message):
 REPORT.

 CFW i387yeiqyiq REPORT
 Seq: 2
 Status: update
 Timeout: 10
 Content-Type: example_content/example_content
 Content-Length: 11

 <XML BLOB/>

 (11) Control Client-->Control Server (Control Framework message):
 200.

 CFW i387yeiqyiq 200
 Seq: 2

 (12) Control Server-->Control Client (Control Framework message):
 REPORT.

 CFW i387yeiqyiq REPORT
 Seq: 3
 Status: terminate

Boulton, et al. Standards Track [Page 34]

RFC 6230 Media Control Channel Framework May 2011

 Timeout: 10
 Content-Type: example_content/example_content
 Content-Length: 11

 <XML BLOB/>

 (13) Control Client-->Control Server (Control Framework message):
 200.

 CFW i387yeiqyiq 200
 Seq: 3

 (14) Control Client-->Control Server (SIP): BYE

 BYE sip:control-server@pc2.example.com SIP/2.0
 To: <sip:control-server@example.com>;tag=023983774
 From: <sip:client@example.com>;tag=8937498
 Via: SIP/2.0/UDP client.example.com;branch=z9hG4bK234
 CSeq: 2 BYE
 Max-Forwards: 70
 Call-ID: 893jhoeihjr8392@example.com
 Contact: <sip:control-client@pc1.example.com>
 Content-Length: 0

 (15) Control Server-->Control Client (SIP): 200 OK

SIP/2.0 200 OK
To: <sip:control-server@example.com>;tag=023983774
From: <sip:client@example.com>;tag=8937498
Via: SIP/2.0/UDP client.example.com;branch=z9hG4bK234;received=192.0.2.5
CSeq: 2 BYE
Call-ID: 893jhoeihjr8392@example.com
Contact: <sip:control-server@pc1.example.com>
Content-Length: 0

11. Extensibility

 The Media Control Channel Framework was designed to be only minimally
 extensible. New methods, header fields, and status codes can be
 defined in Standards-Track RFCs. The Media Control Channel Framework
 does not contain a version number or any negotiation mechanism to
 require or discover new features. If an extension is specified in
 the future that requires negotiation, the specification will need to
 describe how the extension is to be negotiated in the encapsulating
 signaling protocol. If a non-interoperable update or extension
 occurs in the future, it will be treated as a new protocol, and it
 MUST describe how its use will be signaled.

Boulton, et al. Standards Track [Page 35]

RFC 6230 Media Control Channel Framework May 2011

 In order to allow extension header fields without breaking
 interoperability, if a Media Control Channel device receives a
 request or response containing a header field that it does not
 understand, it MUST ignore the header field and process the request
 or response as if the header field was not present. If a Media
 Control Channel device receives a request with an unknown method, it
 MUST return a 500 response.

12. Security Considerations

 The Channel Framework provides confidentiality and integrity for the
 messages it transfers. It also provides assurances that the
 connected host is the host that it meant to connect to and that the
 connection has not been hijacked, as discussed in the remainder of
 this section.

 In design, the Channel Framework complies with the security-related
 requirements documented in "Media Server Control Protocol
 Requirements" [RFC5167] -- more specifically, REQ-MCP-11, REQ-MCP-12,
 REQ-MCP-13, and REQ-MCP-14. Specific security measures employed by
 the Channel Framework are summarized in the following sub-sections.

12.1. Session Establishment

 Channel Framework sessions are established as media sessions
 described by SDP within the context of a SIP INVITE dialog. In order
 to ensure secure rendezvous between Control Framework clients and
 servers, the Media Channel Control Framework should make full use of
 mechanisms provided by SIP. The use of the ’cfw-id’ SDP attribute
 results in important session information being carried across the SIP
 network. For this reason, SIP clients using this specification MUST
 use appropriate security mechanisms, such as TLS [RFC5246] and SMIME
 [RFC5751], when deployed in open networks.

12.2. Transport-Level Protection

 When using only TCP connections, the Channel Framework security is
 weak. Although the Channel Framework requires the ability to protect
 this exchange, there is no guarantee that the protection will be used
 all the time. If such protection is not used, anyone can see data
 exchanges.

 Sensitive data, such as private and financial data, is carried over
 the Control Framework channel. Clients and servers must be properly
 authenticated/authorized and the Control Channel must permit the use
 of confidentiality, replay protection, and integrity protection for
 the data. To ensure Control Channel protection, Control Framework
 clients and servers MUST support TLS and SHOULD use it by default

Boulton, et al. Standards Track [Page 36]

RFC 6230 Media Control Channel Framework May 2011

 unless alternative Control Channel protection is used or a protected
 environment is guaranteed by the administrator of the network.
 Alternative Control Channel protection MAY be used if desired (e.g.,
 IPsec [RFC5246]).

 TLS is used to authenticate devices and to provide integrity, replay
 protection, and confidentiality for the header fields being
 transported on the Control Channel. Channel Framework elements MUST
 implement TLS and MUST also implement the TLS ClientExtendedHello
 extended hello information for server name indication as described in
 [RFC5246]. A TLS cipher-suite of TLS_RSA_WITH_AES_128_CBC_SHA
 [RFC3261] MUST be supported. Other cipher-suites MAY also be
 supported.

 When a TLS client establishes a connection with a server, it is
 presented with the server’s X.509 certificate. Authentication
 proceeds as described in Section 7.3 ("Client Behavior") of RFC 5922
 [RFC5922].

 A TLS server conformant to this specification MUST ask for a client
 certificate; if the client possesses a certificate, it will be
 presented to the server for mutual authentication, and authentication
 proceeds as described in Section 7.4 ("Server Behavior") of RFC 5922
 [RFC5922].

12.3. Control Channel Policy Management

 This specification permits the establishment of a dedicated Control
 Channel using SIP. It is also permitted for entities to create
 multiple channels for the purpose of failover and redundancy. As a
 general solution, the ability for multiple entities to create
 connections and have access to resources could be the cause of
 potential conflict in shared environments. It should be noted that
 this document does not carry any specific mechanism to overcome such
 conflicts but will provide a summary of how to do so.

 It can be determined that access to resources and use of Control
 Channels relate to policy. It can be considered implementation and
 deployment detail that dictates the level of policy that is adopted.
 The authorization and associated policy of a Control Channel can be
 linked to the authentication mechanisms described in this section.
 For example, strictly authenticating a Control Channel using TLS
 authentication allows entities to protect resources and ensure the
 required level of granularity. Such policy can be applied at the
 package level or even as low as a structure like a conference
 instance (Control Channel X is not permitted to issue commands for
 Control Package y OR Control Channel A is not permitted to issue
 commands for conference instance B). Systems should ensure that, if

Boulton, et al. Standards Track [Page 37]

RFC 6230 Media Control Channel Framework May 2011

 required, an appropriate policy framework is adopted to satisfy the
 requirements for implemented packages. The most robust form of
 policy can be achieved using a strong authentication mechanism such
 as mutual TLS authentication on the Control Channel. This
 specification provides a Control Channel response code (403) to
 indicate to the issuer of a command that it is not permitted. The
 403 response MUST be issued to Control Framework requests that are
 not permitted under the implemented policy. If a 403 response is
 received, a Control Framework client MAY choose to re-submit the
 request with differing requirements or to abandon the request. The
 403 response does not provide any additional information on the
 policy failure due to the generic nature of this specification.
 Individual Control Packages can supply additional information if
 required. The mechanism for providing such additional information is
 not mandated in this specification. It should be noted that
 additional policy requirements to those covered in this section might
 be defined and applied in individual packages that specify a finer
 granularity for access to resources, etc.

13. IANA Considerations

 IANA has created a new registry for SIP Control Framework parameters.
 The "Media Control Channel Framework Parameters" registry is a
 container for sub-registries. This section further introduces sub-
 registries for control packages, method names, status codes, header
 field names, and port and transport protocol.

 Additionally, Section 13.6 registers a new MIME type for use with
 SDP.

 For all registries and sub-registries created by this document, the
 policy applied when creating a new registration is also applied when
 changing an existing registration.

13.1. Control Packages Registration Information

 This specification establishes the Control Packages sub-registry
 under Media Control Channel Framework Packages. New parameters in
 this sub-registry must be published in an RFC (either in the IETF
 stream or Independent Submission stream), using the IANA policy
 [RFC5226] "RFC Required".

 As this document specifies no package or template-package names, the
 initial IANA registration for Control Packages will be empty. The
 remainder of the text in this section gives an example of the type of
 information to be maintained by the IANA.

Boulton, et al. Standards Track [Page 38]

RFC 6230 Media Control Channel Framework May 2011

 The table below lists the Control Packages defined in the "Media
 Control Channel Framework".

 Package Name Reference
 ------------ ---------
 example1 [RFCXXXX]

13.1.1. Control Package Registration Template

 Package Name:

 (Package names must conform to the syntax described in
 Section 8.1.)

 Published Specification(s):

 (Control Packages require an RFC.)

 Person & email address to contact for further information:

13.2. Control Framework Method Names

 This specification establishes the Method Names sub-registry under
 Media Control Channel Framework Parameters and initiates its
 population as follows. New parameters in this sub-registry must be
 published in an RFC (either in the IETF stream or Independent
 Submission stream).

 CONTROL - [RFC6230]
 REPORT - [RFC6230]
 SYNC - [RFC6230]
 K-ALIVE - [RFC6230]

 The following information MUST be provided in an RFC in order to
 register a new Control Framework method:

 o The method name.

 o The RFC number in which the method is registered.

13.3. Control Framework Status Codes

 This specification establishes the Status Code sub-registry under
 Media Control Channel Framework Parameters. New parameters in this
 sub-registry must be published in an RFC (either in the IETF stream
 or Independent Submission stream). Its initial population is defined
 in Section 9. It takes the following format:

Boulton, et al. Standards Track [Page 39]

RFC 6230 Media Control Channel Framework May 2011

 Code Description Reference

 The following information MUST be provided in an RFC in order to
 register a new Control Framework status code:

 o The status code number.

 o The RFC number in which the method is registered.

 o A brief description of the status code.

13.4. Control Framework Header Fields

 This specification establishes the Header Field sub-registry under
 Media Control Channel Framework Parameters. New parameters in this
 sub-registry must be published in an RFC (either in the IETF stream
 or Independent Submission stream). Its initial population is defined
 as follows:

 Control-Package - [RFC6230]
 Status - [RFC6230]
 Seq - [RFC6230]
 Timeout - [RFC6230]
 Dialog-ID - [RFC6230]
 Packages - [RFC6230]
 Supported - [RFC6230]
 Keep-Alive - [RFC6230]
 Content-Type - [RFC6230]
 Content-Length - [RFC6230]

 The following information MUST be provided in an RFC in order to
 register a new Channel Framework header field:

 o The header field name.

 o The RFC number in which the method is registered.

13.5. Control Framework Port

 The Control Framework uses TCP port 7563, from the "registered" port
 range. Usage of this value is described in Section 4.1.

13.6. Media Type Registrations

 This section describes the media types and names associated with
 payload formats used by the Control Framework. The registration uses
 the templates defined in [RFC4288]. It follows [RFC4855].

Boulton, et al. Standards Track [Page 40]

RFC 6230 Media Control Channel Framework May 2011

13.6.1. Registration of MIME Media Type application/cfw

 Type name: application

 Subtype name: cfw

 Required parameters: None

 Optional parameters: None

 Encoding considerations: Binary and see Section 4 of RFC 6230

 Security considerations: See Section 12 of RFC 6230

 Interoperability considerations:
 Endpoints compliant to this specification must
 use this MIME type. Receivers who cannot support
 this specification will reject using appropriate
 protocol mechanism.

 Published specification: RFC 6230

 Applications that use this media type:
 Applications compliant with Media Control Channels.

 Additional Information:
 Magic number(s): (none)
 File extension(s): (none)
 Macintosh file type code(s): (none)

 Person & email address to contact for further information:
 Chris Boulton <chris@ns-technologies.com>

 Intended usage: COMMON

 Restrictions on usage:
 Should be used only in conjunction with this specification,
 RFC 6230.

 Author: Chris Boulton

 Change controller:
 IETF MEDIACTRL working group, delegated from the IESG.

Boulton, et al. Standards Track [Page 41]

RFC 6230 Media Control Channel Framework May 2011

13.6.2. Registration of MIME Media Type application/
 framework-attributes+xml

 Type name: application

 Subtype name: framework-attributes+xml

 Required parameters: (none)

 Optional parameters: Same as charset parameter of application/xml as
 specified in RFC 3023 [RFC3023].

 Encoding considerations: Same as encoding considerations of
 application/xml as specified in RFC 3023 [RFC3023].

 Security considerations: No known security considerations outside
 of those provided by core Media Control Channel Framework.

 Interoperability considerations: This content type provides common
 constructs for related Media Control Channel packages.

 Published specification: RFC 6230

 Applications that use this media type: Implementations of
 appropriate Media Control Channel packages.

 Additional information:
 Magic number(s): (none)
 File extension(s): (none)
 Macintosh file type code(s): (none)

 Person & email address to contact for further information:
 Chris Boulton <chris@ns-technologies.com>

 Intended usage: LIMITED USE

 Author/Change controller: The IETF

 Other information: None.

13.7. ’cfw-id’ SDP Attribute

 Contact name: Chris Boulton <chris@ns-technologies.com>

 Attribute name: "cfw-id".

 Type of attribute Media level.

Boulton, et al. Standards Track [Page 42]

RFC 6230 Media Control Channel Framework May 2011

 Subject to charset: Not.

 Purpose of attribute: The ’cfw-id’ attribute indicates an
 identifier that can be used to correlate the Control Channel with
 the SIP INVITE dialog used to negotiate it, when the attribute
 value is used within the Control Channel.

 Allowed attribute values: A token.

13.8. URN Sub-Namespace for
 urn:ietf:params:xml:ns:control:framework-attributes

 IANA has registered a new XML namespace,
 "urn:ietf:params:xml:ns:control:framework-attributes", per the
 guidelines in RFC 3688 [RFC3688].

 URI: urn:ietf:params:xml:ns:control:framework-attributes

 Registrant Contact: IETF MEDIACTRL working group <mediactrl@ietf.org>,
 Chris Boulton <chris@ns-technologies.com>.

 XML:

 BEGIN
 <?xml version="1.0"?>
 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
 <head>
 <title>Media Control Channel attributes</title>
 </head>
 <body>
 <h1>Namespace for Media Control Channel attributes</h1>
 <h2>urn:ietf:params:xml:ns:control:framework-attributes</h2>
 <p>See
 RFC 6230.</p>
 </body>
 </html>
 END

13.9. XML Schema Registration

 This section registers an XML schema as per the guidelines in RFC
 3688 [RFC3688].

 URI: urn:ietf:params:xml:ns:control:framework-attributes

Boulton, et al. Standards Track [Page 43]

RFC 6230 Media Control Channel Framework May 2011

 Registrant Contact: IETF MEDIACTRL working group <mediactrl@ietf.org>,
 Chris Boulton <chris@ns-technologies.com>.

 Schema: The XML for this schema can be found in Appendix A.1 of this
 document.

14. Contributors

 Asher Shiratzky from Radvision provided valuable support and
 contributions to the early versions of this document.

15. Acknowledgments

 The authors would like to thank Ian Evans of Avaya, Michael
 Bardzinski and John Dally of NS-Technologies, Adnan Saleem of
 Radisys, and Dave Morgan for useful review and input to this work.
 Eric Burger contributed to the early phases of this work.

 Expert review was also provided by Spencer Dawkins, Krishna Prasad
 Kalluri, Lorenzo Miniero, and Roni Even. Hadriel Kaplan provided
 expert guidance on the dialog association mechanism. Lorenzo Miniero
 has constantly provided excellent feedback based on his work.

 Ben Campbell carried out the RAI expert review on this document and
 provided a great deal of invaluable input. Brian Weis carried out a
 thorough security review. Jonathan Lennox carried out a thorough SDP
 review that provided some excellent modifications. Text from Eric
 Burger was used in the introduction in the explanation for using SIP.

16. References

16.1. Normative References

 [RFC2045] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message
 Bodies", RFC 2045, November 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 June 2002.

 [RFC3262] Rosenberg, J. and H. Schulzrinne, "Reliability of
 Provisional Responses in Session Initiation Protocol
 (SIP)", RFC 3262, June 2002.

Boulton, et al. Standards Track [Page 44]

RFC 6230 Media Control Channel Framework May 2011

 [RFC3263] Rosenberg, J. and H. Schulzrinne, "Session Initiation
 Protocol (SIP): Locating SIP Servers", RFC 3263,
 June 2002.

 [RFC3264] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model
 with Session Description Protocol (SDP)", RFC 3264,
 June 2002.

 [RFC3311] Rosenberg, J., "The Session Initiation Protocol (SIP)
 UPDATE Method", RFC 3311, October 2002.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 January 2004.

 [RFC4145] Yon, D. and G. Camarillo, "TCP-Based Media Transport in
 the Session Description Protocol (SDP)", RFC 4145,
 September 2005.

 [RFC4288] Freed, N. and J. Klensin, "Media Type Specifications and
 Registration Procedures", BCP 13, RFC 4288, December 2005.

 [RFC4566] Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
 Description Protocol", RFC 4566, July 2006.

 [RFC4574] Levin, O. and G. Camarillo, "The Session Description
 Protocol (SDP) Label Attribute", RFC 4574, August 2006.

 [RFC4855] Casner, S., "Media Type Registration of RTP Payload
 Formats", RFC 4855, February 2007.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC5751] Ramsdell, B. and S. Turner, "Secure/Multipurpose Internet
 Mail Extensions (S/MIME) Version 3.2 Message
 Specification", RFC 5751, January 2010.

Boulton, et al. Standards Track [Page 45]

RFC 6230 Media Control Channel Framework May 2011

 [RFC5922] Gurbani, V., Lawrence, S., and A. Jeffrey, "Domain
 Certificates in the Session Initiation Protocol (SIP)",
 RFC 5922, June 2010.

16.2. Informative References

 [MSCL-THOUGHTS]
 Burger, E., "Media Server Control Language and Protocol
 Thoughts", Work in Progress, June 2006.

 [RFC3023] Murata, M., St. Laurent, S., and D. Kohn, "XML Media
 Types", RFC 3023, January 2001.

 [RFC3550] Schulzrinne, H., Casner, S., Frederick, R., and V.
 Jacobson, "RTP: A Transport Protocol for Real-Time
 Applications", STD 64, RFC 3550, July 2003.

 [RFC3725] Rosenberg, J., Peterson, J., Schulzrinne, H., and G.
 Camarillo, "Best Current Practices for Third Party Call
 Control (3pcc) in the Session Initiation Protocol (SIP)",
 BCP 85, RFC 3725, April 2004.

 [RFC3840] Rosenberg, J., Schulzrinne, H., and P. Kyzivat,
 "Indicating User Agent Capabilities in the Session
 Initiation Protocol (SIP)", RFC 3840, August 2004.

 [RFC3841] Rosenberg, J., Schulzrinne, H., and P. Kyzivat, "Caller
 Preferences for the Session Initiation Protocol (SIP)",
 RFC 3841, August 2004.

 [RFC5125] Taylor, T., "Reclassification of RFC 3525 to Historic",
 RFC 5125, February 2008.

 [RFC5167] Dolly, M. and R. Even, "Media Server Control Protocol
 Requirements", RFC 5167, March 2008.

 [RFC5626] Jennings, C., Mahy, R., and F. Audet, "Managing Client-
 Initiated Connections in the Session Initiation Protocol
 (SIP)", RFC 5626, October 2009.

Boulton, et al. Standards Track [Page 46]

RFC 6230 Media Control Channel Framework May 2011

Appendix A. Common Package Components

 During the creation of the Control Framework, it has become clear
 that there are a number of components that are common across multiple
 packages. It has become apparent that it would be useful to collect
 such reusable components in a central location. In the short term,
 this appendix provides the placeholder for the utilities, and it is
 the intention that this section will eventually form the basis of an
 initial ’Utilities Document’ that can be used by Control Packages.

A.1. Common Dialog/Multiparty Reference Schema

 The following schema provides some common attributes for allowing
 Control Packages to apply specific commands to a particular SIP media
 dialog (also referred to as "Connection") or conference. If used
 within a Control Package, the Connection and multiparty attributes
 will be imported and used appropriately to specifically identify
 either a SIP dialog or a conference instance. If used within a
 package, the value contained in the ’connectionid’ attribute MUST be
 constructed by concatenating the ’Local’ and ’Remote’ SIP dialog
 identifier tags as defined in [RFC3261]. They MUST then be separated
 using the ’:’ character. So the format would be:

 ’Local Dialog tag’ + ’:’ + ’Remote Dialog tag’

 As an example, for an entity that has a SIP Local dialog identifier
 of ’7HDY839’ and a Remote dialog identifier of ’HJKSkyHS’, the
 ’connectionid’ attribute for a Control Framework command would be:

 7HDY839:HJKSkyHS

 It should be noted that Control Framework requests initiated in
 conjunction with a SIP dialog will produce a different ’connectionid’
 value depending on the directionality of the request; for example,
 Local and Remote tags are locally identifiable.

 As with the Connection attribute previously defined, it is useful to
 have the ability to apply specific Control Framework commands to a
 number of related dialogs, such as a multiparty call. This typically
 consists of a number of media dialogs that are logically bound by a
 single identifier. The following schema allows for Control Framework
 commands to explicitly reference such a grouping through a
 ’conferenceid’ XML container. If used by a Control Package, any
 control XML referenced by the attribute applies to all related media
 dialogs. Unlike the dialog attribute, the ’conferenceid’ attribute
 does not need to be constructed based on the overlying SIP dialog.
 The ’conferenceid’ attribute value is system specific and should be
 selected with relevant context and uniqueness.

Boulton, et al. Standards Track [Page 47]

RFC 6230 Media Control Channel Framework May 2011

 It should be noted that the values contained in both the
 ’connectionid’ and ’conferenceid’ identifiers MUST be compared in a
 case-sensitive manner.

 The full schema follows:

 <?xml version="1.0" encoding="UTF-8"?>

 <xsd:schema
 targetNamespace="urn:ietf:params:xml:ns:control:framework-attributes"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="urn:ietf:params:xml:ns::control:framework-attributes"
 elementFormDefault="qualified" attributeFormDefault="unqualified">

 <xsd:attributeGroup name="framework-attributes">
 <xsd:annotation>
 <xsd:documentation>
 SIP Connection and Conf Identifiers
 </xsd:documentation>
 </xsd:annotation>

 <xsd:attribute name="connectionid" type="xsd:string"/>

 <xsd:attribute name="conferenceid" type="xsd:string"/>

 </xsd:attributeGroup>
 </xsd:schema>

Boulton, et al. Standards Track [Page 48]

RFC 6230 Media Control Channel Framework May 2011

Authors’ Addresses

 Chris Boulton
 NS-Technologies

 EMail: chris@ns-technologies.com

 Tim Melanchuk
 Rainwillow

 EMail: timm@rainwillow.com

 Scott McGlashan
 Hewlett-Packard
 Gustav III:s boulevard 36
 SE-16985 Stockholm, Sweden

 EMail: smcg.stds01@mcglashan.org

Boulton, et al. Standards Track [Page 49]

