I nt ernet Engi neering Task Force (I ETF) D. M Rai hi
Request for Comments: 6238 Verisign, Inc.
Cat egory: | nformational S. Machan
| SSN: 2070- 1721 Di versi net Corp.
M Pei
Symant ec

J. Rydel
Portw se, Inc.
May 2011

TOTP: Ti me-Based One-Ti me Password Al gorithm
Abstract

Thi s docunent describes an extension of the One-Tine Password (OTP)

al gorithm nanely the HVAC- based One-Ti ne Password (HOTP) al gorithm
as defined in RFC 4226, to support the time-based noving factor. The
HOTP al gorithm specifies an event-based OIP algorithm where the
movi ng factor is an event counter. The present work bases the moving
factor on a tinme value. A tine-based variant of the OIP al gorithm
provi des short-lived OIP val ues, which are desirable for enhanced
security.

The proposed algorithm can be used across a wi de range of network
applications, fromrenote Virtual Private Network (VPN) access and
W-Fi network logon to transaction-oriented Wb applications. The
aut hors believe that a conmon and shared algorithmw |l facilitate
adopti on of two-factor authentication on the Internet by enabling
interoperability across comercial and open-source inplenentations.

Status of This Meno

This docunent is not an Internet Standards Track specification; it is
published for infornational purposes.

This docunent is a product of the Internet Engi neering Task Force
(IETF). It represents the consensus of the |IETF community. It has
recei ved public review and has been approved for publication by the
I nternet Engineering Steering Goup (IESG. Not all docunents
approved by the | ESG are a candi date for any |evel of Internet

St andard; see Section 2 of RFC 5741.

I nformation about the current status of this docunent, any errata,

and how to provide feedback on it may be obtai ned at
http://ww. rfc-editor.org/info/rfc6238

M Rai hi, et al. I nf or mat i onal [Page 1]

RFC 6238 HOTPTi neBased May 2011

Copyright Notice

Copyright (c) 2011 I ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunent is subject to BCP 78 and the I ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this document. Code Conponents extracted fromthis docunment nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided wi thout warranty as
described in the Sinplified BSD License.

Tabl e of Contents

1. IntroduCti ON ... 2
L. L. SCOPE .t it e 2
1.2, Background 3

2. Notation and Terminology, 3

3. AlgorithmRequi rement S e 3

4. TOTP Al gorithm ... 4
4.1, NOtatiONS ... 4
4.2, DeSCription ... e 4

5. Security Considerati oOns 5
5.1, General ... e 5
5.2. Validation and Tine-Step Size 6

6. Resynchroni zation 7

7. ACKNOW edgemBNt S 7

8. Ref erenCes 8
8.1. Normative References 8
8.2. Informative References i 8

Appendi x A. TOTP Algorithm Reference Inplenentation 9

Appendi x B. Test VeCtors 14

1. Introduction
1.1. Scope
Thi s docunent describes an extension of the One-Tine Password (OTP)

al gorithm nanely the HVAC- based One-Ti ne Password (HOTP) al gorithm
as defined in [RFC4226], to support the tine-based noving factor.

M Rai hi, et al. I nf or mat i onal [Page 2]

RFC 6238 HOTPTi neBased May 2011

1.2. Background

As defined in [RFC4226], the HOTP algorithmis based on the

HVAC- SHA-1 al gorithm (as specified in [RFC2104]) and applied to an
i ncreasing counter val ue representing the message in the HVAC
conput ati on.

Basi cally, the output of the HVAC-SHA-1 cal culation is truncated to
obtain user-friendly val ues:

HOTP(K, C) = Truncat e(HVAC- SHA- 1(K, ©))

where Truncate represents the function that can convert an HVAC SHA-1
value into an HOTP value. K and C represent the shared secret and
counter value; see [RFC4226] for detailed definitions.

TOTP is the tinme-based variant of this algorithm where a value T,
derived froma tine reference and a tine step, replaces the counter C
in the HOTP conputation

TOTP i npl emrent ati ons MAY use HMAC- SHA- 256 or HMAC- SHA- 512 functi ons,
based on SHA-256 or SHA-512 [SHA2] hash functions, instead of the
HVAC- SHA-1 function that has been specified for the HOTP conputation
in [RFC4226] .

2. Notation and Term nol ogy

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "COPTIONAL" in this
docunent are to be interpreted as described in [RFC2119].

3. Algorithm Requirenents

This section summari zes the requirenents taken into account for
designing the TOTP al gorithm

R1l: The prover (e.g., token, soft token) and verifier (authentication
or validation server) MJST know or be able to derive the current
Unix time (i.e., the nunber of seconds el apsed since midnight UTC
of January 1, 1970) for OTP generation. See [UT] for a nore
detailed definition of the cormonly known "Unix tinme". The
precision of the tine used by the prover affects how often the
cl ock synchronizati on should be done; see Section 6.

R2: The prover and verifier MJST either share the sane secret or the
know edge of a secret transformation to generate a shared secret.

R3: The al gorithm MUST use HOTP [RFC4226] as a key buil di ng bl ock

M Rai hi, et al. I nf or mat i onal [Page 3]

RFC 6238 HOTPTi neBased May 2011

4. 2.

R4: The prover and verifier MJST use the sane tine-step value X
R5: There MJUST be a uni que secret (key) for each prover

R6: The keys SHOULD be randomy generated or derived using key
derivation algorithns.

R7: The keys MAY be stored in a tanper-resistant device and SHOULD be
prot ected agai nst unauthorized access and usage.

TOTP Al gorithm

This variant of the HOTP al gorithm specifies the calculation of a
one-tine password val ue, based on a representation of the counter as
atime factor.

Not at i ons

0 X represents the tine step in seconds (default value X =
30 seconds) and is a system paraneter.

o TO is the Unix time to start counting tine steps (default value is
0, i.e., the Unix epoch) and is also a system paraneter.

Description

Basically, we define TOTP as TOTP = HOTP(K, T), where T is an integer
and represents the nunber of time steps between the initial counter
time TO and the current Unix tine.

More specifically, T = (Current Unix tine - TO) / X, where the
default floor function is used in the conputation

For exanple, with TO = 0 and Tine Step X =30, T =1 if the current
Unix tine is 59 seconds, and T = 2 if the current Unix tine is
60 seconds.

The inplenentation of this algorithm MJUST support a tinme value T
larger than a 32-bit integer when it is beyond the year 2038. The
val ue of the system paraneters X and TO are pre-established during

t he provisioning process and comuni cated between a prover and
verifier as part of the provisioning step. The provisioning flowis
out of scope of this docunent; refer to [RFC6030] for such

provi sioni ng container specifications.

M Rai hi, et al. I nf or mat i onal [Page 4]

RFC 6238 HOTPTi neBased May 2011

5. Security Considerations
5.1. Cenera

The security and strength of this algorithm depend on the properties
of the underlying building block HOTP, which is a construction based
on HVAC [RFC2104] using SHA-1 as the hash function

The concl usion of the security analysis detailed in [RFC4226] is
that, for all practical purposes, the outputs of the dynanc
truncation on distinct inputs are uniformy and independently

di stributed strings.

The anal ysis denonstrates that the best possible attack agai nst the
HOTP function is the brute force attack

As indicated in the algorithmrequirenent section, keys SHOULD be
chosen at random or using a cryptographically strong pseudorandom
generator properly seeded with a random val ue.

Keys SHOULD be of the length of the HVAC output to facilitate
interoperability.

We RECOMMEND fol | owi ng the recomendati ons in [RFC4086] for al

pseudor andom and random nunber generations. The pseudorandom nunbers
used for generating the keys SHOULD successfully pass the randomess
test specified in [CN], or a simlar well-recognized test.

Al'l the comunications SHOULD t ake pl ace over a secure channel, e.g.
Secure Socket Layer/Transport Layer Security (SSL/TLS) [RFC5246] or
| Psec connections [RFC4301].

W al so RECOMMVEND storing the keys securely in the validation system
and, nore specifically, encrypting them using tanper-resistant

har dwar e encrypti on and exposing them only when required: for
exanpl e, the key is decrypted when needed to verify an OTP val ue, and
re-encrypted imuediately to limt exposure in the RAMto a short

peri od of tine.

The key store MJST be in a secure area, to avoid, as nuch as

possi ble, direct attack on the validation system and secrets

dat abase. Particularly, access to the key nmaterial should be linited
to prograns and processes required by the validation systemonly.

M Rai hi, et al. I nf or mat i onal [Page 5]

RFC 6238 HOTPTi neBased May 2011

5.2. Validation and Tine-Step Size

An OTP generated within the same tinme step will be the same. Wen an
OTP is received at a validation system it doesn't know a client’s
exact tinmestanp when an OTP was generated. The validation system may
typically use the tinestanp when an OTP is received for OIP
conparison. Due to network | atency, the gap (as neasured by T, that
is, the nunber of tine steps since TO) between the tinme that the OIP
was generated and the tine that the OTP arrives at the receiving
system may be large. The receiving tine at the validation system and
the actual OIP generation may not fall within the sane tinme-step

wi ndow t hat produced the sane OTP. When an OTP is generated at the
end of a time-step window, the receiving tine nost likely falls into
the next tine-step window A validation system SHOULD typically set
a policy for an acceptable OTP transm ssion delay w ndow for
validation. The validation system should conpare OTPs not only wth
the receiving tinestanp but also the past tinmestanps that are within
the transm ssion delay. A larger acceptabl e delay w ndow woul d
expose a |arger wi ndow for attacks. W RECOMMEND that at nost one
time step is allowed as the network del ay.

The tine-step size has an inpact on both security and usability. A

| arger time-step size nmeans a larger validity wi ndow for an OIP to be
accepted by a validation system There are inplications for using a
| arger tinme-step size, as follows:

First, a larger time-step size exposes a larger wi ndow to attack.
When an OTP is generated and exposed to a third party before it is
consunmed, the third party can consune the OTP within the tine-step
wi ndow.

We RECOMMEND a default time-step size of 30 seconds. This default
val ue of 30 seconds is selected as a bal ance between security and
usability.

Second, the next different OTP nust be generated in the next tine-
step window. A user nust wait until the clock noves to the next
time-step window fromthe |ast submission. The waiting time may not
be exactly the length of the tinme step, depending on when the | ast
OTP was generated. For exanple, if the last OTP was generated at the
hal fway point in a time-step window, the waiting tine for the next
OTP is half the length of the tine step. |In general, a larger tine-
step wi ndow neans a longer waiting tinme for a user to get the next
valid OIP after the last successful OTP validation. A too-large

wi ndow (for exanple, 10 minutes) nost probably won't be suitable for
typical Internet |ogin use cases; a user may not be able to get the
next OTP within 10 mnutes and therefore will have to re-login to the
sane site in 10 m nutes.

M Rai hi, et al. I nf or mat i onal [Page 6]

RFC 6238 HOTPTi neBased May 2011

Note that a prover may send the sane OIP inside a given tine-step
window nmultiple tinmes to a verifier. The verifier MIUST NOT accept
the second attenpt of the OTP after the successful validation has
been issued for the first OIP, which ensures one-tine only use of an
orP.

6. Resynchroni zation

Because of possible clock drifts between a client and a validation
server, we RECOMMEND that the validator be set with a specific limt
to the nunber of tine steps a prover can be "out of synch" before
bei ng rej ect ed.

This limt can be set both forward and backward fromthe cal cul ated
time step on receipt of the OTP value. |If the tinme step is

30 seconds as recommended, and the validator is set to only accept
two tine steps backward, then the maxi mum el apsed tine drift would be
around 89 seconds, i.e., 29 seconds in the calculated tine step and
60 seconds for two backward tine steps.

This would nean the validator could performa validation against the
current time and then two further validations for each backward step
(for a total of 3 validations). Upon successful validation, the

val i dation server can record the detected clock drift for the token
in terns of the nunber of tine steps. Wen a new OTP is received
after this step, the validator can validate the OTP with the current
timestanp adjusted with the recorded nunmber of time-step clock drifts
for the token.

Also, it is inportant to note that the longer a prover has not sent
an OTP to a validation system the |longer (potentially) the

accunul ated clock drift between the prover and the verifier. 1In such
cases, the automatic resynchroni zati on descri bed above may not work
if the drift exceeds the allowed threshold. Additiona

aut henti cati on nmeasures should be used to safely authenticate the
prover and explicitly resynchronize the clock drift between the
prover and the validator.

7. Acknow edgenents

The authors of this docunent would like to thank the follow ng people
for their contributions and support to nake this a better

speci fication: Hannes Tschofenig, Jonathan Tuliani, David Dix,
Siddharth Bajaj, Stu Veath, Shuh Chang, Ganh Hoang, John Huang, and
Si ddhart ha Mohapatr a.

M Rai hi, et al. I nf or mat i onal [Page 7]

RFC 6238 HOTPTi neBased May 2011

8. References
8.1. Normmtive References

[RFC2104] Krawczyk, H, Bellare, M, and R Canetti, "HVAC Keyed-
Hashi ng for Message Authentication", RFC 2104,
February 1997.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Level s", BCP 14, RFC 2119, March 1997.

[RFC4086] Eastlake 3rd, D., Schiller, J., and S. Crocker,
"Randomess Recommendati ons for Security", BCP 106,
RFC 4086, June 2005.

[RFC4226] M Raihi, D, Bellare, M, Hoornaert, F., Naccache, D., and
O Ranen, "HOTP: An HVAC- Based One-Ti ne Password
Al gorithnt', RFC 4226, Decenber 2005.

[SHA2] NI ST, "FIPS PUB 180-3: Secure Hash Standard (SHS)",
Cct ober 2008, <http://csrc.nist.gov/publications/fips/
fi ps180-3/fipsl180-3_final . pdf>.

8.2. Informative References
[CN Coron, J. and D. Naccache, "An Accurate Eval uation of
Maurer’s Universal Test", LNCS 1556, February 1999,
<htt p: // ww. genpl us. com smart/rd/ publications/ pdf/
CN99naur . pdf >.

[RFC4301] Kent, S. and K. Seo, "Security Architecture for the
Internet Protocol", RFC 4301, Decenber 2005.

[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", RFC 5246, August 2008.

[RFC6030] Hoyer, P., Pei, M, and S. Machani, "Portable Symretric
Key Contai ner (PSKC)", RFC 6030, Cctober 2010.

[UT] W ki pedia, "Unix tine", February 2011,
<http://en.w ki pedi a. org/w Ki/ Uni x_tinme>.

M Rai hi, et al. I nf or mat i onal [Page 8]

RFC 6238 HOTPTi neBased May 2011

Appendi x A, TOTP Algorithm Reference |nplenentation

<CODE BEG NS>

/**

Copyright (c) 2011 I ETF Trust and the persons identified as
authors of the code. Al rights reserved.

Redi stribution and use in source and binary forns, with or wthout

nmodi fication, is permtted pursuant to, and subject to the license

terns contained in, the Sinplified BSD License set forth in Section
4.c of the IETF Trust’'s Legal Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info).

*/

i mport java.l ang.refl ect. Undecl aredThr owabl eExcepti on;
i mport java.security. General SecurityException;

i mport java.text. Dat eFornat;

i mport java.text.Sinpl eDat eFor mat ;

i mport java.util.Date;

i mport javax.crypto. Mac;

i mport j avax.crypto. spec. Secr et KeySpec;

i mport j ava. mat h. Bi gl nt eger;

i mport java.util.TinmeZone;

/**

* This is an exanple inplenmentation of the OATH

* TOTP al gorithm

* Visit www openaut hentication.org for nore information.
*

* @ut hor Johan Rydell, PortWse, Inc.

*

~

public class TOTP {

private TOTP() {}

/**

* This method uses the JCE to provide the crypto algorithm

* HVAC conput es a Hashed Message Aut hentication Code with the
* crypto hash algorithmas a paraneter.

*

* @aramcrypto: the crypto algorithm (HmcSHAL, HracSHA256,
* Hmac SHA512)

* @aram keyBytes: the bytes to use for the HVAC key

* @aramtext: the nessage or text to be authenticated

*/

M Rai hi, et al. I nf or mat i onal [Page 9]

RFC 6238 HOTPTi neBased May 2011

private static byte[] hnmac_sha(String crypto, byte[] keyBytes,
byte[] text){
try {
Mac hnac;
hmac = Mac. get | nstance(crypto);
Secr et KeySpec nacKey =
new Secr et KeySpec(keyBytes, "RAW);
hrmac. i ni t (nmackKey);
return hmac. doFi nal (text);
} catch (General SecurityException gse) {
t hr ow new Undecl ar edThr owabl eExcepti on(gse);
}

/**

* This method converts a HEX string to Byte[]

*

* @aram hex: the HEX string

* * *

@eturn: a byte array
/

private static byte[] hexStr2Bytes(String hex){
/1 Adding one byte to get the right conversion
/1 Values starting with "0" can be converted
byte[] bArray = new Biglnteger("10" + hex, 16).toByteArray();

/1l Copy all the REAL bytes, not the "first"

byte[] ret = new byte[bArray.length - 1];
for (int i =0; i <ret.length; i++)
ret[i] = bArray[i+1];
return ret;
}
private static final int[] D G TS_POAER
// 01 2 3 4 5 6 7 8

= {1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000 };

M Rai hi, et al. I nf or mat i onal [Page 10]

RFC 6238 HOTPTi neBased May 2011

/**

* This method generates a TOTP val ue for the given
* set of paraneters.

@ar am key: the shared secret, HEX encoded
@aramtine: a value that reflects a tine
@aramreturnDigits: nunber of digits to return

@eturn: a nuneric String in base 10 that includes
{@ink truncationDigits} digits

E I

/

public static String generateTOTP(String key,
String tine,
String returnbDigits){
return generat eTOTP(key, time, returnDigits, "HmacSHA1");

}
/**
* This method generates a TOTP val ue for the given
* set of paraneters.
*
* @aram key: the shared secret, HEX encoded
* @aramtine: a value that reflects a tinme
* @aramreturnbDigits: nunber of digits to return
*
* @eturn: a nunmeric String in base 10 that includes
* {@ink truncationDigits} digits
*

~

public static String generateTOTP256(String key,
String tine,
String returnbDigits){
return generat eTOTP(key, time, returnbDigits, "HracSHA256");

M Rai hi, et al. I nf or mat i onal [Page 11]

RFC 6238 HOTPTi neBased May 2011

/**

* This method generates a TOTP val ue for the given
* set of paraneters.

@ar am key: the shared secret, HEX encoded
@aramtine: a value that reflects a tine
@aramreturnDigits: nunber of digits to return

@eturn: a nuneric String in base 10 that includes
{@ink truncationDigits} digits

E I

/

public static String generateTOTP512(String key,
String tine,
String returnbDigits){
return generat eTOTP(key, time, returnbDigits, "HracSHA512");

}

/**

* This method generates a TOTP val ue for the given
* set of paraneters.

*

* @aram key: the shared secret, HEX encoded

* @aramtine: a value that reflects a tinme

* @aramreturnbDigits: nunber of digits to return
* @aramcrypto: the crypto function to use

*

* @eturn: a nunmeric String in base 10 that includes
* {@ink truncationDigits} digits

*/

public static String generateTOTP(String key,
String tine,
String returnDigits,
String crypto){
int codeDigits = Integer.decode(returnbDigits).intValue();
String result = null;

/1 Using the counter
/1l First 8 bytes are for the novingFactor
/1 Conpliant with base RFC 4226 (HOTP)
while (tinme.length() < 16)

tinme = "0" + tineg;

/1l Get the HEX in a Byte[]

byte[] nsg = hexStr2Bytes(tine);
byte[] k = hexStr2Bytes(key);

M Rai hi, et al. I nf or mat i onal [Page 12]

RFC 6238 HOTPTi neBased May 2011

byte[] hash = hnac_sha(crypto, k, nsQ);

/1 put selected bytes into result int
int offset = hash[hash.length - 1] & Oxf;

int binary =
((hash[offset] & Ox7f) << 24) |
((hash[offset + 1] & Oxff) << 16) |
((hash[offset + 2] & Oxff) << 8) |
(hash[of fset + 3] & Oxff);

int otp = binary % DIA TS _POAER] codeDi gi ts];

result = Integer.toString(otp);

while (result.length() < codeDigits) {
result = "0" + result;

}

return result;

public static void main(String[] args) {
/'l Seed for HVAC-SHA1l - 20 bytes
String seed = "3132333435363738393031323334353637383930";
/1 Seed for HWVAC SHA256 - 32 bytes
String seed32 = "3132333435363738393031323334353637383930" +
"313233343536373839303132";
/1l Seed for HVAC- SHA512 - 64 bytes
String seed64 = "3132333435363738393031323334353637383930" +
"3132333435363738393031323334353637383930" +
"3132333435363738393031323334353637383930" +

"31323334";
long TO = O;
I ong X = 30;

long testTine[] = {59L, 1111111109L, 1111111111L,
1234567890L, 2000000000L, 20000000000L};

String steps = "0";

Dat eFor mat df = ne\’/v Si npl eDat eFor mat ("yyyy- M dd HH: nm ss");
df . set Ti mreZone(Ti neZone. get Ti mreZone(" UTC"));

M Rai hi, et al. I nf or mat i onal [Page 13]

RFC 6238

}

<CODE ENDS>

Appendi x B.

try {

HOTPTi meBased May 2011

System out. printl n(

M e a oo Fmm e e a oo +" +
B Fommmmm Fommmmm +");
System out . printl n(

"| Tine(sec) | Tinme (UTC format) "o+
"| Value of T(Hex) | TOTP | Mde |");
System out. printl n(

M e a oo Fmm e e a oo +" +
B Fommmmm Fommmmm +");

for (int i=0; i<testTine.length; i++) {
long T = (testTime[i] - TO)/X
steps = Long.toHexString(T).toUpperCase();
while (steps.length() < 16) steps = "0" + steps;
String fmTinme = String.format ("%%$-11s", testTine[i]);
String utcTine = df.forrmt(new Date(test Time[i] *1000));

Systemout print("|] " +fmTine +" | " + utcTine +
| " + St eps + n | II) .

System out. println(generateTOIP(seed, steps, "8",

"HracSHA1") + "| SHAl [");

Systemout print("| " +fmTime +" | " + utcTime +
| n + St eps + n | II) .

System out. printl n(generat eTOTP(seed32, steps, "8",

"HracSHA256") + "| SHA256 |");

Systemout print("| " +fnmTinme +" | " + utcTime +
| n + St eps + n | ll) .

System out . printl n(generat eTOTP(seed64, steps, "8",

"HmacSHA512") + "| SHA512 |");

System out. println(

}catch (final Exception e){

Systemout.println("Error

Test Vectors

Thi s section provides test values that can be used for the HOTP tine-
based variant algorithminteroperability test.

M Rai hi,

et al. I nf or mat i onal [Page 14]

RFC 6238

M Rai hi,

The test token shared secret uses the ASCI
"12345678901234567890"
val ue to count tine steps,

the initial

algorithmw |

ti mest anps.

59

1111111109

1111111109

1111111109

1111111111

1111111111

1111111111

1234567890

1234567890

1234567890

2000000000

2000000000

2000000000

20000000000

20000000000

20000000000

et al.

HOTPTi neBased

string val ue
Wth Time Step X = 30, and the Unix epoch as
where TO = O,

May 2011

the TOTP

di splay the foll owi ng values for specified nodes and

1970- 01- 01
00: 00: 59
1970- 01-01
00: 00: 59
1970-01-01
00: 00: 59
2005-03-18
01: 58: 29
2005-03-18
01:58: 29
2005-03-18
01:58: 29
2005-03-18
01:58: 31
2005-03-18
01:58: 31
2005-03-18
01:58: 31
2009-02-13
23:31: 30
2009-02-13
23:31: 30
2009-02-13
23:31: 30
2033-05-18
03: 33: 20
2033-05-18
03:33: 20
2033-05-18
03: 33: 20
2603-10-11
11: 33: 20
2603-10-11
11: 33: 20
2603-10-11
11: 33: 20

0000000000000001
0000000000000001
0000000000000001
00000000023523EC
00000000023523EC
00000000023523EC
00000000023523ED
00000000023523ED

00000000023523ED

000000000273EFO7
000000000273EF07
0000000003F940AA
0000000003F940AA
0000000003F940AA
0000000027BCB6AA
0000000027BCB6AA

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
|
| 000000000273EF07
I
I
I
I
I
I
I
I
I
I
I
I
I
I
| 0000000027BC86AA
|

Tabl e 1: TOTP Tabl e

I nf or mat i ona

94287082

46119246

90693936

07081804

68084774

25091201

14050471

67062674

99943326

89005924

91819424

93441116

69279037

90698825

38618901

65353130

77737706

47863826

SHA256
SHA512
SHA1
SHA256

SHA512

SHA256
SHA512
SHA1
SHA256
SHA512
SHA1
SHA256

I
I
|
I
I
I
I
I
|
I
I
I
I
I
|
I
I
I
SHA1 |
I
|
I
I
I
I
I
|
I
I
I
I
I
I
SHA512

I

[Page 15]

RFC 6238 HOTPTi neBased May 2011

Aut hors’ Addr esses

Davi d M Rai hi

Verisign, Inc.

685 E. Mddl efield Road
Mountain View, CA 94043
USA

EMai |l : davidietf@mail.com

Sal ah Machani

Di versi net Corp.

2225 Sheppard Avenue East, Suite 1801
Toronto, Ontario MJ 5C2

Canada

EMmi | : smachani @li ver si net.com

M ngl i ang Pei

Symant ec

510 E. M ddl efield Road
Mountain View, CA 94043
USA

EMai | : M ngliang_Pei @ymant ec. com
Johan Rydel |

Portwi se, Inc.

275 Hawt horne Ave., Suite 119
Palo Alto, CA 94301

USA

EMai |l : johanietf@nmail.com

M Rai hi, et al. I nf or mat i onal [Page 16]

