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            SCS: KoanLogic’s Secure Cookie Sessions for HTTP

Abstract

   This memo defines a generic URI and HTTP-header-friendly envelope for
   carrying symmetrically encrypted, authenticated, and origin-
   timestamped tokens.  It also describes one possible usage of such
   tokens via a simple protocol based on HTTP cookies.

   Secure Cookie Session (SCS) use cases cover a wide spectrum of
   applications, ranging from distribution of authorized content via
   HTTP (e.g., with out-of-band signed URIs) to securing browser
   sessions with diskless embedded devices (e.g., Small Office, Home
   Office (SOHO) routers) or web servers with high availability or load-
   balancing requirements that may want to delegate the handling of the
   application state to clients instead of using shared storage or
   forced peering.

Status of This Memo

   This document is not an Internet Standards Track specification; it is
   published for informational purposes.

   This is a contribution to the RFC Series, independently of any other
   RFC stream.  The RFC Editor has chosen to publish this document at
   its discretion and makes no statement about its value for
   implementation or deployment.  Documents approved for publication by
   the RFC Editor are not a candidate for any level of Internet
   Standard; see Section 2 of RFC 5741.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   http://www.rfc-editor.org/info/rfc6896.
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1.  Introduction

   This memo defines a generic URI and HTTP-header-friendly envelope for
   carrying symmetrically encrypted, authenticated, and origin-
   timestamped tokens.

   It is generic in that it does not force any specific format upon the
   authenticated information, which makes SCS tokens flexible, easy, and
   secure to use in many different scenarios.

   It is URI and HTTP header friendly, as it has been explicitly
   designed to be compatible with both the ABNF "token" syntax [RFC2616]
   (the one used for, e.g., Set-Cookie and Cookie headers) and the path
   or query syntax of HTTP URIs.

   This memo also describes one possible usage of such tokens via a
   simple protocol based on HTTP cookies that allows the establishment
   of "client mode" sessions.  This is not their sole possible use.
   While no other operational patterns are outlined here, it is expected
   that SCS tokens may be easily employed as a building block for other
   types of HTTP-based applications that need to carry in-band secured
   information.

   When SCS tokens are used to implement client-mode cookie sessions,
   the SCS implementer must fully understand the security implications
   entailed by the act of delegating the whole application state to the
   client (browser).  In this regard, some hopefully useful security
   considerations have been collected in Section 7.2.  However, please
   note that they may not cover all possible scenarios; therefore, they
   must be weighed carefully against the specific application threat
   model.

   An SCS server may be implemented within a web application by means of
   a user library that exposes the core SCS functionality and leaves
   explicit control over SCS tokens to the programmer, or transparently,
   by hiding a "diskless session" facility behind a generic session API
   abstraction, for example.  SCS implementers are free to choose the
   model that best suits their needs.

2.  Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].
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3.  SCS Protocol

   The SCS protocol defines:

   o  the SCS cookie structure and encoding (Section 3.1);

   o  the cryptographic transformations involved in SCS cookie creation
      and verification (Section 3.2);

   o  the HTTP-based PDU exchange that uses the Set-Cookie and Cookie
      HTTP headers (Section 3.3);

   o  the underlying key management model (Section 4).

   Note that the PDU is transmitted to the client as an opaque data
   block; hence, no interpretation nor validation is necessary.  The
   single requirement for client-side support of SCS is cookie
   activation on the user agent.  The origin server is the sole actor
   involved in the PDU manipulation process, which greatly simplifies
   the crypto operations -- especially key management, which is usually
   a pesky task.

   In the following sections, we assume S to be one or more
   interchangeable HTTP server entities (e.g., a server pool in a load-
   balanced or high-availability environment) and C to be the client
   with a cookie-enabled browser or any user agent with equivalent
   capabilities.

3.1.  SCS Cookie Description

   S and C exchange a cookie (Section 3.3) whose cookie value consists
   of a sequence of adjacent non-empty values, each of which is the ’URL
   and Filename safe’ Base64 encoding [RFC4648] of a specific SCS field.

   (Hereafter, the encoded and raw versions of each SCS field are
   distinguished based on the presence, or lack thereof, of the ’e’
   prefix in their name, e.g., eATIME and ATIME.)

   Each SCS field is separated by its left and/or right sibling by means
   of the %x7c ASCII character (i.e., ’|’), as follows:
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   scs-cookie        = scs-cookie-name "=" scs-cookie-value
   scs-cookie-name   = token
   scs-cookie-value  = eDATA "|" eATIME "|" eTID "|" eIV "|" eAUTHTAG
   eDATA             = 1*base64url-character
   eATIME            = 1*base64url-character
   eTID              = 1*base64url-character
   eIV               = 1*base64url-character
   eAUTHTAG          = 1*base64url-character

                                 Figure 1

   Confidentiality is limited to the application-state information
   (i.e., the DATA field), while integrity and authentication apply to
   the entire cookie value.

   The following subsections describe the syntax and semantics of each
   SCS cookie field.

3.1.1.  ATIME

   Absolute timestamp relating to the last read or write operation
   performed on session DATA, encoded as a HEX string holding the number
   of seconds since the UNIX epoch (i.e., since 00:00:00, Jan 1 1970).

   This value is updated with each client contact and is used to
   identify expired sessions.  If the delta between the received ATIME
   value and the current time on S is larger than a predefined
   "session_max_age" (which is chosen by S as an application-level
   parameter), a session is considered to be no longer valid, and is
   therefore rejected.

   Such an expiration error may be used to force user logout from an
   SCS-cookie-based session, or hooked in the web application logic to
   display an HTML form requiring revalidation of user credentials.

3.1.2.  DATA

   Block of encrypted and optionally compressed data, possibly
   containing the current session state.  Note that no restriction is
   imposed on the cleartext structure: the protocol is completely
   agnostic as to inner data layout.

   Generally speaking, the plaintext is the "normal" cookie that would
   have been exchanged by S and C if SCS had not been used.
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3.1.3.  TID

   This identifier is equivalent to a Security Parameter Index (SPI) in
   a Data Security SA [RFC3740]) and consists of an ASCII string that
   uniquely identifies the transform set (keys and algorithms) used to
   generate this SCS cookie.

   SCS assumes that a key-agreement/distribution mechanism exists for
   environments in which S consists of multiple servers that provide a
   unique external identifier for each transform set shared amongst pool
   members.

   Such a mechanism may safely downgrade to a periodic key refresh, if
   there is only one server in the pool and the key is generated in
   place -- i.e., it is not handled by an external source.

   However, when many servers act concurrently upon the same pool, a
   more sophisticated protocol, whose specification is out of the scope
   of the present document, must be devised (ideally, one that is able
   to handle key agreement for dynamic peer groups in a secure and
   efficient way, e.g., [CLIQUES] or [Steiner]).

3.1.4.  IV

   Initialization Vector used for the encryption algorithm (see
   Section 3.2).

   In order to avoid providing correlation information to a possible
   attacker with access to a sample of SCS cookies created using the
   same TID, the IV MUST be created randomly for each SCS cookie.

3.1.5.  AUTHTAG

   Authentication tag that is based on the plain string concatenation of
   the base64url-encoded DATA, ATIME, TID, and IV fields and is framed
   by the "|" separator (see also the definition of the Box() function
   in Section 3.2):

   AUTHTAG = HMAC(base64url(DATA)  "|"
                  base64url(ATIME) "|"
                  base64url(TID)   "|"
                  base64url(IV))

   Note that, from a cryptographic point of view, the "|" character
   provides explicit authentication of the length of each supplied
   field, which results in a robust countermeasure against splicing
   attacks.
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3.2.  Crypto Transform

   SCS could potentially use any combination of primitives capable of
   performing authenticated encryption.  In practice, an
   encrypt-then-MAC approach [Kohno] with encryption utilizing the
   Cipher Block Chaining (CBC) mode and Hashed Message Authentication
   Code (HMAC) [RFC2104] authentication was chosen.

   The two algorithms MUST be associated with two independent keys.

   The following conventions will be used in the algorithm description
   (Sections 3.2.5 and 3.2.6):

   o  Enc/Dec(): block encryption/decryption functions (Section 3.2.2);

   o  HMAC(): authentication function (Section 3.2.2);

   o  Comp/Uncomp(): compression/decompression functions
      (Section 3.2.3);

   o  e/d(): cookie-value encoding/decoding functions (Section 3.2.4);

   o  RAND(): random number generator [RFC4086];

   o  Box(): string boxing function.  It takes an arbitrary number of
      base64url-encoded strings and returns the string obtained by
      concatenating each input in the exact order in which they are
      listed, separated by the "|" char.  For example:

         Box("akxI", "MTM", "Hadvo") = "akxI|MTM|Hadvo".

3.2.1.  Choice and Role of the Framing Symbol

   Note that the adoption of "|" as the framing symbol in the Box()
   function is arbitrary: any char allowed by the cookie-value ABNF in
   [RFC6265] is safe to be used as long it has empty intersection with
   the base64url alphabet.

   It is also worth noting that the role of the framing symbol, which
   provides an implicit length indicator for each of the atoms, is key
   to the accuracy and security of SCS.

   This is especially relevant when the authentication tag is computed
   (see Section 3.1.5).  More specifically, the explicit inclusion of
   the framing symbol within the HMAC input seals the integrity of the
   blob as a whole together with each of its composing atoms in their
   exact position.
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   This feature makes the protocol robust against attacks aimed at
   disrupting the security of SCS PDUs by freely moving boundaries
   between adjacent atoms.

3.2.2.  Cipher Set

   Implementers MUST support at least the following algorithms:

   o  AES-CBC-128 for encryption [NIST-AES];

   o  HMAC-SHA1 with a 128-bit key for authenticity and integrity,

   which appear to be sufficiently secure in a broad range of use cases
   ([Bellare] [RFC6194]), are widely available, and can be implemented
   in a few kilobytes of memory, providing an extremely valuable feature
   for constrained devices.

   One should consider using larger cryptographic key lengths (192- or
   256-bit) according to the actual security and overall system
   performance requirements.

3.2.3.  Compression

   Compression, which may be useful or even necessary when handling
   large quantities of data, is not compulsory (in such a case, Comp/
   Uncomp is replaced by an identity matrix).  If this function is
   enabled, the DEFLATE [RFC1951] format MUST be supported.

   Some advice to SCS users: compression should not be enabled when
   handling relatively short and entropic state, such as pseudorandom
   session identifiers.  Instead, large and quite regular state blobs
   could get a significant boost when compressed.

3.2.4.  Cookie Encoding

   SCS cookie values MUST be encoded using the alphabet that is URL and
   filename safe (i.e., base64url) defined in Section 5 of Base64
   [RFC4648].  This encoding is very widespread, falls smoothly into the
   encoding rules defined in Section 4.1.1 of [RFC6265], and can be
   safely used to supply SCS-based authorization tokens within a URI
   (e.g., in a query string or straight into a path segment).

3.2.5.  Outbound Transform

   The output data transformation, as seen by the server (the only actor
   that explicitly manipulates SCS cookies), is illustrated by the
   pseudocode in Figure 2.
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         1.  IV := RAND()
         2.  ATIME := NOW
         3.  DATA := Enc(Comp(plain-text-cookie-value), IV)
         4.  AUTHTAG := HMAC(Box(e(DATA), e(ATIME), e(TID), e(IV)))

                                 Figure 2

   A new Initialization Vector is randomly picked (step 1).  As
   previously mentioned (Section 3.1.4), this step is necessary to avoid
   providing correlation information to an attacker.

   A new ATIME value is taken as the current timestamp according to the
   server clock (step 2).

   Since the only user of the ATIME field is the server, it is
   unnecessary for it to be synchronized with the client -- though it
   needs to use a fairly stable clock.  However, if multiple servers are
   active in a load-balancing configuration, clocks SHOULD be
   synchronized to avoid errors in the calculation of session expiry.

   The plaintext cookie value is then compressed (if needed) and
   encrypted by using the key-set identified by TID (step 3).

   If the length of (compressed) state is not a multiple of the block
   size, its value MUST be filled with as many padding bytes of equal
   value as the pad length -- as defined by the scheme given in Section
   6.3 of [RFC5652].

   Then, the authentication tag, which encompasses each SCS field (along
   with lengths and relative positions), is computed by HMAC’ing the
   "|"-separated concatenation of their base64url representations using
   the key-set identified by TID (step 4).

   Finally, the SCS-cookie-value is created as follows:

      scs-cookie-value = Box(e(DATA), e(ATIME), e(TID), e(IV),
                             e(AUTHTAG))

3.2.6.  Inbound Transform

   The inbound transformation is described in Figure 3.  Each of the
   ’e’-prefixed names shown has to be interpreted as the
   base64url-encoded value of the corresponding SCS field.
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           0.  If (split_fields(scs-cookie-value) == ok)
           1.      tid’ := d(eTID)
           2.      If (tid’ is available)
           3.          tag’ := d(eAUTHTAG)
           4.          tag := HMAC(Box(eDATA, eATIME, eTID, eIV))
           5.          If (tag = tag’)
           6.              atime’ := d(eATIME)
           7.              If (NOW - atime’ <= session_max_age)
           8.                  iv’ := d(eIV)
                               data’ := d(eDATA)
           9.                  state := Uncomp(Dec(data’, iv’))
           10.             Else discard PDU
           11.         Else discard PDU
           12.     Else discard PDU
           13. Else discard PDU

                                 Figure 3

   First, the inbound scs-cookie-value is broken into its component
   fields, which MUST be exactly 5, and each at least the minimum length
   specified in Figure 3 (step 0).  In case any of these preliminary
   checks fails, the PDU is discarded (step 13); else, TID is decoded to
   allow key-set lookup (step 1).

   If the cryptographic credentials (encryption and authentication
   algorithms and keys identified by TID) are unavailable (step 12), the
   inbound SCS cookie is discarded since its value has no chance to be
   interpreted correctly.  This may happen for several reasons: e.g., if
   a device without storage has been reset and loses the credentials
   stored in RAM, if a server pool node desynchronizes, or in case of a
   key compromise that forces the invalidation of all current TIDs, etc.

   When a valid key-set is found (step 2), the AUTHTAG field is decoded
   (step 3) and the (still) encoded DATA, ATIME, TID, and IV fields are
   supplied to the primitive that computes the authentication tag (step
   4).

   If the tag computed using the local key-set matches the one carried
   by the supplied SCS cookie, we can be confident that the cookie
   carries authentic material; otherwise, the SCS cookie is discarded
   (step 11).

   Then the age of the SCS cookie (as deduced by ATIME field value and
   current time provided by the server clock) is decoded and compared to
   the maximum time-to-live (TTL) defined by the session_max_age
   parameter.
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   If the "age" check passes, the DATA and IV fields are finally decoded
   (step 8), so that the original plaintext data can be extracted from
   the encrypted, and optionally compressed, blob (step 9).

   Note that steps 5 and 7 allow any altered packets or expired sessions
   to be discarded, hence avoiding unnecessary state decryption and
   decompression.

3.3.  PDU Exchange

   SCS can be modeled in the same manner as a typical store-and-forward
   protocol in which the endpoints are S, consisting of one or more HTTP
   servers and the client C, an intermediate node used to "temporarily"
   store the data to be successively forwarded to S.

   In brief, S and C exchange an immutable cookie data block
   (Section 3.1): the state is stored on the client at the first hop and
   then restored on the server at the second, as in Figure 4.

     1.  dump-state:
         S --> C
             Set-Cookie: ANY_COOKIE_NAME=KrdPagFes_5ma-ZUluMsww|MTM0...
                Expires=...; Path=...; Domain=...;

     2.  restore-state:
         C --> S
             Cookie: ANY_COOKIE_NAME=KrdPagFes_5ma-ZUluMsww|MTM0...

                                 Figure 4

3.3.1.  Cookie Attributes

   In the following subsections, a series of recommendations is provided
   in order to maximize SCS PDU fitness in the generic cookie ecosystem.

3.3.1.1.  Expires

   If an SCS cookie includes an Expires attribute, then the attribute
   MUST be set to a value consistent with session_max_age.

   For maximum compatibility with existing user agents, the timestamp
   value MUST be encoded in rfc1123-date format, which requires a
   4-digit year.

3.3.1.2.  Max-Age

   Since not all User Agents (UAs) support this attribute, it MUST NOT
   be present in any SCS cookie.
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3.3.1.3.  Domain

   SCS cookies MUST include a Domain attribute compatible with
   application usage.

   A trailing ’.’  MUST NOT be present in order to minimize the
   possibility of a user agent ignoring the attribute value.

3.3.1.4.  Secure

   This attribute MUST always be asserted when SCS sessions are carried
   over a Transport Layer Security (TLS) channel.

3.3.1.5.  HttpOnly

   This attribute SHOULD always be asserted.

4.  Key Management and Session State

   This specification provides some common recommendations and practices
   relevant to cryptographic key management.

   In the following, the term ’key’ references both encryption and HMAC
   keys.

   o  The key SHOULD be generated securely following the randomness
      recommendations in [RFC4086];

   o  the key SHOULD only be used to generate and verify SCS PDUs;

   o  the key SHOULD be replaced regularly as well as any time the
      format of SCS PDUs or cryptographic algorithms changes.

   Furthermore, to preserve the validity of active HTTP sessions upon
   renewal of cryptographic credentials (whenever the value of TID
   changes), an SCS server MUST be capable of managing at least two
   transforms contemporarily: the currently instantiated one and its
   predecessor.

   Each transform set SHOULD be associated with an attribute pair,
   "refresh" and "expiry", which is used to identify the exposure limits
   (in terms of time or quantity of encrypted and/or authenticated
   bytes, etc.) of related cryptographic material.
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   In particular, the "refresh" attribute specifies the time limit for
   substitution of transform set T with new material T’.  From that
   moment onwards, and for an amount of time determined by "expiry", all
   new sessions will be created using T’, while the active T-protected
   ones go through a translation phase in which:

   o  the inbound transformation authenticates and decrypts/decompresses
      using T (identified by TID);

   o  the outbound transformation encrypts/compresses and authenticates
      using T’.

        T’ {not valid yet} |---------------------|----------------
                           |  translation stage  |
        T  ----------------|---------------------| {no longer valid}
                         refresh         refresh + expiry

                                 Figure 5

   As shown in Figure 5, the duration of the HTTP session MUST fit
   within the lifetime of a given transform set (i.e., from creation
   time until "refresh" + "expiry").

   In practice, this should not be an obstacle because the longevity of
   the two entities (HTTP session and SCS transform set) should differ
   by one or two orders of magnitude.

   An SCS server may take this into account by determining the duration
   of a session adaptively according to the expected deletion time of
   the active T, or by setting the "expiry" value to at least the
   maximum lifetime allowed by an HTTP session.

   Since there is also only one refresh attribute in situations with
   more than one key (e.g., one for encryption and one for
   authentication) within the same T, the smallest value is chosen.

   It is critical for the correctness of the protocol that in case
   multiple equivalent SCS servers are used in a pool, all of them share
   the same view of time (see also Section 3.2.5) and keying material.

   As far as the latter is concerned, SCS does not mandate the use of
   any specific key-sharing mechanism, and will keep working correctly
   as long as the said mechanism is able to provide a single, coherent
   view of the keys shared by pool members -- while conforming to the
   recommendations given in this section.
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5.  Cookie Size Considerations

   In general, SCS cookies are bigger than their plaintext counterparts.
   This is due to the following reasons:

   o  inflation of the Base64 encoding of state data (approximately 1.4
      times the original size, including the encryption padding);

   o  the fixed size increment (approximately 80/90 bytes) caused by SCS
      fields and framing overhead.

   While the former is a price the user must always pay proportionally
   to the original data size, the latter is a fixed quantum, which can
   be huge on small amounts of data but is quickly absorbed as soon as
   data becomes big enough.

   The following table compares byte lengths of SCS cookies (with a
   four-byte TID) and corresponding plaintext cookies in a worst-case
   scenario, i.e., when no compression is in use (or applicable).

                               plain |  SCS
                               -------+-------
                                 11  |  128
                                102  |  256
                                285  |  512
                                651  | 1024
                               1382  | 2048
                               2842  | 4096

   The largest uncompressed cookie value that can be safely supplied to
   SCS is about 2.8 KB.
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7.  Security Considerations

7.1.  Security of the Cryptographic Protocol

   From a cryptographic architecture perspective, the described
   mechanism can be easily traced to an "encode then encrypt-then-MAC"
   scheme (Encode-then-EtM) as described in [Kohno].
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   Given a "provably-secure" encryption scheme and MAC (as for the
   algorithms mandated in Section 3.2.2), the authors of [Kohno]
   demonstrate that their composition results in a secure authenticated
   encryption scheme.

7.2.  Impact of the SCS Cookie Model

   The fact that the server does not own the cookie it produces, gives
   rise to a series of consequences that must be clearly understood when
   one envisages the use of SCS as a cookie provider and validator for
   his/her application.

   In the following subsections, a set of different attack scenarios
   (together with corresponding countermeasures where applicable) are
   identified and analyzed.

7.2.1.  Old Cookie Replay

   SCS doesn’t address replay of old cookie values.

   In fact, there is nothing that assures an SCS application about the
   client having returned the most recent version of the cookie.

   As with "server-side" sessions, if an attacker gains possession of a
   given user’s cookies -- via simple passive interception or another
   technique -- he/she will always be able to restore the state of an
   intercepted session by representing the captured data to the server.

   The ATIME value, along with the session_max_age configuration
   parameter, allows SCS to mitigate the chances of an attack (by
   forcing a time window outside of which a given cookie is no longer
   valid) but cannot exclude it completely.

   A countermeasure against the "passive interception and replay"
   scenario can be applied at transport/network level using the anti-
   replay services provided by e.g., Secure Socket Layer/Transport Layer
   Security (SSL/TLS) [RFC5246] or IPsec [RFC4301].

   A native solution is not in scope with the security properties
   inherent to an SCS cookie.  Hence, an application wishing to be
   replay-resistant must put in place some ad hoc mechanism to prevent
   clients (both rogue and legitimate) from (a) being able to replay old
   cookies as valid credentials and/or (b) getting any advantage by
   replaying them.
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   The following illustrate some typical use cases:

   o  Session inactivity timeout scenario (implicit invalidation): use
      the session_max_age parameter if a global setting is viable, else
      place an explicit TTL in the cookie (e.g.,
      validity_period="start_time, duration") that can be verified by
      the application each time the client presents the SCS cookie.

   o  Session voidance scenario (explicit invalidation): put a randomly
      chosen string into each SCS cookie (cid="$(random())") and keep a
      list of valid session cids against which the SCS cookie presented
      by the client can be checked.  When a cookie needs to be
      invalidated, delete the corresponding cid from the list.  The
      described method has the drawback that, in case a non-permanent
      storage is used to archive valid cids, a reboot/restart would
      invalidate all sessions (it can’t be used when |S| > 1).

   o  One-shot transaction scenario (ephemeral): this is a variation on
      the previous theme when sessions are consumed within a single
      request/response.  Put a nonce="$(random())" within the state
      information and keep a list of not-yet-consumed nonces in RAM.
      Once the client presents its cookie credential, the embodied nonce
      is deleted from the list and will be therefore discarded whenever
      replayed.

   o  TLS binding scenario: the server application must run on TLS, be
      able to extract information related to the current TLS session,
      and store it in the DATA field of the SCS cookie itself [RFC5056].
      The establishment of this secure channel binding prevents any
      third party from reusing the SCS cookie, and drops its value
      altogether after the TLS session is terminated -- regardless of
      the lifetime of the cookie.  This approach suffers a scalability
      problem in that it requires each SCS session to be handled by the
      same client-server pair.  However, it provides a robust model and
      an affordable compromise when security of the session is
      exceptionally valuable (e.g., a user interacting with his/her
      online banking site).

   It is worth noting that in all but the latter scenario, if an
   attacker is able to use the cookie before the legitimate client gets
   a chance to, then the impersonation attack will always succeed.

7.2.2.  Cookie Deletion

   A direct and important consequence of the missing owner role in SCS
   is that a client could intentionally delete its cookie and return
   nothing.
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   The application protocol has to be designed so there is no incentive
   to do so, for instance:

   o  it is safe for the cookie to represent some kind of positive
      capability -- the possession of which increases the client’s
      powers;

   o  it is not safe to use the cookie to represent negative
      capabilities -- where possession reduces the client’s powers -- or
      for revocation.

   Note that this behavior is not equivalent to cookie removal in the
   "server-side" cookie model, because in case of missing cookie backup
   by other parties (e.g., the application using SCS), the client could
   simply make it disappear once and for all.

7.2.3.  Cookie Sharing or Theft

   Just like with plain cookies, SCS doesn’t prevent sharing (both
   voluntary and illegitimate) of cookies between multiple clients.

   In the context of voluntary cookie sharing, using HTTPS only as a
   separate secure transport provider is useless: in fact, client
   certificates are just as shareable as cookies.  Instead, using some
   form of secure channel binding (as illustrated in Section 7.2.1) may
   cancel this risk.

   The risk of theft could be mitigated by securing the wire (e.g., via
   HTTPS, IPsec, VPN, etc.), thus reducing the opportunity of cookie
   stealing to a successful attack on the protocol endpoints.

   In order to reduce the attack window on stolen cookies, an
   application may choose to generate cookies whose lifetime is upper
   bounded by the browsing session lifetime (i.e., by not attaching an
   Expires attribute to them.)

7.2.4.  Session Fixation

   Session fixation vulnerabilities [Kolsec] are not addressed by SCS.

   A more sophisticated protocol involving active participation of the
   UA in the SCS cookie manipulation process would be needed: e.g., some
   form of challenge/response exchange initiated by the server in the
   HTTP response and replied to by the UA in the next chained HTTP
   request.
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   Unfortunately, the present specification, which is based on
   [RFC6265], sees the UA as a completely passive actor whose role is to
   blindly paste the cookie value set by the server.

   Nevertheless, the SCS cookies wrapping mechanism may be used in the
   future as a building block for a more robust HTTP state management
   protocol.

7.3.  Advantages of SCS over Server-Side Sessions

   Note that all the above-mentioned vulnerabilities also apply to plain
   cookies, making SCS at least as secure, but there are a few good
   reasons to consider its security level enhanced.

   First of all, the confidentiality and authentication features
   provided by SCS protect the cookie value, which is normally plaintext
   and tamperable.

   Furthermore, neither of the common vulnerabilities of server-side
   sessions (session identifier (SID) prediction and SID brute-forcing)
   can be exploited when using SCS, unless the attacker possesses
   encryption and HMAC keys (both current ones and those relating to the
   previous set of credentials).

   More in general, no slicing nor altering operations can be done over
   an SCS PDU without controlling the cryptographic key-set.
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Appendix A.  Examples

   The examples in this section have been created using the ’scs’ test
   tool bundled with LibSCS, a free and opensource reference
   implementation of the SCS protocol that can be found at
   (http://github.com/koanlogic/libscs).

A.1.  No Compression

   The following parameters:

   o  Plaintext cookie: "a state string"

   o  AES-CBC-128 key: "123456789abcdef"

   o  HMAC-SHA1 key: "12345678901234567890"

   o  TID: "tid"

   o  ATIME: 1347265955

   o  IV:
      \xb4\xbd\xe5\x24\xf7\xf6\x9d\x44\x85\x30\xde\x9d\xb5\x55\xc9\x4f

   produce the following tokens:

   o  DATA: DqfW4SFqcjBXqSTvF2qnRA

   o  ATIME: MTM0NzI2NTk1NQ

   o  TID: OHU7M1cqdDQt

   o  IV: tL3lJPf2nUSFMN6dtVXJTw

   o  AUTHTAG: AznYHKga9mLL8ioi3If_1iy2KSA

A.2.  Use Compression

   The same parameters as above, except ATIME and IV:

   o  Plaintext cookie: "a state string"

   o  AES-CBC-128 key: "123456789abcdef"

   o  HMAC-SHA1 key: "12345678901234567890"

   o  TID: "tid"
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   o  ATIME: 1347281709

   o  IV:
      \x1d\xa7\x6f\xa0\xff\x11\xd7\x95\xe3\x4b\xfb\xa9\xff\x65\xf9\xc7

   produce the following tokens:

   o  DATA: PbE-ypmQ43M8LzKZ6fMwFg-COrLP2l-Bvgs

   o  ATIME: MTM0NzI4MTcwOQ

   o  TID: akxIKmhbMTE8

   o  IV: HadvoP8R15XjS_up_2X5xw

   o  AUTHTAG: A6qevPr-ugHQChlr_EiKYWPvpB0

   In both cases, the resulting SCS cookie is obtained via ordered
   concatenation of the produced tokens, as described in Section 3.1.
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