
Independent Submission S. Barbato
Request for Comments: 6896 S. Dorigotti
Category: Informational T. Fossati, Ed.
ISSN: 2070-1721 KoanLogic
 March 2013

 SCS: KoanLogic’s Secure Cookie Sessions for HTTP

Abstract

 This memo defines a generic URI and HTTP-header-friendly envelope for
 carrying symmetrically encrypted, authenticated, and origin-
 timestamped tokens. It also describes one possible usage of such
 tokens via a simple protocol based on HTTP cookies.

 Secure Cookie Session (SCS) use cases cover a wide spectrum of
 applications, ranging from distribution of authorized content via
 HTTP (e.g., with out-of-band signed URIs) to securing browser
 sessions with diskless embedded devices (e.g., Small Office, Home
 Office (SOHO) routers) or web servers with high availability or load-
 balancing requirements that may want to delegate the handling of the
 application state to clients instead of using shared storage or
 forced peering.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This is a contribution to the RFC Series, independently of any other
 RFC stream. The RFC Editor has chosen to publish this document at
 its discretion and makes no statement about its value for
 implementation or deployment. Documents approved for publication by
 the RFC Editor are not a candidate for any level of Internet
 Standard; see Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc6896.

Barbato, et al. Informational [Page 1]

RFC 6896 SCS March 2013

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Barbato, et al. Informational [Page 2]

RFC 6896 SCS March 2013

Table of Contents

 1. Introduction ..4
 2. Requirements Language ...4
 3. SCS Protocol ..5
 3.1. SCS Cookie Description5
 3.1.1. ATIME ...6
 3.1.2. DATA ..6
 3.1.3. TID ...7
 3.1.4. IV ..7
 3.1.5. AUTHTAG ...7
 3.2. Crypto Transform ...8
 3.2.1. Choice and Role of the Framing Symbol8
 3.2.2. Cipher Set ..9
 3.2.3. Compression ...9
 3.2.4. Cookie Encoding9
 3.2.5. Outbound Transform9
 3.2.6. Inbound Transform10
 3.3. PDU Exchange ..12
 3.3.1. Cookie Attributes12
 3.3.1.1. Expires12
 3.3.1.2. Max-Age12
 3.3.1.3. Domain13
 3.3.1.4. Secure13
 3.3.1.5. HttpOnly13
 4. Key Management and Session State13
 5. Cookie Size Considerations15
 6. Acknowledgements ...15
 7. Security Considerations ..15
 7.1. Security of the Cryptographic Protocol15
 7.2. Impact of the SCS Cookie Model16
 7.2.1. Old Cookie Replay16
 7.2.2. Cookie Deletion17
 7.2.3. Cookie Sharing or Theft18
 7.2.4. Session Fixation18
 7.3. Advantages of SCS over Server-Side Sessions19
 8. References ...20
 8.1. Normative References20
 8.2. Informative References20
 Appendix A. Examples ..22
 A.1. No Compression ..22
 A.2. Use Compression ...22

Barbato, et al. Informational [Page 3]

RFC 6896 SCS March 2013

1. Introduction

 This memo defines a generic URI and HTTP-header-friendly envelope for
 carrying symmetrically encrypted, authenticated, and origin-
 timestamped tokens.

 It is generic in that it does not force any specific format upon the
 authenticated information, which makes SCS tokens flexible, easy, and
 secure to use in many different scenarios.

 It is URI and HTTP header friendly, as it has been explicitly
 designed to be compatible with both the ABNF "token" syntax [RFC2616]
 (the one used for, e.g., Set-Cookie and Cookie headers) and the path
 or query syntax of HTTP URIs.

 This memo also describes one possible usage of such tokens via a
 simple protocol based on HTTP cookies that allows the establishment
 of "client mode" sessions. This is not their sole possible use.
 While no other operational patterns are outlined here, it is expected
 that SCS tokens may be easily employed as a building block for other
 types of HTTP-based applications that need to carry in-band secured
 information.

 When SCS tokens are used to implement client-mode cookie sessions,
 the SCS implementer must fully understand the security implications
 entailed by the act of delegating the whole application state to the
 client (browser). In this regard, some hopefully useful security
 considerations have been collected in Section 7.2. However, please
 note that they may not cover all possible scenarios; therefore, they
 must be weighed carefully against the specific application threat
 model.

 An SCS server may be implemented within a web application by means of
 a user library that exposes the core SCS functionality and leaves
 explicit control over SCS tokens to the programmer, or transparently,
 by hiding a "diskless session" facility behind a generic session API
 abstraction, for example. SCS implementers are free to choose the
 model that best suits their needs.

2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

Barbato, et al. Informational [Page 4]

RFC 6896 SCS March 2013

3. SCS Protocol

 The SCS protocol defines:

 o the SCS cookie structure and encoding (Section 3.1);

 o the cryptographic transformations involved in SCS cookie creation
 and verification (Section 3.2);

 o the HTTP-based PDU exchange that uses the Set-Cookie and Cookie
 HTTP headers (Section 3.3);

 o the underlying key management model (Section 4).

 Note that the PDU is transmitted to the client as an opaque data
 block; hence, no interpretation nor validation is necessary. The
 single requirement for client-side support of SCS is cookie
 activation on the user agent. The origin server is the sole actor
 involved in the PDU manipulation process, which greatly simplifies
 the crypto operations -- especially key management, which is usually
 a pesky task.

 In the following sections, we assume S to be one or more
 interchangeable HTTP server entities (e.g., a server pool in a load-
 balanced or high-availability environment) and C to be the client
 with a cookie-enabled browser or any user agent with equivalent
 capabilities.

3.1. SCS Cookie Description

 S and C exchange a cookie (Section 3.3) whose cookie value consists
 of a sequence of adjacent non-empty values, each of which is the ’URL
 and Filename safe’ Base64 encoding [RFC4648] of a specific SCS field.

 (Hereafter, the encoded and raw versions of each SCS field are
 distinguished based on the presence, or lack thereof, of the ’e’
 prefix in their name, e.g., eATIME and ATIME.)

 Each SCS field is separated by its left and/or right sibling by means
 of the %x7c ASCII character (i.e., ’|’), as follows:

Barbato, et al. Informational [Page 5]

RFC 6896 SCS March 2013

 scs-cookie = scs-cookie-name "=" scs-cookie-value
 scs-cookie-name = token
 scs-cookie-value = eDATA "|" eATIME "|" eTID "|" eIV "|" eAUTHTAG
 eDATA = 1*base64url-character
 eATIME = 1*base64url-character
 eTID = 1*base64url-character
 eIV = 1*base64url-character
 eAUTHTAG = 1*base64url-character

 Figure 1

 Confidentiality is limited to the application-state information
 (i.e., the DATA field), while integrity and authentication apply to
 the entire cookie value.

 The following subsections describe the syntax and semantics of each
 SCS cookie field.

3.1.1. ATIME

 Absolute timestamp relating to the last read or write operation
 performed on session DATA, encoded as a HEX string holding the number
 of seconds since the UNIX epoch (i.e., since 00:00:00, Jan 1 1970).

 This value is updated with each client contact and is used to
 identify expired sessions. If the delta between the received ATIME
 value and the current time on S is larger than a predefined
 "session_max_age" (which is chosen by S as an application-level
 parameter), a session is considered to be no longer valid, and is
 therefore rejected.

 Such an expiration error may be used to force user logout from an
 SCS-cookie-based session, or hooked in the web application logic to
 display an HTML form requiring revalidation of user credentials.

3.1.2. DATA

 Block of encrypted and optionally compressed data, possibly
 containing the current session state. Note that no restriction is
 imposed on the cleartext structure: the protocol is completely
 agnostic as to inner data layout.

 Generally speaking, the plaintext is the "normal" cookie that would
 have been exchanged by S and C if SCS had not been used.

Barbato, et al. Informational [Page 6]

RFC 6896 SCS March 2013

3.1.3. TID

 This identifier is equivalent to a Security Parameter Index (SPI) in
 a Data Security SA [RFC3740]) and consists of an ASCII string that
 uniquely identifies the transform set (keys and algorithms) used to
 generate this SCS cookie.

 SCS assumes that a key-agreement/distribution mechanism exists for
 environments in which S consists of multiple servers that provide a
 unique external identifier for each transform set shared amongst pool
 members.

 Such a mechanism may safely downgrade to a periodic key refresh, if
 there is only one server in the pool and the key is generated in
 place -- i.e., it is not handled by an external source.

 However, when many servers act concurrently upon the same pool, a
 more sophisticated protocol, whose specification is out of the scope
 of the present document, must be devised (ideally, one that is able
 to handle key agreement for dynamic peer groups in a secure and
 efficient way, e.g., [CLIQUES] or [Steiner]).

3.1.4. IV

 Initialization Vector used for the encryption algorithm (see
 Section 3.2).

 In order to avoid providing correlation information to a possible
 attacker with access to a sample of SCS cookies created using the
 same TID, the IV MUST be created randomly for each SCS cookie.

3.1.5. AUTHTAG

 Authentication tag that is based on the plain string concatenation of
 the base64url-encoded DATA, ATIME, TID, and IV fields and is framed
 by the "|" separator (see also the definition of the Box() function
 in Section 3.2):

 AUTHTAG = HMAC(base64url(DATA) "|"
 base64url(ATIME) "|"
 base64url(TID) "|"
 base64url(IV))

 Note that, from a cryptographic point of view, the "|" character
 provides explicit authentication of the length of each supplied
 field, which results in a robust countermeasure against splicing
 attacks.

Barbato, et al. Informational [Page 7]

RFC 6896 SCS March 2013

3.2. Crypto Transform

 SCS could potentially use any combination of primitives capable of
 performing authenticated encryption. In practice, an
 encrypt-then-MAC approach [Kohno] with encryption utilizing the
 Cipher Block Chaining (CBC) mode and Hashed Message Authentication
 Code (HMAC) [RFC2104] authentication was chosen.

 The two algorithms MUST be associated with two independent keys.

 The following conventions will be used in the algorithm description
 (Sections 3.2.5 and 3.2.6):

 o Enc/Dec(): block encryption/decryption functions (Section 3.2.2);

 o HMAC(): authentication function (Section 3.2.2);

 o Comp/Uncomp(): compression/decompression functions
 (Section 3.2.3);

 o e/d(): cookie-value encoding/decoding functions (Section 3.2.4);

 o RAND(): random number generator [RFC4086];

 o Box(): string boxing function. It takes an arbitrary number of
 base64url-encoded strings and returns the string obtained by
 concatenating each input in the exact order in which they are
 listed, separated by the "|" char. For example:

 Box("akxI", "MTM", "Hadvo") = "akxI|MTM|Hadvo".

3.2.1. Choice and Role of the Framing Symbol

 Note that the adoption of "|" as the framing symbol in the Box()
 function is arbitrary: any char allowed by the cookie-value ABNF in
 [RFC6265] is safe to be used as long it has empty intersection with
 the base64url alphabet.

 It is also worth noting that the role of the framing symbol, which
 provides an implicit length indicator for each of the atoms, is key
 to the accuracy and security of SCS.

 This is especially relevant when the authentication tag is computed
 (see Section 3.1.5). More specifically, the explicit inclusion of
 the framing symbol within the HMAC input seals the integrity of the
 blob as a whole together with each of its composing atoms in their
 exact position.

Barbato, et al. Informational [Page 8]

RFC 6896 SCS March 2013

 This feature makes the protocol robust against attacks aimed at
 disrupting the security of SCS PDUs by freely moving boundaries
 between adjacent atoms.

3.2.2. Cipher Set

 Implementers MUST support at least the following algorithms:

 o AES-CBC-128 for encryption [NIST-AES];

 o HMAC-SHA1 with a 128-bit key for authenticity and integrity,

 which appear to be sufficiently secure in a broad range of use cases
 ([Bellare] [RFC6194]), are widely available, and can be implemented
 in a few kilobytes of memory, providing an extremely valuable feature
 for constrained devices.

 One should consider using larger cryptographic key lengths (192- or
 256-bit) according to the actual security and overall system
 performance requirements.

3.2.3. Compression

 Compression, which may be useful or even necessary when handling
 large quantities of data, is not compulsory (in such a case, Comp/
 Uncomp is replaced by an identity matrix). If this function is
 enabled, the DEFLATE [RFC1951] format MUST be supported.

 Some advice to SCS users: compression should not be enabled when
 handling relatively short and entropic state, such as pseudorandom
 session identifiers. Instead, large and quite regular state blobs
 could get a significant boost when compressed.

3.2.4. Cookie Encoding

 SCS cookie values MUST be encoded using the alphabet that is URL and
 filename safe (i.e., base64url) defined in Section 5 of Base64
 [RFC4648]. This encoding is very widespread, falls smoothly into the
 encoding rules defined in Section 4.1.1 of [RFC6265], and can be
 safely used to supply SCS-based authorization tokens within a URI
 (e.g., in a query string or straight into a path segment).

3.2.5. Outbound Transform

 The output data transformation, as seen by the server (the only actor
 that explicitly manipulates SCS cookies), is illustrated by the
 pseudocode in Figure 2.

Barbato, et al. Informational [Page 9]

RFC 6896 SCS March 2013

 1. IV := RAND()
 2. ATIME := NOW
 3. DATA := Enc(Comp(plain-text-cookie-value), IV)
 4. AUTHTAG := HMAC(Box(e(DATA), e(ATIME), e(TID), e(IV)))

 Figure 2

 A new Initialization Vector is randomly picked (step 1). As
 previously mentioned (Section 3.1.4), this step is necessary to avoid
 providing correlation information to an attacker.

 A new ATIME value is taken as the current timestamp according to the
 server clock (step 2).

 Since the only user of the ATIME field is the server, it is
 unnecessary for it to be synchronized with the client -- though it
 needs to use a fairly stable clock. However, if multiple servers are
 active in a load-balancing configuration, clocks SHOULD be
 synchronized to avoid errors in the calculation of session expiry.

 The plaintext cookie value is then compressed (if needed) and
 encrypted by using the key-set identified by TID (step 3).

 If the length of (compressed) state is not a multiple of the block
 size, its value MUST be filled with as many padding bytes of equal
 value as the pad length -- as defined by the scheme given in Section
 6.3 of [RFC5652].

 Then, the authentication tag, which encompasses each SCS field (along
 with lengths and relative positions), is computed by HMAC’ing the
 "|"-separated concatenation of their base64url representations using
 the key-set identified by TID (step 4).

 Finally, the SCS-cookie-value is created as follows:

 scs-cookie-value = Box(e(DATA), e(ATIME), e(TID), e(IV),
 e(AUTHTAG))

3.2.6. Inbound Transform

 The inbound transformation is described in Figure 3. Each of the
 ’e’-prefixed names shown has to be interpreted as the
 base64url-encoded value of the corresponding SCS field.

Barbato, et al. Informational [Page 10]

RFC 6896 SCS March 2013

 0. If (split_fields(scs-cookie-value) == ok)
 1. tid’ := d(eTID)
 2. If (tid’ is available)
 3. tag’ := d(eAUTHTAG)
 4. tag := HMAC(Box(eDATA, eATIME, eTID, eIV))
 5. If (tag = tag’)
 6. atime’ := d(eATIME)
 7. If (NOW - atime’ <= session_max_age)
 8. iv’ := d(eIV)
 data’ := d(eDATA)
 9. state := Uncomp(Dec(data’, iv’))
 10. Else discard PDU
 11. Else discard PDU
 12. Else discard PDU
 13. Else discard PDU

 Figure 3

 First, the inbound scs-cookie-value is broken into its component
 fields, which MUST be exactly 5, and each at least the minimum length
 specified in Figure 3 (step 0). In case any of these preliminary
 checks fails, the PDU is discarded (step 13); else, TID is decoded to
 allow key-set lookup (step 1).

 If the cryptographic credentials (encryption and authentication
 algorithms and keys identified by TID) are unavailable (step 12), the
 inbound SCS cookie is discarded since its value has no chance to be
 interpreted correctly. This may happen for several reasons: e.g., if
 a device without storage has been reset and loses the credentials
 stored in RAM, if a server pool node desynchronizes, or in case of a
 key compromise that forces the invalidation of all current TIDs, etc.

 When a valid key-set is found (step 2), the AUTHTAG field is decoded
 (step 3) and the (still) encoded DATA, ATIME, TID, and IV fields are
 supplied to the primitive that computes the authentication tag (step
 4).

 If the tag computed using the local key-set matches the one carried
 by the supplied SCS cookie, we can be confident that the cookie
 carries authentic material; otherwise, the SCS cookie is discarded
 (step 11).

 Then the age of the SCS cookie (as deduced by ATIME field value and
 current time provided by the server clock) is decoded and compared to
 the maximum time-to-live (TTL) defined by the session_max_age
 parameter.

Barbato, et al. Informational [Page 11]

RFC 6896 SCS March 2013

 If the "age" check passes, the DATA and IV fields are finally decoded
 (step 8), so that the original plaintext data can be extracted from
 the encrypted, and optionally compressed, blob (step 9).

 Note that steps 5 and 7 allow any altered packets or expired sessions
 to be discarded, hence avoiding unnecessary state decryption and
 decompression.

3.3. PDU Exchange

 SCS can be modeled in the same manner as a typical store-and-forward
 protocol in which the endpoints are S, consisting of one or more HTTP
 servers and the client C, an intermediate node used to "temporarily"
 store the data to be successively forwarded to S.

 In brief, S and C exchange an immutable cookie data block
 (Section 3.1): the state is stored on the client at the first hop and
 then restored on the server at the second, as in Figure 4.

 1. dump-state:
 S --> C
 Set-Cookie: ANY_COOKIE_NAME=KrdPagFes_5ma-ZUluMsww|MTM0...
 Expires=...; Path=...; Domain=...;

 2. restore-state:
 C --> S
 Cookie: ANY_COOKIE_NAME=KrdPagFes_5ma-ZUluMsww|MTM0...

 Figure 4

3.3.1. Cookie Attributes

 In the following subsections, a series of recommendations is provided
 in order to maximize SCS PDU fitness in the generic cookie ecosystem.

3.3.1.1. Expires

 If an SCS cookie includes an Expires attribute, then the attribute
 MUST be set to a value consistent with session_max_age.

 For maximum compatibility with existing user agents, the timestamp
 value MUST be encoded in rfc1123-date format, which requires a
 4-digit year.

3.3.1.2. Max-Age

 Since not all User Agents (UAs) support this attribute, it MUST NOT
 be present in any SCS cookie.

Barbato, et al. Informational [Page 12]

RFC 6896 SCS March 2013

3.3.1.3. Domain

 SCS cookies MUST include a Domain attribute compatible with
 application usage.

 A trailing ’.’ MUST NOT be present in order to minimize the
 possibility of a user agent ignoring the attribute value.

3.3.1.4. Secure

 This attribute MUST always be asserted when SCS sessions are carried
 over a Transport Layer Security (TLS) channel.

3.3.1.5. HttpOnly

 This attribute SHOULD always be asserted.

4. Key Management and Session State

 This specification provides some common recommendations and practices
 relevant to cryptographic key management.

 In the following, the term ’key’ references both encryption and HMAC
 keys.

 o The key SHOULD be generated securely following the randomness
 recommendations in [RFC4086];

 o the key SHOULD only be used to generate and verify SCS PDUs;

 o the key SHOULD be replaced regularly as well as any time the
 format of SCS PDUs or cryptographic algorithms changes.

 Furthermore, to preserve the validity of active HTTP sessions upon
 renewal of cryptographic credentials (whenever the value of TID
 changes), an SCS server MUST be capable of managing at least two
 transforms contemporarily: the currently instantiated one and its
 predecessor.

 Each transform set SHOULD be associated with an attribute pair,
 "refresh" and "expiry", which is used to identify the exposure limits
 (in terms of time or quantity of encrypted and/or authenticated
 bytes, etc.) of related cryptographic material.

Barbato, et al. Informational [Page 13]

RFC 6896 SCS March 2013

 In particular, the "refresh" attribute specifies the time limit for
 substitution of transform set T with new material T’. From that
 moment onwards, and for an amount of time determined by "expiry", all
 new sessions will be created using T’, while the active T-protected
 ones go through a translation phase in which:

 o the inbound transformation authenticates and decrypts/decompresses
 using T (identified by TID);

 o the outbound transformation encrypts/compresses and authenticates
 using T’.

 T’ {not valid yet} |---------------------|----------------
 | translation stage |
 T ----------------|---------------------| {no longer valid}
 refresh refresh + expiry

 Figure 5

 As shown in Figure 5, the duration of the HTTP session MUST fit
 within the lifetime of a given transform set (i.e., from creation
 time until "refresh" + "expiry").

 In practice, this should not be an obstacle because the longevity of
 the two entities (HTTP session and SCS transform set) should differ
 by one or two orders of magnitude.

 An SCS server may take this into account by determining the duration
 of a session adaptively according to the expected deletion time of
 the active T, or by setting the "expiry" value to at least the
 maximum lifetime allowed by an HTTP session.

 Since there is also only one refresh attribute in situations with
 more than one key (e.g., one for encryption and one for
 authentication) within the same T, the smallest value is chosen.

 It is critical for the correctness of the protocol that in case
 multiple equivalent SCS servers are used in a pool, all of them share
 the same view of time (see also Section 3.2.5) and keying material.

 As far as the latter is concerned, SCS does not mandate the use of
 any specific key-sharing mechanism, and will keep working correctly
 as long as the said mechanism is able to provide a single, coherent
 view of the keys shared by pool members -- while conforming to the
 recommendations given in this section.

Barbato, et al. Informational [Page 14]

RFC 6896 SCS March 2013

5. Cookie Size Considerations

 In general, SCS cookies are bigger than their plaintext counterparts.
 This is due to the following reasons:

 o inflation of the Base64 encoding of state data (approximately 1.4
 times the original size, including the encryption padding);

 o the fixed size increment (approximately 80/90 bytes) caused by SCS
 fields and framing overhead.

 While the former is a price the user must always pay proportionally
 to the original data size, the latter is a fixed quantum, which can
 be huge on small amounts of data but is quickly absorbed as soon as
 data becomes big enough.

 The following table compares byte lengths of SCS cookies (with a
 four-byte TID) and corresponding plaintext cookies in a worst-case
 scenario, i.e., when no compression is in use (or applicable).

 plain | SCS
 -------+-------
 11 | 128
 102 | 256
 285 | 512
 651 | 1024
 1382 | 2048
 2842 | 4096

 The largest uncompressed cookie value that can be safely supplied to
 SCS is about 2.8 KB.

6. Acknowledgements

 We would like to thank Jim Schaad, David Wagner, Lorenzo Cavallaro,
 Willy Tarreau, Tobias Gondrom, John Michener, Sean Turner, Barry
 Leiba, Robert Sparks, Stephen Farrell, Stewart Bryant, and Nevil
 Brownlee for their valuable feedback on this document.

7. Security Considerations

7.1. Security of the Cryptographic Protocol

 From a cryptographic architecture perspective, the described
 mechanism can be easily traced to an "encode then encrypt-then-MAC"
 scheme (Encode-then-EtM) as described in [Kohno].

Barbato, et al. Informational [Page 15]

RFC 6896 SCS March 2013

 Given a "provably-secure" encryption scheme and MAC (as for the
 algorithms mandated in Section 3.2.2), the authors of [Kohno]
 demonstrate that their composition results in a secure authenticated
 encryption scheme.

7.2. Impact of the SCS Cookie Model

 The fact that the server does not own the cookie it produces, gives
 rise to a series of consequences that must be clearly understood when
 one envisages the use of SCS as a cookie provider and validator for
 his/her application.

 In the following subsections, a set of different attack scenarios
 (together with corresponding countermeasures where applicable) are
 identified and analyzed.

7.2.1. Old Cookie Replay

 SCS doesn’t address replay of old cookie values.

 In fact, there is nothing that assures an SCS application about the
 client having returned the most recent version of the cookie.

 As with "server-side" sessions, if an attacker gains possession of a
 given user’s cookies -- via simple passive interception or another
 technique -- he/she will always be able to restore the state of an
 intercepted session by representing the captured data to the server.

 The ATIME value, along with the session_max_age configuration
 parameter, allows SCS to mitigate the chances of an attack (by
 forcing a time window outside of which a given cookie is no longer
 valid) but cannot exclude it completely.

 A countermeasure against the "passive interception and replay"
 scenario can be applied at transport/network level using the anti-
 replay services provided by e.g., Secure Socket Layer/Transport Layer
 Security (SSL/TLS) [RFC5246] or IPsec [RFC4301].

 A native solution is not in scope with the security properties
 inherent to an SCS cookie. Hence, an application wishing to be
 replay-resistant must put in place some ad hoc mechanism to prevent
 clients (both rogue and legitimate) from (a) being able to replay old
 cookies as valid credentials and/or (b) getting any advantage by
 replaying them.

Barbato, et al. Informational [Page 16]

RFC 6896 SCS March 2013

 The following illustrate some typical use cases:

 o Session inactivity timeout scenario (implicit invalidation): use
 the session_max_age parameter if a global setting is viable, else
 place an explicit TTL in the cookie (e.g.,
 validity_period="start_time, duration") that can be verified by
 the application each time the client presents the SCS cookie.

 o Session voidance scenario (explicit invalidation): put a randomly
 chosen string into each SCS cookie (cid="$(random())") and keep a
 list of valid session cids against which the SCS cookie presented
 by the client can be checked. When a cookie needs to be
 invalidated, delete the corresponding cid from the list. The
 described method has the drawback that, in case a non-permanent
 storage is used to archive valid cids, a reboot/restart would
 invalidate all sessions (it can’t be used when |S| > 1).

 o One-shot transaction scenario (ephemeral): this is a variation on
 the previous theme when sessions are consumed within a single
 request/response. Put a nonce="$(random())" within the state
 information and keep a list of not-yet-consumed nonces in RAM.
 Once the client presents its cookie credential, the embodied nonce
 is deleted from the list and will be therefore discarded whenever
 replayed.

 o TLS binding scenario: the server application must run on TLS, be
 able to extract information related to the current TLS session,
 and store it in the DATA field of the SCS cookie itself [RFC5056].
 The establishment of this secure channel binding prevents any
 third party from reusing the SCS cookie, and drops its value
 altogether after the TLS session is terminated -- regardless of
 the lifetime of the cookie. This approach suffers a scalability
 problem in that it requires each SCS session to be handled by the
 same client-server pair. However, it provides a robust model and
 an affordable compromise when security of the session is
 exceptionally valuable (e.g., a user interacting with his/her
 online banking site).

 It is worth noting that in all but the latter scenario, if an
 attacker is able to use the cookie before the legitimate client gets
 a chance to, then the impersonation attack will always succeed.

7.2.2. Cookie Deletion

 A direct and important consequence of the missing owner role in SCS
 is that a client could intentionally delete its cookie and return
 nothing.

Barbato, et al. Informational [Page 17]

RFC 6896 SCS March 2013

 The application protocol has to be designed so there is no incentive
 to do so, for instance:

 o it is safe for the cookie to represent some kind of positive
 capability -- the possession of which increases the client’s
 powers;

 o it is not safe to use the cookie to represent negative
 capabilities -- where possession reduces the client’s powers -- or
 for revocation.

 Note that this behavior is not equivalent to cookie removal in the
 "server-side" cookie model, because in case of missing cookie backup
 by other parties (e.g., the application using SCS), the client could
 simply make it disappear once and for all.

7.2.3. Cookie Sharing or Theft

 Just like with plain cookies, SCS doesn’t prevent sharing (both
 voluntary and illegitimate) of cookies between multiple clients.

 In the context of voluntary cookie sharing, using HTTPS only as a
 separate secure transport provider is useless: in fact, client
 certificates are just as shareable as cookies. Instead, using some
 form of secure channel binding (as illustrated in Section 7.2.1) may
 cancel this risk.

 The risk of theft could be mitigated by securing the wire (e.g., via
 HTTPS, IPsec, VPN, etc.), thus reducing the opportunity of cookie
 stealing to a successful attack on the protocol endpoints.

 In order to reduce the attack window on stolen cookies, an
 application may choose to generate cookies whose lifetime is upper
 bounded by the browsing session lifetime (i.e., by not attaching an
 Expires attribute to them.)

7.2.4. Session Fixation

 Session fixation vulnerabilities [Kolsec] are not addressed by SCS.

 A more sophisticated protocol involving active participation of the
 UA in the SCS cookie manipulation process would be needed: e.g., some
 form of challenge/response exchange initiated by the server in the
 HTTP response and replied to by the UA in the next chained HTTP
 request.

Barbato, et al. Informational [Page 18]

RFC 6896 SCS March 2013

 Unfortunately, the present specification, which is based on
 [RFC6265], sees the UA as a completely passive actor whose role is to
 blindly paste the cookie value set by the server.

 Nevertheless, the SCS cookies wrapping mechanism may be used in the
 future as a building block for a more robust HTTP state management
 protocol.

7.3. Advantages of SCS over Server-Side Sessions

 Note that all the above-mentioned vulnerabilities also apply to plain
 cookies, making SCS at least as secure, but there are a few good
 reasons to consider its security level enhanced.

 First of all, the confidentiality and authentication features
 provided by SCS protect the cookie value, which is normally plaintext
 and tamperable.

 Furthermore, neither of the common vulnerabilities of server-side
 sessions (session identifier (SID) prediction and SID brute-forcing)
 can be exploited when using SCS, unless the attacker possesses
 encryption and HMAC keys (both current ones and those relating to the
 previous set of credentials).

 More in general, no slicing nor altering operations can be done over
 an SCS PDU without controlling the cryptographic key-set.

Barbato, et al. Informational [Page 19]

RFC 6896 SCS March 2013

8. References

8.1. Normative References

 [NIST-AES] National Institute of Standards and Technology, "Advanced
 Encryption Standard (AES)", FIPS PUB 197, November 2001,
 <http://csrc.nist.gov/publications/fips/fips197/
 fips-197.pdf>.

 [RFC1951] Deutsch, P., "DEFLATE Compressed Data Format
 Specification version 1.3", RFC 1951, May 1996.

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 February 1997.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC4086] Eastlake, D., Schiller, J., and S. Crocker, "Randomness
 Requirements for Security", BCP 106, RFC 4086, June 2005.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, October 2006.

 [RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)",
 STD 70, RFC 5652, September 2009.

 [RFC6194] Polk, T., Chen, L., Turner, S., and P. Hoffman, "Security
 Considerations for the SHA-0 and SHA-1 Message-Digest
 Algorithms", RFC 6194, March 2011.

 [RFC6265] Barth, A., "HTTP State Management Mechanism", RFC 6265,
 April 2011.

8.2. Informative References

 [Bellare] Bellare, M., "New Proofs for NMAC and HMAC: Security
 Without Collision-Resistance", 2006.

 [CLIQUES] Steiner, M., Tsudik, G., and M. Waidner, "Cliques: A New
 Approach to Group Key Agreement", 1996.

Barbato, et al. Informational [Page 20]

RFC 6896 SCS March 2013

 [Kohno] Kohno, T., Palacio, A., and J. Black, "Building Secure
 Cryptographic Transforms, or How to Encrypt and MAC",
 2003.

 [Kolsec] Kolsec, M., "Session Fixation Vulnerability in Web-based
 Applications", 2002.

 [RFC3740] Hardjono, T. and B. Weis, "The Multicast Group Security
 Architecture", RFC 3740, March 2004.

 [RFC4301] Kent, S. and K. Seo, "Security Architecture for the
 Internet Protocol", RFC 4301, December 2005.

 [RFC5056] Williams, N., "On the Use of Channel Bindings to Secure
 Channels", RFC 5056, November 2007.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [Steiner] Steiner, M., Tsudik, G., and M. Waidner, "Diffie-Hellman
 Key Distribution Extended to Group Communication", 1996.

Barbato, et al. Informational [Page 21]

RFC 6896 SCS March 2013

Appendix A. Examples

 The examples in this section have been created using the ’scs’ test
 tool bundled with LibSCS, a free and opensource reference
 implementation of the SCS protocol that can be found at
 (http://github.com/koanlogic/libscs).

A.1. No Compression

 The following parameters:

 o Plaintext cookie: "a state string"

 o AES-CBC-128 key: "123456789abcdef"

 o HMAC-SHA1 key: "12345678901234567890"

 o TID: "tid"

 o ATIME: 1347265955

 o IV:
 \xb4\xbd\xe5\x24\xf7\xf6\x9d\x44\x85\x30\xde\x9d\xb5\x55\xc9\x4f

 produce the following tokens:

 o DATA: DqfW4SFqcjBXqSTvF2qnRA

 o ATIME: MTM0NzI2NTk1NQ

 o TID: OHU7M1cqdDQt

 o IV: tL3lJPf2nUSFMN6dtVXJTw

 o AUTHTAG: AznYHKga9mLL8ioi3If_1iy2KSA

A.2. Use Compression

 The same parameters as above, except ATIME and IV:

 o Plaintext cookie: "a state string"

 o AES-CBC-128 key: "123456789abcdef"

 o HMAC-SHA1 key: "12345678901234567890"

 o TID: "tid"

Barbato, et al. Informational [Page 22]

RFC 6896 SCS March 2013

 o ATIME: 1347281709

 o IV:
 \x1d\xa7\x6f\xa0\xff\x11\xd7\x95\xe3\x4b\xfb\xa9\xff\x65\xf9\xc7

 produce the following tokens:

 o DATA: PbE-ypmQ43M8LzKZ6fMwFg-COrLP2l-Bvgs

 o ATIME: MTM0NzI4MTcwOQ

 o TID: akxIKmhbMTE8

 o IV: HadvoP8R15XjS_up_2X5xw

 o AUTHTAG: A6qevPr-ugHQChlr_EiKYWPvpB0

 In both cases, the resulting SCS cookie is obtained via ordered
 concatenation of the produced tokens, as described in Section 3.1.

Authors’ Addresses

 Stefano Barbato
 KoanLogic
 Via Marmolada, 4
 Vitorchiano (VT), 01030
 Italy

 EMail: tat@koanlogic.com

 Steven Dorigotti
 KoanLogic
 Via Maso della Pieve 25/C
 Bolzano, 39100
 Italy

 EMail: stewy@koanlogic.com

 Thomas Fossati (editor)
 KoanLogic
 Via di Sabbiuno 11/5
 Bologna, 40136
 Italy

 EMail: tho@koanlogic.com

Barbato, et al. Informational [Page 23]

