I nt ernet Engi neering Task Force (I ETF) R Fielding, Ed.

Request for Comments: 7234 Adobe
bsol etes: 2616 M Nottingham Ed.
Cat egory: Standards Track Akanai
| SSN: 2070-1721 J. Reschke, Ed.
greenbyt es
June 2014

Hypertext Transfer Protocol (HTTP/1.1): Caching
Abst r act

The Hypertext Transfer Protocol (HTTP) is a stateless application-

| evel protocol for distributed, collaborative, hypertext information
systens. This docunent defines HITP caches and the associ ated header
fields that control cache behavior or indicate cacheabl e response
nessages.

Status of This Meno
This is an Internet Standards Track docunent.

This docunent is a product of the Internet Engi neering Task Force
(IETF). It represents the consensus of the |IETF comunity. It has
recei ved public review and has been approved for publication by the
Internet Engineering Steering Group (IESG. Further information on
Internet Standards is available in Section 2 of RFC 5741.

I nformation about the current status of this docunent, any errata,

and how to provide feedback on it nay be obtained at
http://ww. rfc-editor.org/info/rfc7234.

Fielding, et al. St andards Track [Page 1]

RFC 7234 HTTP/ 1.1 Cachi ng June 2014

Copyright Notice

Copyright (c) 2014 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunent is subject to BCP 78 and the I ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this document. Code Conponents extracted fromthis docunment nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided wi thout warranty as
described in the Sinplified BSD License.

Thi s docunent may contain material from|ETF Docunents or |ETF
Contributions published or made publicly avail abl e before Novenber
10, 2008. The person(s) controlling the copyright in sonme of this
material may not have granted the I ETF Trust the right to all ow

nodi fications of such material outside the | ETF Standards Process.
Wt hout obtaining an adequate |icense fromthe person(s) controlling
the copyright in such materials, this docunent may not be nodified
out side the | ETF Standards Process, and derivative works of it may
not be created outside the | ETF Standards Process, except to fornmat
it for publication as an RFC or to translate it into |anguages other
t han Engli sh.

Tabl e of Contents

1. Introducti ON ... 4
1.1. Conformance and Error Handling 4
1.2, Syntax Notation 4

1.2.1. Delta Seconds i 5

2. Overview of Cache Qperation i, 5

3. Storing Responses in Caches i, 6
3.1. Storing Inconplete RESPONSESttt 7
3.2. Storing Responses to Authenticated Requests 7
3.3. Conmbining Partial Content 0. . 8

4. Constructing Responses fromCaches 8
4.1. Calculating Secondary Keys with Vary 9
4.2, Freshness 11

4.2.1. Calculating Freshness Lifetinme 12
4.2.2. Calculating Heuristic Freshness 13
4.2.3. Calculating Age 13
4.2.4. Serving Stale Responses 15
4.3, Validation 16
4.3.1. Sending a Validation Request 16
4.3.2. Handling a Received Validation Request 16

Fielding, et al. St andards Track [Page 2]

RFC 7234 HTTP/ 1.1 Cachi ng June 2014
4.3.3. Handling a Validation Response 18

4.3.4. Freshening Stored Responses upon Validation 18

4.3.5. Freshening Responses via HEAD 19

4.4, Invalidation 20

5. Header Field Definitions 21
D L. A . 21
5.2. Cache-Control 21
5.2.1. Request Cache-Control Directives 22

5.2.2. Response Cache-Control Directives 24

5.2.3. Cache Control Extensions 0.0 ... 27

B 3. EXPI TS o 28

D 4, PragmB ... 29

B G, VNI NG . 29
5.5.1. Warning: 110 - "Response is Stale" 31

5.5.2. Warning: 111 - "Revalidation Failed" 31

5.5.3. Warning: 112 - "Disconnected Operation" 31

5.5.4. Warning: 113 - "Heuristic Expiration” 31

5.5.5. Warning: 199 - "M scellaneous Warning" 32

5.5.6. Warning: 214 - "Transformation Applied" 32

5.5.7. Warning: 299 - "M scell aneous Persistent Warning" ..32

6. History LiSts ... 32
7. TANA Considerati ONS e 32
7.1. Cache Directive RegiStry 32
7.1.1. Proceduret 32

7.1.2. Considerations for New Cache Control Directives33

7.1.3. Registrati ons 33

7.2. Warn Code Regi Sty 34
7.2.1. Procedure 34

7.2.2. RegistratiOns e 34

7.3. Header Field Registration 34

8. Security Considerati oOnst e 35
9. ACKNOW edgImENt So 36
10. References 36
10.1. Normative References i, 36
10. 2. Informative References i, 37
Appendi x A. Changes fromRFC 2616y 38
Appendi x B. Inmported ABNF e 39
Appendi x C. Collected ABNF e 39
I NdEX o 41
Fielding, et al. St andards Track [Page 3]

RFC 7234 HTTP/ 1.1 Cachi ng June 2014

1

1

1

I ntroduction

HTTP is typically used for distributed information systens, where
performance can be inproved by the use of response caches. This
docunent defines aspects of HITP/1.1 related to caching and reusing
response nessages.

An HTTP cache is a local store of response nessages and the subsystem
that controls storage, retrieval, and deletion of nmessages init. A
cache stores cacheabl e responses in order to reduce the response tine
and network bandw dth consunption on future, equival ent requests.

Any client or server MAY enploy a cache, though a cache cannot be
used by a server that is acting as a tunnel

A shared cache is a cache that stores responses to be reused by nore
than one user; shared caches are usually (but not always) deployed as
a part of an intermediary. A private cache, in contrast, is
dedicated to a single user; often, they are deployed as a conponent
of a user agent.

The goal of caching in HTTP/1.1 is to significantly inprove
performance by reusing a prior response nessage to satisfy a current
request. A stored response is considered "fresh", as defined in
Section 4.2, if the response can be reused without "validation"
(checking with the origin server to see if the cached response
remains valid for this request). A fresh response can therefore
reduce both | atency and network overhead each tinme it is reused.

When a cached response is not fresh, it might still be reusable if it
can be freshened by validation (Section 4.3) or if the originis
unavail abl e (Section 4.2.4).

1. Conformance and Error Handling

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "COPTIONAL" in this
docunent are to be interpreted as described in [RFC2119].

Conformance criteria and considerations regarding error handling are
defined in Section 2.5 of [RFC7230].

2. Syntax Notation

This specification uses the Augnented Backus- Naur Form (ABNF)
notation of [RFC5234] with a list extension, defined in Section 7 of
[RFC7230], that allows for conpact definition of conma-separated
lists using a '# operator (simlar to howthe '*' operator indicates

Fielding, et al. St andards Track [Page 4]

RFC 7234 HTTP/ 1.1 Cachi ng June 2014

repetition). Appendix B describes rules inported from ot her
docunents. Appendi x C shows the collected granmar with all 1ist
operators expanded to standard ABNF notation

1.2.1. Del ta Seconds

The delta-seconds rul e specifies a non-negative integer, representing
time in seconds.

delta-seconds = 1*DIGA T

A recipient parsing a delta-seconds value and converting it to binary
formought to use an arithnetic type of at least 31 bits of
non-negative integer range. |f a cache receives a delta-seconds

val ue greater than the greatest integer it can represent, or if any
of its subsequent cal cul ati ons overfl ows, the cache MJST consider the
value to be either 2147483648 (2"31) or the greatest positive integer
it can conveniently represent.

Not e: The val ue 2147483648 is here for historical reasons,
effectively represents infinity (over 68 years), and does not need
to be stored in binary form an inplenentation could produce it as
a canned string if any overflow occurs, even if the cal cul ations
are performed with an arithnetic type incapable of directly
representing that nunber. What nmatters here is that an overfl ow
be detected and not treated as a negative value in |ater

cal cul ati ons

2. Overview of Cache Operation

Proper cache operation preserves the senmantics of HITP transfers
([RFC7231]) while elinmnating the transfer of information already
held in the cache. Al though caching is an entirely OPTI ONAL feature
of HTTP, it can be assumed that reusing a cached response is
desirable and that such reuse is the default behavi or when no

requi renent or local configuration prevents it. Therefore, HITP
cache requirenents are focused on preventing a cache from either
storing a non-reusabl e response or reusing a stored response

i nappropriately, rather than mandating that caches al ways store and
reuse particul ar responses.

Each cache entry consists of a cache key and one or nore HITP
responses corresponding to prior requests that used the same key.

The nmost common form of cache entry is a successful result of a
retrieval request: i.e., a 200 (OK) response to a GET request, which
contains a representation of the resource identified by the request
target (Section 4.3.1 of [RFC7231]). However, it is also possible to
cache pernmanent redirects, negative results (e.g., 404 (Not Found)),

Fielding, et al. St andards Track [Page 5]

RFC 7234 HTTP/ 1.1 Cachi ng June 2014

inconplete results (e.g., 206 (Partial Content)), and responses to
nmet hods other than GET if the method’ s definition allows such caching
and defines sonething suitable for use as a cache key.
The primary cache key consists of the request method and target URI
However, since HTTP caches in common use today are typically linited
to caching responses to GET, nany caches sinply decline other nethods
and use only the URI as the prinmary cache key.
If a request target is subject to content negotiation, its cache
entry mght consist of multiple stored responses, each differentiated
by a secondary key for the values of the original request’s selecting
header fields (Section 4.1).

3. Storing Responses in Caches
A cache MJUST NOT store a response to any request, unless:

0 The request nmethod is understood by the cache and defined as being
cacheabl e, and

0 the response status code is understood by the cache, and

0 the "no-store" cache directive (see Section 5.2) does not appear
in request or response header fields, and

o the "private" response directive (see Section 5.2.2.6) does not
appear in the response, if the cache is shared, and

o the Authorization header field (see Section 4.2 of [RFC7235]) does
not appear in the request, if the cache is shared, unless the
response explicitly allows it (see Section 3.2), and

0o the response either:

* contains an Expires header field (see Section 5.3), or

* contains a nax-age response directive (see Section 5.2.2.8), or

* contains a s-nmaxage response directive (see Section 5.2.2.9)
and the cache is shared, or

* contains a Cache Control Extension (see Section 5.2.3) that
allows it to be cached, or

* has a status code that is defined as cacheabl e by default (see
Section 4.2.2), or

Fielding, et al. St andards Track [Page 6]

RFC 7234 HTTP/ 1.1 Cachi ng June 2014

* contains a public response directive (see Section 5.2.2.5).

Note that any of the requirenents |isted above can be overridden by a
cache-control extension; see Section 5.2.3.

In this context, a cache has "understood" a request nethod or a
response status code if it recognizes it and inplenents all specified
cachi ng-rel at ed behavi or.

Note that, in normal operation, sone caches will not store a response
that has neither a cache validator nor an explicit expiration tine,
as such responses are not usually useful to store. However, caches
are not prohibited fromstoring such responses.

3.1. Storing Inconpl ete Responses

A response nessage is considered conplete when all of the octets

i ndi cated by the nessage fram ng ([RFC7230]) are received prior to
the connection being closed. |If the request nethod is GET, the
response status code is 200 (OK), and the entire response header
section has been received, a cache MAY store an inconplete response
message body if the cache entry is recorded as inconplete. Likew se,
a 206 (Partial Content) response MAY be stored as if it were an

i nconplete 200 (OK) cache entry. However, a cache MJUST NOT store

i nconpl ete or partial-content responses if it does not support the
Range and Content-Range header fields or if it does not understand
the range units used in those fields.

A cache MAY conplete a stored inconplete response by making a
subsequent range request ([RFC7233]) and conbi ning the successfu
response with the stored entry, as defined in Section 3.3. A cache
MUST NOT use an inconplete response to answer requests unless the
response has been nade conplete or the request is partial and
specifies a range that is wholly within the inconplete response. A
cache MUST NOT send a partial response to a client without explicitly
marking it as such using the 206 (Partial Content) status code.

3.2. Storing Responses to Authenticated Requests

A shared cache MJUST NOT use a cached response to a request with an
Aut hori zation header field (Section 4.2 of [RFC7/235]) to satisfy any
subsequent request unless a cache directive that allows such
responses to be stored is present in the response.

In this specification, the follow ng Cache-Control response

directives (Section 5.2.2) have such an effect: nust-revalidate,
public, and s-nmaxage.

Fielding, et al. St andards Track [Page 7]

RFC 7234 HTTP/ 1.1 Cachi ng June 2014

Not e that cached responses that contain the "nust-revalidate" and/or
"s-maxage" response directives are not allowed to be served stale
(Section 4.2.4) by shared caches. |In particular, a response with

ei ther "max-age=0, nust-revalidate" or "s-maxage=0" cannot be used to
satisfy a subsequent request without revalidating it on the origin
server.

3.3. Conbining Partial Content

A response mght transfer only a partial representation if the
connection closed prematurely or if the request used one or nore
Range specifiers ([RFC7233]). After several such transfers, a cache
m ght have received several ranges of the sane representation. A
cache MAY conbine these ranges into a single stored response, and
reuse that response to satisfy later requests, if they all share the
same strong validator and the cache conplies with the client
requirenents in Section 4.3 of [RFC7233].

When conbi ning the new response with one or nore stored responses, a
cache MJST:

0 delete any Warning header fields in the stored response wth
war n- code 1xx (see Section 5.5);

0 retain any Warning header fields in the stored response wth
war n- code 2xx; and,

0 use other header fields provided in the new response, aside from
Content - Range, to replace all instances of the corresponding
header fields in the stored response.

4. Constructing Responses from Caches

When presented with a request, a cache MJST NOT reuse a stored
response, unl ess:

0 The presented effective request URI (Section 5.5 of [RFC7230]) and
that of the stored response nmatch, and

o the request nmethod associated with the stored response allows it
to be used for the presented request, and

0 selecting header fields nom nated by the stored response (if any)
mat ch those presented (see Section 4.1), and

Fielding, et al. St andards Track [Page 8]

RFC 7234 HTTP/ 1.1 Cachi ng June 2014

o the presented request does not contain the no-cache pragna
(Section 5.4), nor the no-cache cache directive (Section 5.2.1),
unl ess the stored response is successfully validated
(Section 4.3), and

o the stored response does not contain the no-cache cache directive
(Section 5.2.2.2), unless it is successfully validated
(Section 4.3), and

0 the stored response is either:
* fresh (see Section 4.2), or
* allowed to be served stale (see Section 4.2.4), or
* successfully validated (see Section 4.3).

Note that any of the requirenents |isted above can be overridden by a
cache-control extension; see Section 5.2.3.

When a stored response is used to satisfy a request without

val i dati on, a cache MJST generate an Age header field (Section 5.1),
repl acing any present in the response with a value equal to the
stored response’s current_age; see Section 4.2.3.

A cache MUST wite through requests with nethods that are unsafe
(Section 4.2.1 of [RFC7231]) to the origin server; i.e., a cache is
not allowed to generate a reply to such a request before having
forwarded the request and having received a correspondi ng response.

Al so, note that unsafe requests night invalidate al ready-stored
responses; see Section 4. 4.

When nore than one suitable response is stored, a cache MJST use the
nost recent response (as determ ned by the Date header field). It
can also forward the request with "Cache-Control: nmax-age=0" or
"Cache-Control: no-cache" to disanbi guate which response to use.

A cache that does not have a clock avail able MJST NOT use stored
responses without revalidating them upon every use.

4.1. Calculating Secondary Keys with Vary
When a cache receives a request that can be satisfied by a stored

response that has a Vary header field (Section 7.1.4 of [RFCr231]),
it MJUST NOT use that response unless all of the selecting header

Fielding, et al. St andards Track [Page 9]

RFC 7234 HTTP/ 1.1 Cachi ng June 2014

fields nom nated by the Vary header field match in both the origina
request (i.e., that associated with the stored response), and the
presented request.

The selecting header fields fromtwo requests are defined to match if
and only if those in the first request can be transfornmed to those in
the second request by applying any of the foll ow ng:

0 adding or renpving whitespace, where allowed in the header field s
synt ax

o conbining nmultiple header fields with the sane field nane (see
Section 3.2 of [RFC7230])

o nornalizing both header field values in a way that is known to
have identical semantics, according to the header field' s
specification (e.g., reordering field val ues when order is not
significant; case-nornalization, where values are defined to be
case-insensitive)

If (after any nornalization that might take place) a header field is
absent froma request, it can only match another request if it is
al so absent there.

A Vary header field-value of "*" always fails to match.

The stored response with matching sel ecting header fields is known as
the sel ected response.

If nultiple selected responses are avail able (potentially including
responses without a Vary header field), the cache will need to choose
one to use. Wien a selecting header field has a known nechani sm for
doing so (e.g., gvalues on Accept and sinilar request header fields),
t hat mechani sm MAY be used to select preferred responses; of the
remai nder, the nost recent response (as determ ned by the Date header
field) is used, as per Section 4.

If no selected response is avail able, the cache cannot satisfy the

presented request. Typically, it is forwarded to the origin server
in a (possibly conditional; see Section 4.3) request.

Fielding, et al. St andards Track [Page 10]

RFC 7234 HTTP/ 1.1 Cachi ng June 2014

4.2. Freshness

A fresh response is one whose age has not yet exceeded its freshness
lifetime. Conversely, a stale response is one where it has.

A response’s freshness lifetine is the length of tinme between its
generation by the origin server and its expiration tine. An explicit
expiration time is the time at which the origin server intends that a
stored response can no |l onger be used by a cache wi thout further

val i dation, whereas a heuristic expiration tine is assigned by a
cache when no explicit expiration time is avail able.

A response’s age is the tinme that has passed since it was generated
by, or successfully validated with, the origin server

When a response is "fresh" in the cache, it can be used to satisfy
subsequent requests w thout contacting the origin server, thereby
i mproving efficiency.

The primary mechani sm for determ ning freshness is for an origin
server to provide an explicit expiration tine in the future, using
either the Expires header field (Section 5.3) or the nax-age response
directive (Section 5.2.2.8). Generally, origin servers will assign
future explicit expiration tines to responses in the belief that the
representation is not likely to change in a semantically significant
way before the expiration tinme is reached.

If an origin server wishes to force a cache to validate every
request, it can assign an explicit expiration tinme in the past to

i ndicate that the response is already stale. Conpliant caches wll
nornmal ly validate a stale cached response before reusing it for
subsequent requests (see Section 4.2.4).

Since origin servers do not always provide explicit expiration tinmnes,
caches are also allowed to use a heuristic to deternmi ne an expiration
time under certain circunstances (see Section 4.2.2).

The calculation to determine if a response is fresh is:

response_is fresh = (freshness_lifetime > current_age)

freshness lifetine is defined in Section 4.2.1; current_age is
defined in Section 4.2.3.

Cients can send the nmax-age or mn-fresh cache directives in a

request to constrain or relax freshness calculations for the
correspondi ng response (Section 5.2.1).

Fielding, et al. St andards Track [Page 11]

RFC 7234 HTTP/ 1.1 Cachi ng June 2014

When cal cul ating freshness, to avoid comon problens in date parsing:

o Although all date formats are specified to be case-sensitive, a
cache recipient SHOULD match day, week, and tine-zone nanes
case-insensitively.

o |If a cache recipient’s internal inplenentation of tinme has |ess
resol ution than the value of an HTTP-date, the recipient MJST
internally represent a parsed Expires date as the nearest tine
equal to or earlier than the received val ue.

0 A cache recipient MJUST NOT allow |l ocal tine zones to influence the
cal cul ation or conparison of an age or expiration tine.

0 A cache recipient SHOULD consider a date with a zone abbrevi ation
other than GMI or UTC to be invalid for calculating expiration

Note that freshness applies only to cache operation; it cannot be
used to force a user agent to refresh its display or reload a
resource. See Section 6 for an explanation of the difference between
caches and history nmechani sns.

4.2.1. Calculating Freshness Lifetine
A cache can calculate the freshness lifetine (denoted as
freshness lifetine) of a response by using the first nmatch of the
fol | owi ng:

o If the cache is shared and the s-nmaxage response directive
(Section 5.2.2.9) is present, use its value, or

o |f the max-age response directive (Section 5.2.2.8) is present,
use its value, or

o If the Expires response header field (Section 5.3) is present, use
its value nminus the value of the Date response header field, or

0 Oherwise, no explicit expiration time is present in the response.
A heuristic freshness lifetinme might be applicable; see
Section 4.2.2.

Note that this calculation is not vulnerable to clock skew, since all
of the information cones fromthe origin server

Fielding, et al. St andards Track [Page 12]

RFC 7234 HTTP/ 1.1 Cachi ng June 2014

4.

4.

2.

2.

When there is nore than one value present for a given directive
(e.g., two Expires header fields, multiple Cache-Control: max-age
directives), the directive's value is considered invalid. Caches are
encouraged to consider responses that have invalid freshness
information to be stale.

2. Calculating Heuristic Freshness

Since origin servers do not always provide explicit expiration tines,
a cache MAY assign a heuristic expiration time when an explicit time
is not specified, enploying algorithns that use other header field
val ues (such as the Last-Mdified tine) to estimate a pl ausi bl e
expiration tinme. This specification does not provide specific

al gorithnms, but does inpose worst-case constraints on their results.

A cache MUST NOT use heuristics to deternine freshness when an
explicit expiration tine is present in the stored response. Because
of the requirenents in Section 3, this neans that, effectively,
heuristics can only be used on responses wi thout explicit freshness
whose status codes are defined as cacheabl e by default (see Section
6.1 of [RFC7231]), and those responses w thout explicit freshness
that have been marked as explicitly cacheable (e.g., with a "public"
response directive).

If the response has a Last-Modified header field (Section 2.2 of

[RFC7232]), caches are encouraged to use a heuristic expiration value
that is no nore than sonme fraction of the interval since that tine

A typical setting of this fraction mght be 10%

Wien a heuristic is used to calculate freshness lifetime, a cache
SHOULD generate a Warning header field with a 113 warn-code (see
Section 5.5.4) in the response if its current_age is nore than 24
hours and such a warning is not already present.

Note: Section 13.9 of [RFC2616] prohibited caches from cal cul ating
heuristic freshness for URIs with query conponents (i.e., those
containing '?'). |In practice, this has not been wi dely

i npl enented. Therefore, origin servers are encouraged to send
explicit directives (e.g., Cache-Control: no-cache) if they w sh
to preclude caching.

3. Calculating Age

The Age header field is used to convey an estimated age of the
response nessage when obtained froma cache. The Age field value is
the cache’s estimate of the nunmber of seconds since the response was
generated or validated by the origin server. 1In essence, the Age

Fielding, et al. St andards Track [Page 13]

RFC 7234 HTTP/ 1.1 Cachi ng June 2014

value is the sumof the time that the response has been resident in

each of the caches along the path fromthe origin server, plus the

amount of time it has been in transit along network paths.

The following data is used for the age cal cul ati on

age_val ue
The term "age_val ue" denotes the value of the Age header field
(Section 5.1), in a formappropriate for arithnetic operation; or
0, if not avail able.

dat e_val ue
The term "date_val ue" denotes the value of the Date header field,
in a formappropriate for arithnmetic operations. See Section
7.1.1.2 of [RFC7231] for the definition of the Date header field,
and for requirenents regarding responses w thout it.

now
The term "now' neans "the current value of the clock at the host
perform ng the cal culation”. A host ought to use NTP ([RFC5905])
or sone simlar protocol to synchronize its clocks to Coordinated
Uni versal Tine.

request _tine

The current value of the clock at the host at the tinme the request
resulting in the stored response was nmade.

response_tinme

The current value of the clock at the host at the tine the
response was received.

A response’s age can be calculated in two entirely independent ways:

1. the "apparent_age": response_tine minus date_value, if the |oca
clock is reasonably well synchronized to the origin server’s

clock. If the result is negative, the result is replaced by
zero.
2. the "corrected age value", if all of the caches along the

response path inplenent HTTP/1.1. A cache MIUST interpret this
value relative to the tine the request was initiated, not the
time that the response was received.

Fielding, et al. St andards Track [Page 14]

RFC 7234 HTTP/ 1.1 Cachi ng June 2014

apparent _age = max(0, response_tine - date_val ue);

response_del ay = response_tine - request_tine;
corrected_age_val ue = age_val ue + response_del ay;

These are conbi ned as
corrected_initial _age = max(apparent _age, corrected_age val ue);

unl ess the cache is confident in the value of the Age header field
(e.g., because there are no HITP/ 1.0 hops in the Via header field),
in which case the corrected _age val ue MAY be used as the
corrected_initial _age.

The current _age of a stored response can then be cal cul ated by addi ng
the amount of tine (in seconds) since the stored response was | ast
validated by the origin server to the corrected_initial_age

resident _tinme = now - response_tine;
current _age = corrected initial _age + resident _tineg;

4.2.4. Serving Stal e Responses

A "stale" response is one that either has explicit expiry infornmation
or is allowed to have heuristic expiry cal culated, but is not fresh
according to the calculations in Section 4. 2.

A cache MUST NOT generate a stale response if it is prohibited by an
explicit in-protocol directive (e.g., by a "no-store" or "no-cache"
cache directive, a "nust-revalidate" cache-response-directive, or an
appl i cabl e "s-nmaxage" or "proxy-revalidate" cache-response-directive;
see Section 5.2.2).

A cache MUST NOT send stal e responses unless it is disconnected
(i.e., it cannot contact the origin server or otherwise find a
forward path) or doing so is explicitly allowed (e.g., by the
max- stal e request directive; see Section 5.2.1).

A cache SHOULD generate a Warning header field with the 110 warn-code
(see Section 5.5.1) in stale responses. Likew se, a cache SHOULD
generate a 112 warn-code (see Section 5.5.3) in stale responses if
the cache is disconnected.

A cache SHOULD NOT generate a new Warni ng header field when
forwardi ng a response that does not have an Age header field, even if
the response is already stale. A cache need not validate a response
that nmerely becane stale in transit.

Fielding, et al. St andards Track [Page 15]

RFC 7234 HTTP/ 1.1 Cachi ng June 2014

4.3. Validation

Wien a cache has one or nore stored responses for a requested UR

but cannot serve any of them (e.g., because they are not fresh, or
one cannot be sel ected; see Section 4.1), it can use the conditiona
request mechani sm [RFC7232] in the forwarded request to give the next
i nbound server an opportunity to select a valid stored response to
use, updating the stored netadata in the process, or to replace the
stored response(s) with a new response. This process is known as
"validating" or "revalidating" the stored response.

4.3.1. Sending a Validation Request

Wien sending a conditional request for cache validation, a cache
sends one or nore precondition header fields containing validator
nmetadata fromits stored response(s), which is then conpared by
recipients to determ ne whether a stored response is equivalent to a
current representation of the resource.

One such validator is the tinmestanp given in a Last-Modified header
field (Section 2.2 of [RFCr232]), which can be used in an

| f-Mdified-Since header field for response validation, or in an

I f-Unnodified-Since or |f-Range header field for representation
selection (i.e., the client is referring specifically to a previously
obt ai ned representation with that tinmestanp).

Anot her validator is the entity-tag given in an ETag header field
(Section 2.3 of [RFC7232]). One or nore entity-tags, indicating one
or nore stored responses, can be used in an |f-None-Mtch header
field for response validation, or in an If-Match or |f-Range header
field for representation selection (i.e., the client is referring
specifically to one or nore previously obtained representations wth
the listed entity-tags).

4.3.2. Handling a Received Validation Request

Each client in the request chain may have its own cache, so it is
common for a cache at an internediary to receive conditional requests
from ot her (outbound) caches. Likew se, some user agents nake use of
conditional requests to linmt data transfers to recently nodified
representations or to conplete the transfer of a partially retrieved
representation.

If a cache receives a request that can be satisfied by reusing one of
its stored 200 (OK) or 206 (Partial Content) responses, the cache
SHOULD eval uate any applicable conditional header field preconditions
received in that request with respect to the correspondi ng validators
contained within the sel ected response. A cache MJUST NOT eval uate

Fielding, et al. St andards Track [Page 16]

RFC 7234 HTTP/ 1.1 Cachi ng June 2014

conditional header fields that are only applicable to an origin
server, found in a request with senmantics that cannot be satisfied
with a cached response, or applied to a target resource for which it
has no stored responses; such preconditions are likely intended for
some ot her (inbound) server.

The proper evaluation of conditional requests by a cache depends on
the received precondition header fields and their precedence, as
defined in Section 6 of [RFC7232]. The If-Match and

I f-Unnodified-Since conditional header fields are not applicable to a
cache.

A request containing an |f-None-Match header field (Section 3.2 of

[RFC7232]) indicates that the client wants to validate one or nore of
its own stored responses in conparison to whichever stored response
is selected by the cache. |If the field-value is "*", or if the
field-value is a list of entity-tags and at |east one of them nmatches
the entity-tag of the selected stored response, a cache recipient
SHOULD generate a 304 (Not Mbdified) response (using the netadata of
the selected stored response) instead of sending that stored
response.

When a cache decides to revalidate its own stored responses for a
request that contains an If-None-Match list of entity-tags, the cache
MAY conbine the received list with a list of entity-tags fromits own
stored set of responses (fresh or stale) and send the union of the
two lists as a replacenent |f-None-Match header field value in the
forwarded request. |If a stored response contains only partia
content, the cache MJUST NOT include its entity-tag in the union

unl ess the request is for a range that would be fully satisfied by
that partial stored response. |f the response to the forwarded
request is 304 (Not Mdified) and has an ETag header field value wth
an entity-tag that is not in the client’s list, the cache MJST
generate a 200 (OK) response for the client by reusing its
correspondi ng stored response, as updated by the 304 response

nmet adata (Section 4.3.4).

If an |If-None-Match header field is not present, a request containing
an | f-Mdified-Since header field (Section 3.3 of [RFC7232])
indicates that the client wants to validate one or nore of its own
stored responses by nodification date. A cache recipient SHOULD
generate a 304 (Not Modified) response (using the netadata of the
sel ected stored response) if one of the followi ng cases is true: 1)
the selected stored response has a Last-Mdified field-value that is
earlier than or equal to the conditional tinestanp; 2) no
Last-Modified field is present in the selected stored response, but
it has a Date field-value that is earlier than or equal to the
conditional tinestanp; or, 3) neither Last-Mdified nor Date is

Fielding, et al. St andards Track [Page 17]

RFC 7234 HTTP/ 1.1 Cachi ng June 2014

present in the selected stored response, but the cache recorded it as
havi ng been received at a tinme earlier than or equal to the
condi tional tinestanp.

A cache that inplenments partial responses to range requests, as
defined in [RFC7233], also needs to evaluate a received |If-Range
header field (Section 3.2 of [RFC7233]) with respect to its selected
stored response.

4.3.3. Handling a Validation Response

Cache handling of a response to a conditional request is dependent
upon its status code:

0o A 304 (Not Mdified) response status code indicates that the
stored response can be updated and reused; see Section 4.3.4.

o Afull response (i.e., one with a payload body) indicates that
none of the stored responses noninated in the conditional request
is suitable. Instead, the cache MJUST use the full response to
satisfy the request and MAY replace the stored response(s).

0 However, if a cache receives a 5xx (Server Error) response while
attenpting to validate a response, it can either forward this
response to the requesting client, or act as if the server failed
to respond. In the latter case, the cache MAY send a previously
stored response (see Section 4.2.4).

4.3.4. Freshening Stored Responses upon Validation

When a cache receives a 304 (Not Modified) response and al ready has
one or nore stored 200 (OK) responses for the sane cache key, the
cache needs to identify which of the stored responses are updated by
this new response and then update the stored response(s) with the new
i nformati on provided in the 304 response.

The stored response to update is identified by using the first match
(if any) of the follow ng:

o |If the new response contains a strong validator (see Section 2.1
of [RFC7232]), then that strong validator identifies the selected
representation for update. Al of the stored responses with the
same strong validator are selected. |f none of the stored
responses contain the same strong validator, then the cache MJST
NOT use the new response to update any stored responses.

Fielding, et al. St andards Track [Page 18]

RFC 7234 HTTP/ 1.1 Cachi ng June 2014

4.

3.

o |If the new response contains a weak validator and that validator
corresponds to one of the cache's stored responses, then the nost
recent of those matching stored responses is selected for update.

o |If the new response does not include any form of validator (such
as in the case where a client generates an |f-Mdified-Since
request froma source other than the Last-Modified response header
field), and there is only one stored response, and that stored
response also lacks a validator, then that stored response is
sel ected for update.

If a stored response is selected for update, the cache MJST:

0 delete any Warning header fields in the stored response wth
war n- code 1xx (see Section 5.5);

0o retain any Warning header fields in the stored response wth
war n- code 2xx; and,

0 use other header fields provided in the 304 (Not Modified)
response to replace all instances of the correspondi ng header
fields in the stored response.

5. Fresheni ng Responses via HEAD

A response to the HEAD nethod is identical to what an equival ent
request made with a GET woul d have been, except it |acks a body.

This property of HEAD responses can be used to invalidate or update a
cached GET response if the nore efficient conditional GET request
mechani smis not avail able (due to no validators being present in the
stored response) or if transm ssion of the representation body is not
desired even if it has changed.

When a cache makes an i nbound HEAD request for a given request target
and receives a 200 (OK) response, the cache SHOULD update or

i nval i date each of its stored GET responses that could have been

sel ected for that request (see Section 4.1).

For each of the stored responses that could have been selected, if
the stored response and HEAD response have matching val ues for any
recei ved validator fields (ETag and Last-Mdified) and, if the HEAD
response has a Content-Length header field, the val ue of
Content-Length matches that of the stored response, the cache SHOULD
update the stored response as descri bed bel ow, otherw se, the cache
SHOULD consi der the stored response to be stale.

Fielding, et al. St andards Track [Page 19]

RFC 7234 HTTP/ 1.1 Cachi ng June 2014

4.4.

Fie

If a cache updates a stored response with the netadata provided in a
HEAD response, the cache MJST

0 delete any Warning header fields in the stored response wth
war n- code 1xx (see Section 5.5);

0 retain any Warning header fields in the stored response wth
war n- code 2xx; and,

0 use other header fields provided in the HEAD response to repl ace
all instances of the correspondi ng header fields in the stored
response and append new header fields to the stored response’s
header section unless otherwi se restricted by the Cache-Contro
header field.

I nval i dati on

Because unsafe request nethods (Section 4.2.1 of [RFC7231]) such as
PUT, POST or DELETE have the potential for changing state on the
origin server, intervening caches can use themto keep their contents
up to date.

A cache MUST invalidate the effective Request URI (Section 5.5 of

[RFC7230]) as well as the URI(s) in the Location and Content-Location
response header fields (if present) when a non-error status code is
received in response to an unsafe request nethod.

However, a cache MJUST NOT invalidate a URI froma Location or
Content-Locati on response header field if the host part of that UR
differs fromthe host part in the effective request URI (Section 5.5
of [RFC7230]). This hel ps prevent denial-of-service attacks.

A cache MUST invalidate the effective request URI (Section 5.5 of
[RFC7230]) when it receives a non-error response to a request with a
met hod whose safety is unknown.

Here, a "non-error response" is one with a 2xx (Successful) or 3xx

(Redirection) status code. "lnvalidate" neans that the cache wll
either renove all stored responses related to the effective request
URI or will mark these as "invalid" and in need of a mandatory

val i dati on before they can be sent in response to a subsequent
request.

Note that this does not guarantee that all appropriate responses are
i nval i dated. For exanple, a state-changing request mnight invalidate
responses in the caches it travels through, but rel evant responses
still mght be stored in other caches that it has not.

I ding, et al. St andards Track [Page 20]

RFC 7234 HTTP/ 1.1 Cachi ng June 2014

5. Header Field Definitions

This section defines the syntax and semantics of HTTP/ 1.1 header
fields related to caching.

5.1. Age

The "Age" header field conveys the sender’s estinmate of the anount of
time since the response was generated or successfully validated at
the origin server. Age values are calculated as specified in
Section 4.2.3.

Age = delta-seconds

The Age field-value is a non-negative integer, representing time in
seconds (see Section 1.2.1).

The presence of an Age header field inplies that the response was not
generated or validated by the origin server for this request.
However, | ack of an Age header field does not inply the origin was
contacted, since the response night have been received froman

HTTP/ 1.0 cache that does not inplenent Age.

5.2. Cache-Contro

The "Cache-Control" header field is used to specify directives for
caches along the request/response chain. Such cache directives are
unidirectional in that the presence of a directive in a request does
not inply that the same directive is to be given in the response.

A cache MJUST obey the requirenents of the Cache-Control directives
defined in this section. See Section 5.2.3 for information about how
Cache-Control directives defined el sewhere are handl ed

Not e: Sone HITP/ 1.0 caches m ght not i npl enent Cache-Control

A proxy, whether or not it inplenents a cache, MJST pass cache
directives through in forwarded nessages, regardl ess of their
significance to that application, since the directives m ght be
applicable to all recipients along the request/response chain. It is
not possible to target a directive to a specific cache.

Cache directives are identified by a token, to be conpared
case-insensitively, and have an optional argunent, that can use both
token and quoted-string syntax. For the directives defined bel ow
that define argunents, recipients ought to accept both forns, even if
one is docunented to be preferred. For any directive not defined by
this specification, a recipient MIST accept both forns.

Fielding, et al. St andards Track [Page 21]

RFC 7234 HTTP/ 1.1 Cachi ng June 2014

Cache- Contr ol = 1#cache-directive

cache-directive = token [(token / quoted-string)]

For the cache directives defined below, no argunent is defined (nor
al | owed) unl ess stated otherw se.

5.2.1. Request Cache-Control Directives

5.2.1.1. nmax-age
Argunent synt ax:

del t a- seconds (see Section 1.2.1)

The "max-age" request directive indicates that the client is
unwilling to accept a response whose age is greater than the
speci fi ed nunber of seconds. Unless the nax-stale request directive
is also present, the client is not willing to accept a stale
response.
This directive uses the token formof the argunment syntax: e.g.
" max- age=5" not ’'max-age="5"". A sender SHOULD NOT generate the
quot ed-string form

5.2.1.2. nmax-stale
Argunment synt ax:

del t a-seconds (see Section 1.2.1)

The "max-stal e" request directive indicates that the client is
willing to accept a response that has exceeded its freshness

lifetime. |If max-stale is assigned a value, then the client is
willing to accept a response that has exceeded its freshness lifetine
by no nore than the specified nunber of seconds. |If no value is

assigned to nax-stale, then the client is willing to accept a stale
response of any age.

This directive uses the token formof the argunment syntax: e.g.
"max-stal e=10° not ’'nmax-stal e="10"". A sender SHOULD NOT generate
the quoted-string form

5.2.1.3. nmin-fresh

Argunment synt ax:

del t a-seconds (see Section 1.2.1)

Fielding, et al. St andards Track [Page 22]

RFC 7234 HTTP/ 1.1 Cachi ng June 2014

The "min-fresh" request directive indicates that the client is
willing to accept a response whose freshness lifetime is no |less than
its current age plus the specified tinme in seconds. That is, the
client wants a response that will still be fresh for at |east the
speci fi ed nunber of seconds.

This directive uses the token formof the argunent syntax: e.g.
"mn-fresh=20" not 'mn-fresh="20"". A sender SHOULD NOT generate
t he quoted-string form

5.2.1.4. no-cache

The "no-cache" request directive indicates that a cache MUST NOT use
a stored response to satisfy the request w thout successful
val idation on the origin server.

5.2.1.5. no-store

The "no-store" request directive indicates that a cache MJUST NOT
store any part of either this request or any response to it. This
directive applies to both private and shared caches. "MJST NOT
store" in this context nmeans that the cache MJST NOT intentionally
store the information in non-volatile storage, and MJUST nake a
best-effort attenpt to renove the information fromvolatile storage
as pronptly as possible after forwarding it.

This directive is NOT a reliable or sufficient mechani smfor ensuring
privacy. |In particular, malicious or conpronised caches ni ght not
recogni ze or obey this directive, and comuni cations networks ni ght
be vul nerabl e to eavesdroppi ng.

Note that if a request containing this directive is satisfied froma
cache, the no-store request directive does not apply to the already
stored response.

5.2.1.6. no-transform
The "no-transform' request directive indicates that an internediary
(whether or not it inplenents a cache) MJST NOT transformthe
payl oad, as defined in Section 5.7.2 of [RFC7230].

5.2.1.7. only-if-cached

The "only-if-cached" request directive indicates that the client only
wi shes to obtain a stored response. |If it receives this directive, a
cache SHOULD either respond using a stored response that is

consistent with the other constraints of the request, or respond wth

Fielding, et al. St andards Track [Page 23]

RFC 7234 HTTP/ 1.1 Cachi ng June 2014

a 504 (Gateway Tineout) status code. |If a group of caches is being
operated as a unified systemw th good internal connectivity, a
nmenber cache MAY forward such a request within that group of caches.

5.2.2. Response Cache-Control Directives
5.2.2.1. nust-revalidate

The "nmust-revalidate" response directive indicates that once it has
becone stale, a cache MJST NOT use the response to satisfy subsequent
requests without successful validation on the origin server

The nmust-revalidate directive is necessary to support reliable
operation for certain protocol features. |In all circunstances a
cache MJUST obey the nust-revalidate directive; in particular, if a
cache cannot reach the origin server for any reason, it MJST generate
a 504 (Gateway Tineout) response.

The nmust-revalidate directive ought to be used by servers if and only
if failure to validate a request on the representation could result
in incorrect operation, such as a silently unexecuted financi al
transacti on.

5.2.2.2. no-cache
Argunent synt ax:
#fi el d- nanme

The "no-cache" response directive indicates that the response MJST
NOT be used to satisfy a subsequent request wi thout successfu
validation on the origin server. This allows an origin server to
prevent a cache fromusing it to satisfy a request wi thout contacting
it, even by caches that have been configured to send stale responses.

If the no-cache response directive specifies one or nore field-nanes,
then a cache MAY use the response to satisfy a subsequent request,
subject to any other restrictions on caching. However, any header
fields in the response that have the field-nane(s) listed MIST NOT be
sent in the response to a subsequent request wi thout successfu
revalidation with the origin server. This allows an origin server to
prevent the re-use of certain header fields in a response, while
still allow ng caching of the rest of the response.

The field-names given are not linmited to the set of header fields
defined by this specification. Field nanes are case-insensitive.

Fielding, et al. St andards Track [Page 24]

RFC 7234 HTTP/ 1.1 Cachi ng June 2014

This directive uses the quoted-string formof the argunent syntax. A
sender SHOULD NOT generate the token form (even if quoting appears
not to be needed for single-entry lists).

Note: Although it has been back-ported to many inplenentations, some
HTTP/ 1.0 caches will not recognize or obey this directive. Also,
no-cache response directives with field-nanes are often handl ed by
caches as if an unqualified no-cache directive was received; i.e.
the special handling for the qualified formis not w dely

i mpl enent ed.

5.2.2. 3. no-store

The "no-store" response directive indicates that a cache MJUST NOT
store any part of either the imredi ate request or response. This
directive applies to both private and shared caches. "MJST NOT
store"” in this context nmeans that the cache MJST NOT intentionally
store the information in non-volatile storage, and MUST nake a
best-effort attenpt to renove the information fromvolatile storage
as pronptly as possible after forwarding it.

This directive is NOT a reliable or sufficient nechanismfor ensuring
privacy. In particular, malicious or conpronised caches night not
recogni ze or obey this directive, and comuni cations networks night
be vul nerabl e to eavesdroppi ng.

5.2.2.4. no-transform

The "no-transfornt response directive indicates that an internediary
(regardl ess of whether it inplenments a cache) MUST NOT transformthe
payl oad, as defined in Section 5.7.2 of [RFC7230].

5.2.2.5. public

The "public" response directive indicates that any cache MAY store
the response, even if the response would nornally be non-cacheabl e or
cacheable only within a private cache. (See Section 3.2 for
additional details related to the use of public in response to a
request containing Authorization, and Section 3 for details of how
public affects responses that would normally not be stored, due to
their status codes not being defined as cacheabl e by default; see
Section 4.2.2.)

5.2.2.6. private
Argunment synt ax:

#fi el d- nane

Fielding, et al. St andards Track [Page 25]

RFC 7234 HTTP/ 1.1 Cachi ng June 2014

The "private" response directive indicates that the response nessage
is intended for a single user and MJUST NOT be stored by a shared
cache. A private cache MAY store the response and reuse it for l|ater
requests, even if the response would normally be non-cacheabl e.

If the private response directive specifies one or nore field-nanes,
this requirenent is linmted to the field-values associated with the
|isted response header fields. That is, a shared cache MJUST NOT
store the specified field-nanes(s), whereas it MAY store the

remai nder of the response nessage.

The field-nanmes given are not limted to the set of header fields
defined by this specification. Field nanes are case-insensitive.

This directive uses the quoted-string formof the argunment syntax. A
sender SHOULD NOT generate the token form (even if quoting appears
not to be needed for single-entry lists).

Note: This usage of the word "private" only controls where the
response can be stored; it cannot ensure the privacy of the nessage
content. Also, private response directives with field-nanmes are

of ten handl ed by caches as if an unqualified private directive was
received; i.e., the special handling for the qualified formis not
wi dely i npl ement ed.

5.2.2.7. proxy-revalidate
The "proxy-revalidate" response directive has the sanme nmeaning as the
must -reval i date response directive, except that it does not apply to
private caches

5.2.2.8. nmax-age
Argunment synt ax:

del ta-seconds (see Section 1.2.1)

The "nmax-age" response directive indicates that the response is to be
considered stale after its age is greater than the specified nunber
of seconds.
This directive uses the token formof the argunent syntax: e.g.

"max- age=5' not 'max-age="5"'. A sender SHOULD NOT generate the
quot ed-string form

Fielding, et al. St andards Track [Page 26]

RFC 7234 HTTP/ 1.1 Cachi ng June 2014

5.2.2.9. s-naxage
Argument synt ax:
del ta- seconds (see Section 1.2.1)

The "s-nmaxage" response directive indicates that, in shared caches,

t he maxi mum age specified by this directive overrides the maxi num age
specified by either the max-age directive or the Expires header
field. The s-maxage directive also inplies the semantics of the
proxy-reval i date response directive.

This directive uses the token formof the argunent syntax: e.g.
's-maxage=10" not ’'s-maxage="10"'. A sender SHOULD NOT generate the
quot ed-string form

5.2.3. Cache Control Extensions

The Cache-Control header field can be extended through the use of one
or nore cache-extension tokens, each with an optional value. A cache
MJST i gnore unrecogni zed cache directives.

I nf ormati onal extensions (those that do not require a change in cache
behavi or) can be added wi thout changi ng the senmantics of other
directives.

Behavi oral extensions are designed to work by acting as nodifiers to
t he existing base of cache directives. Both the new directive and
the old directive are supplied, such that applications that do not
understand the new directive will default to the behavior specified
by the old directive, and those that understand the new directive
will recognize it as nodifying the requirenents associated with the
old directive. In this way, extensions to the existing cache-contro
directives can be nmade w t hout breaking depl oyed caches.

For exanpl e, consider a hypothetical new response directive called
"comunity" that acts as a nodifier to the private directive: in
addition to private caches, any cache that is shared only by nmenbers
of the named conmunity is allowed to cache the response. An origin
server wishing to allow the UCI comunity to use an otherw se private
response in their shared cache(s) could do so by including

Cache-Control: private, community="UC"
A cache that recognizes such a community cache-extension could
broaden its behavior in accordance with that extension. A cache that

does not recogni ze the conmunity cache-extension would ignore it and
adhere to the private directive.

Fielding, et al. St andards Track [Page 27]

RFC 7234 HTTP/ 1.1 Cachi ng June 2014

5.3. Expires

The "Expires" header field gives the date/tine after which the
response is considered stale. See Section 4.2 for further discussion
of the freshness nodel.

The presence of an Expires field does not inply that the origina
resource will change or cease to exist at, before, or after that
tinme.

The Expires value is an HITP-date tinestanp, as defined in Section
7.1.1.1 of [RFC7231].

Expires = HITP-date
For exanpl e
Expi res: Thu, 01 Dec 1994 16:00: 00 GV

A cache recipient MUST interpret invalid date formats, especially the
value "0", as representing a tinme in the past (i.e., "already
expired").

If a response includes a Cache-Control field with the max-age
directive (Section 5.2.2.8), a recipient MIST ignhore the Expires
field. Likewise, if a response includes the s-maxage directive
(Section 5.2.2.9), a shared cache recipient MJIST ignore the Expires
field. In both these cases, the value in Expires is only intended
for recipients that have not yet inplenmented the Cache-Control field.

An origin server without a clock MJST NOT generate an Expires field
unless its value represents a fixed tine in the past (always expired)
or its value has been associated with the resource by a system or
user with a reliable clock

Hi storically, HITP required the Expires field-value to be no nore
than a year in the future. Wiile longer freshness lifetines are no
| onger prohibited, extrenely |arge values have been denonstrated to
cause problens (e.g., clock overflows due to use of 32-bit integers
for tine values), and many caches will evict a response far sooner
than t hat.

Fielding, et al. St andards Track [Page 28]

RFC 7234 HTTP/ 1.1 Cachi ng June 2014

5.4, Pragma

The "Pragma" header field allows backwards conpatibility with

HTTP/ 1.0 caches, so that clients can specify a "no-cache" request
that they will understand (as Cache-Control was not defined unti
HTTP/ 1.1). \Wen the Cache-Control header field is also present and
understood in a request, Pragma is ignored.

In HTTP/ 1.0, Pragma was defined as an extensible field for
i mpl enent ati on-specified directives for recipients. This
speci fication deprecates such extensions to inprove interoperability.

Pragma
pragma-directive
ext ensi on- pragna

1#pragna-directive
"no-cache" / extension-pragm
token ["=" (token / quoted-string)]

When the Cache-Control header field is not present in a request,
caches MJST consider the no-cache request pragma-directive as having
the sane effect as if "Cache-Control: no-cache" were present (see
Section 5.2.1).

When sendi ng a no-cache request, a client ought to include both the
pragma and cache-control directives, unless Cache-Control: no-cache
is purposefully omtted to target other Cache-Control response
directives at HTTP/ 1.1 caches. For exanple:

GET / HITP/1.1

Host: www. exanpl e. com
Cache- Control : max-age=30
Pragnma: no-cache

will constrain HTTP/ 1.1 caches to serve a response no ol der than 30
seconds, while precluding inplenmentations that do not understand
Cache-Control from serving a cached response

Not e: Because the neani ng of "Pragna: no-cache" in responses is
not specified, it does not provide a reliable replacenent for
"Cache-Control: no-cache" in them

5.5. Warning

The "Warni ng" header field is used to carry additional information
about the status or transformati on of a nessage that mi ght not be
reflected in the status code. This information is typically used to
warn about possible incorrectness introduced by caching operations or
transformati ons applied to the payl oad of the nmessage.

Fielding, et al. St andards Track [Page 29]

RFC 7234 HTTP/ 1.1 Cachi ng June 2014

War ni ngs can be used for other purposes, both cache-rel ated and
otherwi se. The use of a warning, rather than an error status code
di stingui shes these responses fromtrue failures

War ni ng header fields can in general be applied to any nessage,
however sone warn-codes are specific to caches and can only be
applied to response nessages.

War ni ng 1#war ni ng- val ue

war ni ng- val ue = warn-code SP warn-agent SP warn-text

[SP warn-date]

3DAT
(uri-host | port 1) / pseudonym
; the nane or pseudonym of the server adding
; the Warning header field, for use in debugging
; asingle "-" is recoomended when agent unknown
warn-text = quoted-string
warn-date = DQUOTE HTTP-dat e DQUOTE

Mul tipl e warnings can be generated in a response (either by the
origin server or by a cache), including nultiple warnings with the
same war n-code nunber that only differ in warn-text.

war n- code
war n- agent

A user agent that receives one or nore Warni ng header fields SHOULD
informthe user of as many of them as possible, in the order that
they appear in the response. Senders that generate multiple Warning
header fields are encouraged to order themwi th this user agent
behavior in mnd. A sender that generates new Warni ng header fields
MUST append them after any existing Warni ng header fields.

Warni ngs are assigned three digit warn-codes. The first digit
i ndi cates whether the Warning is required to be deleted froma stored
response after validation

0 1xx warn-codes describe the freshness or validation status of the
response, and so they MJUST be deleted by a cache after validation
They can only be generated by a cache when validating a cached
entry, and MJUST NOT be generated in any other situation

0 2xx warn-codes describe sonme aspect of the representation that is
not rectified by a validation (for exanple, a | ossy conpression of
the representation) and they MJUST NOT be del eted by a cache after
validation, unless a full response is sent, in which case they
MUST be.

Fielding, et al. St andards Track [Page 30]

RFC 7234 HTTP/ 1.1 Cachi ng June 2014

If a sender generates one or nore 1xx warn-codes in a nessage to be
sent to a recipient known to inplenent only HTTP/ 1.0, the sender MJST
i nclude in each correspondi ng warni ng-val ue a warn-date that matches
the Date header field in the nessage. For exanple:

HTTP/ 1.1 200 OK
Date: Sat, 25 Aug 2012 23:34:45 GMI
Warning: 112 - "network down" "Sat, 25 Aug 2012 23:34:45 GVI"

War ni ngs have acconpanyi ng warn-text that describes the error, e.g.
for logging. It is advisory only, and its content does not affect
interpretation of the warn-code.

If a recipient that uses, evaluates, or displays Warni ng header
fields receives a warn-date that is different fromthe Date value in
the sane nessage, the recipient MJIST exclude the warning-val ue
containing that warn-date before storing, forwarding, or using the
message. This allows recipients to exclude warni ng-val ues that were
i mproperly retained after a cache validation. |If all of the

war ni ng- val ues are excluded, the recipient MJST exclude the Warning
header field as well.

The followi ng warn-codes are defined by this specification, each with
a recomended warn-text in English, and a description of its neaning.
The procedure for defining additional warn codes is described in
Section 7.2.1.
5.5.1. Warning: 110 - "Response is Stale"
A cache SHOULD generate this whenever the sent response is stale.
5.5.2. Warning: 111 - "Revalidation Failed"
A cache SHOULD generate this when sending a stal e response because an
attenpt to validate the response failed, due to an inability to reach
t he server.
5.5.3. Warning: 112 - "Di sconnected Operation”

A cache SHOULD generate this if it is intentionally disconnected from
the rest of the network for a period of tine.

5.5.4. Warning: 113 - "Heuristic Expiration"
A cache SHOULD generate this if it heuristically chose a freshness

lifetime greater than 24 hours and the response’s age is greater than
24 hours.

Fielding, et al. St andards Track [Page 31]

RFC 7234 HTTP/ 1.1 Cachi ng June 2014

5.5.5. Warning: 199 - "M scel | aneous Warni ng"

The warning text can include arbitrary information to be presented to
a human user or |logged. A systemreceiving this warning MJST NOT
take any automated action, besides presenting the warning to the
user.

5.5.6. Warning: 214 - "Transformation Applied"
Thi s Warni ng code MJST be added by a proxy if it applies any
transformation to the representation, such as changi ng the
content-codi ng, nedia-type, or nodifying the representation data,
unl ess this Warning code al ready appears in the response.

5.5.7. Warning: 299 - "M scell aneous Persistent Warning"
The warning text can include arbitrary information to be presented to
a human user or logged. A systemreceiving this warning MJST NOT
take any automated action.

6. History Lists
User agents often have history nechani sns, such as "Back" buttons and

history lists, that can be used to redisplay a representation
retrieved earlier in a session

The freshness nodel (Section 4.2) does not necessarily apply to
hi story mechani sms. That is, a history mechani smcan display a
previous representation even if it has expired.
This does not prohibit the history mechanismfromtelling the user
that a view might be stale or from honoring cache directives (e.g.
Cache-Control: no-store).

7. | ANA Considerations

7.1. Cache Directive Registry
The "Hypertext Transfer Protocol (HTTP) Cache Directive Registry"
defines the nanespace for the cache directives. It has been created
and i s now maintained at
<http://ww. i ana. or g/ assi gnnent s/ htt p-cache-directi ves>

7.1.1. Procedure
A registration MIJST include the followi ng fields:

o0 Cache Directive Name

Fielding, et al. St andards Track [Page 32]

RFC 7234 HTTP/ 1.1 Cachi ng

o0 Pointer to specification text

June 2014

Val ues to be added to this nanespace require | ETF Review (see

[RFC5226], Section 4.1).

7.1.2. Considerations for New Cache Contro

New ext ensi on directives ought to consider defining:

Directives

0o What it means for a directive to be specified nmultiple tines,

0 Wien the directive does not take an argunent,

an argunent is present,

o When the directive requires an argunen
m ssi ng,

o0 Wiether the directive is specific to requests,

to be used in either.
See al so Section 5.2.3.
7.1.3. Registrations

The registry has been populated with the

stale-if-error
stal e-whil e-reval i date

I I 'rhreees
| Cache Directive | Reference

o e e e e e e e e e e e e m o o e e e e e e e e e e e e m o
| mex-age | Section 5.2.1.

| max-stale | Section 5.2.1.

| mn-fresh | Section 5.2.1.

| rnust-revalidate | Section 5.2.2.

| no-cache | Section 5.2.1.

| no-store | Section 5.2.1.

| no-transform | Section 5.2.1.

| only-if-cached | Section 5.2.1.

| private | Section 5.2.2.

| proxy-revalidate | Section 5.2.2

| public | Section 5.2.2.

| s-nmaxage | Section 5.2.2.

| |

| |

Fielding, et al. St andards Track

t ’

what

what

responses,

it nmeans when

it neans when it is

or able

regi strations bel ow

CUu~NO~NO UL WNE

Section

Secti on
Secti on
Section

[REC5861] . Section 4
[RFC5861], Section 3

[Page 33]

RFC 7234 HTTP/ 1.1 Cachi ng June 2014

7.2. \Warn Code Registry

The "Hypertext Transfer Protocol (HTTP) Warn Codes" registry defines

t he nanespace for warn codes. It has been created and i s now

mai nt ai ned at <http://ww. i ana. org/assi gnnent s/ htt p-warn-codes>
7.2.1. Procedure

A registration MIST include the follow ng fields:

0 Warn Code (3 digits)

o Short Description

o0 Pointer to specification text

Val ues to be added to this nanespace require | ETF Review (see
[RFC5226], Section 4.1).

7.2.2. Registrations

The registry has been populated with the registrati ons bel ow

S o e e e e e e e e e e e e e oo - o S +
| Warn Code | Short Description | Reference
R oo e e e e e e e e e eme s R +
| 110 | Response is Stale | Section 5.5.1

| 111 | Revalidation Failed | Section 5.5.2

| 112 | Di sconnected Operation | Section 5.5.3

| 113 | Heuristic Expiration | Section 5.5.4

| 199 | M scell aneous Warning | Section 5.5.5

| 214 | Transformation Applied | Section 5.5.6

| 299 | Mscellaneous Persistent Warning | Section 5.5.7
S e Fom e e e e e oo oo +

7.3. Header Field Registration
HTTP header fields are registered within the "Message Headers"

regi stry nmaintained at
<htt p://ww\. i ana. or g/ assi gnnent s/ nessage- header s/ >

Fielding, et al. St andards Track [Page 34]

RFC 7234 HTTP/ 1.1 Cachi ng June 2014

Thi s docunent defines the followi ng HTTP header fields, so the
"Per manent Message Header Field Nanes" registry has been updated
accordingly (see [BCP90]).

o e - Fom e e - Fom e e - B S +
| Header Field Name | Protocol | Status | Reference

S N N N +
| Age | http | standard | Section 5.1

| Cache- Control | http | standard | Section 5.2

| Expires | http | standard | Section 5.3

| Pragma | http | standard | Section 5.4

| Warning | http | standard | Section 5.5

S N N N +
The change controller is: "IETF (iesg@etf.org) - Internet

Engi neering Task Force".
8. Security Considerations

This section is neant to i nform devel opers, information providers,
and users of known security concerns specific to HITP caching. Mre
general security considerations are addressed in HITP nessagi ng

[RFC7230] and semantics [RFC7231].

Caches expose additional potential vulnerabilities, since the
contents of the cache represent an attractive target for nalicious
expl oitation. Because cache contents persist after an HTTP request
is conplete, an attack on the cache can reveal information |long after
a user believes that the information has been renoved fromthe
network. Therefore, cache contents need to be protected as sensitive
i nformation.

In particular, various attacks m ght be anplified by being stored in
a shared cache; such "cache poisoning" attacks use the cache to
distribute a malicious payload to many clients, and are especially
ef fective when an attacker can use inplenentation flaws, elevated
privileges, or other techniques to insert such a response into a
cache. One common attack vector for cache poisoning is to exploit

di fferences in nmessage parsing on proxies and in user agents; see
Section 3.3.3 of [RFC7230] for the rel evant requirenents.

Li kewi se, inplenentation flaws (as well as nisunderstandi ng of cache
operation) mght |ead to caching of sensitive infornation (e.qg.

aut hentication credentials) that is thought to be private, exposing
it to unauthorized parties.

Fielding, et al. St andards Track [Page 35]

RFC 7234 HTTP/ 1.1 Cachi ng June 2014

10.

10.

Furt hernmore, the very use of a cache can bring about privacy
concerns. For exanple, if two users share a cache, and the first one
browses to a site, the second may be able to detect that the other
has been to that site, because the resources fromit |oad nore

qui ckly, thanks to the cache.

Not e that the Set-Cookie response header field [RFC6265] does not

i nhi bit caching; a cacheable response with a Set-Cooki e header field
can be (and often is) used to satisfy subsequent requests to caches.
Servers who wish to control caching of these responses are encouraged
to emt appropriate Cache-Control response header fields.

Acknowl edgrent s

See Section 10 of [RFC7230].
Ref er ences

1. Nornative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Level s", BCP 14, RFC 2119, March 1997.

[RFC5234] Crocker, D., Ed. and P. Overell, "Augnented BNF for Syntax
Speci fications: ABNF', STD 68, RFC 5234, January 2008.

[RFC7230] Fielding, R, Ed. and J. Reschke, Ed., "Hypertext Transfer
Protocol (HTTP/1.1): Message Syntax and Routing"
RFC 7230, June 2014.

[RFC7231] Fielding, R, Ed. and J. Reschke, Ed., "Hypertext Transfer
Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
June 2014.

[RFC7232] Fielding, R, Ed. and J. Reschke, Ed., "Hypertext Transfer
Protocol (HTTP/1.1): Conditional Requests", RFC 7232,
June 2014.

[RFC7233] Fielding, R, Ed., Lafon, Y., Ed., and J. Reschke, Ed.
"Hypertext Transfer Protocol (HTTP/1.1): Range Requests"
RFC 7233, June 2014.

[RFC7235] Fielding, R, Ed. and J. Reschke, Ed., "Hypertext Transfer
Protocol (HTTP/1.1): Authentication", RFC 7235, June 2014.

Fielding, et al. St andards Track [Page 36]

RFC 7234 HTTP/ 1.1 Cachi ng June 2014
10.2. Informative References
[BCP90] Klyne, G, Nottingham M, and J. Mgul, "Registration
Procedures for Message Header Fields", BCP 90, RFC 3864,
Sept ember 2004.
[RFC2616] Fielding, R, Gettys, J., Mgul, J., Frystyk, H.,
Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.
[RFC5226] Narten, T. and H Alvestrand, "Quidelines for Witing an
| ANA Consi derations Section in RFCs", BCP 26, RFC 5226,
May 2008.
[RFC5861] Nottingham M, "HITP Cache-Control Extensions for Stale
Content", RFC 5861, April 2010.
[RFC5905] MlIls, D, Martin, J., Ed., Burbank, J., and W Kasch
"Network Tinme Protocol Version 4: Protocol and Al gorithns
Speci fication", RFC 5905, June 2010.
[RFC6265] Barth, A, "HITP State Managenment Mechani sm', RFC 6265,

April 2011.

Fielding, et al. St andards Track [Page 37]

RFC 7234 HTTP/ 1.1 Cachi ng June 2014

Appendi x A, Changes from RFC 2616
The specification has been substantially rewitten for clarity.

The conditions under which an authenticated response can be cached
have been clarified. (Section 3.2)

New st atus codes can now define that caches are allowed to use
heuristic freshness with them Caches are now allowed to cal cul ate
heuristic freshness for URIs with query components. (Section 4.2.2)

The algorithmfor calculating age is now | ess conservative. Caches
are now required to handle dates with tine zones as if they're
invalid, because it’'s not possible to accurately guess.

(Section 4.2.3)

The Content-Location response header field is no |onger used to
determ ne the appropriate response to use when validating.
(Section 4.3)

The algorithm for selecting a cached negoti ated response to use has
been clarified in several ways. |In particular, it now explicitly
al | ows header-specific canonicalizati on when processing sel ecting
header fields. (Section 4.1)

Requi rements regardi ng deni al - of -servi ce attack avoi dance when
perform ng invalidation have been clarified. (Section 4.4)

Cache invalidation only occurs when a successful response is
received. (Section 4.4)

Cache directives are explicitly defined to be case-insensitive.
Handl i ng of nultiple instances of cache directives when only one is
expected i s now defined. (Section 5.2)

The "no-store" request directive doesn't apply to responses; i.e., a
cache can satisfy a request with no-store on it and does not
invalidate it. (Section 5.2.1.5)

The qualified fornms of the private and no-cache cache directives are
noted to not be widely inplenented; for exanple, "private=foo" is
interpreted by nmany caches as sinply "private". Additionally, the
meani ng of the qualified formof no-cache has been clarified.
(Section 5.2.2)

The "no-cache" response directive' s nmeaning has been clarified.
(Section 5.2.2.2)

Fielding, et al. St andards Track [Page 38]

RFC 7234 HTTP/ 1.1 Cachi ng June 2014

The one-year lint on Expires header field values has been renoved;
i nstead, the reasoning for using a sensible value is given
(Section 5.3)

The Pragma header field is now only defined for backwards
conpatibility; future pragnas are deprecated. (Section 5.4)

Some requirenents regardi ng production and processing of the Warning
header fields have been relaxed, as it is not widely inplenented.

Furt hernmore, the Warning header field no | onger uses RFC 2047
encodi ng, nor does it allow multiple | anguages, as these aspects were
not inplenmented. (Section 5.5)

This specification introduces the Cache Directive and Warn Code
Regi stries, and defines considerations for new cache directives.
(Section 7.1 and Section 7.2)

Appendi x B. I nported ABNF

The following core rules are included by reference, as defined in
Appendi x B.1 of [RFC5234]: ALPHA (letters), CR (carriage return),
CRLF (CR LF), CTL (controls), DAT (decimal 0-9), DQUOTE (double
quote), HEXDI G (hexadeci mal 0-9/A-F/a-f), LF (line feed), OCTET (any
8-bit sequence of data), SP (space), and VCHAR (any visi bl e US-ASCI
character).

The rul es below are defined in [RFC7230]:
OB

field-nane
quot ed-string

<ONB, see [RFC7230], Section 3.2.3>
<fi el d-nane, see [RFC7230], Section 3.2>
<quot ed-string, see [RFC7230], Section 3.2.6>

t oken <t oken, see [RFC7230], Section 3.2.6>
port = <port, see [RFC7230], Section 2.7>
pseudonym = <pseudonym see [RFC7230], Section 5.7.1>
uri - host = <uri-host, see [RFC7230], Section 2.7>

The rul es below are defined in other parts:

HTTP- dat e = <HTTP-date, see [RFC7231], Section 7.1.1.1>

Fielding, et al. St andards Track [Page 39]

RFC 7234 HTTP/ 1.1 Cachi ng June 2014

Appendi x C. Col | ected ABNF

In the collected ABNF below, list rules are expanded as per Section
1.2 of [RFC7230].

Age = delta-seconds

Cache-Control = *("," OA5) cache-directive *(OAN8 "," [OAB
cache-directive])

Expires = HITP-date
HTTP-date = <HTTP-date, see [RFC7231], Section 7.1.1.1>

OA5 = <ON5, see [RFC7230], Section 3.2.3>

Pragma = *("," OAN5) pragnma-directive *(O "," [ONE
pragma-directive])

Warning = *("," OA5) warning-value *(OA5 "," [OA5 warni ng-val ue]
)

cache-directive = token ["=" (token / quoted-string)]

del ta-seconds = 1*DIGA T

extension-pragnma = token ["=" (token / quoted-string)]
field-nane = <field-name, see [RFC7230], Section 3.2>

port = <port, see [RFC7230], Section 2.7>

pragma-directive = "no-cache" / extension-pragma

pseudonym = <pseudonym see [RFC7230], Section 5.7.1>

quot ed-string = <quoted-string, see [RFCr230], Section 3.2.6>
token = <token, see [RFC7230], Section 3.2.6>

uri-host = <uri-host, see [RFC7230], Section 2.7>

war n-agent = (uri-host [port 1) / pseudonym

warn-code = 3DIA T
war n-date = DQUOTE HTTP-dat e DQUOTE
war n-t ext = quoted-string

war ni ng- val ue = warn-code SP warn-agent SP warn-text [SP warn-date

]

Fielding, et al. St andards Track [Page 40]

RFC 7234

I ndex

1

110
111
112
113
199

214
299

age
Age

cac
cac
cac
Cac

HTTP/ 1.1 Cachi ng

(warn-code) 31
(warn-code) 31
(warn-code) 31
(warn-code) 31
(warn-code) 32

(warn-code) 32
(war n-code) 32
11
header field 21
he 4
he entry 5
he key 5-6
he- Control header field 21

Di sconnected Operation (warn-text) 31

Exp
exp

fre
fre

ires header field 28
licit expiration tine

sh 11
shness lifetine 11

G anmar

Fi el di ng,

Age 21
Cache-Control 22
cache-directive 22
delta-seconds 5
Expires 28

ext ensi on-pragma 29
Pragma 29
pragma-directive 29
war n- agent 29
war n- code 29

war n-date 29
warn-text 29

11

et al. St andards Track

June 2014

[Page 41]

RFC 7234 HTTP/ 1.1 Cachi ng June 2014

Warning 29
war ni ng-val ue 29

Heuristic Expiration (warn-text) 31
heuristic expiration tine 11

max- age (cache directive) 22, 26

max-stal e (cache directive) 22

m n-fresh (cache directive) 22

M scel | aneous Persi stent Warning (warn-text) 32
M scel | aneous Warning (warn-text) 32

nmust -reval i date (cache directive) 24

no-cache (cache directive) 23, 25
no-store (cache directive) 23, 24
no-transform (cache directive) 23, 25

only-if-cached (cache directive) 23

Pragnma header field 29

private (cache directive) 25

private cache 4

proxy-revalidate (cache directive) 26
public (cache directive) 25

Response is Stale (warn-text) 30
Reval idation Failed (warn-text) 31

s-maxage (cache directive) 27
shared cache 4

stale 11

strong validator 18

Transformation Applied (warn-text) 32

validator 16

War ni ng header field 29

Fielding, et al. St andards Track [Page 42]

RFC 7234 HTTP/ 1.1 Cachi ng June 2014

Aut hors’ Addr esses

Roy T. Fielding (editor)
Adobe Systens | ncorporated
345 Park Ave

San Jose, CA 95110

USA

EMai | . fieldi ng@biv.com
URI : http://roy. gbiv.conl
Mar k Notti ngham (editor)
Akamai

EMai | : nmot @mot . net

URI : http://ww. rmot . net/

Julian F. Reschke (editor)
gr eenbyt es GnbH

Haf enweg 16
Muenster, NW 48155
Cer many

EMai | : julian.reschke@reenbytes. de
URI : http://greenbytes. de/tech/webdav/

Fielding, et al. St andards Track [Page 43]

