
Internet Engineering Task Force (IETF) M. Bagnulo
Request for Comments: 7430 UC3M
Category: Informational C. Paasch
ISSN: 2070-1721 UCLouvain
 F. Gont
 SI6 Networks / UTN-FRH
 O. Bonaventure
 UCLouvain
 C. Raiciu
 UPB
 July 2015

 Analysis of Residual Threats and Possible Fixes for
 Multipath TCP (MPTCP)

Abstract

 This document analyzes the residual threats for Multipath TCP (MPTCP)
 and explores possible solutions to address them.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are a candidate for any level of Internet
 Standard; see Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7430.

Bagnulo, et al. Informational [Page 1]

RFC 7430 MPTCP Residual Threats July 2015

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. ADD_ADDR Attack . 4
 2.1. Possible Security Enhancements to Prevent This Attack . . 10
 3. DoS Attack on MP_JOIN . 11
 3.1. Possible Security Enhancements to Prevent This Attack . . 12
 4. SYN Flooding Amplification 12
 4.1. Possible Security Enhancements to Prevent This Attack . . 13
 5. Eavesdropper in the Initial Handshake 13
 5.1. Possible Security Enhancements to Prevent This Attack . . 14
 6. SYN/JOIN Attack . 14
 6.1. Possible Security Enhancements to Prevent This Attack . . 14
 7. Recommendations . 15
 7.1. MPTCP Security Improvements for a Standards Track
 Specification . 15
 7.2. Security Enhancements for MPTCP 16
 8. Security Considerations 16
 9. References . 16
 9.1. Normative References 16
 9.2. Informative References 17
 Acknowledgements . 18
 Authors’ Addresses . 19

Bagnulo, et al. Informational [Page 2]

RFC 7430 MPTCP Residual Threats July 2015

1. Introduction

 This document provides a complement to the threat analysis for
 Multipath TCP (MPTCP) [RFC6824] documented in RFC 6181 [RFC6181].
 RFC 6181 provided a threat analysis for the general solution space of
 extending TCP to operate with multiple IP addresses per connection.
 Its main goal was to leverage previous experience acquired during the
 design of other multi-address protocols, notably Shim6 [RFC5533], the
 Stream Control Transmission Protocol (SCTP) [RFC4960], and Mobile
 IPv6 (MIP6) [RFC6275] for designing MPTCP. Thus, RFC 6181 was
 produced before the actual MPTCP specification (RFC 6824) was
 completed and documented a set of recommendations that were
 considered during the production of that specification.

 This document complements RFC 6181 with a vulnerability analysis of
 the mechanisms specified in RFC 6824. The motivation for this
 analysis is to identify possible security issues with MPTCP as
 currently specified and propose security enhancements to address
 these identified security issues.

 The goal of the security mechanisms defined in RFC 6824 was to make
 MPTCP no worse than currently available single-path TCP. We believe
 that this goal is still valid, so we will perform our analysis on the
 same grounds. This document describes all the threats identified
 that are specific to MPTCP (as defined in RFC 6824) that are not
 possible with single-path TCP. This means that threats that are
 common to TCP and MPTCP are not covered in this document.

 For each attack considered in this document, we identify the type of
 attacker. We can classify the attackers based on their location as
 follows:

 o Off-path attacker. This is an attacker that does not need to be
 located in any of the paths of the MPTCP session at any point in
 time during the lifetime of the MPTCP session. This means that
 the off-path attacker cannot eavesdrop any of the packets of the
 MPTCP session.

 o Partial-time on-path attacker. This is an attacker that needs to
 be in at least one of the paths during part of the lifetime of the
 MPTCP session (but not the entire lifetime). The attacker can be
 in the forward and/or backward directions for the initial subflow
 and/or other subflows. The specific needs of the attacker will be
 made explicit in the attack description.

Bagnulo, et al. Informational [Page 3]

RFC 7430 MPTCP Residual Threats July 2015

 o On-path attacker. This attacker needs to be on at least one of
 the paths during the whole duration of the MPTCP session. The
 attacker can be in the forward and/or backward directions for the
 initial subflow and/or other subflows. The specific needs of the
 attacker will be made explicit in the attack description.

 We can also classify the attackers based on their actions as follows:

 o Eavesdropper. The attacker is able to capture some of the packets
 of the MPTCP session to perform the attack, but it is not capable
 of changing, discarding, or delaying any packet of the MPTCP
 session. The attacker can be in the forward and/or backward
 directions for the initial subflow and/or other subflows. The
 specific needs of the attacker will be made explicit in the attack
 description.

 o Active attacker. The attacker is able to change, discard, or
 delay some of the packets of the MPTCP session. The attacker can
 be in the forward and/or backward directions for the initial
 subflow and/or other subflows. The specific needs of the attacker
 will be made explicit in the attack description.

 In this document, we consider the following possible combinations of
 attackers:

 o an on-path eavesdropper

 o an on-path active attacker

 o an off-path active attacker

 o a partial-time on-path eavesdropper

 o a partial-time on-path active attacker

 In the rest of the document, we describe different attacks that are
 possible against the MPTCP protocol specified in RFC 6824 and propose
 possible security enhancements to address them.

2. ADD_ADDR Attack

 Summary of the attack:

 Type of attack: MPTCP session hijack enabling a man-in-the-middle
 (MitM) attack

 Type of attacker: off-path active attacker

Bagnulo, et al. Informational [Page 4]

RFC 7430 MPTCP Residual Threats July 2015

 Description:

 In this attack, the attacker uses the ADD_ADDR option defined in RFC
 6824 to hijack an ongoing MPTCP session and enable himself to perform
 a man-in-the-middle attack on the MPTCP session.

 Consider the following scenario. Host A with address IPA has one
 MPTCP session with Host B with address IPB. The MPTCP subflow
 between IPA and IPB is using port PA on Host A and port PB on Host B.
 The tokens for the MPTCP session are TA and TB for Host A and Host B,
 respectively. Host C is the attacker. It owns address IPC. The
 attack is executed as follows:

 1. Host C sends a forged packet with source address IPA, destination
 address IPB, source port PA, and destination port PB. The packet
 has the ACK flag set. The TCP sequence number for the segment is
 i, and the ACK sequence number is j. We will assume all these
 are valid; later, we discuss what the attacker needs to figure
 them out. The packet contains the ADD_ADDR option. The ADD_ADDR
 option announces IPC as an alternative address for the
 connection. It also contains an 8-bit address identifier that
 does not provide any strong security benefit.

 2. Host B receives the ADD_ADDR message and replies by sending a TCP
 SYN packet.

 Note: The MPTCP specification [RFC6824] states that the host
 receiving the ADD_ADDR option may initiate a new subflow. If
 the host is configured so that it does not initiate a new
 subflow, the attack will not succeed. For example, on the
 current Linux implementation, the server does not create
 subflows. Only the client does so.

 The source address for the packet is IPB; the destination address
 for the packet is IPC; the source port is PB’; and the
 destination port is PA’ (it is not required that PA=PA’ nor that
 PB=PB’). The sequence number for this packet is the new initial
 sequence number for this subflow. The ACK sequence number is not
 relevant as the ACK flag is not set. The packet carries an
 MP_JOIN option and the token TA. It also carries a random nonce
 generated by Host B called RB.

 3. Host C receives the SYN+MP_JOIN packet from Host B and alters it
 in the following way. It changes the source address to IPC and
 the destination address to IPA. It sends the modified packet to
 Host A, impersonating Host B.

Bagnulo, et al. Informational [Page 5]

RFC 7430 MPTCP Residual Threats July 2015

 4. Host A receives the SYN+MP_JOIN message and replies with a
 SYN/ACK+MP_JOIN message. The packet has source address IPA and
 destination address IPC, as well as all the other needed
 parameters. In particular, Host A computes a valid Hashed
 Message Authentication Code (HMAC) and places it in the MP_JOIN
 option.

 5. Host C receives the SYN/ACK+MP_JOIN message and changes the
 source address to IPC and the destination address to IPB. It
 sends the modified packet to IPB, impersonating Host A.

 6. Host B receives the SYN/ACK+MP_JOIN message. Host B verifies the
 HMAC of the MP_JOIN option and confirms its validity. It replies
 with an ACK+MP_JOIN packet. The packet has source address IPB
 and destination address IPC, as well as all the other needed
 parameters. The returned MP_JOIN option contains a valid HMAC
 computed by Host B.

 7. Host C receives the ACK+MP_JOIN message from B and alters it in
 the following way. It changes the source address to IPC and the
 destination address to IPA. It sends the modified packet to Host
 A, impersonating Host B.

 8. Host A receives the ACK+MP_JOIN message and creates the new
 subflow. At this point, the attacker has managed to place itself
 as a MitM for one subflow for the existing MPTCP session. It
 should be noted that the subflow between addresses IPA and IPB
 that does not flow through the attacker still exists, so the
 attacker has not completely intercepted all the packets in the
 communication (yet). If the attacker wishes to completely
 intercept the MPTCP session, it can do the following additional
 step.

 9. Host C sends two TCP RST messages. One TCP RST packet is sent to
 Host B, with source address IPA, destination address IPB, and
 source and destination ports PA and PB, respectively. The other
 TCP RST message is sent to Host A, with source address IPB,
 destination address IPA, and source and destination ports PB and
 PA, respectively. Both RST messages must contain a valid
 sequence number. Note that figuring the sequence numbers to be
 used here for subflow A is the same difficulty as being able to
 send the initial ADD_ADDR option with valid sequence number and
 ACK value. If there are more subflows, then the attacker needs
 to find the sequence number and ACK for each subflow. At this
 point, the attacker has managed to fully hijack the MPTCP
 session.

Bagnulo, et al. Informational [Page 6]

RFC 7430 MPTCP Residual Threats July 2015

 Information required by the attacker to perform the described attack:

 In order to perform this attack the attacker needs to guess or know
 the following pieces of information. The attacker needs this
 information for one of the subflows belonging to the MPTCP session.

 o the four-tuple {Client-side IP Address, Client-side Port, Server-
 side Address, Server-side Port} that identifies the target TCP
 connection

 o a valid sequence number for the subflow

 o a valid ACK sequence number for the subflow

 o a valid address identifier for IPC

 TCP connections are uniquely identified by the four-tuple {Source
 Address, Source Port, Destination Address, Destination Port}. Thus,
 in order to attack a TCP connection, an attacker needs to know or be
 able to guess each of the values in that four-tuple. Assuming the
 two peers of the target TCP connection are known, the Source Address
 and the Destination Address can be assumed to be known.

 Note: In order to be able to successfully perform this attack, the
 attacker needs to be able to send packets with a forged source
 address. This means that the attacker cannot be located in a
 network where techniques like ingress filtering [RFC2827] or
 source address validation [RFC7039] are deployed. However,
 ingress filtering is not as widely implemented as one would expect
 and hence cannot be relied upon as a mitigation for this kind of
 attack.

 Assuming the attacker knows the application protocol for which the
 TCP connection is being employed, the server-side port can also be
 assumed to be known. Finally, the client-side port will generally
 not be known and will need to be guessed by the attacker. The
 chances of an attacker guessing the client-side port will depend on
 the ephemeral port range employed by the client and whether or not
 the client implements port randomization [RFC6056].

 Assuming TCP sequence number randomization is in place (see e.g.,
 [RFC6528]), an attacker would have to blindly guess a valid TCP
 sequence number. That is,

 RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND or RCV.NXT =<
 SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND

Bagnulo, et al. Informational [Page 7]

RFC 7430 MPTCP Residual Threats July 2015

 As a result, the chances of an attacker succeeding will depend on the
 TCP receive window size at the target TCP peer.

 Note: Automatic TCP buffer tuning mechanisms have become common
 for popular TCP implementations; hence, very large TCP window
 sizes of values up to 2 MB could end up being employed by such TCP
 implementations.

 According to [RFC793], the acknowledgement number is considered valid
 as long as it does not acknowledge the receipt of data that has not
 yet been sent. That is, the following expression must be true:

 SEG.ACK <= SND.NXT

 However, for implementations that support [RFC5961], the following
 (stricter) validation check is enforced:

 SND.UNA - MAX.SND.WND <= SEG.ACK <= SND.NXT

 Finally, in order for the address identifier to be valid, the only
 requirement is that it needs to be different from the ones already
 being used by Host A in that MPTCP session, so a random identifier is
 likely to work.

 Given that a large number of factors affect the chances of an
 attacker successfully performing the aforementioned off-path attacks,
 we provide two general expressions for the expected number of packets
 the attacker needs to send to succeed in the attack: one for MPTCP
 implementations that support [RFC5961] and another for MPTCP
 implementations that do not.

 Implementations that do not support RFC 5961:

 Packets = (2^32/(RCV_WND)) * 2 * EPH_PORT_SIZE/2 * 1/MSS

 Where the new parameters are:

 Packets:
 Maximum number of packets required to successfully perform an off-
 path (blind) attack.

 RCV_WND:
 TCP receive window size (RCV.WND) at the target node.

Bagnulo, et al. Informational [Page 8]

RFC 7430 MPTCP Residual Threats July 2015

 EPH_PORT_SIZE:
 Number of ports comprising the ephemeral port range at the
 "client" system.

 MSS:
 Maximum Segment Size, assuming the attacker will send full
 segments to maximize the chances of getting a hit.

 Notes:
 The value "2^32" represents the size of the TCP sequence number
 space.

 The value "2" accounts for two different ACK numbers (separated by
 2^31) that should be employed to make sure the ACK number is
 valid.

 The following table contains some sample results for the number of
 required packets, based on different values of RCV_WND and
 EPH_PORT_SIZE for an MSS of 1500 bytes.

 +-------------+---------+---------+--------+---------+
 | Ports \ Win | 16 KB | 128 KB | 256 KB | 2048 KB |
 +-------------+---------+---------+--------+---------+
 | 4000 | 699050 | 87381 | 43690 | 5461 |
 +-------------+---------+---------+--------+---------+
 | 10000 | 1747626 | 218453 | 109226 | 13653 |
 +-------------+---------+---------+--------+---------+
 | 50000 | 8738133 | 1092266 | 546133 | 68266 |
 +-------------+---------+---------+--------+---------+

 Table 1: Maximum Number of Packets for Successful Attack

 Implementations that do support RFC 5961:

 Packets = (2^32/(RCV_WND)) * (2^32/(2 * SND_MAX_WND)) *
 EPH_PORT_SIZE/2 * 1/MSS

 Where:

 Packets:
 Maximum number of packets required to successfully perform an off-
 path (blind) attack.

 RCV_WND:
 TCP receive window size (RCV.WND) at the target MPTCP endpoint.

Bagnulo, et al. Informational [Page 9]

RFC 7430 MPTCP Residual Threats July 2015

 SND_MAX_WND:
 Maximum TCP send window size ever employed by the target MPTCP
 endpoint (MAX.SND.WND).

 EPH_PORT_SIZE:
 Number of ports comprising the ephemeral port range at the
 "client" system.

 Notes:
 The value "2^32" represents the size of the TCP sequence number
 space.

 The parameter "MAX.SND.WND" is specified in [RFC5961].

 The value "2 * SND_MAX_WND" results from the expression "SND.NXT -
 SND.UNA - MAX.SND.WND", assuming that, for connections that
 perform bulk data transfers, "SND.NXT - SND.UNA == MAX.SND.WND".
 If an attacker targets a TCP endpoint that is not actively
 transferring data, "2 * SND_MAX_WND" would become "SND_MAX_WND"
 (and hence a successful attack would typically require more
 packets).

 The following table contains some sample results for the number of
 required packets, based on different values of RCV_WND, SND_MAX_WND,
 and EPH_PORT_SIZE. For these implementations, only a limited number
 of sample results are provided (as an indication of how [RFC5961]
 increases the difficulty of performing these attacks).

 +-------------+-------------+-----------+-----------+---------+
 | Ports \ Win | 16 KB | 128 KB | 256 KB | 2048 KB |
 +-------------+-------------+-----------+-----------+---------+
 | 4000 | 45812984490 | 715827882 | 178956970 | 2796202 |
 +-------------+-------------+-----------+-----------+---------+

 Table 2: Maximum Number of Packets for Successful Attack

 Note:
 In the aforementioned table, all values are computed with RCV_WND
 equal to SND_MAX_WND.

2.1. Possible Security Enhancements to Prevent This Attack

 1. To include the token of the connection in the ADD_ADDR option.
 This would make it harder for the attacker to launch the attack,
 since the attacker needs to either eavesdrop the token (so this
 can no longer be a blind attack) or to guess it, but a random
 32-bit number is not easy to guess. However, this would imply
 that any eavesdropper that is able to see the token would be able

Bagnulo, et al. Informational [Page 10]

RFC 7430 MPTCP Residual Threats July 2015

 to launch this attack. This solution then increases the
 vulnerability window against eavesdroppers from the initial 3-way
 handshake for the MPTCP session to any exchange of the ADD_ADDR
 messages.

 2. To include the HMAC of the address contained in the ADD_ADDR
 option. The key used for the HMAC is the concatenation of the
 key of the receiver and the key of the sender (in the same way
 they are used for generating the HMAC of the MP_JOIN message).
 This makes it much more secure, since it requires the attacker to
 have both keys (either by eavesdropping it in the first exchange
 or by guessing it). Because this solution relies on the key used
 in the MPTCP session, the protection of this solution would
 increase if new key generation methods are defined for MPTCP
 (e.g., using Secure Socket Layer (SSL) keys as has been
 proposed).

 3. To include the destination address of the SYN packet in the HMAC
 of the MP_JOIN message. As the attacker requires changing the
 destination address to perform the described attack, protecting
 it would prevent the attack. It wouldn’t allow hosts behind NATs
 to be reached by an address in the ADD_ADDR option, even with
 static NAT bindings (like a web server at home).

 Of the options described above, option 2 is recommended as it
 achieves a higher security level while preserving the required
 functionality (i.e., NAT compatibility).

3. DoS Attack on MP_JOIN

 Summary of the attack:

 Type of attack: MPTCP denial-of-service attack, preventing the
 hosts from creating new subflows

 Type of attacker: off-path active attacker

 Description:

 As currently specified, the initial SYN+MP_JOIN message of the 3-way
 handshake for additional subflows creates state in the host receiving
 the message. This is because the SYN+MP_JOIN contains the 32-bit
 token that allows the receiver to identify the MPTCP session and the
 32-bit random nonce used in the HMAC calculation. As this
 information is not re-sent in the third ACK of the 3-way handshake, a
 host must create state upon reception of a SYN+MP_JOIN.

Bagnulo, et al. Informational [Page 11]

RFC 7430 MPTCP Residual Threats July 2015

 Assume that an MPTCP session exists between Host A and Host B, with
 tokens TA and TB. An attacker, sending a SYN+MP_JOIN to Host B, with
 the valid token TB, will trigger the creation of state on Host B.
 The number of these half-open connections a host can store per MPTCP
 session is limited by a certain number and is implementation-
 dependent. The attacker can simply exhaust this limit by sending
 multiple SYN+MP_JOINs with different 5-tuples. The (possibly forged)
 source address of the attack packets will typically correspond to an
 address that is not in use, or else, the SYN/ACK sent by Host B would
 elicit a RST from the impersonated node, thus removing the
 corresponding state at Host B. Further discussion of traditional SYN
 flooding attacks and common mitigations can be found in [RFC4987].

 This effectively prevents Host A from sending any more SYN+MP_JOINs
 to Host B, as the number of acceptable half-open connections per
 MPTCP session on Host B has been exhausted.

 The attacker needs to know the token TB in order to perform the
 described attack. This can be achieved if it is a partial-time on-
 path eavesdropper observing the 3-way handshake of the establishment
 of an additional subflow between Host A and Host B. If the attacker
 is never on-path, it has to guess the 32-bit token.

3.1. Possible Security Enhancements to Prevent This Attack

 The third packet of the 3-way handshake could be extended to also
 contain the 32-bit token and the random nonce that has been sent in
 the SYN+MP_JOIN. Further, Host B will have to generate its own
 random nonce in a reproducible fashion (e.g., a hash of the 5-tuple +
 initial sequence number + local secret). This will allow Host B to
 reply to a SYN+MP_JOIN without having to create state. Upon the
 reception of the third ACK, Host B can then verify the correctness of
 the HMAC and create the state.

4. SYN Flooding Amplification

 Summary of the attack:

 Type of attack: The attacker uses SYN+MP_JOIN messages to amplify
 the SYN flooding attack.

 Type of attacker: off-path active attacker

Bagnulo, et al. Informational [Page 12]

RFC 7430 MPTCP Residual Threats July 2015

 Description:

 SYN flooding attacks [RFC4987] use SYN messages to exhaust the
 server’s resources and prevent new TCP connections. A common
 mitigation is the use of SYN cookies [RFC4987] that allow stateless
 processing of the initial SYN message.

 With MPTCP, the initial SYN can be processed in a stateless fashion
 using the aforementioned SYN cookies. However, as described in the
 previous section, as currently specified, SYN+MP_JOIN messages are
 not processed in a stateless manner. This opens a new attack vector.
 The attacker can now open an MPTCP session by sending a regular SYN
 and creating the associated state but then sending as many
 SYN+MP_JOIN messages as supported by the server with different
 combinations of source address and source port, consuming the
 server’s resources without having to create state in the attacker.
 This is an amplification attack, where the cost on the attacker side
 is only the cost of the state associated with the initial SYN while
 the cost on the server side is the state for the initial SYN plus all
 the state associated with all the following SYN+MP_JOINs.

4.1. Possible Security Enhancements to Prevent This Attack

 1. The solution described for the previous DoS attack on MP_JOIN
 would also prevent this attack.

 2. Limiting the number of half-open subflows to a low number (e.g.,
 three subflows) would also limit the impact of this attack.

5. Eavesdropper in the Initial Handshake

 Summary of the attack:

 Type of attack: An eavesdropper present in the initial handshake
 where the keys are exchanged can hijack the MPTCP session at any
 time in the future.

 Type of attacker: partial-time on-path eavesdropper

 Description:

 In this case, the attacker is present along the path when the initial
 3-way handshake takes place and therefore is able to learn the keys
 used in the MPTCP session. This allows the attacker to move away
 from the MPTCP session path and still be able to hijack the MPTCP
 session in the future. This vulnerability was readily identified
 when designing the MPTCP security solution [RFC6181], and the threat
 was considered acceptable.

Bagnulo, et al. Informational [Page 13]

RFC 7430 MPTCP Residual Threats July 2015

5.1. Possible Security Enhancements to Prevent This Attack

 There are many techniques that can be used to prevent this attack,
 and each of them represents different trade-offs. At this point, we
 limit ourselves to enumerate them and provide useful pointers.

 1. Use of hash chains. The use of hash chains for MPTCP has been
 explored in [HASH-CHAINS].

 2. Use of SSL keys for MPTCP security as described in [MPTCP-SSL].

 3. Use of Cryptographically Generated Addresses (CGAs) for MPTCP
 security. CGAs [RFC3972] have been used in the past to secure
 multi-addressed protocols like Shim6 [RFC5533].

 4. Use of tcpcrypt [TCPCRYPT].

 5. Use of DNSSEC. DNSSEC has been proposed to secure the Mobile IP
 protocol [DNSSEC].

6. SYN/JOIN Attack

 Summary of the attack:

 Type of attack: An attacker that can intercept the SYN/JOIN
 message can alter the source address being added.

 Type of attacker: partial-time on-path eavesdropper

 Description:

 The attacker is present along the path when the SYN/JOIN exchange
 takes place. This allows the attacker to add any new address it
 wants to by simply substituting the source address of the SYN/JOIN
 packet for one it chooses. This vulnerability was readily identified
 when designing the MPTCP security solution [RFC6181], and the threat
 was considered acceptable.

6.1. Possible Security Enhancements to Prevent This Attack

 It should be noted that this vulnerability is fundamental due to the
 NAT support requirement. In other words, MPTCP must work through
 NATs in order to be deployable in the current Internet. NAT behavior
 is unfortunately indistinguishable from this attack. It is
 impossible to secure the source address, since doing so would prevent
 MPTCP from working through NATs. This basically implies that the
 solution cannot rely on securing the address. A more promising
 approach would be to look into securing the payload exchanged and

Bagnulo, et al. Informational [Page 14]

RFC 7430 MPTCP Residual Threats July 2015

 thus limiting the impact that the attack would have in the
 communication (e.g., tcpcrypt [TCPCRYPT] or similar).

7. Recommendations

 The current MPTCP specification [RFC6824] is Experimental. There is
 an ongoing effort to move it to Standards Track. We believe that the
 work on MPTCP security should follow two threads:

 o The work on improving MPTCP security so that the MPTCP
 specification [RFC6824] can become a Standards Track document.

 o The work on analyzing possible additional security enhancements to
 provide a more secure version of MPTCP.

 We expand on these in the following subsections.

7.1. MPTCP Security Improvements for a Standards Track Specification

 We believe that in order for MPTCP to progress to Standards Track,
 the ADD_ADDR attack must be addressed. We believe that the solution
 that should be adopted in order to deal with this attack is to
 include an HMAC to the ADD_ADDR message (with the address being added
 used as input to the HMAC as well as the key). This would make the
 ADD_ADDR message as secure as the JOIN message. In addition, this
 implies that if we implement a more secure way to create the key used
 in the MPTCP connection, then the security of both the MP_JOIN and
 the ADD_ADDR messages is automatically improved (since both use the
 same key in the HMAC).

 We believe that this is enough for MPTCP to progress as a Standards
 Track document because the security level is similar to single-path
 TCP per our previous analysis. Moreover, the security level achieved
 with these changes is exactly the same as other Standards Track
 documents. In particular, this would be the same security level as
 SCTP with dynamic addresses as defined in [RFC5061]. The Security
 Considerations section of RFC 5061 (which is a Standards Track
 document) reads:

 The addition and or deletion of an IP address to an existing
 association does provide an additional mechanism by which existing
 associations can be hijacked. Therefore, this document requires
 the use of the authentication mechanism defined in [RFC4895] to
 limit the ability of an attacker to hijack an association.

 Hijacking an association by using the addition and deletion of an
 IP address is only possible for an attacker who is able to
 intercept the initial two packets of the association setup when

Bagnulo, et al. Informational [Page 15]

RFC 7430 MPTCP Residual Threats July 2015

 the SCTP-AUTH extension is used without pre-shared keys. If such
 a threat is considered a possibility, then the [RFC4895] extension
 MUST be used with a preconfigured shared endpoint pair key to
 mitigate this threat.

 This is the same security level that would be achieved by MPTCP with
 the addition of the ADD_ADDR security measure recommended in this
 document.

7.2. Security Enhancements for MPTCP

 We also believe that is worthwhile to explore alternatives to secure
 MPTCP. As we identified earlier, the problem of securing JOIN
 messages is fundamentally incompatible with NAT support, so it is
 likely that a solution to this problem involves the protection of the
 data itself. Exploring the integration of MPTCP and approaches like
 tcpcrypt [TCPCRYPT] and exploring integration with SSL seem
 promising.

8. Security Considerations

 This whole document is about security considerations for MPTCP.

9. References

9.1. Normative References

 [RFC793] Postel, J., "Transmission Control Protocol", STD 7,
 RFC 793, DOI 10.17487/RFC0793, September 1981,
 <http://www.rfc-editor.org/info/rfc793>.

 [RFC3972] Aura, T., "Cryptographically Generated Addresses (CGA)",
 RFC 3972, DOI 10.17487/RFC3972, March 2005,
 <http://www.rfc-editor.org/info/rfc3972>.

 [RFC4895] Tuexen, M., Stewart, R., Lei, P., and E. Rescorla,
 "Authenticated Chunks for the Stream Control Transmission
 Protocol (SCTP)", RFC 4895, DOI 10.17487/RFC4895, August
 2007, <http://www.rfc-editor.org/info/rfc4895>.

 [RFC5061] Stewart, R., Xie, Q., Tuexen, M., Maruyama, S., and M.
 Kozuka, "Stream Control Transmission Protocol (SCTP)
 Dynamic Address Reconfiguration", RFC 5061,
 DOI 10.17487/RFC5061, September 2007,
 <http://www.rfc-editor.org/info/rfc5061>.

Bagnulo, et al. Informational [Page 16]

RFC 7430 MPTCP Residual Threats July 2015

 [RFC5961] Ramaiah, A., Stewart, R., and M. Dalal, "Improving TCP’s
 Robustness to Blind In-Window Attacks", RFC 5961,
 DOI 10.17487/RFC5961, August 2010,
 <http://www.rfc-editor.org/info/rfc5961>.

 [RFC6056] Larsen, M. and F. Gont, "Recommendations for Transport-
 Protocol Port Randomization", BCP 156, RFC 6056,
 DOI 10.17487/RFC6056, January 2011,
 <http://www.rfc-editor.org/info/rfc6056>.

 [RFC6528] Gont, F. and S. Bellovin, "Defending against Sequence
 Number Attacks", RFC 6528, DOI 10.17487/RFC6528, February
 2012, <http://www.rfc-editor.org/info/rfc6528>.

 [RFC6824] Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,
 "TCP Extensions for Multipath Operation with Multiple
 Addresses", RFC 6824, DOI 10.17487/RFC6824, January 2013,
 <http://www.rfc-editor.org/info/rfc6824>.

9.2. Informative References

 [DNSSEC] Kukec, A., Bagnulo, M., Ayaz, S., Bauer, C., and W. Eddy,
 "ROAM-DNSSEC: Route Optimization for Aeronautical Mobility
 using DNSSEC", 4th ACM International Workshop on Mobility
 in the Evolving Internet Architecture (MobiArch), 2009.

 [HASH-CHAINS]
 Diez, J., Bagnulo, M., Valera, F., and I. Vidal, "Security
 for multipath TCP: a constructive approach", International
 Journal of Internet Protocol Technology, Vol. 6, No. 3,
 2011.

 [MPTCP-SSL]
 Paasch, C. and O. Bonaventure, "Securing the MultiPath TCP
 handshake with external keys", Work in Progress,
 draft-paasch-mptcp-ssl-00, October 2012.

 [RFC2827] Ferguson, P. and D. Senie, "Network Ingress Filtering:
 Defeating Denial of Service Attacks which employ IP Source
 Address Spoofing", BCP 38, RFC 2827, DOI 10.17487/RFC2827,
 May 2000, <http://www.rfc-editor.org/info/rfc2827>.

 [RFC4960] Stewart, R., Ed., "Stream Control Transmission Protocol",
 RFC 4960, DOI 10.17487/RFC4960, September 2007,
 <http://www.rfc-editor.org/info/rfc4960>.

Bagnulo, et al. Informational [Page 17]

RFC 7430 MPTCP Residual Threats July 2015

 [RFC4987] Eddy, W., "TCP SYN Flooding Attacks and Common
 Mitigations", RFC 4987, DOI 10.17487/RFC4987, August 2007,
 <http://www.rfc-editor.org/info/rfc4987>.

 [RFC5533] Nordmark, E. and M. Bagnulo, "Shim6: Level 3 Multihoming
 Shim Protocol for IPv6", RFC 5533, DOI 10.17487/RFC5533,
 June 2009, <http://www.rfc-editor.org/info/rfc5533>.

 [RFC6181] Bagnulo, M., "Threat Analysis for TCP Extensions for
 Multipath Operation with Multiple Addresses", RFC 6181,
 DOI 10.17487/RFC6181, March 2011,
 <http://www.rfc-editor.org/info/rfc6181>.

 [RFC6275] Perkins, C., Ed., Johnson, D., and J. Arkko, "Mobility
 Support in IPv6", RFC 6275, DOI 10.17487/RFC6275, July
 2011, <http://www.rfc-editor.org/info/rfc6275>.

 [RFC7039] Wu, J., Bi, J., Bagnulo, M., Baker, F., and C. Vogt, Ed.,
 "Source Address Validation Improvement (SAVI) Framework",
 RFC 7039, DOI 10.17487/RFC7039, October 2013,
 <http://www.rfc-editor.org/info/rfc7039>.

 [TCPCRYPT] Bittau, A., Boneh, D., Hamburg, M., Handley, M., Mazieres,
 D., and Q. Slack, "Cryptographic protection of TCP Streams
 (tcpcrypt)", Work in Progress, draft-bittau-tcp-crypt-04,
 February 2014.

Acknowledgements

 We would like to thank Mark Handley for his comments on the attacks
 and countermeasures discussed in this document. We would also like
 to thank to Alissa Cooper, Phil Eardley, Yoshifumi Nishida, Barry
 Leiba, Stephen Farrell, and Stefan Winter for their comments and
 reviews.

 Marcelo Bagnulo, Christoph Paasch, Oliver Bonaventure, and Costin
 Raiciu are partially funded by the EU Trilogy 2 project.

Bagnulo, et al. Informational [Page 18]

RFC 7430 MPTCP Residual Threats July 2015

Authors’ Addresses

 Marcelo Bagnulo
 Universidad Carlos III de Madrid
 Av. Universidad 30
 Leganes, Madrid 28911
 Spain

 Phone: 34 91 6249500
 Email: marcelo@it.uc3m.es
 URI: http://www.it.uc3m.es

 Christoph Paasch
 UCLouvain

 Email: christoph.paasch@gmail.com

 Fernando Gont
 SI6 Networks / UTN-FRH
 Evaristo Carriego 2644
 Haedo, Provincia de Buenos Aires 1706
 Argentina

 Phone: +54 11 4650 8472
 Email: fgont@si6networks.com
 URI: http://www.si6networks.com

 Olivier Bonaventure
 UCLouvain
 Place Sainte Barbe, 2
 Louvain-la-Neuve, 1348
 Belgium

 Email: olivier.bonaventure@uclouvain.be

 Costin Raiciu
 Universitatea Politehnica Bucuresti
 Splaiul Independentei 313a
 Bucuresti
 Romania

 Email: costin.raiciu@cs.pub.ro

Bagnulo, et al. Informational [Page 19]

