
Internet Engineering Task Force (IETF) T. Reddy
Request for Comments: 7635 P. Patil
Category: Standards Track R. Ravindranath
ISSN: 2070-1721 Cisco
 J. Uberti
 Google
 August 2015

 Session Traversal Utilities for NAT (STUN) Extension
 for Third-Party Authorization

Abstract

 This document proposes the use of OAuth 2.0 to obtain and validate
 ephemeral tokens that can be used for Session Traversal Utilities for
 NAT (STUN) authentication. The usage of ephemeral tokens ensures
 that access to a STUN server can be controlled even if the tokens are
 compromised.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7635.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Reddy, et al. Standards Track [Page 1]

RFC 7635 STUN for Third-Party Authorization August 2015

Table of Contents

 1. Introduction . 2
 2. Terminology . 3
 3. Solution Overview . 3
 3.1. Usage with TURN . 4
 4. Obtaining a Token Using OAuth 7
 4.1. Key Establishment . 8
 4.1.1. HTTP Interactions 8
 4.1.2. Manual Provisioning 10
 5. Forming a Request . 10
 6. STUN Attributes . 10
 6.1. THIRD-PARTY-AUTHORIZATION 10
 6.2. ACCESS-TOKEN . 11
 7. STUN Server Behavior . 13
 8. STUN Client Behavior . 14
 9. TURN Client and Server Behavior 14
 10. Operational Considerations 15
 11. Security Considerations 15
 12. IANA Considerations . 16
 12.1. Well-Known ’stun-key’ URI 16
 13. References . 16
 13.1. Normative References 16
 13.2. Informative References 17
 Appendix A. Sample Tickets 20
 Appendix B. Interaction between the Client and Authorization
 Server . 22
 Acknowledgements . 24
 Authors’ Addresses . 24

1. Introduction

 Session Traversal Utilities for NAT (STUN) [RFC5389] provides a
 mechanism to control access via ’long-term’ username/password
 credentials that are provided as part of the STUN protocol. It is
 expected that these credentials will be kept secret; if the
 credentials are discovered, the STUN server could be used by
 unauthorized users or applications. However, in web applications
 like WebRTC [WEBRTC] where JavaScript uses the browser functionality
 for making real-time audio and/or video calls, web conferencing, and
 direct data transfer, ensuring this secrecy is typically not
 possible.

 To address this problem and the ones described in [RFC7376], this
 document proposes the use of third-party authorization using OAuth
 2.0 [RFC6749] for STUN. Using OAuth 2.0, a client obtains an
 ephemeral token from an authorization server, e.g., a WebRTC server,
 and the token is presented to the STUN server instead of the

Reddy, et al. Standards Track [Page 2]

RFC 7635 STUN for Third-Party Authorization August 2015

 traditional mechanism of presenting username/password credentials.
 The STUN server validates the authenticity of the token and provides
 required services. Third-party authorization using OAuth 2.0 for
 STUN explained in this specification can also be used with Traversal
 Using Relays around NAT (TURN) [RFC5766].

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 This document uses the following abbreviations:

 o WebRTC Server: A web server that supports WebRTC [WEBRTC].

 o Access Token: OAuth 2.0 access token.

 o mac_key: The session key generated by the authorization server.
 This session key has a lifetime that corresponds to the lifetime
 of the access token, is generated by the authorization server, and
 is bound to the access token.

 o kid: An ephemeral and unique key identifier. The kid also allows
 the resource server to select the appropriate keying material for
 decryption.

 o AS: Authorization server.

 o RS: Resource server.

 Some sections in this specification show the WebRTC server as the
 authorization server and the client as the WebRTC client; however,
 WebRTC is intended to be used for illustrative purpose only.

3. Solution Overview

 The STUN client knows that it can use OAuth 2.0 with the target STUN
 server either through configuration or when it receives the new STUN
 attribute THIRD-PARTY-AUTHORIZATION in the error response with an
 error code of 401 (Unauthorized).

 This specification uses the token type ’Assertion’ (a.k.a. self-
 contained token) described in [RFC6819] where all the information
 necessary to authenticate the validity of the token is contained
 within the token itself. This approach has the benefit of avoiding a
 protocol between the STUN server and the authorization server for
 token validation, thus reducing latency. The content of the token is

Reddy, et al. Standards Track [Page 3]

RFC 7635 STUN for Third-Party Authorization August 2015

 opaque to the client. The client embeds the token within a STUN
 request sent to the STUN server. Once the STUN server has determined
 the token is valid, its services are offered for a determined period
 of time. The access token issued by the authorization server is
 explained in Section 6.2. OAuth 2.0 in [RFC6749] defines four grant
 types. This specification uses the OAuth 2.0 grant type ’Implicit’
 as explained in Section 1.3.2 of [RFC6749] where the client is issued
 an access token directly. The string ’stun’ is defined by this
 specification for use as the OAuth scope parameter (see Section 3.3
 of [RFC6749]) for the OAuth token.

 The exact mechanism used by a client to obtain a token and other
 OAuth 2.0 parameters like token type, mac_key, token lifetime, and
 kid is outside the scope of this document. Appendix B provides an
 example deployment scenario of interaction between the client and
 authorization server to obtain a token and other OAuth 2.0
 parameters.

 Section 3.1 illustrates the use of OAuth 2.0 to achieve third-party
 authorization for TURN.

3.1. Usage with TURN

 TURN, an extension to the STUN protocol, is often used to improve the
 connectivity of peer-to-peer (P2P) applications. TURN ensures that a
 connection can be established even when one or both sides are
 incapable of a direct P2P connection. However, as a relay service,
 it imposes a non-trivial cost on the service provider. Therefore,
 access to a TURN service is almost always access controlled. In
 order to achieve third-party authorization, a resource owner, e.g., a
 WebRTC server, authorizes a TURN client to access resources on the
 TURN server.

 In this example, a resource owner, i.e., a WebRTC server, authorizes
 a TURN client to access resources on a TURN server.

Reddy, et al. Standards Track [Page 4]

RFC 7635 STUN for Third-Party Authorization August 2015

 +----------------------+----------------------------+
 | OAuth 2.0 | WebRTC |
 +======================+============================+
 | Client | WebRTC client |
 +----------------------+----------------------------+
 | Resource owner | WebRTC server |
 +----------------------+----------------------------+
 | Authorization server | Authorization server |
 +----------------------+----------------------------+
 | Resource server | TURN server |
 +----------------------+----------------------------+

 Figure 1: OAuth Terminology Mapped to WebRTC Terminology

 Using the OAuth 2.0 authorization framework, a WebRTC client (third-
 party application) obtains limited access to a TURN server (resource
 server) on behalf of the WebRTC server (resource owner or
 authorization server). The WebRTC client requests access to
 resources controlled by the resource owner (WebRTC server) and hosted
 by the resource server (TURN server). The WebRTC client obtains the
 access token, lifetime, session key, and kid. The TURN client
 conveys the access token and other OAuth 2.0 parameters learned from
 the authorization server to the TURN server. The TURN server obtains
 the session key from the access token. The TURN server validates the
 token, computes the message integrity of the request, and takes
 appropriate action, i.e, permits the TURN client to create
 allocations. This is shown in an abstract way in Figure 2.

Reddy, et al. Standards Track [Page 5]

RFC 7635 STUN for Third-Party Authorization August 2015

 +---------------+
 | +<******+
 +------------->| Authorization | *
 | | server | *
 | +----------|(WebRTC server)| * AS-RS,
 | | | | * AUTH keys
 (1) | | +---------------+ * (0)
 Access | | (2) *
 Token | | Access Token *
 request | | + *
 | | Session Key *
 | | *
 | V V
 +-------+---+ +-+----=-----+
 | | (3) | |
 | | TURN request + Access | |
 | WebRTC | Token | TURN |
 | client |---------------------->| server |
 | (Alice) | Allocate response (4) | |
 | |<----------------------| |
 +-----------+ +------------+

 User: Alice
 ****: Out-of-Band Long-Term Symmetric Key Establishment

 Figure 2: Interactions

 In the below figure, the TURN client sends an Allocate request to the
 TURN server without credentials. Since the TURN server requires that
 all requests be authenticated using OAuth 2.0, the TURN server
 rejects the request with a 401 (Unauthorized) error code and the STUN
 attribute THIRD-PARTY-AUTHORIZATION. The WebRTC client obtains an
 access token from the WebRTC server, provides the access token to the
 TURN client, and it tries again, this time including the access token
 in the Allocate request. This time, the TURN server validates the
 token, accepts the Allocate request, and returns an Allocate success
 response containing (among other things) the relayed transport
 address assigned to the allocation.

Reddy, et al. Standards Track [Page 6]

RFC 7635 STUN for Third-Party Authorization August 2015

 +-------------------+ +--------+ +---------+
......... TURN		TURN		WebRTC
.WebRTC . client				
.client .		server		server
.........				
 +-------------------+ +--------+ +---------+
 | | Allocate request | |
 | |-->| |
 | | | |
 | | Allocate error response | |
 | | (401 Unauthorized) | |
 | |<--| |
 | | THIRD-PARTY-AUTHORIZATION | |
 | | | |
 | | | |
 | | HTTP request for token | |
 |-->|
 | | HTTP response with token parameters | |
 |<--|
 |OAuth 2.0 | |
 attributes | |
 |------>| | |
 | | Allocate request ACCESS-TOKEN | |
 | |-->| |
 | | | |
 | | Allocate success response | |
 | |<--| |
 | | TURN messages | |
 | | ////// integrity protected ////// | |
 | | ////// integrity protected ////// | |
 | | ////// integrity protected ////// | |

 Figure 3: TURN Third-Party Authorization

4. Obtaining a Token Using OAuth

 A STUN client needs to know the authentication capability of the STUN
 server before deciding to use third-party authorization. A STUN
 client initially makes a request without any authorization. If the
 STUN server supports third-party authorization, it will return an
 error message indicating that the client can authorize to the STUN
 server using an OAuth 2.0 access token. The STUN server includes an
 ERROR-CODE attribute with a value of 401 (Unauthorized), a nonce
 value in a NONCE attribute, and a SOFTWARE attribute that gives
 information about the STUN server’s software. The STUN server also
 includes the additional STUN attribute THIRD-PARTY-AUTHORIZATION,
 which signals the STUN client that the STUN server supports third-
 party authorization.

Reddy, et al. Standards Track [Page 7]

RFC 7635 STUN for Third-Party Authorization August 2015

 Note: An implementation may choose to contact the authorization
 server to obtain a token even before it makes a STUN request, if it
 knows the server details beforehand. For example, once a client has
 learned that a STUN server supports third-party authorization from a
 authorization server, the client can obtain the token before making
 subsequent STUN requests.

4.1. Key Establishment

 In this model, the STUN server would not authenticate the client
 itself but would rather verify whether the client knows the session
 key associated with a specific access token. An example of this
 approach can be found with the OAuth 2.0 Proof-of-Possession (PoP)
 Security Architecture [POP-ARCH]. The authorization server shares a
 long-term secret (K) with the STUN server. When the client requests
 an access token, the authorization server creates a fresh and unique
 session key (mac_key) and places it into the token encrypted with the
 long-term secret. Symmetric cryptography MUST be chosen to ensure
 that the size of the encrypted token is not large because usage of
 asymmetric cryptography will result in large encrypted tokens, which
 may not fit into a single STUN message.

 The STUN server and authorization server can establish a long-term
 symmetric key (K) and a certain authenticated encryption algorithm,
 using an out-of-band mechanism. The STUN and authorization servers
 MUST establish K over an authenticated secure channel. If
 authenticated encryption with AES-CBC and HMAC-SHA (defined in
 [ENCRYPT]) is used, then the AS-RS and AUTH keys will be derived from
 K. The AS-RS key is used for encrypting the self-contained token,
 and the message integrity of the encrypted token is calculated using
 the AUTH key. If the Authenticated Encryption with Associated Data
 (AEAD) algorithm defined in [RFC5116] is used, then there is no need
 to generate the AUTH key, and the AS-RS key will have the same value
 as K.

 The procedure for establishment of the long-term symmetric key is
 outside the scope of this specification, and this specification does
 not mandate support of any given mechanism. Sections 4.1.1 and 4.1.2
 show examples of mechanisms that can be used.

4.1.1. HTTP Interactions

 The STUN and AS servers could choose to use Representational State
 Transfer (REST) API over HTTPS to establish a long-term symmetric
 key. HTTPS MUST be used for data confidentiality, and TLS based on a
 client certificate MUST be used for mutual authentication. To
 retrieve a new long-term symmetric key, the STUN server makes an HTTP
 GET request to the authorization server, specifying STUN as the

Reddy, et al. Standards Track [Page 8]

RFC 7635 STUN for Third-Party Authorization August 2015

 service to allocate the long-term symmetric keys for and specifying
 the name of the STUN server. The response is returned with content-
 type ’application/json’ and consists of a JavaScript Object Notation
 (JSON) [RFC7159] object containing the long-term symmetric key.

 Request

 service - specifies the desired service (TURN)
 name - STUN server name associated with the key

 example:
 GET https://www.example.com/.well-known/stun-key?service=stun
 &name=turn1@example.com

 Response

 k - long-term symmetric key
 exp - identifies the time after which the key expires

 example:
 {
 "k" :
 "ESIzRFVmd4iZABEiM0RVZgKn6WjLaTC1FXAghRMVTzkBGNaaN496523WIISKerLi",
 "exp" : 1300819380,
 "kid" :"22BIjxU93h/IgwEb"
 "enc" : A256GCM
 }

 The authorization server must also signal kid to the STUN server,
 which will be used to select the appropriate keying material for
 decryption. The parameter ’k’ is defined in Section 6.4.1 of
 [RFC7518], ’enc’ is defined in Section 4.1.2 of [RFC7516], ’kid’ is
 defined in Section 4.1.4 of [RFC7515], and ’exp’ is defined in
 Section 4.1.4 of [RFC7519]. A256GCM and other authenticated
 encryption algorithms are defined in Section 5.1 of [RFC7518]. A
 STUN server and authorization server implementation MUST support
 A256GCM as the authenticated encryption algorithm.

 If A256CBC-HS512 as defined in [RFC7518] is used, then the AS-RS and
 AUTH keys are derived from K using the mechanism explained in
 Section 5.2.2.1 of [RFC7518]. In this case, the AS-RS key length
 must be 256 bits and the AUTH key length must be 256 bits
 (Section 2.6 of [RFC4868]).

Reddy, et al. Standards Track [Page 9]

RFC 7635 STUN for Third-Party Authorization August 2015

4.1.2. Manual Provisioning

 The STUN and AS servers could be manually configured with a long-term
 symmetric key, an authenticated encryption algorithm, and kid.

 Note: The mechanism specified in this section requires configuration
 to change the long-term symmetric key and/or authenticated encryption
 algorithm. Hence, a STUN server and authorization server
 implementation SHOULD support REST as explained in Section 4.1.1.

5. Forming a Request

 When a STUN server responds that third-party authorization is
 required, a STUN client re-attempts the request, this time including
 access token and kid values in the ACCESS-TOKEN and USERNAME STUN
 attributes. The STUN client includes a MESSAGE-INTEGRITY attribute
 as the last attribute in the message over the contents of the STUN
 message. The HMAC for the MESSAGE-INTEGRITY attribute is computed as
 described in Section 15.4 of [RFC5389] where the mac_key is used as
 the input key for the HMAC computation. The STUN client and server
 will use the mac_key to compute the message integrity and do not
 perform MD5 hash on the credentials.

6. STUN Attributes

 The following new STUN attributes are introduced by this
 specification to accomplish third-party authorization.

6.1. THIRD-PARTY-AUTHORIZATION

 This attribute is used by the STUN server to inform the client that
 it supports third-party authorization. This attribute value contains
 the STUN server name. The authorization server may have tie ups with
 multiple STUN servers and vice versa, so the client MUST provide the
 STUN server name to the authorization server so that it can select
 the appropriate keying material to generate the self-contained token.
 If the authorization server does not have tie up with the STUN
 server, then it returns an error to the client. If the client does
 not support or is not capable of doing third-party authorization,
 then it defaults to first-party authentication. The
 THIRD-PARTY-AUTHORIZATION attribute is a comprehension-optional
 attribute (see Section 15 from [RFC5389]). If the client is able to
 comprehend THIRD-PARTY-AUTHORIZATION, it MUST ensure that third-party
 authorization takes precedence over first-party authentication (as
 explained in Section 10 of [RFC5389]).

Reddy, et al. Standards Track [Page 10]

RFC 7635 STUN for Third-Party Authorization August 2015

6.2. ACCESS-TOKEN

 The access token is issued by the authorization server. OAuth 2.0
 does not impose any limitation on the length of the access token but
 if path MTU is unknown, then STUN messages over IPv4 would need to be
 less than 548 bytes (Section 7.1 of [RFC5389]). The access token
 length needs to be restricted to fit within the maximum STUN message
 size. Note that the self-contained token is opaque to the client,
 and the client MUST NOT examine the token. The ACCESS-TOKEN
 attribute is a comprehension-required attribute (see Section 15 from
 [RFC5389]).

 The token is structured as follows:

 struct {
 uint16_t nonce_length;
 opaque nonce[nonce_length];
 opaque {
 uint16_t key_length;
 opaque mac_key[key_length];
 uint64_t timestamp;
 uint32_t lifetime;
 } encrypted_block;
 } token;

 Figure 4: Self-Contained Token Format

 Note: uintN_t means an unsigned integer of exactly N bits. Single-
 byte entities containing uninterpreted data are of type ’opaque’.
 All values in the token are stored in network byte order.

 The fields are described below:

 nonce_length: Length of the nonce field. The length of nonce for
 AEAD algorithms is explained in [RFC5116].

 Nonce: Nonce (N) formation is explained in Section 3.2 of [RFC5116].

 key_length: Length of the session key in octets. The key length of
 160 bits MUST be supported (i.e., only the 160-bit key is used by
 HMAC-SHA-1 for message integrity of STUN messages). The key
 length facilitates the hash agility plan discussed in Section 16.3
 of [RFC5389].

 mac_key: The session key generated by the authorization server.

Reddy, et al. Standards Track [Page 11]

RFC 7635 STUN for Third-Party Authorization August 2015

 timestamp: 64-bit unsigned integer field containing a timestamp.
 The value indicates the time since January 1, 1970, 00:00 UTC, by
 using a fixed-point format. In this format, the integer number of
 seconds is contained in the first 48 bits of the field, and the
 remaining 16 bits indicate the number of 1/64000 fractions of a
 second (Native format - Unix).

 lifetime: The lifetime of the access token, in seconds. For
 example, the value 3600 indicates one hour. The lifetime value
 MUST be greater than or equal to the ’expires_in’ parameter
 defined in Section 4.2.2 of [RFC6749], otherwise the resource
 server could revoke the token, but the client would assume that
 the token has not expired and would not refresh the token.

 encrypted_block: The encrypted_block (P) is encrypted and
 authenticated using the long-term symmetric key established
 between the STUN server and the authorization server.

 The AEAD encryption operation has four inputs: K, N, A, and P, as
 defined in Section 2.1 of [RFC5116], and there is a single output of
 ciphertext C or an indication that the requested encryption operation
 could not be performed.

 The associated data (A) MUST be the STUN server name. This ensures
 that the client does not use the same token to gain illegal access to
 other STUN servers provided by the same administrative domain, i.e.,
 when multiple STUN servers in a single administrative domain share
 the same long-term symmetric key with an authorization server.

 If authenticated encryption with AES-CBC and HMAC-SHA (explained in
 Section 2.1 of [ENCRYPT]) is used, then the encryption process is as
 illustrated below. The ciphertext consists of the string S, with the
 string T appended to it. Here, C and A denote ciphertext and the
 STUN server name, respectively. The octet string AL (Section 2.1 of
 [ENCRYPT]) is equal to the number of bits in A expressed as a 64-bit
 unsigned big-endian integer.

 o AUTH = initial authentication key length octets of K,

 o AS-RS = final encryption key length octets of K,

 o S = CBC-PKCS7-ENC(AS-RS, encrypted_block),

 * The Initialization Vector is set to zero because the
 encrypted_block in each access token will not be identical and
 hence will not result in generation of identical ciphertext.

 o mac = MAC(AUTH, A || S || AL),

Reddy, et al. Standards Track [Page 12]

RFC 7635 STUN for Third-Party Authorization August 2015

 o T = initial T_LEN octets of mac,

 o C = S || T.

 The entire token, i.e., the ’encrypted_block’, is base64 encoded (see
 Section 4 of [RFC4648]), and the resulting access token is signaled
 to the client.

7. STUN Server Behavior

 The STUN server, on receiving a request with the ACCESS-TOKEN
 attribute, performs checks listed in Section 10.2.2 of [RFC5389] in
 addition to the following steps to verify that the access token is
 valid:

 o The STUN server selects the keying material based on kid signaled
 in the USERNAME attribute.

 o The AEAD decryption operation has four inputs: K, N, A, and C, as
 defined in Section 2.2 of [RFC5116]. The AEAD decryption
 algorithm has only a single output, either a plaintext or a
 special symbol FAIL that indicates that the inputs are not
 authentic. If the authenticated decrypt operation returns FAIL,
 then the STUN server rejects the request with an error response
 401 (Unauthorized).

 o If AES_CBC_HMAC_SHA2 is used, then the final T_LEN octets are
 stripped from C. It performs the verification of the token
 message integrity by calculating HMAC over the STUN server name,
 the encrypted portion in the self-contained token, and the AL
 using the AUTH key, and if the resulting value does not match the
 mac field in the self-contained token, then it rejects the request
 with an error response 401 (Unauthorized).

 o The STUN server obtains the mac_key by retrieving the content of
 the access token (which requires decryption of the self-contained
 token using the AS-RS key).

 o The STUN server verifies that no replay took place by performing
 the following check:

 * The access token is accepted if the timestamp field (TS) in the
 self-contained token is shortly before the reception time of
 the STUN request (RDnew). The following formula is used:

 lifetime + Delta > abs(RDnew - TS)

Reddy, et al. Standards Track [Page 13]

RFC 7635 STUN for Third-Party Authorization August 2015

 The RECOMMENDED value for the allowed Delta is 5 seconds. If
 the timestamp is NOT within the boundaries, then the STUN
 server discards the request with error response 401
 (Unauthorized).

 o The STUN server uses the mac_key to compute the message integrity
 over the request, and if the resulting value does not match the
 contents of the MESSAGE-INTEGRITY attribute, then it rejects the
 request with an error response 401 (Unauthorized).

 o If all the checks pass, the STUN server continues to process the
 request.

 o Any response generated by the server MUST include the MESSAGE-
 INTEGRITY attribute, computed using the mac_key.

 If a STUN server receives an ACCESS-TOKEN attribute unexpectedly
 (because it had not previously sent out a THIRD-PARTY-AUTHORIZATION),
 it will respond with an error code of 420 (Unknown Attribute) as
 specified in Section 7.3.1 of [RFC5389].

8. STUN Client Behavior

 o The client looks for the MESSAGE-INTEGRITY attribute in the
 response. If MESSAGE-INTEGRITY is absent or the value computed
 for message integrity using mac_key does not match the contents of
 the MESSAGE-INTEGRITY attribute, then the response MUST be
 discarded.

 o If the access token expires, then the client MUST obtain a new
 token from the authorization server and use it for new STUN
 requests.

9. TURN Client and Server Behavior

 Changes specific to TURN are listed below:

 o The access token can be reused for multiple Allocate requests to
 the same TURN server. The TURN client MUST include the ACCESS-
 TOKEN attribute only in Allocate and Refresh requests. Since the
 access token is valid for a specific period of time, the TURN
 server can cache it so that it can check if the access token in a
 new allocation request matches one of the cached tokens and avoids
 the need to decrypt the token.

Reddy, et al. Standards Track [Page 14]

RFC 7635 STUN for Third-Party Authorization August 2015

 o The lifetime provided by the TURN server in the Allocate and
 Refresh responses MUST be less than or equal to the lifetime of
 the token. It is RECOMMENDED that the TURN server calculate the
 maximum allowed lifetime value using the formula:

 lifetime + Delta - abs(RDnew - TS)

 The RECOMMENDED value for the allowed Delta is 5 seconds.

 o If the access token expires, then the client MUST obtain a new
 token from the authorization server and use it for new
 allocations. The client MUST use the new token to refresh
 existing allocations. This way, the client has to maintain only
 one token per TURN server.

10. Operational Considerations

 The following operational considerations should be taken into
 account:

 o Each authorization server should maintain the list of STUN servers
 for which it will grant tokens and the long-term secret shared
 with each of those STUN servers.

 o If manual configuration (Section 4.1.2) is used to establish long-
 term symmetric keys, the necessary information, which includes
 long-term secret (K) and the authenticated encryption algorithm,
 has to be configured on each authorization server and STUN server
 for each kid. The client obtains the session key and HMAC
 algorithm from the authorization server in company with the token.

 o When a STUN client sends a request to get access to a particular
 STUN server (S), the authorization server must ensure that it
 selects the appropriate kid and access token depending on server
 S.

11. Security Considerations

 When OAuth 2.0 is used, the interaction between the client and the
 authorization server requires Transport Layer Security (TLS) with a
 ciphersuite offering confidentiality protection, and the guidance
 given in [RFC7525] must be followed to avoid attacks on TLS. The
 session key MUST NOT be transmitted in clear since this would
 completely destroy the security benefits of the proposed scheme. An
 attacker trying to replay the message with the ACCESS-TOKEN attribute
 can be mitigated by frequent changes of the nonce value as discussed
 in Section 10.2 of [RFC5389]. The client may know some (but not all)
 of the token fields encrypted with an unknown secret key, and the

Reddy, et al. Standards Track [Page 15]

RFC 7635 STUN for Third-Party Authorization August 2015

 token can be subjected to known-plaintext attacks, but AES is secure
 against this attack.

 An attacker may remove the THIRD-PARTY-AUTHORIZATION STUN attribute
 from the error message forcing the client to pick first-party
 authentication; this attack may be mitigated by opting for TLS
 [RFC5246] or Datagram Transport Layer Security (DTLS) [RFC6347] as a
 transport protocol for STUN, as defined in [RFC5389]and [RFC7350].

 Threat mitigation discussed in Section 5 of [POP-ARCH] and security
 considerations in [RFC5389] are to be taken into account.

12. IANA Considerations

 This document defines the THIRD-PARTY-AUTHORIZATION STUN attribute,
 described in Section 6. IANA has allocated the comprehension-
 optional codepoint 0x802E for this attribute.

 This document defines the ACCESS-TOKEN STUN attribute, described in
 Section 6. IANA has allocated the comprehension-required codepoint
 0x001B for this attribute.

12.1. Well-Known ’stun-key’ URI

 This memo registers the ’stun-key’ well-known URI in the Well-Known
 URIs registry as defined by [RFC5785].

 URI suffix: stun-key

 Change controller: IETF

 Specification document(s): This RFC

 Related information: None

13. References

13.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <http://www.rfc-editor.org/info/rfc4648>.

Reddy, et al. Standards Track [Page 16]

RFC 7635 STUN for Third-Party Authorization August 2015

 [RFC4868] Kelly, S. and S. Frankel, "Using HMAC-SHA-256,
 HMAC-SHA-384, and HMAC-SHA-512 with IPsec", RFC 4868,
 DOI 10.17487/RFC4868, May 2007,
 <http://www.rfc-editor.org/info/rfc4868>.

 [RFC5116] McGrew, D., "An Interface and Algorithms for Authenticated
 Encryption", RFC 5116, DOI 10.17487/RFC5116, January 2008,
 <http://www.rfc-editor.org/info/rfc5116>.

 [RFC5389] Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,
 "Session Traversal Utilities for NAT (STUN)", RFC 5389,
 DOI 10.17487/RFC5389, October 2008,
 <http://www.rfc-editor.org/info/rfc5389>.

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
 RFC 6749, DOI 10.17487/RFC6749, October 2012,
 <http://www.rfc-editor.org/info/rfc6749>.

 [RFC7518] Jones, M., "JSON Web Algorithms (JWA)", RFC 7518,
 DOI 10.17487/RFC7518, May 2015,
 <http://www.rfc-editor.org/info/rfc7518>.

13.2. Informative References

 [ENCRYPT] McGrew, D., Foley, J., and K. Paterson, "Authenticated
 Encryption with AES-CBC and HMAC-SHA", Work in Progress,
 draft-mcgrew-aead-aes-cbc-hmac-sha2-05, July 2014.

 [POP-ARCH] Hunt, P., Richer, J., Mills, W., Mishra, P., and H.
 Tschofenig, "OAuth 2.0 Proof-of-Possession (PoP) Security
 Architecture", Work in Progress,
 draft-ietf-oauth-pop-architecture-02, July 2015.

 [POP-KEY-DIST]
 Bradley, J., Hunt, P., Jones, M., and H. Tschofenig,
 "OAuth 2.0 Proof-of-Possession: Authorization Server to
 Client Key Distribution", Work in Progress,
 draft-ietf-oauth-pop-key-distribution-01, March 2015.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

Reddy, et al. Standards Track [Page 17]

RFC 7635 STUN for Third-Party Authorization August 2015

 [RFC5766] Mahy, R., Matthews, P., and J. Rosenberg, "Traversal Using
 Relays around NAT (TURN): Relay Extensions to Session
 Traversal Utilities for NAT (STUN)", RFC 5766,
 DOI 10.17487/RFC5766, April 2010,
 <http://www.rfc-editor.org/info/rfc5766>.

 [RFC5785] Nottingham, M. and E. Hammer-Lahav, "Defining Well-Known
 Uniform Resource Identifiers (URIs)", RFC 5785,
 DOI 10.17487/RFC5785, April 2010,
 <http://www.rfc-editor.org/info/rfc5785>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <http://www.rfc-editor.org/info/rfc6347>.

 [RFC6819] Lodderstedt, T., Ed., McGloin, M., and P. Hunt, "OAuth 2.0
 Threat Model and Security Considerations", RFC 6819,
 DOI 10.17487/RFC6819, January 2013,
 <http://www.rfc-editor.org/info/rfc6819>.

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <http://www.rfc-editor.org/info/rfc7159>.

 [RFC7350] Petit-Huguenin, M. and G. Salgueiro, "Datagram Transport
 Layer Security (DTLS) as Transport for Session Traversal
 Utilities for NAT (STUN)", RFC 7350, DOI 10.17487/RFC7350,
 August 2014, <http://www.rfc-editor.org/info/rfc7350>.

 [RFC7376] Reddy, T., Ravindranath, R., Perumal, M., and A. Yegin,
 "Problems with Session Traversal Utilities for NAT (STUN)
 Long-Term Authentication for Traversal Using Relays around
 NAT (TURN)", RFC 7376, DOI 10.17487/RFC7376, September
 2014, <http://www.rfc-editor.org/info/rfc7376>.

 [RFC7515] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May
 2015, <http://www.rfc-editor.org/info/rfc7515>.

 [RFC7516] Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)",
 RFC 7516, DOI 10.17487/RFC7516, May 2015,
 <http://www.rfc-editor.org/info/rfc7516>.

 [RFC7519] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
 <http://www.rfc-editor.org/info/rfc7519>.

Reddy, et al. Standards Track [Page 18]

RFC 7635 STUN for Third-Party Authorization August 2015

 [RFC7525] Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May
 2015, <http://www.rfc-editor.org/info/rfc7525>.

 [STUN] Petit-Huguenin, M., Salgueiro, G., Rosenberg, J., Wing,
 D., Mahy, R., and P. Matthews, "Session Traversal
 Utilities for NAT (STUN)", Work in Progress,
 draft-ietf-tram-stunbis-04, March 2015.

 [WEBRTC] Alvestrand, H., "Overview: Real Time Protocols for
 Browser-based Applications", Work in Progress, draft-ietf-
 rtcweb-overview-14, June 2015.

Reddy, et al. Standards Track [Page 19]

RFC 7635 STUN for Third-Party Authorization August 2015

Appendix A. Sample Tickets

 Input data (same for all samples below):

 //STUN SERVER NAME
 server_name = "blackdow.carleon.gov";

 //Shared key between AS and RS

 long_term_key = \x48\x47\x6b\x6a\x33\x32\x4b\x4a\x47\x69\x75\x79
 \x30\x39\x38\x73\x64\x66\x61\x71\x62\x4e\x6a\x4f
 \x69\x61\x7a\x37\x31\x39\x32\x33

 //MAC key of the session (included in the token)
 mac_key = \x5a\x6b\x73\x6a\x70\x77\x65\x6f\x69\x78\x58\x6d\x76\x6e
 \x36\x37\x35\x33\x34\x6d;

 //length of the MAC key
 mac_key_length = 20;

 //The timestamp field in the token
 token_timestamp = 92470300704768;

 //The lifetime of the token
 token_lifetime = 3600;

 //nonce for AEAD
 aead_nonce = \x68\x34\x6a\x33\x6b\x32\x6c\x32\x6e\x34\x62\x35;

 Samples:

 1) token encryption algorithm = AEAD_AES_256_GCM

 Encrypted token (64 bytes = 2 + 12 + 34 + 16) =

 \x00\x0c\x68\x34\x6a\x33\x6b\x32\x6c\x32\x6e\x34\x62
 \x35\x61\x7e\xf1\x34\xa3\xd5\xe4\x4e\x9a\x19\xcc\x7d
 \xc1\x04\xb0\xc0\x3d\x03\xb2\xa5\x51\xd8\xfd\xf5\xcd
 \x3b\x6d\xca\x6f\x10\xcf\xb7\x7e\x5b\x2d\xde\xc8\x4d
 \x29\x3a\x5c\x50\x49\x93\x59\xf0\xc2\xe2\x6f\x76

Reddy, et al. Standards Track [Page 20]

RFC 7635 STUN for Third-Party Authorization August 2015

 2) token encryption algorithm = AEAD_AES_128_GCM

 Encrypted token (64 bytes = 2 + 12 + 34 + 16) =

 \x00\x0c\x68\x34\x6a\x33\x6b\x32\x6c\x32\x6e\x34\x62
 \x35\x7f\xb9\xe9\x9f\x08\x27\xbe\x3d\xf1\xe1\xbd\x65
 \x14\x93\xd3\x03\x1d\x36\xdf\x57\x07\x97\x84\xae\xe5
 \xea\xcb\x65\xfa\xd4\xf2\x7f\xab\x1a\x3f\x97\x97\x4b
 \x69\xf8\x51\xb2\x4b\xf5\xaf\x09\xed\xa3\x57\xe0

 Note:
 [1] After EVP_EncryptFinal_ex encrypts the final data,
 EVP_CIPHER_CTX_ctrl must be called to append
 the authentication tag to the ciphertext.
 //EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG, taglen, tag);

 [2] EVP_CIPHER_CTX_ctrl must be invoked to set the
 authentication tag before calling EVP_DecryptFinal.
 //EVP_CIPHER_CTX_ctrl (&ctx, EVP_CTRL_GCM_SET_TAG, taglen, tag);

 Figure 5: Sample Tickets

Reddy, et al. Standards Track [Page 21]

RFC 7635 STUN for Third-Party Authorization August 2015

Appendix B. Interaction between the Client and Authorization Server

 The client makes an HTTP request to an authorization server to obtain
 a token that can be used to avail itself of STUN services. The STUN
 token is returned in JSON syntax [RFC7159], along with other OAuth
 2.0 parameters like token type, key, token lifetime, and kid as
 defined in [POP-KEY-DIST].

 +-------------------+ +--------+ +---------+
......... STUN		STUN		WebRTC
.WebRTC . client				
.client .		server		server
.........				
 +-------------------+ +--------+ +---------+
 | | STUN request | |
 | |-->| |
 | | | |
 | | STUN error response | |
 | | (401 Unauthorized) | |
 | |<--| |
 | | THIRD-PARTY-AUTHORIZATION | |
 | | | |
 | | | |
 | | HTTP request for token | |
 |-->|
 | | HTTP response with token parameters | |
 |<--|
 |OAuth 2.0 | |
 attributes | |
 |------>| | |
 | | STUN request with ACCESS-TOKEN | |
 | |-->| |
 | | | |
 | | STUN success response | |
 | |<--| |
 | | STUN messages | |
 | | ////// integrity protected ////// | |
 | | ////// integrity protected ////// | |
 | | ////// integrity protected ////// | |

 Figure 6: STUN Third-Party Authorization

 [POP-KEY-DIST] describes the interaction between the client and the
 authorization server. For example, the client learns the STUN server
 name "stun1@example.com" from the THIRD-PARTY-AUTHORIZATION attribute
 value and makes the following HTTP request for the access token using
 TLS (with extra line breaks for display purposes only):

Reddy, et al. Standards Track [Page 22]

RFC 7635 STUN for Third-Party Authorization August 2015

 HTTP/1.1
 Host: server.example.com
 Content-Type: application/x-www-form-urlencoded
 aud=stun1@example.com
 timestamp=1361471629
 grant_type=implicit
 token_type=pop
 alg=HMAC-SHA-256-128

 Figure 7: Request

 [STUN] supports hash agility and accomplishes this agility by
 computing message integrity using both HMAC-SHA-1 and
 HMAC-SHA-256-128. The client signals the algorithm supported by it
 to the authorization server in the ’alg’ parameter defined in
 [POP-KEY-DIST]. The authorization server determines the length of
 the mac_key based on the HMAC algorithm conveyed by the client. If
 the client supports both HMAC-SHA-1 and HMAC-SHA-256-128, then it
 signals HMAC-SHA-256-128 to the authorization server, gets a 256-bit
 key from the authorization server, and calculates a 160-bit key for
 HMAC-SHA-1 using SHA1 and taking the 256-bit key as input.

 If the client is authorized, then the authorization server issues an
 access token. An example of a successful response:

 HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-store

 {
 "access_token":
 "U2FsdGVkX18qJK/kkWmRcnfHglrVTJSpS6yU32kmHmOrfGyI3m1gQj1jRPsr0uBb
 HctuycAgsfRX7nJW2BdukGyKMXSiNGNnBzigkAofP6+Z3vkJ1Q5pWbfSRroOkWBn",
 "token_type":"pop",
 "expires_in":1800,
 "kid":"22BIjxU93h/IgwEb",
 "key":"v51N62OM65kyMvfTI08O"
 "alg":HMAC-SHA-256-128
 }

 Figure 8: Response

Reddy, et al. Standards Track [Page 23]

RFC 7635 STUN for Third-Party Authorization August 2015

Acknowledgements

 The authors would like to thank Dan Wing, Pal Martinsen, Oleg
 Moskalenko, Charles Eckel, Spencer Dawkins, Hannes Tschofenig, Yaron
 Sheffer, Tom Taylor, Christer Holmberg, Pete Resnick, Kathleen
 Moriarty, Richard Barnes, Stephen Farrell, Alissa Cooper, and Rich
 Salz for comments and review. The authors would like to give special
 thanks to Brandon Williams for his help.

 Thanks to Oleg Moskalenko for providing token samples in Appendix A.

Authors’ Addresses

 Tirumaleswar Reddy
 Cisco Systems, Inc.
 Cessna Business Park, Varthur Hobli
 Sarjapur Marathalli Outer Ring Road
 Bangalore, Karnataka 560103
 India
 Email: tireddy@cisco.com

 Prashanth Patil
 Cisco Systems, Inc.
 Bangalore
 India
 Email: praspati@cisco.com

 Ram Mohan Ravindranath
 Cisco Systems, Inc.
 Cessna Business Park,
 Kadabeesanahalli Village, Varthur Hobli,
 Sarjapur-Marathahalli Outer Ring Road
 Bangalore, Karnataka 560103
 India
 Email: rmohanr@cisco.com

 Justin Uberti
 Google
 747 6th Ave S.
 Kirkland, WA 98033
 United States
 Email: justin@uberti.name

Reddy, et al. Standards Track [Page 24]

