I nt ernet Engi neering Task Force (I ETF) T. Reddy

Request for Comments: 7635 P. Pati
Cat egory: Standards Track R Ravi ndranath
| SSN: 2070-1721 Cisco
J. Uberti
Googl e

August 2015

Session Traversal Wilities for NAT (STUN) Extension
for Third-Party Authorization

Abst ract

Thi s docunent proposes the use of QAuth 2.0 to obtain and validate
epheneral tokens that can be used for Session Traversal Utilities for
NAT (STUN) authentication. The usage of epheneral tokens ensures
that access to a STUN server can be controlled even if the tokens are
conprom sed

Status of This Meno
This is an Internet Standards Track docunent.

This docunent is a product of the Internet Engi neering Task Force
(IETF). It represents the consensus of the |IETF comunity. It has
recei ved public review and has been approved for publication by the
Internet Engineering Steering Group (IESG. Further information on
Internet Standards is available in Section 2 of RFC 5741.

I nformation about the current status of this docunent, any errata,
and how to provide feedback on it may be obtai ned at
http://ww. rfc-editor.org/info/rfc7635

Copyright Notice

Copyright (c) 2015 I ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunent is subject to BCP 78 and the I ETF Trust’s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this document. Code Conponents extracted fromthis docunment nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided wi thout warranty as
described in the Sinplified BSD License.

Reddy, et al. St andards Track [Page 1]

RFC 7635 STUN for Third-Party Authorization August 2015

Tabl e of Contents

1. Introduction 2
2. Ternmninol ogy . 3
3. Solution Overviewo 3
3.1. Usage with TURN . . . e e e e e s 4
4. (otaining a Token Using Cﬁuth . 7
4.1. Key Establishment 8
4.1.1. HTTP Interactions . 8

4.1.2. Mnual Provisioning 10
5. Formng a Request 10
6. STUN Attributes . . . K¢
6. 1. THIRD-PARTY—AUTHCRIZATICN Y K¢
6.2. ACCESS-TOKEN 1
7. STUN Server Behavior . 13
8. STUNdient Behavior 14
9. TURN dient and Server Behavior 14
10. Operational Considerations 15
11. Security Considerations 15
12. 1 ANA CbnS|derat|ons . e K)
12.1. Well-Known ’stun-key’ URI C e e 16
13. References . . . e ¢
13.1. Normative References e 1 <)
13.2. Informative References 17
Appendi x A. Sanple Tickets 20
Appendi x B. Interaction between the O |ent and Authorlzatlon
Server 0.0 e e 22
Acknowl edgenents L L L L ... L ..., 24
Authors’ Addresses 24
1. Introduction

Session Traversal Wilities for NAT (STUN) [RFC5389] provides a
mechani smto control access via 'long-tern usernane/ password
credentials that are provided as part of the STUN protocol. It is
expected that these credentials will be kept secret; if the
credentials are discovered, the STUN server could be used by

unaut hori zed users or applications. However, in web applications

i ke WebRTC [WEBRTC] where JavaScript uses the browser functionality
for making real-tinme audio and/or video calls, web conferencing, and
direct data transfer, ensuring this secrecy is typically not
possi bl e.

To address this problem and the ones described in [RFCr376], this
docunent proposes the use of third-party authorization using QAuth
2.0 [RFC6749] for STUN. Using QAuth 2.0, a client obtains an
epheneral token froman authorization server, e.g., a WbRTC server
and the token is presented to the STUN server instead of the

Reddy, et al. St andards Track [Page 2]

RFC 7635 STUN for Third-Party Authorization August 2015

tradi tional mechani sm of presenting usernane/ password credenti al s.
The STUN server validates the authenticity of the token and provides
required services. Third-party authorization using QAuth 2.0 for
STUN explained in this specification can also be used with Traversa
Usi ng Rel ays around NAT (TURN) [RFC5766] .

2. Term nol ogy

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMVENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in [RFC2119].

Thi s docunent uses the foll ow ng abbreviations:
0 WebRTC Server: A web server that supports WDbRTC [WEBRT(] .
0 Access Token: QAuth 2.0 access token

o mac_key: The session key generated by the authorization server
This session key has a lifetine that corresponds to the lifetine
of the access token, is generated by the authorization server, and
is bound to the access token

0 kid: An epheneral and unique key identifier. The kid also allows
the resource server to select the appropriate keying nmaterial for
decryption.

o AS: Authorization server.
0 RS. Resource server

Some sections in this specification showthe WbRTC server as the
aut hori zation server and the client as the WbRTC client; however,
WebRTC is intended to be used for illustrative purpose only.

3. Solution Overview

The STUN client knows that it can use QAuth 2.0 with the target STUN
server either through configuration or when it receives the new STUN
attribute TH RD- PARTY- AUTHORI ZATION in the error response with an
error code of 401 (Unauthorized).

This specification uses the token type 'Assertion’ (a.k.a. self-
cont ai ned token) described in [RFC6819] where all the infornmation
necessary to authenticate the validity of the token is contained
within the token itself. This approach has the benefit of avoiding a
prot ocol between the STUN server and the authorization server for
token validation, thus reducing |atency. The content of the token is

Reddy, et al. St andards Track [Page 3]

RFC 7635 STUN for Third-Party Authorization August 2015

opaque to the client. The client enbeds the token within a STUN
request sent to the STUN server. Once the STUN server has determ ned
the token is valid, its services are offered for a deternined period
of time. The access token issued by the authorization server is
explained in Section 6.2. QAuth 2.0 in [RFC6749] defines four grant
types. This specification uses the QAuth 2.0 grant type "Inplicit’
as explained in Section 1.3.2 of [RFC6749] where the client is issued
an access token directly. The string 'stun’ is defined by this
specification for use as the QAuth scope paraneter (see Section 3.3
of [RFC6749]) for the QAuth token.

The exact nechani smused by a client to obtain a token and ot her
QAuth 2.0 paraneters |like token type, nac_key, token lifetine, and
kid is outside the scope of this docunent. Appendix B provides an
exanpl e depl oynent scenario of interaction between the client and
aut horization server to obtain a token and other QAuth 2.0

par anet ers

Section 3.1 illustrates the use of QAuth 2.0 to achieve third-party
aut hori zation for TURN.

3.1. Usage with TURN

TURN, an extension to the STUN protocol, is often used to inprove the
connectivity of peer-to-peer (P2P) applications. TURN ensures that a
connection can be established even when one or both sides are

i ncapabl e of a direct P2P connection. However, as a relay service,

it inposes a non-trivial cost on the service provider. Therefore,
access to a TURN service is al nbst always access controlled. In
order to achieve third-party authorization, a resource owner, e.g., a
WebRTC server, authorizes a TURN client to access resources on the
TURN server.

In this exanple, a resource owner, i.e., a WDbRTC server, authorizes
a TURN client to access resources on a TURN server.

Reddy, et al. St andards Track [Page 4]

RFC 7635 STUN for Third-Party Authorization August 2015

S e +
| QAuth 2.0 | VebRTC |
+ + +
| dient | WebRTC client |
o e e e o e e e e e e e e e e e a o +
| Resource owner | WebRTC server

e e +
| Authorization server | Authorization server |
T N +
| Resource server | TURN server |
o e e e o e e e e e e e e e e e a o +

Figure 1: QAuth Term nol ogy Mapped to WebRTC Ter m nol ogy

Using the QAuth 2.0 authorization framework, a WDbRTC client (third-
party application) obtains limted access to a TURN server (resource
server) on behalf of the WbRTC server (resource owner or

aut hori zation server). The WbRTC client requests access to
resources controlled by the resource owner (WbRTC server) and hosted
by the resource server (TURN server). The WbRTC client obtains the
access token, lifetime, session key, and kid. The TURN client
conveys the access token and other QAuth 2.0 paraneters |earned from
the aut horization server to the TURN server. The TURN server obtains
the session key fromthe access token. The TURN server validates the
t oken, conputes the nessage integrity of the request, and takes
appropriate action, i.e, permts the TURN client to create
allocations. This is shown in an abstract way in Figure 2.

Reddy, et al. St andards Track [Page 5]

RFC 7635 STUN for Third-Party Authorization August 2015

oo +
| +<******+
R >| Aut horization
| | server | *
| R | (WebRTC server) | * AS-RS
| | | | * AUTH keys
(1) | R RRRREEEE + = (0)
Access | | (2) *
Token | | Access Token *
request | | + *
| | Session Key *
|| *
| Y Y
e +o- -+ SO SRR +
| | (3) | |
| | TURN request + Access |
| WebRTC | Token | TURN
| client I >| server
| (Alice) | Al'locate response (4) |
| | <o |
oo + oo +
User: Alice

***x. Qut-of-Band Long-Term Synmmetric Key Establi shnent
Figure 2: Interactions

In the below figure, the TURN client sends an Al l ocate request to the
TURN server w thout credentials. Since the TURN server requires that
all requests be authenticated using QAuth 2.0, the TURN server
rejects the request with a 401 (Unaut horized) error code and the STUN
attribute TH RD- PARTY- AUTHORI ZATI ON. The WebRTC client obtains an
access token fromthe WbRTC server, provides the access token to the
TURN client, and it tries again, this tinme including the access token
inthe Allocate request. This tine, the TURN server validates the
token, accepts the Allocate request, and returns an Allocate success
response containing (among other things) the relayed transport
address assigned to the allocation

Reddy, et al. St andards Track [Page 6]

RFC 7635 STUN for Third-Party Authorization August 2015

4.

| o TURN | |

| .WebRTC . client | |

| .client . | | server
I I

Al'l ocate error response |
(401 Unaut hori zed) |

I
[1111] integrity protected /////] |
[1111] integrity protected /////] |
[1111] integrity protected /////]/ |

THI RD- PARTY- AUTHORI ZATI ON |
|
HTTP request for token |
I e L EE T >
| | HTTP response with token paraneters
DR L TR T PR EEEERREEE |
| QAuth 2.0 | |
attributes |
|------ > | |
| Al'l ocat e request ACCESS- TOKEN |
| oo > |
I I
Al'l ocat e success response | |
R EREREEE e | |
I
I
I
I

I
I
I
| TURN nessages
I
I
I

Figure 3: TURN Third-Party Authorization
(bt ai ni ng a Token Usi ng QAuth

A STUN client needs to know the authentication capability of the STUN
server before deciding to use third-party authorization. A STUN
client initially makes a request without any authorization. |If the
STUN server supports third-party authorization, it will return an
error nessage indicating that the client can authorize to the STUN
server using an QAuth 2.0 access token. The STUN server includes an
ERROR- CODE attribute with a value of 401 (Unauthorized), a nonce
value in a NONCE attribute, and a SOFTWARE attri bute that gives

i nformation about the STUN server’s software. The STUN server al so
i ncludes the additional STUN attribute TH RD- PARTY- AUTHORI ZATI ON

whi ch signals the STUN client that the STUN server supports third-
party authorization.

Reddy, et al. St andards Track [Page 7]

RFC 7635 STUN for Third-Party Authorization August 2015

Note: An inplenmentation nay choose to contact the authorization
server to obtain a token even before it makes a STUN request, if it
knows the server details beforehand. For exanple, once a client has
| earned that a STUN server supports third-party authorization froma
aut hori zation server, the client can obtain the token before naking
subsequent STUN requests.

4.1. Key Establishnent

In this nodel, the STUN server would not authenticate the client
itself but would rather verify whether the client knows the session
key associated with a specific access token. An exanple of this
approach can be found with the QAuth 2.0 Proof -of - Possessi on (PoP)
Security Architecture [POP-ARCH|. The authorization server shares a
long-termsecret (K) with the STUN server. When the client requests
an access token, the authorization server creates a fresh and uni que
session key (rmac_key) and places it into the token encrypted with the
|l ong-term secret. Symmetric cryptography MJST be chosen to ensure
that the size of the encrypted token is not |arge because usage of
asymetric cryptography will result in large encrypted tokens, which
may not fit into a single STUN nessage.

The STUN server and authorization server can establish a long-term
symretric key (K) and a certain authenticated encryption algorithm
usi ng an out-of-band mechanism The STUN and aut hori zation servers
MJUST establish K over an authenticated secure channel. |If

aut henti cated encryption w th AES-CBC and HVAC- SHA (defined in

[ENCRYPT]) is used, then the AS-RS and AUTH keys will be derived from
K. The AS-RS key is used for encrypting the self-contained token
and the nessage integrity of the encrypted token is cal cul ated using
the AUTH key. |f the Authenticated Encryption with Associ ated Data
(AEAD) algorithmdefined in [RFC5116] is used, then there is no need
to generate the AUTH key, and the AS-RS key will have the sanme val ue
as K

The procedure for establishnent of the long-termsymetric key is
outside the scope of this specification, and this specification does
not mandate support of any given nechanism Sections 4.1.1 and 4.1.2
show exanpl es of mechani sns that can be used.

4.1.1. HTTP I nteractions

The STUN and AS servers could choose to use Representational State
Transfer (REST) APl over HTTPS to establish a long-termsynmetric
key. HTTPS MUST be used for data confidentiality, and TLS based on a
client certificate MIST be used for mutual authentication. To
retrieve a new long-termsymetric key, the STUN server makes an HITP
CET request to the authorization server, specifying STUN as the

Reddy, et al. St andards Track [Page 8]

RFC 7635 STUN for Third-Party Authorization August 2015

service to allocate the long-termsymetric keys for and specifying
the nane of the STUN server. The response is returned with content-
type 'application/json’ and consists of a JavaScript Object Notation
(JSON) [RFC7159] object containing the long-termsymetric key.

Request

service - specifies the desired service (TURN
nane - STUN server name associated with the key

exanpl e:
CET https://ww. exanpl e. cont . wel | - known/ st un- key?ser vi ce=st un
&nane=t ur n1@xanpl e. com

Response
k - long-termsymetric key
exp - identifies the time after which the key expires
exanpl e:
{
" kll

" ESI zRFVmd4i ZABEi MORVZgKn6W LaTCLFXAghRWTzkBGNaaN496523W | SKer Li "
"exp" : 1300819380,
"kid" :"22BljxWU93h/ | gwEb"
"enc" : A256GCM

}

The aut horization server must also signal kid to the STUN server,
which will be used to select the appropriate keying material for
decryption. The paraneter 'k’ is defined in Section 6.4.1 of

[RFC7518], 'enc’ is defined in Section 4.1.2 of [RFCr516], 'kid is
defined in Section 4.1.4 of [RFC7515], and 'exp’ is defined in
Section 4.1.4 of [RFC7519]. A256GCM and ot her aut henti cat ed
encryption algorithns are defined in Section 5.1 of [RFC7518]. A
STUN server and authorization server inplenentation MIST support
A256GCM as the authenticated encryption al gorithm

I f A256CBC-HS512 as defined in [RFC7518] is used, then the AS-RS and
AUTH keys are derived from K using the nmechani sm explained in
Section 5.2.2.1 of [RFC7518]. In this case, the AS-RS key length
nmust be 256 bits and the AUTH key | ength nust be 256 bits

(Section 2.6 of [RFC4868]).

Reddy, et al. St andards Track [Page 9]

RFC 7635 STUN for Third-Party Authorization August 2015

4.

6.

1.2. Manual Provisioning

The STUN and AS servers could be nmanually configured with a long-term
symretric key, an authenticated encryption algorithm and kid.

Not e: The nechanism specified in this section requires configuration
to change the long-term symetric key and/or authenticated encryption
algorithm Hence, a STUN server and authorization server

i mpl enent ati on SHOULD support REST as explained in Section 4.1.1.

Form ng a Request

When a STUN server responds that third-party authorization is
required, a STUN client re-attenpts the request, this tinme including
access token and kid values in the ACCESS- TOKEN and USERNAME STUN
attributes. The STUN client includes a MESSAGE-I NTEGRITY attribute
as the last attribute in the nessage over the contents of the STUN
message. The HMAC for the MESSAGE-|I NTEGRITY attribute is conputed as
described in Section 15.4 of [RFC5389] where the nmac_key is used as
the input key for the HVAC conputation. The STUN client and server
will use the nac_key to conpute the nessage integrity and do not
perform MD5 hash on the credenti al s.

STUN Attri butes

The followi ng new STUN attributes are introduced by this
specification to acconplish third-party authorization

1. TH RD- PARTY- AUTHORI ZATI ON

This attribute is used by the STUN server to informthe client that
it supports third-party authorization. This attribute value contains
the STUN server name. The authorization server may have tie ups with
multiple STUN servers and vice versa, so the client MJST provide the
STUN server nane to the authorization server so that it can select
the appropriate keying naterial to generate the sel f-contained token
If the authorization server does not have tie up with the STUN
server, then it returns an error to the client. |If the client does
not support or is not capable of doing third-party authorization

then it defaults to first-party authentication. The

THI RD- PARTY- AUTHORI ZATI ON attribute is a conprehensi on-optiona
attribute (see Section 15 from|[RFC5389]). |If the client is able to
conpr ehend THI RD- PARTY- AUTHORI ZATI ON, it MJST ensure that third-party
aut hori zati on takes precedence over first-party authentication (as
expl ained in Section 10 of [RFC5389]).

Reddy, et al. St andards Track [Page 10]

RFC 7635 STUN for Third-Party Authorization August 2015

6.2. ACCESS- TOKEN

The access token is issued by the authorization server. QAuth 2.0
does not inpose any limtation on the Iength of the access token but
if path MIU is unknown, then STUN nmessages over |Pv4 would need to be
| ess than 548 bytes (Section 7.1 of [RFC5389]). The access token

I ength needs to be restricted to fit within the maxi rum STUN nessage
size. Note that the self-contained token is opaque to the client,
and the client MUST NOT exanine the token. The ACCESS- TOKEN
attribute is a conprehension-required attribute (see Section 15 from
[RFC5389]) .

The token is structured as foll ows:

struct {
uint16_t nonce_l ength;
opaque nonce[nonce_| engt h];
opaque {
uintl1l6_t key_ Il ength;
opaque mac_key[key | engt h];
uint64_t tinmestanp;
uint32_t lifetine;
} encrypted_bl ock;
} token;

Fi gure 4: Sel f-Contai ned Token For mat
Note: uintN_t means an unsigned integer of exactly N bits. Single-
byte entities containing uninterpreted data are of type ’opaque’
Al'l values in the token are stored in network byte order.

The fields are descri bed bel ow

nonce_l ength: Length of the nonce field. The Iength of nonce for
AEAD al gorithns is explained in [RFC5116].

Nonce: Nonce (N) fornmation is explained in Section 3.2 of [RFC5116].

key_length: Length of the session key in octets. The key length of
160 bits MJIST be supported (i.e., only the 160-bit key is used by
HVAC- SHA-1 for nmessage integrity of STUN nmessages). The key
length facilitates the hash agility plan discussed in Section 16.3
of [RFC5389].

mac_key: The session key generated by the authorization server

Reddy, et al. St andards Track [Page 11]

RFC 7635 STUN for Third-Party Authorization August 2015

timestanp: 64-bit unsigned integer field containing a tinestanp.
The val ue indicates the tinme since January 1, 1970, 00:00 UTC, by
using a fixed-point format. |In this format, the integer nunber of
seconds is contained in the first 48 bits of the field, and the
remaining 16 bits indicate the nunber of 1/64000 fractions of a
second (Native format - Unix).

lifetime: The lifetime of the access token, in seconds. For
exanpl e, the value 3600 indicates one hour. The lifetime val ue
MUST be greater than or equal to the 'expires_in’ paraneter
defined in Section 4.2.2 of [RFC6749], otherw se the resource
server could revoke the token, but the client would assune that
the token has not expired and woul d not refresh the token

encrypted_bl ock: The encrypted_block (P) is encrypted and
aut henticated using the long-termsymetric key established
bet ween the STUN server and the authorization server

The AEAD encryption operation has four inputs: K N, A and P, as
defined in Section 2.1 of [RFC5116], and there is a single output of
ci phertext C or an indication that the requested encryption operation
coul d not be perforned.

The associated data (A) MJUST be the STUN server nane. This ensures
that the client does not use the sane token to gain illegal access to
other STUN servers provided by the sane administrative donmain, i.e.
when nul tiple STUN servers in a single adninistrative donmain share
the sane long-term symetric key with an authorization server.

I f authenticated encryption with AES-CBC and HVAC- SHA (expl ained in
Section 2.1 of [ENCRYPT]) is used, then the encryption process is as
illustrated below. The ciphertext consists of the string S, with the
string T appended to it. Here, C and A denote ciphertext and the
STUN server nane, respectively. The octet string AL (Section 2.1 of
[ENCRYPT]) is equal to the number of bits in A expressed as a 64-bit
unsi gned bi g-endi an i nt eger.

0o AUTH = initial authentication key length octets of K
0 AS-RS = final encryption key length octets of K
0 S = CBGC-PKCS7- ENC(AS- RS, encrypted bl ock),
* The Initialization Vector is set to zero because the
encrypted_block in each access token will not be identical and

hence will not result in generation of identical ciphertext.

o mac = MAC(AUTH, A || S || AL),

Reddy, et al. St andards Track [Page 12]

RFC 7635 STUN for Third-Party Authorization August 2015

o T =initial T _LEN octets of nmc,
o C=S|| T
The entire token, i.e., the "encrypted_block’, is base64 encoded (see

Section 4 of [RFC4648]), and the resulting access token is signal ed
to the client.

7. STUN Server Behavi or

The STUN server, on receiving a request with the ACCESS- TCKEN
attribute, perforns checks listed in Section 10.2.2 of [RFC5389] in
addition to the following steps to verify that the access token is
val i d:

0 The STUN server selects the keying material based on kid signaled
in the USERNAME attri bute

0 The AEAD decryption operation has four inputs: K N, A and C as
defined in Section 2.2 of [RFC5116]. The AEAD decryption
al gorithmhas only a single output, either a plaintext or a
speci al synmbol FAIL that indicates that the inputs are not
authentic. |If the authenticated decrypt operation returns FAIL,
then the STUN server rejects the request with an error response
401 (Unaut hori zed).

o |If AES CBC HVAC SHA2? is used, then the final T_LEN octets are
stripped fromC. It perforns the verification of the token
message integrity by cal cul ati ng HVAC over the STUN server nane,
the encrypted portion in the self-contained token, and the AL
using the AUTH key, and if the resulting value does not match the
mac field in the self-contained token, then it rejects the request
with an error response 401 (Unauthorized).

0 The STUN server obtains the mac_key by retrieving the content of
the access token (which requires decryption of the self-contained
token using the AS-RS key).

0 The STUN server verifies that no replay took place by perforning
the foll ow ng check:

* The access token is accepted if the tinestanp field (TS) in the
self-contained token is shortly before the reception tinme of
the STUN request (RDnew). The following fornmula is used:

lifetime + Delta > abs(RDnew - TS)

Reddy, et al. St andards Track [Page 13]

RFC 7635 STUN for Third-Party Authorization August 2015

| f

The RECOMMENDED val ue for the allowed Delta is 5 seconds. |If
the tinestanp is NOT within the boundaries, then the STUN
server discards the request with error response 401
(Unaut hori zed).

The STUN server uses the nmac_key to conpute the nessage integrity
over the request, and if the resulting val ue does not match the
contents of the MESSACE-I NTEGRITY attribute, then it rejects the
request with an error response 401 (Unauthori zed).

If all the checks pass, the STUN server continues to process the
request.

Any response generated by the server MJST include the MESSAGE-
I NTEGRI TY attribute, conputed using the mac_key.

a STUN server receives an ACCESS- TOKEN attri bute unexpectedly

(because it had not previously sent out a TH RD- PARTY- AUTHORI ZATI ON),

it

will respond with an error code of 420 (Unknown Attribute) as

specified in Section 7.3.1 of [RFC5389].

8. STUN dient Behavior

(0]

The client |ooks for the MESSAGE-I NTEGRITY attribute in the
response. |f MESSAGE-I NTEGRITY is absent or the val ue conputed
for message integrity using nmac_key does not nmatch the contents of
the MESSAGE-|I NTEGRITY attribute, then the response MJST be

di scar ded

If the access token expires, then the client MIUST obtain a new
token fromthe authorization server and use it for new STUN
requests.

9. TURN dient and Server Behavi or

Changes specific to TURN are |isted bel ow

(o]

Reddy,

The access token can be reused for nmultiple Allocate requests to
the sane TURN server. The TURN client MJST include the ACCESS-
TOKEN attribute only in Allocate and Refresh requests. Since the
access token is valid for a specific period of time, the TURN
server can cache it so that it can check if the access token in a
new al l ocati on request natches one of the cached tokens and avoi ds
the need to decrypt the token

et al. St andards Track [Page 14]

RFC 7635 STUN for Third-Party Authorization August 2015

10.

11.

o The lifetinme provided by the TURN server in the Allocate and
Refresh responses MJUST be | ess than or equal to the lifetine of
the token. It is RECOMMENDED that the TURN server calcul ate the
maxi mum al l owed lifetime value using the fornul a:

lifetine + Delta - abs(RDnew - TS)
The RECOMVENDED val ue for the allowed Delta is 5 seconds.

o |If the access token expires, then the client MJIST obtain a new
token fromthe authorization server and use it for new
al l ocations. The client MJUST use the new token to refresh
existing allocations. This way, the client has to naintain only
one token per TURN server.

Oper ati onal Consi derations

The followi ng operational considerations should be taken into
account :

o0 Each authorization server should maintain the list of STUN servers
for which it will grant tokens and the |ong-term secret shared
wi th each of those STUN servers

o |f manual configuration (Section 4.1.2) is used to establish |ong-
termsymretric keys, the necessary information, which includes
long-termsecret (K) and the authenticated encryption algorithm
has to be configured on each authorization server and STUN server
for each kid. The client obtains the session key and HVAC
algorithmfromthe authorization server in conpany with the token

0 Wien a STUN client sends a request to get access to a particular
STUN server (S), the authorization server nmust ensure that it
sel ects the appropriate kid and access token dependi ng on server
S.

Security Considerations

Wien QAuth 2.0 is used, the interaction between the client and the
aut hori zati on server requires Transport Layer Security (TLS) with a
ci phersuite offering confidentiality protection, and the guidance
given in [RFC7525] nust be followed to avoid attacks on TLS. The
session key MUST NOT be transmitted in clear since this would

conpl etely destroy the security benefits of the proposed schene. An
attacker trying to replay the nessage with the ACCESS- TOKEN attri bute
can be nmitigated by frequent changes of the nonce val ue as di scussed
in Section 10.2 of [RFC5389]. The client may know sonme (but not all)
of the token fields encrypted with an unknown secret key, and the

Reddy, et al. St andards Track [Page 15]

RFC 7635 STUN for Third-Party Authorization August 2015

12.

12.

13.

13.

token can be subjected to known-pl ai ntext attacks, but AES is secure
agai nst this attack.

An attacker may renove the THI RD- PARTY- AUTHORI ZATI ON STUN attri bute
fromthe error nmessage forcing the client to pick first-party

aut hentication; this attack may be mtigated by opting for TLS

[RFC5246] or Datagram Transport Layer Security (DTLS) [RFC6347] as a
transport protocol for STUN, as defined in [RFC5389] and [RFC7350].

Threat mitigation discussed in Section 5 of [POP-ARCH and security
considerations in [RFC5389] are to be taken into account.

| ANA Consi derati ons
Thi s docunent defines the THI RD- PARTY- AUTHORI ZATI ON STUN attri bute
described in Section 6. |1ANA has all ocated the conprehension-
optional codepoint Ox802E for this attribute.
Thi s document defines the ACCESS- TOKEN STUN attribute, described in
Section 6. | ANA has allocated the conprehensi on-required codepoi nt
0x001B for this attribute.
1. Well-Known ’stun-key URI

This meno registers the 'stun-key' well-known URI in the Wll-Known
URI's registry as defined by [RFC5785].

URI suffix: stun-key

Change controller: |ETF

Speci fication docunent(s): This RFC

Rel ated information: None

Ref er ences

1. Nornmmtive References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Level s", BCP 14, RFC 2119,
DA 10.17487/ RFC2119, March 1997
<http://ww.rfc-editor.org/info/rfc2119>

[RFC4648] Josefsson, S., "The Basel6, Base32, and Base64 Data

Encodi ngs", RFC 4648, DO 10.17487/ RFC4648, Cctober 2006
<http://ww.rfc-editor.org/info/rfc4648>

Reddy, et al. St andards Track [Page 16]

RFC 7635

[RFC4868]

[RFC5116]

[RFC5389]

[RFC6749]

[RFC7518]

13. 2.

STUN for Third-Party Authorization August 2015

Kelly, S. and S. Frankel, "Using HVAC SHA- 256,

HVAC- SHA- 384, and HVAC- SHA-512 with | Psec", RFC 4868,
DA 10.17487/ RFC4868, May 2007,
<http://ww.rfc-editor.org/info/rfc4868>.

McGew, D., "An Interface and Al gorithnms for Authenticated
Encryption", RFC 5116, DO 10.17487/RFC5116, January 2008,
<http://ww.rfc-editor.org/info/rfc5116>.

Rosenberg, J., Mahy, R, Matthews, P., and D. Wng,
"Session Traversal Utilities for NAT (STUN)", RFC 5389,
DA 10.17487/ RFC5389, Cctober 2008,
<http://ww.rfc-editor.org/info/rfc5389>.

Hardt, D., Ed., "The QAuth 2.0 Authorization Franmework",
RFC 6749, DA 10.17487/ RFC6749, Cctober 2012,
<http://www. rfc-editor.org/info/rfc6749>.

Jones, M, "JSON Wb Al gorithns (JWA)", RFC 7518,
DO 10.17487/ RFC7518, May 2015,
<http://ww. rfc-editor.org/info/rfc7518>.

I nformati ve References

[ENCRYPT]

[POP- ARCH

McGew, D., Foley, J., and K Paterson, "Authenticated
Encryption with AES-CBC and HVAC- SHA", Work in Progress,
draft-ncgrew aead- aes- cbc- hmac- sha2-05, July 2014.

Hunt, P., Richer, J., MIls, W, Mshra, P., and H
Tschof enig, "QAuth 2.0 Proof-of-Possession (PoP) Security
Architecture", Wrk in Progress,
draft-ietf-oauth-pop-architecture-02, July 2015.

[POP- KEY- DI ST]

[RFC5246]

Reddy,

et al.

Bradl ey, J., Hunt, P., Jones, M, and H Tschofenig,
"QAuth 2.0 Proof-of-Possession: Authorization Server to
Cient Key Distribution", Wrk in Progress,
draft-ietf-oauth-pop-key-distribution-01, March 2015.

Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", RFC 5246,

DA 10.17487/ RFC5246, August 2008,
<http://ww.rfc-editor.org/infol/rfc5246>.

St andards Track [Page 17]

[RFC5766]

[RFC5785]

[RFC6347]

[RFC6819]

[RFC7159]

[RFC7350]

[RFC7376]

[RFC7515]

[RFC7516]

[RFC7519]

STUN for Third-Party Authorization August 2015

Mahy, R, Matthews, P., and J. Rosenberg, "Traversal Using
Rel ays around NAT (TURN): Relay Extensions to Session
Traversal Uilities for NAT (STUN)", RFC 5766,

DA 10.17487/ RFC5766, April 2010,

<http://ww. rfc-editor.org/info/rfc5766>.

Notti ngham M and E. Hanmer-Lahav, "Defining Wll-Known
Uni form Resource ldentifiers (URIs)", RFC 5785,

DO 10.17487/ RFC5785, April 2010,

<http://ww. rfc-editor.org/info/rfc5785>.

Rescorla, E. and N. Mbdadugu, "Datagram Transport Layer
Security Version 1.2", RFC 6347, DO 10.17487/ RFC6347,
January 2012, <http://ww.rfc-editor.org/info/rfc6347>.

Lodderstedt, T., Ed., Mcdoin, M, and P. Hunt, "QAuth 2.0
Threat Mdel and Security Considerations”, RFC 6819,

DA 10.17487/ RFC6819, January 2013,
<http://ww.rfc-editor.org/info/rfc6819>.

Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
I nterchange Format", RFC 7159, DO 10.17487/ RFC7159, March
2014, <http://ww. rfc-editor.org/info/rfc7159>.

Petit-Huguenin, M and G Sal gueiro, "Datagram Transport
Layer Security (DTLS) as Transport for Session Traversal
Uilities for NAT (STUN", RFC 7350, DO 10.17487/ RFC7350,
August 2014, <http://www.rfc-editor.org/info/rfc7350>.

Reddy, T., Ravindranath, R, Perunmal, M, and A Yegin,
"Problens with Session Traversal Utilities for NAT (STUN)
Long- Term Aut henti cation for Traversal Using Relays around
NAT (TURN)", RFC 7376, DO 10.17487/ RFC7376, Septenber
2014, <http://ww. rfc-editor.org/info/rfc7376>.

Jones, M, Bradley, J., and N Sakinmura, "JSON Wb
Signature (JW5)", RFC 7515, DA 10.17487/ RFC7515, May
2015, <http://ww.rfc-editor.org/info/rfc7515>.

Jones, M and J. Hildebrand, "JSON Web Encryption (JVE)",
RFC 7516, DA 10. 17487/ RFC7516, May 2015,
<http://ww.rfc-editor.org/info/rfc7516>.

Jones, M, Bradley, J., and N Sakimnmura, "JSON Wb Token

(Jwr)", RFC 7519, DA 10.17487/ RFC7519, May 2015,
<http://www. rfc-editor.org/info/rfc7519>.

St andards Track [Page 18]

RFC 7635

[RFC7525]

[STUN

[VEBRTC]

Reddy,

et al.

STUN for Third-Party Authorization August 2015

Sheffer, Y., Holz, R, and P. Saint-Andre,
"Recommendati ons for Secure Use of Transport Layer
Security (TLS) and Datagram Transport Layer Security
(DTLS)", BCP 195, RFC 7525, DO 10.17487/ RFC7525, May
2015, <http://www. rfc-editor.org/info/rfc7525>.

Petit-Huguenin, M, Salgueiro, G, Rosenberg, J., Wng,
D., Mahy, R, and P. Matthews, "Session Traversal
Uilities for NAT (STUN", Wrk in Progress,
draft-ietf-tramstunbis-04, March 2015.

Al vestrand, H , "Overview Real Tine Protocols for

Br owser - based Applications", Wrk in Progress, draft-ietf-
rtcweb- overvi ew 14, June 2015.

St andards Track [Page 19]

RFC 7635 STUN for Third-Party Authorization August 2015

Appendi x A. Sanpl e Tickets
I nput data (sanme for all sanples bel ow):

/1 STUN SERVER NAME
server_nane = "bl ackdow. carl eon. gov";

/I Shared key between AS and RS
| ong_term key = \x48\x47\ x6b\ x6a\ x33\ x32\ x4b\ x4a\ x47\ x69\ x75\ x79
\ x30\ x39\ x38\ x73\ x64\ x66\ x61\ x71\ x62\ x4e\ x6a\ x4f
\ x69\ x61\ x7a\ x37\ x31\ x39\ x32\ x33
/1 MAC key of the session (included in the token)
mac_key = \x5a\ x6b\ x73\ x6a\ x70\ x77\ x65\ x6f \ x69\ x78\ x58\ x6d\ x76\ x6e
\ x36\ x37\ x35\ x33\ x34\ x6d

/1length of the MAC key
mac_key length = 20;

/1 The tinmestanp field in the token
token_tinmestanp = 92470300704768;

[/ The lifetinme of the token
token_ lifetinme = 3600;

/I nonce for AEAD
aead_nonce = \ x68\ x34\ x6a\ x33\ x6b\ x32\ x6¢c\ x32\ x6e\ x34\ x62\ x35;

Sanpl es:

1) token encryption algorithm= AEAD AES 256_GCM
Encrypted token (64 bytes = 2 + 12 + 34 + 16) =

\ x00\ x0c\ x68\ x34\ x6a\ x33\ x6b\ x32\ x6¢c\ x32\ x6e\ x34\ x62

\ x35\ x61\ x7e\ xf 1\ x34\ xa3\ xd5\ xe4\ x4e\ x9a\ x19\ xcc\ x7d

\ xc1\ x04\ xbO\ xcO\ x3d\ x03\ xb2\ xab5\ x51\ xd8\ xf d\ xf 5\ xcd

\ x3b\ x6d\ xca\ x6f\ x10\ xcf\ xb7\ x7e\ x5b\ x2d\ xde\ xc8\ x4d
\ x29\ x3a\ x5¢c\ x50\ x49\ x93\ x59\ xf O\ xc2\ xe2\ x6f\ x76

Reddy, et al. St andards Track [Page 20]

RFC 7635 STUN for Third-Party Authorization

Not
[1]

[2]

Reddy,

2) token encryption algorithm= AEAD AES 128 GCM
Encrypted token (64 bytes = 2 + 12 + 34 + 16) =

\ x00\ x0c\ x68\ x34\ x6a\ x33\ x6b\ x32\ x6¢\ x32\ x6e\ x34\ x62
\ x35\ x7f \ xb9\ xe9\ x9f \ x08\ x27\ xbe\ x3d\ xf 1\ xel\ xbd\ x65
\ x14\ x93\ xd3\ x03\ x1d\ x36\ xdf \ x57\ x07\ x97\ x84\ xae\ xe5b
\ xea\ xcb\ x65\ xf a\ xd4\ xf 2\ x7f \ xab\ x1a\ x3f\ x97\ x97\ x4b
\ x69\ xf 8\ x51\ xb2\ x4b\ xf 5\ xaf \ x09\ xed\ xa3\ x57\ xe0

e:
After EVP_EncryptFinal _ex encrypts the final data,
EVP_CI PHER CTX ctrl nust be called to append
the authentication tag to the ciphertext.

August 2015

/1 EVP_CI PHER CTX ctrl (ctx, EVP_CTRL_AEAD CGET_TAG taglen, tag);

EVP_ClI PHER CTX ctrl rnust be invoked to set the
aut hentication tag before calling EVP_DecryptFinal

/1 EVP_CI PHER CTX ctrl (&ctx, EVP_CTRL_GCM SET_TAG taglen, tag);

Figure 5: Sanple Tickets

et al. St andards Track

[Page 21]

RFC 7635 STUN for Third-Party Authorization August 2015

Appendi x B. Interaction between the dient and Authorization Server

The client nakes an HTTP request to an authorization server to obtain
a token that can be used to avail itself of STUN services. The STUN
token is returned in JSON syntax [RFC7159], along with other QAuth
2.0 paraneters |like token type, key, token lifetinme, and kid as
defined in [POP-KEY-DI ST].

[oo STUN
| .WebRTC . client

STUN error response
(401 Unaut hori zed) |

|
[1111] integrity protected /////]/ |
[1111] integrity protected /////]/ |
[1111] integrity protected /////]/ |

|
|
|
S |
| THI RD- PARTY- AUTHORI ZATI ON
| |
| |
| HTTP request for token |
I e I L >
| | HTTP response with token parameters
| oo |
| QAuth 2.0 | |
attributes |
|- > | | |
| STUN request w th ACCESS- TOKEN | |
[oo >| |
| |
STUN success response | |
A bbbl | |
|
|
|
|

|
|
|
| STUN nessages
|
|
|

Figure 6: STUN Third-Party Authorization

[POP- KEY- DI ST] describes the interaction between the client and the
aut hori zation server. For exanple, the client |earns the STUN server
name "stunl@xanpl e.conm' fromthe TH RD- PARTY- AUTHORI ZATI ON attri bute
val ue and rmakes the followi ng HITP request for the access token using
TLS (with extra line breaks for display purposes only):

Reddy, et al. St andards Track [Page 22]

RFC 7635 STUN for Third-Party Authorization August 2015

HTTP/ 1.1

Host: server.exanpl e.com

Cont ent - Type: application/ x-ww-form url encoded
aud=st unl@xanpl e. com

ti mestanp=1361471629

grant _type=inplicit

t oken_t ype=pop

al g=HVAC- SHA- 256- 128

Fi gure 7: Request

[STUN] supports hash agility and acconplishes this agility by
conputing nmessage integrity using both HVAC SHA-1 and

HVAC- SHA- 256- 128. The client signals the algorithm supported by it
to the authorization server in the "alg paraneter defined in

[POP-KEY-DI ST]. The authorization server determ nes the | ength of
the mac_key based on the HVAC al gorithm conveyed by the client. If
the client supports both HVAC- SHA-1 and HVAC- SHA- 256- 128, then it

si gnal s HVAC- SHA- 256-128 to the authorization server, gets a 256-bit
key fromthe authorization server, and cal cul ates a 160-bit key for
HVAC- SHA- 1 using SHAL and taking the 256-bit key as input.

If the client is authorized, then the authorization server issues an
access token. An exanple of a successful response:

HTTP/ 1.1 200 K
Cont ent - Type: application/json
Cache-Control: no-store

{

"access_t oken":
" U2FsdGVk X18gJK/ kkWhRenf Hgl r VTISpS6y U32kmHnOr f Gyl 3nlgQ 1j RPsr OuBb
Het uycAgst RX7nIVW2Bduk Gy KMXSi NGNnBzi gk Aof P6+Z3vkJ1BpWbf SRr oOkWVBn" ,

"token_type": " pop",

"expires_in": 1800,

"kid":"22Blj xW93h/ | gwEb",

"key": " v51N620VB5ky M/f TI1 080"

"al g": HVAC- SHA- 256- 128

Fi gure 8: Response

Reddy, et al. St andards Track [Page 23]

RFC 7635 STUN for Third-Party Authorization August 2015

Acknowl edgenent s

The authors would like to thank Dan Wng, Pal Martinsen, O eg

Moskal enko, Charles Eckel, Spencer Dawkins, Hannes Tschofeni g, Yaron
Sheffer, Tom Tayl or, Christer Hol nberg, Pete Resnick, Kathleen
Moriarty, Richard Barnes, Stephen Farrell, Alissa Cooper, and Rich
Sal z for cooments and review. The authors would Iike to give special
t hanks to Brandon W/l lianms for his help.

Thanks to O eg Moskal enko for providing token sanples in Appendi x A
Aut hors’ Addresses

Ti rumal eswar Reddy

Ci sco Systems, Inc.

Cessna Busi ness Park, Varthur Hobli
Sarjapur Marathalli Quter R ng Road
Bangal ore, Karnataka 560103

I ndi a

Email: tireddy@isco.com

Prashanth Pati |
Cisco Systenms, Inc.

Bangal ore
I ndi a
Emai | : praspati @i sco.com

Ram Mohan Ravi ndr anat h

Cisco Systems, Inc.

Cessna Busi ness Park,

Kadabeesanahal Ii Village, Varthur Hobli,
Sarj apur - Marat hahal i Quter Ri ng Road
Bangal ore, Karnataka 560103

I ndi a

Emai | : rnohanr @i sco. com

Justin Uberti

Googl e

747 6th Ave S.

Ki rkl and, WA 98033
United States

Emai | : justin@berti.nane

Reddy, et al. St andards Track [Page 24]

