I nt ernet Engi neering Task Force (I ETF) M Stenberg

Request for Comments: 7787 S. Barth
Cat egory: Standards Track | ndependent
| SSN: 2070-1721 April 2016

Di stri buted Node Consensus Protoco
Abstract

Thi s docunent describes the Distributed Node Consensus Protoco
(DNCP), a generic state synchronization protocol that uses the
Trickle algorithmand hash trees. DNCP is an abstract protocol and
must be conbined with a specific profile to nake a conplete

i mpl enent abl e protocol .

Status of This Meno
This is an Internet Standards Track docunent.

This docunment is a product of the Internet Engi neering Task Force
(ITETF). It represents the consensus of the I ETF comunity. |t has
recei ved public review and has been approved for publication by the
I nternet Engineering Steering Goup (IESG. Further information on
Internet Standards is available in Section 2 of RFC 5741.

I nformation about the current status of this docunent, any errata,
and how to provide feedback on it nmay be obtai ned at
http://ww. rfc-editor.org/infol/rfc7787

Copyright Notice

Copyright (c) 2016 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunent is subject to BCP 78 and the | ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunent. Code Conponents extracted fromthis docunent nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided wi thout warranty as
described in the Sinplified BSD License.

Stenberg & Barth St andards Track [ Page 1]



RFC 7787 D stri buted Node Consensus Protocol

Tabl e of Contents

9.
10.
11.

rAABRS

I nt roducti on

1. Applicability

Ter m nol ogy .

.1. Requirenents Language .

Overvi ew

Qperation . . .

1. Hash Tree . . . .
4.1.1. Calculating Netvvork St ate and Node Data Hashes
4.1.2. Updating Network State and Node Data Hashes .
2. Data Transport e e

3. Trickle-Driven Stat us Updat es .

4. Processing of Received TLVs . .

5. Discoveri ng, Addi ng, and Renovi ng Peers .

6. Data Liveliness Validation

Dat a Mbdel .

Optional Extensi ons .

Keep-Alives . .

1. Data Model Add|t| ons . .
2 Per - Endpoi nt Peri odi c Keep AI ives .
3. Per-Peer Periodic Keep-Aives . .
4 Recei ved TLV Processing Additions .
5. Peer Renoval .
Support for Dense l\/ultlcast Enabl ed L| nks .
ype Lengt h- Val ue Objects . Coe
Request TLVs . . .

.1.1. Request Network St ate TLV

.1.2. Request Node State TLV

Data TLVs . . . .

2.1. Node Endpoi nt TLV

2.2. Network State TLV .

2.3. Node State TLV . . .

Data TLVs within Node State TLV

3.1. Peer TLV .

.2. Keep-Aive Int erval TLV

ecurlty and Trust Managenent . .

Trust Method Based on Pre- Shared Key

PKI - Based Trust Method .
Certificate-Based Trust Consensus I\/et hod
3.1 Trust Verdicts

3.2 Trust Cache . . .

3.3.  Announcenent of Verd| cts

3.4. Bootstrap Cerenpnies . . .

DNCP Profil e-Specific Definitions .

Security Considerations . -

| ANA Consi derations .

N o R
il S e

PROOWNEPONNWNNNNNNE
w

Stenberg & Barth St andards Track

April 2016

[ Page 2]



RFC 7787 Di stri buted Node Consensus Prot ocol April 2016

12. References . . . < 11
12.1. Nornative References e e e ... ... ... 36
12.2. Informative References . . . e . . . . . . . .. 36

Appendi x A.  Alternative Mdes of Cperatlon .. . . . . . . . . . 38
A.1l. Read-Only Operation . . . . . . . . . . . . . . . . . . . 38
A. 2. Forwarding Qperation . . - 13

Appendi x B. DNCP Profile Addltlonal Guidance e e e . . . . . . . 38
B.1. Unicast Transport -- UDP or TCP? . . . . . . . . . . . . 38
B.2. (Optional) Milticast Transport . . . . . . . . . . . . . 39
B.3. (Optional) Transport Securlty < 1

Appendi x C. Exanple Profile . . . e (0

Acknowl edgenents . . . e

Aut hors’ Addresses . . . . . . . . . . . . . . . ... ... 2

1. Introduction

DNCP i s designed to provide a way for each participating node to
publish a snmall set of TLV (Type-Length-Value) tuples (at nost 64 KB)
and to provide a shared and conmon vi ew about the data published by
every currently bidirectionally reachabl e DNCP node in a network.

For state synchronization, a hash tree is used. It is formed by
first calculating a hash for the data set published by each node,
call ed node data, and then cal cul ati ng anot her hash over those node
data hashes. The single resulting hash, called network state hash
is transmitted using the Trickle al gorithm][RFC6206] to ensure that
all nodes share the sane view of the current state of the published
data within the network. The use of Trickle with only short network
state hashes sent infrequently (in steady state, once the maxi num
Trickle interval per link or unicast connection has been reached)
makes DNCP very thrifty when updates happen rarely.

For maintaining liveliness of the topology and the data within it, a
conmbi nation of Trickled network state, keep-alives, and "other" neans
of ensuring reachability are used. The core idea is that if every
node ensures its peers are present, transitively, the whole network
state also stays up to date.

Stenberg & Barth St andards Track [ Page 3]



RFC 7787 Di stri buted Node Consensus Prot ocol April 2016

1

1

Applicability

DNCP is useful for cases |ike autononous bootstrapping, discovery,
and negoti ati on of enbedded network devices |like routers.

Furthernore, it can be used as a basis to run distributed al gorithns
i ke [ RFC7596] or use cases as described in Appendix C. DNCP is
abstract, which allows it to be tuned to a variety of applications by
defining profiles. These profiles include choices of:

uni cast transport: a datagram or streamoriented protocol (e.g.
TCP, UDP, or the Stream Control Transm ssion Protocol (SCTP)) for
generic protocol operation.

optional transport security: whether and when to use security
based on Transport Layer Security (TLS) or Datagram Transport
Layer Security (DTLS), if supported over the chosen transport.

optional nulticast transport: a nulticast-capable protocol like
UDP al | owi ng aut ononobus peer di scovery or nore efficient use of
mul ti ple access |inks.

communi cati on scopes: using either hop by hop only relying on
link-1ocal addressing (e.g., for LANs), addresses wth broader
scopes (e.g., over WANs or the Internet) relying on an existing
routing infrastructure, or a conbination of both (e.g., to
exchange state between multiple LANs over a WAN or the Internet).

payl oads: additional specific payloads (e.g., |ANA standardized,
enterprise-specific, or private use).

ext ensions: possible protocol extensions, either as predefined in
this docunent or specific for a particular use case.

However, there are certain cases where the protocol as defined in
this docunment is a less suitable choice. This |list provides an
overview while the foll owi ng paragraphs provide nore detail ed

gui dance on the individual matters

| arge anobunts of data: nodes are linted to 64 KB of published
dat a.

very dense unicast-only networks: nodes include information about
all i medi ate nei ghbors as part of their published data.

predom nantly minimal data changes: node data is al ways
transported as is, leading to a relatively large transm ssion
overhead for changes affecting only a small part of it.

Stenberg & Barth St andards Track [ Page 4]



RFC 7787 Di stri buted Node Consensus Prot ocol April 2016

- frequently changing data: DNCP with its use of Trickle is
optinized for the steady state and | ess efficient otherw se.

- large amounts of very constrai ned nodes: DNCP requires each node
to store the entirety of the data published by all nodes.

The topol ogy of the devices is not limted and automatically

di scovered. Wien relying on link-1ocal comunication exclusively,

all 1inks having DNCP nodes need to be at least transitively
connected by routers running the protocol on multiple endpoints in
order to forma connected network. However, there is no requirenent
for every device in a physical network to run the protocol

Especially if globally scoped addresses are used, DNCP peers do not
need to be on the same or even nei ghboring physical |inks.

Aut ononous di scovery features are usually used in |ocal network
scenari os; however, with security enabl ed, DNCP can al so be used over
unsecured public networks. Network size is restricted nmerely by the
capabilities of the devices, i.e., each DNCP node needs to be able to
store the entirety of the data published by all nodes. The data
associ ated with each individual node identifier is Iimted to about
64 KB in this docunment; however, protocol extensions could be defined
to mtigate this or other protocol limtations if the need arises.

DNCP is nbst suitable for data that changes only infrequently to gain
the maxi num benefit fromusing Trickle. As the network of nodes
grows, or the frequency of data changes per node increases, Trickle
is eventually used less and less, and the benefit of using DNCP

dim nishes. |In these cases, Trickle just provides extra conplexity
within the specification and little added val ue.

The suitability of DNCP for a particular application can be roughly
eval uated by considering the expected average network-w de state

change interval A NCI; it is conputed by dividing the mean interva
at which a node originates a new TLV set by the nunber of
participating nodes. |If keep-alives are used, A NC | is the mninm
of the conputed A NC | and the keep-alive interval. [|If ANCI is

| ess than the (application-specific) Trickle mninuminterval, DNCP
is nost likely unsuitable for the application as Trickle will not be
utilized nmost of the tine.

If constant rapid state changes are needed, the preferable choice is
to use an additional point-to-point channel whose address or |ocator
i s published using DNCP. Nevertheless, if doing so does not raise
A NC | above the (sensibly chosen) Trickle interval paraneters for a
particul ar application, using DNCP is probably not suitable for the
appl i cation.

Stenberg & Barth St andards Track [ Page 5]



RFC 7787 Di stri buted Node Consensus Prot ocol April 2016

Anot her consideration is the size of the published TLV set by a node
conpared to the size of deltas in the TLV set. If the TLV set
published by a node is very large, and has frequent small changes,
DNCP as currently specified in this specification may be unsuitable
as it lacks a delta synchroni zation schene to keep inplenentation

si npl e.

DNCP can be used in networks where only unicast transport is
avai l able. Wil e DNCP uses the | east anount of bandw dth when
multicast is utilized, even in pure unicast node, the use of Trickle
(ideally with k < 2) results in a protocol with an exponentia
backoff tiner and fewer transmn ssions than a sinpler protocol not
using Trickle.

2. Terninol ogy

DNCP profile the values for the set of paranmeters given in
Section 9. They are prefixed with DNCP_ in this
docunent. The profile also specifies the set of
optional DNCP extensions to be used. For a sinple
exanpl e DNCP profile, see Appendix C

DNCP- based a protocol that provides a DNCP profile, according

pr ot ocol to Section 9, and zero or nore TLV assignnents from
the per-DNCP profile TLV registry as well as their
processing rul es.

DNCP node a single node that runs a DNCP-based protocol

Li nk a link-layer nedia over which directly connected
nodes can conmuni cat e.

DNCP net wor k a set of DNCP nodes runni ng a DNCP-based
protocol (s) with a matching DNCP profile(s). The
set consists of nodes that have di scovered each
other using the transport nethod defined in the
DNCP profile, via nulticast on |local |inks, and/or
by using uni cast communi cati on.

Node identifier an opaque fixed-length identifier consisting of
DNCP_NODE_| DENTI FI ER_LENGTH byt es that uni quely
identifies a DNCP node within a DNCP networ k.

Interface a node’s attachment to a particular link

Addr ess an identifier used as the source or destination of

a DNCP nessage flow, e.g., a tuple (IPv6 address,
UDP port) for an | Pv6 UDP transport.

Stenberg & Barth St andards Track [ Page 6]



RFC 7787

Endpoi nt

Endpoi nt
identifier

Peer

Node dat a

Oigination tine

Node state

Net work state
hash

Trust verdict

Stenberg & Barth

Di stri buted Node Consensus Prot ocol April 2016

a locally configured termnation point for
(potential or established) DNCP nessage flows. An
endpoint is the source and destination for separate
uni cast message flows to individual nodes and
optionally for multicast nessages to all thereby
reachabl e nodes (e.g., for node discovery).
Endpoints are usually in one of the transport nodes
specified in Section 4.2.

a 32-bit opaque and | ocally unique val ue, which
identifies a particular endpoint of a particular
DNCP node. The value 0 is reserved for DNCP and
DNCP- based protocol purposes and not used to
identify an actual endpoint. This definitionis in
sync with the interface index definition in

[ RFC3493], as the non-zero snmall positive integers
shoul d confortably fit within 32 bits.

anot her DNCP node w th which a DNCP node
conmuni cates using at |east one particular |ocal
and renote endpoint pair.

a set of TLVs published and owned by a node in the
DNCP network. O her nodes pass it along as is,
even if they cannot fully interpret it.

the (estimated) tinme when the node data set with
the current sequence number was published.

a set of nmetadata attributes for node data. It

i ncl udes a sequence nunber for versioning, a hash
val ue for conparing equality of stored node data,
and a tinmestanp indicating the tine passed since
its last publication (i.e., since the origination
time). The hash function and the |length of the
hash val ue are defined in the DNCP profile.

a hash value that represents the current state of
the network. The hash function and the | ength of
the hash value are defined in the DNCP profile.
Whenever a node is added, renoved, or updates its
publ i shed node data, this hash val ue changes as
well. For calculation, please see Section 4.1.

a statenent about the trustworthiness of a

certificate announced by a node participating in
the certificate-based trust consensus nechani sm

St andards Track [ Page 7]



RFC 7787 Di stri buted Node Consensus Prot ocol April 2016

Effective trust the trust verdict with the highest priority within
verdi ct the set of trust verdicts announced for the
certificate in the DNCP network

Topol ogy graph the undirected graph of DNCP nodes produced by
retaining only bidirectional peer relationships
bet ween nodes.

Bi directionally a peer is locally unidirectionally reachable if a

reachabl e consi stent multicast or any uni cast DNCP nessage
has been received by the |ocal node (see Section
4.5). If said peer in return also considers the

| ocal node unidirectionally reachable, then
bidirectionally reachability is established. As
this process is based on publishing peer

rel ati onshi ps and eval uating the resulting topol ogy
graph as described in Section 4.6, this information
is available to the whol e DNCP networ k.

Trickle instance a distinct Trickle [ RFC6206] al gorithm state kept
by a node (Section 5) and related to an endpoi nt or
a particular (peer, endpoint) tuple with Trickle
variables I, t, and c. See Section 4.3.

2.1. Requirenents Language

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "NOT RECOMMVENDED', "MAY", and
"OPTIONAL" in this docunment are to be interpreted as described in RFC
2119 [RFC2119].

3. Overview

DNCP operates primarily using unicast exchanges between nodes, and it
may use multicast for Trickle-based shared state di ssem nation and
topol ogy discovery. |If used in pure unicast node with unreliable
transport, Trickle is also used between peers.

DNCP i s based on exchanging TLVs (Section 7) and defines a set of
mandat ory and optional ones for its operation. They are categorized
into TLVs for requesting information (Section 7.1), transmtting data
(Section 7.2), and being published as data (Section 7.3). DNCP-based
protocols usually specify additional ones to extend the capabilities.

DNCP di scovers the topol ogy of the nodes in the DNCP network and

mai ntains the liveliness of published node data by ensuring that the
publishing node is bidirectionally reachable. New potential peers
can be di scovered autononously on nulticast-enabled links; their

Stenberg & Barth St andards Track [ Page 8]



RFC 7787 Di stri buted Node Consensus Prot ocol April 2016

4.

4.

addresses may be nanually configured or they may be found by sone

ot her neans defined in the particular DNCP profile. The DNCP profile
may specify, for exanple, a well-known anycast address or provision
the renote address to contact via sonme other protocol such as DHCPv6
[ RFC3315] .

A hash tree of height 1, rooted in itself, is maintained by each node
to represent the state of all currently reachabl e nodes (see

Section 4.1), and the Trickle algorithmis used to trigger
synchroni zati on (see Section 4.3). The need to check peer nodes for
state changes is thereby determ ned by conparing the current root of
their respective hash trees, i.e., their individually cal cul ated

net work state hashes.

Before joining a DNCP network, a node starts with a hash tree that
has only one leaf if the node publishes some TLVs, and no | eaves

otherwise. It then announces the network state hash cal culated from
the hash tree by neans of the Trickle algorithmon all its configured
endpoi nt s.

When an update is detected by a node (e.g., by receiving a different
network state hash froma peer), the originator of the event is
requested to provide a list of the state of all nodes, i.e., all the
information it uses to calculate its own hash tree. The node uses
the list to determ ne whether its own information is outdated and --
i f necessary -- requests the actual node data that has changed.

Whenever a node’s local copy of any node data and its hash tree are
updated (e.g., due to its own or another node s node state changi ng
or due to a peer being added or renoved), its Trickle instances are
reset, which eventually causes any update to be propagated to all of
its peers.

Qper ati on
1. Hash Tree

Each DNCP node maintains an arbitrary width hash tree of height 1

The root of the tree represents the overall network state hash and is
used to determ ne whether the view of the network of two or nore
nodes i s consistent and shared. Each |eaf represents one
bidirectionally reachabl e DNCP node. Every tine a node is added or
renoved fromthe topol ogy graph (Section 4.6), it is likew se added
or renoved as a leaf. At any tine, the |eaves of the tree are
ordered in ascending order of the node identifiers of the nodes they
represent.

Stenberg & Barth St andards Track [ Page 9]



RFC 7787 Di stri buted Node Consensus Prot ocol April 2016

4.1.1. Calculating Network State and Node Data Hashes

The network state hash and the node data hashes are cal cul ated using
the hash function defined in the DNCP profile (Section 9) and
truncated to the nunber of bits specified therein.

I ndi vi dual node data hashes are cal cul ated by applying the function
and truncation on the respective node’s node data as published in the
Node State TLV. Such node data sets are always ordered as defined in
Section 7.2.3.

The network state hash is cal cul ated by applying the function and
truncation on the concatenated network state. This state is forned
by first concatenating each node’'s sequence nunber (in network byte
order) with its node data hash to forma per-node datum for each
node. These per-node data are then concatenated in ascendi ng order
of the respective node’s node identifier, i.e., in the order that the
nodes appear in the hash tree.

4.1.2. Updating Network State and Node Data Hashes

The network state hash and the node data hashes are updated on-denmand
and whenever any locally stored per-node state changes. This

i ncludes local unidirectional reachability encoded in the published
Peer TLVs (Section 7.3.1) and -- when conbined with renote data --
results in awareness of bidirectional reachability changes

4.2. Data Transport

DNCP has few requirenents for the underlying transport; it requires
some way of transmitting either a unicast datagramor streamdata to
a peer and, if used in multicast node, a way of sending nulticast
datagrams. As nulticast is used only to identify potential new DNCP
nodes and to send status nessages that nerely notify that a unicast
exchange should be triggered, the nmulticast transport does not have
to be secured. If unicast security is desired and one of the
built-in security nethods is to be used, support for some TLS-derived
transport schene -- such as TLS [ RFC5246] on top of TCP or DTLS

[ RFC6347] on top of UDP -- is also required. They provide for
integrity protection and confidentiality of the node data, as well as
aut henti cation and authorization using the schenes defined in
"Security and Trust Managenent" (Section 8). A specific definition
of the transport(s) in use and its paraneters MJST be provided by the
DNCP profile.

TLVs (Section 7) are sent across the transport as is, and they SHOULD

be sent together where, e.g., MU considerations do not reconmend
sending themin multiple batches. DNCP does not fragnent or

Stenberg & Barth St andards Track [ Page 10]



RFC 7787 Di stri buted Node Consensus Prot ocol April 2016

reassenbl e TLVs; thus, it MJST be ensured that the underlying
transport perforns these operations should they be necessary. |If
thi s docunent indicates sending one or nore TLVs, then the sending
node does not need to keep track of the packets sent after handing
them over to the respective transport, i.e., reliable DNCP operation
is ensured nerely by the explicitly defined tiners and state nachines
such as Trickle (Section 4.3). TLVs in general are handl ed
individually and statelessly (and thus do not need to be sent in any
particul ar order) with one exception: To form bidirectional peer

rel ati onshi ps, DNCP requires identification of the endpoints used for
communi cation. As bidirectional peer relationships are required for
validating liveliness of published node data as described in

Section 4.6, a DNCP node MUST send a Node Endpoint TLV

(Section 7.2.1). When it is sent varies, depending on the underlying
transport, but conceptually it should be avail abl e whenever
processing a Network State TLV:

o If using a streamtransport, the TLV MJST be sent at |east once
per connection but SHOULD NOT be sent nore than once.

o |If using a datagramtransport, it MJST be included in every
datagram that al so contains a Network State TLV (Section 7.2.2)
and MUST be | ocated before any such TLV. It SHOULD al so be
included in any other datagramto speed up initial peer detection

G ven the assorted transport options as well as potential endpoint
configuration, a DNCP endpoint may be used in various transport
nodes:

Uni cast :

* |f only reliable unicast transport is used, Trickle is not used
at all. \Wenever the locally calculated network state hash
changes, a single Network State TLV (Section 7.2.2) is sent to
every unicast peer. Additionally, recently changed Node State
TLVs (Section 7.2.3) MAY be incl uded.

* |f only unreliable unicast transport is used, Trickle state is
kept per peer, and it is used to send Network State TLVs
intermttently, as specified in Section 4.3.

Multicast+Unicast: |If nulticast datagramtransport is available on
an endpoint, Trickle state is only nmaintained for the endpoint as
a whole. It is used to send Network State TLVs periodically, as

specified in Section 4.3. Additionally, per-endpoint keep-alives
MAY be defined in the DNCP profile, as specified in Section 6.1.2.

Stenberg & Barth St andards Track [ Page 11]



RFC 7787 Di stri buted Node Consensus Prot ocol April 2016

St e

Mul ti castLi sten+Unicast: Just |ike unicast, except nulticast
transmi ssions are listened to in order to detect changes of the
hi ghest node identifier. This node is used only if the DNCP
profile supports dense nulticast-enabled |ink optimzation
(Section 6.2).

Trickle-Driven Status Updates

The Trickle algorithm|[RFC6206] is used to ensure protoco
reliability over unreliable nulticast or unicast transports. For
reliable unicast transports, its actual algorithmis unnecessary and
omtted (Section 4.2). DNCP naintains nultiple Trickle states as
defined in Section 5. Each such state can be based on different
paraneters (see below) and is responsible for ensuring that a
specific peer or all peers on the respective endpoint are regularly
provided with the node’s current locally calculated network state
hash for state conparison, i.e., to detect potential divergence in

t he perceived network state.

Trickle defines 3 paraneters: Inin, Inmax, and k. Inin and | max
represent the mnimumvalue for | and the maxi mum nunber of doublings
of Imn, where | is the time interval during which at |east k Trickle

updat es must be seen on an endpoint to prevent |ocal state
transm ssion. The actual suggested Trickle algorithm paraneters are
DNCP profile specific, as described in Section 9.

The Trickle state for all Trickle instances defined in Section 5 is
consi dered inconsistent and reset if and only if the locally
cal cul ated network state hash changes. This occurs either due to a
change in the local node’s own node data or due to the receipt of
nore recent data from another node as explained in Section 4.1. A
node MJUST NOT reset its Trickle state nmerely based on receiving a
Network State TLV (Section 7.2.2) with a network state hash that is
different fromits locally cal cul ated one.

Every tine a particular Trickle instance indicates that an update
shoul d be sent, the node MUST send a Network State TLV
(Section 7.2.2) if and only if:

o the endpoint is in Milticast+Unicast transport node, in which case
the TLV MJUST be sent over nulticast.

o the endpoint is NOT in Milticast+Unicast transport node, and the

uni cast transport is unreliable, in which case the TLV MJST be
sent over unicast.

nberg & Barth St andards Track [ Page 12]



RFC 7787 Di stri buted Node Consensus Prot ocol April 2016

A (sub)set of all Node State TLVs (Section 7.2.3) MAY al so be

i ncluded, unless it is defined as undesirable for sonme reason by the
DNCP profile or to avoid exposure of the node state TLVs by
transmitting themw thin insecure nmulticast when using secure

uni cast.

4.4. Processing of Received TLVs

This section describes how received TLVs are processed. The DNCP
profile may specify when to ignore particular TLVs, e.g., to nodify
security properties -- see Section 9 for what may be safely defined
to be ignored in a profile. Any 'reply’ nentioned in the steps bel ow
denotes the sending of the specified TLV(s) to the originator of the
TLV being processed. All such replies MIST be sent using unicast.

If the TLV being replied to was received via nulticast and it was
sent to a multiple access link, the reply MIST be del ayed by a random
time span in [0, Imn/2], to avoid potential sinmultaneous replies
that may cause problens on sone |links, unless specified differently
in the DNCP profile. The sending of replies MAY also be rate limted
or onitted for a short period of tine by an inplenmentation. However,
if the TLV is not forbidden by the DNCP profile, an inplenentation
MUST reply to retransnissions of the TLV with a non-zero probability
to avoid starvation, which would break the state synchronization

A DNCP node MJST process TLVs received fromany valid (e.g.

correctly scoped) address, as specified by the DNCP profile and the
configuration of a particular endpoint, whether this address is known
to be the address of a peer or not. This provision satisfies the
needs of monitoring or other host software that needs to discover the
DNCP t opol ogy without adding to the state in the network.

Upon recei pt of:

0 Request Network State TLV (Section 7.1.1): The receiver MJST reply
with a Network State TLV (Section 7.2.2) and a Node State TLV
(Section 7.2.3) for each node data used to cal cul ate the network
state hash. The Node State TLVs SHOULD NOT contain the optiona
node data part to avoid redundant transmni ssion of node data,
unl ess explicitly specified in the DNCP profile.

0 Request Node State TLV (Section 7.1.2): If the receiver has node
data for the corresponding node, it MJST reply with a Node State
TLV (Section 7.2.3) for the correspondi ng node. The optional node
data part MJST be included in the TLVW.

0 Network State TLV (Section 7.2.2): If the network state hash

differs fromthe locally cal cul ated network state hash, and the
receiver is unaware of any particular node state differences with

Stenberg & Barth St andards Track [ Page 13]



RFC 7787 Di stri buted Node Consensus Prot ocol April 2016

the sender, the receiver MJST reply with a Request Network State
TLV (Section 7.1.1). These replies MJST be rate limted to only
at nost one reply per link per unique network state hash within
Imn. The sinplest way to ensure this rate linmt is a tinmestanp
i ndi cating requests and sendi ng at nost one Request Network State
TLV (Section 7.1.1) per Inmn. To facilitate faster state
synchroni zation, if a Request Network State TLV is sent in a
reply, a local, current Network State TLV MAY al so be sent.

0 Node State TLV (Section 7.2.3):

* |f the node identifier matches the | ocal node identifier and
the TLV has a greater sequence nunber than its current |oca
val ue, or the sane sequence nunber and a different hash, the
node SHOULD republish its own node data with a sequence number
significantly greater than the received one (e.g., 1000) to
reclaimthe node identifier. This difference is needed in
order to ensure that it is higher than any potentially
lingering copies of the node state in the network. This may
occur normally once due to the local node restarting and not
storing the nost recently used sequence nunber. |If this occurs
nmore than once or for nodes not republishing their own node
data, the DNCP profile MJST provide guidance on how to handl e
these situations as it indicates the existence of another
active node with the sane node identifier.

* |f the node identifier does not match the | ocal node
identifier, and one or nore of the follow ng conditions are
true:

+ The local information is outdated for the correspondi ng node
(the local sequence nunmber is less than that within the

TLV).

+ The local information is potentially incorrect (the |oca
sequence nunber matches but the node data hash differs).

+ There is no data for that node altogether

Then:

+ |If the TLV contains the Node Data field, it SHOULD al so be
verified by ensuring that the locally cal cul ated hash of the
node data matches the content of the H(Node Data) field

within the TLV. If they differ, the TLV SHOULD be ignored
and not processed further.

Stenberg & Barth St andards Track [ Page 14]



RFC 7787 Di stri buted Node Consensus Prot ocol April 2016

+ If the TLV does not contain the Node Data field, and the
H(Node Data) field within the TLV differs fromthe |oca
node data hash for that node (or there is none), the
receiver MIST reply with a Request Node State TLV
(Section 7.1.2) for the correspondi ng node.

+ Oherwi se, the receiver MJST update its locally stored state
for that node (node data based on the Node Data field if
present, sequence nunber, and relative tinme) to match the
recei ved TLV.

For conparison purposes of the sequence nunber, a | ooping

conpari son function MJUST be used to avoid problens in case of
overflow. The conparison function a < b <=> ((a - b) % (2"32)) &
(2731) !'= 0 where (a %b) represents the remainder of a nmodulo b
and (a & b) represents bitw se conjunction of a and b is
RECOMVENDED unl ess the DNCP profil e defines another

0 Any other TLV: TLVs not recogni zed by the receiver MJST be
silently ignored unless they are sent within another TLV (for
exanple, TLVs within the Node Data field of a Node State TLV).
TLVs within the Node Data field of the Node State TLV not
recogni zed by the receiver MIST be retained for distribution to
ot her nodes and for calculation of the node data hash as descri bed
in Section 7.2.3 but are ignored for other purposes.

If secure unicast transport is configured for an endpoi nt, any Node
State TLVs received over insecure multicast MJST be silently ignored.

4.5, Discovering, Adding, and Renoving Peers

Peer relations are established between nei ghbors using one or nore
mut ual Iy connected endpoints. Such nei ghbors exchange i nformation
about network state and published data directly, and through
transitivity, this information then propagates throughout the

net wor K.

New peers are di scovered using the regular unicast or multicast
transport defined in the DNCP profile (Section 9). This process is
not di stinguished from peer addition, i.e., an unknown peer is sinply
di scovered by receiving regular DNCP protocol TLVs fromit, and

dedi cat ed di scovery nessages or TLVs do not exist. For unicast-only
transports, the individual node’'s transport addresses are
preconfigured or obtained using an external service discovery
protocol. In the presence of a nulticast transport, mnessages from
unknown peers are handled in the same way as multicast nmessages from
peers that are already known; thus, new peers are sinply discovered
when sending their regular DNCP protocol TLVs using nulticast.

Stenberg & Barth St andards Track [ Page 15]



RFC 7787 Di stri buted Node Consensus Prot ocol April 2016

When receiving a Node Endpoint TLV (Section 7.2.1) on an endpoi nt
from an unknown peer:

o |If received over unicast, the renote node MJST be added as a peer
on the endpoint, and a Peer TLV (Section 7.3.1) MJST be created
for it.

o |If received over nulticast, the node MAY be sent a (possibly rate-
limted) unicast Request Network State TLV (Section 7.1.1).

I f keep-alives specified in Section 6.1 are NOT sent by the peer
(either the DNCP profile does not specify the use of keep-alives or
the particul ar peer chooses not to send keep-alives), sone other
existing local transport-specific neans (such as Ethernet carrier
detection or TCP keep-alive) MJST be used to ensure its presence. |If
the peer does not send keep-alives, and no neans to verify presence
of the peer are available, the peer MJST be consi dered no | onger
present, and it SHOULD NOT be added back as a peer until it starts
sendi ng keep-alives again. Wen the peer is no |onger present, the
Peer TLV and the |l ocal DNCP peer state MJST be renoved. DNCP does
not define an explicit nessage or TLV for indicating the term nation
of DNCP operation by the term nati ng node; however, a derived
protocol could specify an extension, if the need arises.

If the local endpoint is in the Miulticast-Listen+Uni cast transport
node, a Peer TLV (Section 7.3.1) MJST NOT be published for the peers
not havi ng the highest node identifier.

4. 6. Dat a Liveliness Validation

Mai nt enance of the hash tree (Section 4.1) and thereby network state
hash updates depend on up-to-date information on bidirectional node
reachability derived fromthe contents of a topol ogy graph. This
graph changes whenever nodes are added to or renoved fromthe network
or when bidirectional connectivity between existing nodes is
established or lost. Therefore, the graph MUST be updated either
imediately or with a snall delay shorter than the DNCP profile-
defined Trickle |Imn whenever:

o A Peer TLV or a whole node is added or renoved, or

0 The origination tine (in mlliseconds) of sone node’'s node data is
| ess than current time - 27232 + 2715,

The artificial upper linmt for the origination tine is used to

gracefully avoid overflows of the origination tine and allow for the
node to republish its data as noted in Section 7.2.3.

Stenberg & Barth St andards Track [ Page 16]



RFC 7787 Di stri buted Node Consensus Prot ocol April 2016

The topol ogy graph update starts with the |ocal node narked as
reachabl e and all other nodes marked as unreachable. Oher nodes are
then iteratively nmarked as reachable using the following algorithm A
candi dat e not-yet-reachabl e node N with an endpoint NE is marked as
reachable if there is a reachable node R with an endpoint RE that
meets all of the following criteria:

0o The origination time (in mlliseconds) of R s node data is greater
than current tinme - 2732 + 2715.

0 R publishes a Peer TLV with:
* Peer Node ldentifier = N s node identifier
* Peer Endpoint Identifier = NE's endpoint identifier
* Endpoint ldentifier = RE's endpoint identifier

0 N publishes a Peer TLV with:
* Peer Node ldentifier = Rs node identifier
* Peer Endpoint ldentifier = RE's endpoint identifier
*  Endpoint ldentifier = NE's endpoint identifier

The al gorithmtermn nates when no nore candi date nodes fulfilling
these criteria can be found.

DNCP nodes that have not been reachable in the nbst recent topology
graph traversal MJST NOT be used for calculation of the network state
hash, be provided to any applications that need to use the whole TLV
graph, or be provided to renpote nodes. They MAY be forgotten

i medi ately after the topology graph traversal; however, it is
RECOMVENDED to keep them at |east briefly to inprove the speed of
DNCP network state convergence. This reduces the nunber of queries
needed to reconverge during both initial network convergence and when
a part of the network | oses and regains bidirectional connectivity
within that tinme period.

5. Dat a Model

This section describes the |ocal data structures a minimal

i mpl ementation might use. This section is provided only as a
conveni ence for the inplementor. Sonme of the optional extensions
(Section 6) describe additional data requirenents, and sone optiona
parts of the core protocol may al so require nore

Stenberg & Barth St andards Track [ Page 17]



RFC 7787 Di stri buted Node Consensus Prot ocol April 2016

A DNCP node has:

(o]

A data structure containing data about the npbst recently sent
Request Network State TLVs (Section 7.1.1). The sinplest option
is keeping a tinestanp of the nost recent request (required to
fulfill reply rate limting specified in Section 4.4).

A DNCP node has the following for every DNCP node in the DNCP
net wor k:

(o]

Node identifier: the unique identifier of the node. The |ength,
how it is produced, and how collisions are handled is up to the
DNCP profile.

Node data: the set of TLV tuples published by that particular
node. As they are transnitted in a particular order (see Node
State TLV (Section 7.2.3) for details), maintaining the order
within the data structure here may be reasonabl e.

Lat est sequence nunber: the 32-bit sequence number that is
increnented any tinme the TLV set is published. The conparison
function used to conpare themis described in Section 4.4.

Oigination tine: the (estimted) time when the current TLV set

with the current sequence nunber was published. It is used to
popul ate the MI1liseconds Since Origination field in a Node State
TLV (Section 7.2.3). ldeally, it also has nillisecond accuracy.

Additionally, a DNCP node has a set of endpoints for which DNCP is
configured to be used. For each such endpoint, a node has:

(o]

Endpoint identifier: the 32-bit opaque |ocally unique val ue
identifying the endpoint within a node. |t SHOULD NOT be reused
i medi ately after an endpoint is disabled.

Trickle instance: the endpoint’s Trickle instance with paranmeters
I, T, and ¢ (only on an endpoint in Milticast+Unicast transport
node) .

and one (or nore) of the foll ow ng:

(0]

(o]

Interface: the assigned |ocal network interface.
Uni cast address: the DNCP node it should connect with.

Set of addresses: the DNCP nodes from whi ch connections are
accept ed.

Stenberg & Barth St andards Track [ Page 18]



RFC 7787 Di stri buted Node Consensus Prot ocol April 2016

For each renote (peer, endpoint) pair detected on a |ocal endpoint, a
DNCP node has:

0 Node identifier: the unique identifier of the peer.

0 Endpoint identifier: the unique endpoint identifier used by the
peer.

0 Peer address: the nost recently used address of the peer
(aut henticated and authorized, if security is enabled).

o Trickle instance: the particular peer’s Trickle instance with
paraneters |, T, and ¢ (only on an endpoint in unicast node, when
using an unreliable unicast transport).

6. Optional Extensions

This section specifies extensions to the core protocol that a DNCP
profile may specify to be used.

6.1. Keep-Alives

VWhi | e DNCP provi des mechani snms for di scovery and addi ng new peers on
an endpoint (Section 4.5), as well as state change notifications,

anot her nmechani sm may be needed to get rid of old, no longer valid
peers if the transport or lower |layers do not provide one as noted in
Section 4.6.

If keep-alives are not specified in the DNCP profile, the rest of
this subsecti on MJUST be i gnored.

A DNCP profile MAY specify either per-endpoint (sent using multicast
to all DNCP nodes connected to a nulticast-enabled Iink) or per-peer
(sent using unicast to each peer individually) keep-alive support.

For every endpoint that a keep-alive is specified for in the DNCP
profile, the endpoint-specific keep-alive interval MJST be

mai ntai ned. By default, it is DNCP_KEEPALIVE | NTERVAL. |If there is
a local value that is preferred for that for any reason
(configuration, energy conservation, nmedia type, ...), it can be
substituted instead. If a non-default keep-alive interval is used on
any endpoint, a DNCP node MJST publish an appropriate Keep-Alive
Interval TLV(s) (Section 7.3.2) within its node data.

Stenberg & Barth St andards Track [ Page 19]



RFC 7787 Di stri buted Node Consensus Prot ocol April 2016

6.

6.

1

1

1. Data Mdel Additions

The following additions to the Data Mddel (Section 5) are needed to
support keep-alives:

For each configured endpoint that has per-endpoint keep-alives
enabl ed:

0 Last sent: If a tinmestanp that indicates the last time a Network
State TLV (Section 7.2.2) was sent over that interface.

For each renote (peer, endpoint) pair detected on a |ocal endpoint, a
DNCP node has:

0 Last contact timestanp: A timestanp that indicates the last tinme a
consi stent Network State TLV (Section 7.2.2) was received fromthe
peer over nulticast or when anything was received over unicast.
Failing to update it for a certain anount of tine as specified in
Section 6.1.5 results in the renoval of the peer. Wen adding a
new peer, it is initialized to the current tinme.

0o Last sent: If per-peer keep-alives are enabled, a timestanp that
indicates the last time a Network State TLV (Section 7.2.2) was
sent to that point-to-point peer. Wen adding a new peer, it is
initialized to the current tinme.

2. Per-Endpoint Periodic Keep-Alives

I f per-endpoint keep-alives are enabled on an endpoint in

Mul ti cast +Uni cast transport node, and if no traffic containing a
Network State TLV (Section 7.2.2) has been sent to a particular
endpoint within the endpoint-specific keep-alive interval, a Network
State TLV (Section 7.2.2) MJST be sent on that endpoint, and a new
Trickle interval started, as specified in step 2 of Section 4.2 of

[ RFC6206]. The actual sending tine SHOULD be further delayed by a
randomtinme span in [0, Imn/2].

6.1.3. Per-Peer Periodic Keep-Alives

I f per-peer keep-alives are enabled on a unicast-only endpoint, and
if notraffic containing a Network State TLV (Section 7.2.2) has been
sent to a particular peer within the endpoint-specific keep-alive
interval, a Network State TLV (Section 7.2.2) MJST be sent to the
peer, and a new Trickle interval started, as specified in step 2 of
Section 4.2 of [RFC6206].

Stenberg & Barth St andards Track [ Page 20]



RFC 7787 Di stri buted Node Consensus Prot ocol April 2016

6.1.4. Received TLV Processing Additions

If a TLV is received over unicast fromthe peer, the Last contact
timestanp for the peer MJST be updat ed.

On receipt of a Network State TLV (Section 7.2.2) that is consistent
with the locally cal cul ated network state hash, the Last contact
timestanp for the peer MJUST be updated in order to maintain it as a
peer.

6.1.5. Peer Renoval

For every peer on every endpoint, the endpoint-specific keep-alive
interval must be cal cul ated by | ooking for Keep-Alive Interval TLVs
(Section 7.3.2) published by the node, and if none exist, use the
default val ue of DNCP_KEEPALIVE |INTERVAL. |If the peer’s Last contact
ti mestanp has not been updated for at |east a locally chosen
potentially endpoint-specific keep-alive multiplier (defaults to
DNCP_KEEPALI VE_MJULTI PLI ER) tines the peer’s endpoint-specific keep-
alive interval, the Peer TLV for that peer and the |ocal DNCP peer
state MJUST be renoved

6.2. Support for Dense Milticast-Enabled Links

This optimzation is needed to avoid a state space explosion. G ven
a large set of DNCP nodes publishing data on an endpoint that uses
nmul ticast on a link, every node will add a Peer TLV (Section 7.3.1)
for each peer. While Trickle linmts the anbunt of traffic on the
link in stable state to sone extent, the total anount of data that is
added to and nmintained in the DNCP network given N nodes on a

mul ticast-enabled Iink is QO N'2). Additionally, if per-peer keep-
alives are used, there will be Q(N'2) keep-alives running on the link
if the liveliness of peers is not ensured using sonme other way (e.g.
TCP connection lifetine, Layer 2 notification, or per-endpoint keep-
alive).

An upper bound for the nunber of peers that are allowed for a
particular type of link that an endpoint in Milticast+Uni cast
transport node is used on SHOULD be provided by a DNCP profile, but
it MAY al so be chosen at runtime. The main consideration when
selecting a bound (if any) for a particular type of link should be
whet her it supports nmulticast traffic and whether a too |arge nunber
of peers case is likely to happen during the use of that DNCP profile
on that particular type of link. |If neither is likely, there is
little point specifying support for this for that particular link

t ype.

Stenberg & Barth St andards Track [ Page 21]



RFC 7787 Di stri buted Node Consensus Prot ocol April 2016

If a DNCP profile does not support this extension at all, the rest of
this subsecti on MUST be ignored. This is because when this extension
is used, the state within the DNCP network only contains a subset of
the full topology of the network. Therefore, every node must be
aware of the potential of it being used in a particular DNCP profile.

If the specified upper bound is exceeded for sone endpoint in

Mul ti cast +Uni cast transport node and if the node does not have the

hi ghest node identifier on the link, it SHOULD treat the endpoint as
a uni cast endpoint connected to the node that has the highest node
identifier detected on the link, therefore transitioning to

Mul ticast-1listen+Uni cast transport node. See Section 4.2 for

i mplications on the specific endpoint behavior. The nodes in

Mul ticast-1listen+Uni cast transport node MJST keep listening to

mul ticast traffic to both receive nmessages fromthe node(s) still in
Mul ti cast +Uni cast node and react to nodes with a greater node
identifier appearing. |If the highest node identifier present on the
Iink changes, the renpte unicast address of the endpoints in

Mul ti cast - Li sten+tUni cast transport node MJST be changed. |f the node
identifier of the local node is the highest one, the node MJST switch
back to, or stay in, Milticast+Uni cast node and form peer

rel ationships with all peers as specified in Section 4.5.

7. Type-Length-Value bjects

0 1 2 3
01234567890123456789012345678901
B T T T o o S S S e i S S Tk e e Y S
| Type | Length |
B i ok it I I S e S e S ki ol ik i I TR SR i S S e S e e e e i i 5

| Value (if any) (+padding (if any))

| (variable # of bytes)

B s T s s e T o e S T ks et s oot ST S S S o S S 3
| (optional nested TLVs)

B T S S e s e i s S i S S S S S S T S SR S S S i S S S
Each TLV is encoded as:

0 a 2-byte Type field

0 a 2-byte Length field, which contains the length of the Val ue
field in bytes; 0 nmeans no val ue

o the value itself (if any)

0 padding bytes with a value of zero up to the next 4-byte boundary
if the Length is not divisible by 4

Stenberg & Barth St andards Track [ Page 22]



RFC 7787 Di stri buted Node Consensus Prot ocol April 2016

Whi | e paddi ng bytes MJST NOT be included in the nunber stored in the
Length field of the TLV, if the TLV is enclosed w thin another TLV,
then the padding is included in the enclosing TLV' s Length val ue.

Each TLV that does not define optional fields or variable-length
content MAY be sent with additional sub-TLVs appended after the TLV
to allow for extensibility. Wen handling such TLV types, each node
MJUST accept received TLVs that are longer than the fixed fields
specified for the particular type and ignore the sub-TLVs with either
unknown types or types not supported within that particular TLV. If
any sub-TLVs are present, the Length field of the TLV describes the
nunber of bytes fromthe first byte of the TLV's own Value (if any)
to the last (padding) byte of the last sub-TLV.

For exanple, type=123 (0Ox7b) TLV with value 'x’ (120 = 0x78) is
encoded as: 007B 0001 7800 0000. If it were to have a sub-TLV of
type=124 (0x7c) with value 'y’, it would be encoded as 007B 000C 7800
0000 007C 0001 7900 0000.

In this section, the followi ng special notation is used:
= octet string concatenation operation.

H(x) = non-cryptographic hash function specified by the DNCP
profile.

In addition to the TLV types defined in this docunent, TLV Types
11-31 and 512-767 are unassigned and nmay be sequentially registered,
starting at 11, by Standards Action [ RFC5226] by extensions to DNCP
that may be applicable in nultiple DNCP profiles.

7.1. Request TLVs
7.1.1. Request Network State TLV

0 1 2 3

01234567890123456789012345678901
B Lt r s i i i o o T s ks S R S
| Type: Request network state (1)] Length: >= 0 |
B s T s s e T o e S T ks et s oot ST S S S o S S 3

This TLV is used to request response with a Network State TLV

(Section 7.2.2) and all Node State TLVs (Section 7.2.3) (wthout node
dat a) .

Stenberg & Barth St andards Track [ Page 23]



RFC 7787 Di stri buted Node Consensus Prot ocol April 2016

7.1.2. Request Node State TLV

0 1 2 3
01234567890123456789012345678901
B T e o i S I i i S S N iy St S I S S

| Type: Request node state (2) | Length: > 0

B s S S i i i ks a ks st S S S S S S

| Node Identifier

| (length fixed in DNCP profile) |

| |

B T S S e s e i s S i S S S S S S T S SR S S S i S S S
This TLV is used to request a Node State TLV (Section 7.2.3)

(i ncluding node data) for the node with the matching node identifier

7.2. Data TLVs
7.2.1. Node Endpoint TLV

0 1 2 3
01234567890123456789012345678901
B T e o i S I i i S S N iy St S I S S
| Type: Node endpoint (3) | Length: > 4
T e S S S T
| Node Identifier
| (length fixed in DNCP profile) |

B T e o i S I i i S S N iy St S I S S
| Endpoi nt ldentifier
B e i S T e i T e S R S e e e s i i T S

This TLV identifies both the |local node’'s node identifier, as well as

the particul ar endpoint’s endpoint identifier. Section 4.2 specifies
when it is sent.

Stenberg & Barth St andards Track [ Page 24]



RFC 7787 Di stri buted Node Consensus Prot ocol April 2016

7.2.2. Network State TLV

0 1 2 3

01234567890123456789012345678901
B T e o i S I i i S S N iy St S I S S
| Type: Network state (4) | Length: > 0 |
B s S S i i i ks a ks st S S S S S S
| H(sequence nunber of node 1 .. H(node data of node 1) |
| sequence nunmber of node N .. H(node data of node N)) |
| (length fixed in DNCP profile) |

i S S S T i i S S i i S S S S R T T

This TLV contains the current network state hash calculated by its
sender (Section 4.1 describes the algorithn).

7.2.3. Node State TLV

0 1 2 3

01234567890123456789012345678901
i T o T e e e et o S s S R R SR
| Type: Node state (5) | Length: > 8 |
B e s i e e e s i i ST RIE CRIE TR TR TR S T S S S s sl S S S
| Node Ildentifier |
| (length fixed in DNCP profile) |

i T o T e e e et o S s S R R SR
| Sequence Number |
B T e o i S I i i S S N iy St S I S S
| M1 1liseconds Since Origination |
T e e i i e e T i o i SR S S S
| H( Node Dat a) |
| (length fixed in DNCP profile) |

+- :I-- B i S T e i Tk o S S S S T S S S S S S T S S
| (optionally) Node Data (a set of nested TLVs) |

T I T S D i it S S S S S R S o S S A S

This TLV represents the | ocal node’s know edge about the published
state of a node in the DNCP network identified by the Node Identifier
field in the TLW.

Every node, including the node publishing the node data, MJST update
the MI1liseconds Since Origination whenever it sends a Node State TLV
based on when the node estimates the data was originally published.
This is, e.g., to ensure that any relative tinestanps contai ned

wi thin the published node data can be correctly offset and

Stenberg & Barth St andards Track [ Page 25]



RFC 7787 Di stri buted Node Consensus Prot ocol April 2016

interpreted. Utinmately, what is provided is just an approxi mation,
as transmi ssion del ays are not accounted for.

Absent any changes, if the originating node notices that the 32-bit
M1 liseconds Since Oigination value would be close to overfl ow
(greater than 2732 - 2716), the node MJST republish its TLVs even if
there is no change. |In other words, absent any other changes, the
TLV set MJUST be republished roughly every 48 days.

The actual node data of the node may be included within the TLV as
well as in the optional Node Data field. The set of TLVs MJST be
strictly ordered based on ascending binary content (including TLV
type and length). This enables, e.g., efficient state delta
processi ng and no-copy indexing by TLV type by the recipient. The
node data content MJST be passed al ong exactly as it was received.
It SHOULD be al so verified on receipt that the locally cal cul ated
H(Node Data) matches the content of the field within the TLV, and if
the hash differs, the TLV SHOULD be ignored.

7.3. Data TLVs within Node State TLV

These TLVs are published by the DNCP nodes and are therefore only
encoded in the Node Data field of Node State TLVs. |If encountered
out side Node State TLV, they MJUST be silently ignored.

7.3.1. Peer TLV

0 1 2 3
01234567890123456789012345678901
B T S S e s e i s S i S S S S S S T S SR S S S i S S S

| Type: Peer (8) | Length: > 8

T T ik e o e e e e et e i s o SR R SR
| Peer Node Identifier

| (length fixed in DNCP profile)

B T S S e s e i s S i S S S S S S T S SR S S S i S S S
| Peer Endpoint ldentifier

B Lt r s i i i o o T s ks S R S
| (Local ) Endpoint ldentifier

B s T s s e T o e S T ks et s oot ST S S S o S S 3

This TLV indicates that the node in question vouches that the
specified peer is reachable by it on the specified | ocal endpoint.
The presence of this TLV at |east guarantees that the node publishing
it has received traffic fromthe peer recently. For guaranteed up-
to-date bidirectional reachability, the existence of both nodes

mat chi ng Peer TLVs needs to be checked.

Stenberg & Barth St andards Track [ Page 26]



RFC 7787 Di stri buted Node Consensus Prot ocol April 2016

7.3.2. Keep-Aive Interval TLV

0 1 2 3
01234567890123456789012345678901
B T e o i S I i i S S N iy St S I S S

| Type: Keep-alive interval (9) | Length: >= 8
e e I i S S A
| Endpoi nt Identifier

T S T S S T T T S L T
| I nterval

B T e o i S I i i S S N iy St S I S S

This TLV indicates a non-default interval being used to send keep-
alives as specified in Section 6. 1.

Endpoint identifier is used to identify the particular (local)
endpoi nt for which the interval applies on the sending node. If O,
it applies for ALL endpoints for which no specific TLV exists.

Interval specifies the interval in milliseconds at which the node
sends keep-alives. A value of zero neans no keep-alives are sent at
all; in that case, sonme |ower-layer mechani smthat ensures the
presence of nodes MJST be avail abl e and used.

8. Security and Trust Managenent

If specified in the DNCP profile, either DILS [ RFC6347] or TLS

[ RFC5246] may be used to authenticate and encrypt either sone (if
specified optional in the profile) or all unicast traffic. The

foll owi ng nethods for establishing trust are defined, but it is up to
the DNCP profile to specify which ones may, should, or nust be
support ed.

8.1. Trust Method Based on Pre-Shared Key

A trust nodel based on Pre-Shared Key (PSK) is a sinple security
managenent nechani smthat allows an administrator to depl oy devices
to an existing network by configuring themw th a predefined key,
simlar to the configuration of an administrator password or W-Fi
Protected Access (WPA) key. Although limted in nature, it is usefu
to provide a user-friendly security mechanismfor smaller networks

Stenberg & Barth St andards Track [ Page 27]



RFC 7787 Di stri buted Node Consensus Prot ocol April 2016

8. 2.

8. 3.

8.

PKI - Based Trust WMethod

A PKI - based trust nodel enables nore advanced managenment capabilities

at the cost of increased conplexity and bootstrapping effort.

However, it allows trust to be nanaged in a centralized manner and is

therefore useful for larger networks with a need for an authoritative
trust managenent.

3.

Certificate-Based Trust Consensus Method
For some scenarios -- such as bootstrapping a nostly unnanaged
network -- the nethods described above nay not provide a desirable

trade-of f between security and user experience. This section

i ncl udes gui dance for inplenmenting an opportunistic security
[ RFC7435] nethod that DNCP profiles can build upon and adapt for

their specific requirements

The certificate-based consensus nodel is designed to be a conpronise

bet ween trust managenent effort and flexibility. It is based on
X. 509 certificates and all ows each DNCP node to provide a trust

verdict on any other certificate, and a consensus is found to

determ ne whether a node using this certificate or any certificate
signed by it is to be trusted.

A DNCP node not using this security nmethod MJUST ignore all announced
trust verdicts and MUST NOT announce any such verdicts by itself,
i.e., any other normative | anguage in this subsection does not apply
toit.

The current effective trust verdict for any certificate is defined as
the one with the highest priority fromall trust verdicts announced
for said certificate at the tine.

1. Trust Verdicts

Trust verdicts are statenents of DNCP nodes about the trustworthiness
of X. 509 certificates. There are 5 possible trust verdicts in order
of ascending priority:

O (Neutral): no trust verdict exists, but the DNCP network shoul d
det erm ne one.

1 (Cached Trust): the last known effective trust verdict was
Configured or Cached Trust.

2 (Cached Distrust): the last known effective trust verdict was
Configured or Cached Distrust.

Stenberg & Barth St andards Track [ Page 28]



RFC 7787 Di stri buted Node Consensus Prot ocol April 2016

3 (Configured Trust): trustworthy based upon an external cerenony
or configuration.

4 (Configured Distrust): not trustworthy based upon an externa
cerenony or configuration.

Trust verdicts are differentiated in 3 groups:

0 Configured verdicts are used to announce explicit trust verdicts a
node has based on any external trust bootstrap or predefined
rel ations a node has formed with a given certificate.

0 Cached verdicts are used to retain the |last known trust state in
case all nodes with configured verdicts about a given certificate
have been di sconnected or turned off.

o The Neutral verdict is used to announce a new node intending to
join the network, so a final verdict for it can be found.

The current effective trust verdict for any certificate is defined as
the one with the highest priority within the set of trust verdicts
announced for the certificate in the DNCP network. A node MJST be
trusted for participating in the DNCP network if and only if the
current effective trust verdict for its own certificate or any one in
its certificate hierarchy is (Cached or Configured) Trust, and none
of the certificates in its hierarchy have an effective trust verdict
of (Cached or Configured) Distrust. |In case a node has a configured
verdict, which is different fromthe current effective trust verdict
for a certificate, the current effective trust verdict takes
precedence in deciding trustworthiness. Despite that, the node stil
retai ns and announces its configured verdict.

8.3.2. Trust Cache

Each node SHOULD nmi ntain a trust cache containing the current
effective trust verdicts for all certificates currently announced in
the DNCP network. This cache is used as a backup of the last known
state in case there is no node announcing a configured verdict for a
known certificate. It SHOULD be saved to a non-volatile nenory at
reasonable tinme intervals to survive a reboot or power outage.

Every tine a node (re)joins the network or detects the change of an
effective trust verdict for any certificate, it will synchronize its
cache, i.e., store new effective trust verdicts overwiting any
previously cached verdicts. Configured verdicts are stored in the
cache as their respective cached counterparts. Neutral verdicts are
never stored and do not override existing cached verdicts.

Stenberg & Barth St andards Track [ Page 29]



RFC 7787 Di stri buted Node Consensus Prot ocol April 2016

8.3.3. Announcenent of Verdicts

A node SHOULD al ways announce any configured verdicts it has
established by itself, and it MJUST do so if announcing the configured
verdict leads to a change in the current effective trust verdict for
the respective certificate. In absence of configured verdicts, it
MJUST announce Cached Trust verdicts it has stored in its trust cache,
if one of the follow ng conditions applies:

0 The stored trust verdict is Cached Trust, and the current
effective trust verdict for the certificate is Neutral or does not
exi st.

0o The stored trust verdict is Cached Distrust, and the current
effective trust verdict for the certificate is Cached Trust.

A node rechecks these conditions whenever it detects changes of
announced trust verdicts anywhere in the network.

Upon encountering a node with a hierarchy of certificates for which
there is no effective trust verdict, a node adds a Neutral Trust-
Verdict TLV to its node data for all certificates found in the

hi erarchy and publishes it until an effective trust verdict different
from Neutral can be found for any of the certificates, or a
reasonabl e anount of tine (10 minutes is suggested) with no reaction
and no further authentication attenpts has passed. Such trust
verdicts SHOULD al so be linmted in rate and nunber to prevent

deni al - of -servi ce attacks.

Stenberg & Barth St andards Track [ Page 30]



RFC 7787 Di stri buted Node Consensus Prot ocol April 2016

Trust verdicts are announced using Trust-Verdict TLVs:

0 1 2 3
01234567890123456789012345678901
B T e o i S I i i S S N iy St S I S S

| Type: Trust-Verdict (10) | Length: > 36

B s S S i i i ks a ks st S S S S S S
| Ver di ct | (reserved)

R R R R e e s o S e R S S S S S S e e e e e

|
I
SHA- 256 Fi ngerprint
|
|
|
|

B T S S e s e i s S i S S S S S S T S SR S S S i S S S
| Common Nane

Verdi ct represents the nunerical index of the trust verdict.

(reserved) is reserved for future additions and MJST be set to O
when creating TLVs and ignored when parsing them

SHA- 256 Fi ngerprint contains the SHA-256 [ RFC6234] hash val ue of
the certificate in DER format.

Common nane contains the variable-length (1-64 bytes) conmon nane
of the certificate.

8.3.4. Bootstrap Cerenonies

The foll owi ng non-exhaustive |list of nethods describes possible ways
to establish trust rel ationshi ps between DNCP nodes and node
certificates. Trust establishnent is a two-way process in which the
exi sting network nust trust the newy added node, and the new y added
node nust trust at least one of its peer nodes. It is therefore
necessary that both the newy added node and an al ready trusted node
perform such a cerenony to successfully introduce a node into the
DNCP network. In all cases, an adm nistrator MJST be provided wth
external neans to identify the node belonging to a certificate based
on its fingerprint and a neani ngful conmon nane.

Stenberg & Barth St andards Track [ Page 31]



RFC 7787 Di stri buted Node Consensus Prot ocol April 2016

8.3.4.1. Trust by ldentification

A node inplenmenting certificate-based trust MJST provide an interface
to retrieve the current set of effective trust verdicts,

fingerprints, and names of all certificates currently known and set
configured verdicts to be announced. Alternatively, it MAY provide a
conpani on DNCP node or application with these capabilities w th which
it has a pre-established trust relationship.

8.3.4.2. Preconfigured Trust

A node MAY be preconfigured to trust a certain set of node or CA

certificates. However, such trust relationships MJST NOT result in
unwanted or unrelated trust for nodes not intended to be run inside
the sane network (e.g., all other devices by the sanme manufacturer).

8.3.4.3. Trust on Button Press

A node MAY provide a physical or virtual interface to put one or nore
of its internal network interfaces tenporarily into a node in which
it trusts the certificate of the first DNCP node it can successfully
establish a connection wth.

8.3.4.4. Trust on First Use

A node that is not associated with any ot her DNCP node MAY trust the
certificate of the first DNCP node it can successfully establish a
connection with. This nmethod MJUST NOT be used when the node has

al ready associated with any other DNCP node.

9. DNCP Profile-Specific Definitions
Each DNCP profile MJUST specify the follow ng aspects:

o Unicast and optionally a nmulticast transport protocol (s) to be
used. If a nulticast-based node and status discovery is desired,
a dat agram based transport supporting nulticast has to be
avai | abl e.

0 How the chosen transport(s) is secured: Not at all, optionally, or
al ways with the TLS schene defined here using one or nore of the
met hods, or with sonething else. |If the |inks with DNCP nodes can
be sufficiently secured or isolated, it is possible to run DNCP in
a secure manner w thout using any form of authentication or
encryption.

Stenberg & Barth St andards Track [ Page 32]



RFC 7787 Di stri buted Node Consensus Prot ocol April 2016

0 Transport protocols’ paraneters such as port nunbers to be used or
mul ti cast addresses to be used. Unicast, nulticast, and secure
uni cast may each require different paraneters, if applicable.

0 \When receiving TLVs, what sort of TLVs are ignored in addition --
as specified in Section 4.4 -- e.g., for security reasons. Wiile
the security of the node data published within the Node State TLVs
is already ensured by the base specification (if secure unicast
transport is used, Node State TLVs are sent only via unicast as
mul ti cast ones are ignored on receipt), if a profile adds TLVs
that are sent outside the node data, a profile should indicate
whet her or not those TLVs should be ignored if they are received
via multicast or non-secured unicast. A DNCP profile nmay define
the following DNCP TLVs to be safely ignored:

* Anyt hing received over nmulticast, except Node Endpoint TLV
(Section 7.2.1) and Network State TLV (Section 7.2.2).

* Any TLVs received over unreliable unicast or nulticast at a
rate that is that is too high; Trickle will ensure eventua
convergence given the rate sl ows down at sone point.

0 Howto deal with node identifier collision as described in
Section 4.4. Main options are either for one or both nodes to
assign new node identifiers to thenselves or to notify soneone
about a fatal error condition in the DNCP networKk.

o Imn, Imax, and k ranges to be suggested for inplenentations to be
used in the Trickle algorithm The Trickle algorithm does not
require these to be the sane across all inplenentations for it to
work, but similar orders of nagnitude hel p inplenentations of a
DNCP profile to behave nore consistently and to facilitate
estimation of |ower and upper bounds for convergence behavi or of
t he networ k.

0 Hash function H(x) to be used, and how many bits of the output are
actually used. The chosen hash function is used to handl e both
hashi ng of node data and produci ng network state hash, which is a
hash of node data hashes. SHA-256 defined in [ RFC6234] is the
recommended default choice, but a non-cryptographic hash function
could be used as well. |If there is a hash collision in the
network state hash, the network will effectively be partitioned to
partitions that believe they are up to date but are actually no
| onger converged. The network will converge either when sone node
data anywhere in the network changes or when conflicting Node
State TLVs get transnmitted across the partition (either caused by
"Trickle-Driven Status Updates" (Section 4.3) or as part of the
"Processing of Received TLVs" (Section 4.4)). |f a node publishes

Stenberg & Barth St andards Track [ Page 33]



RFC 7787 Di stri buted Node Consensus Prot ocol April 2016

10.

node data with a hash that collides with any previously published
node data, the update may not be (fully) propagated, and the old
versi on of node data may be used instead.

o DNCP_NODE_| DENTI FI ER_ LENGTH. The fixed |l ength of a node identifier
(in bytes).

o Whether to send keep-alives, and if so, whether it is per-endpoint
(requires nulticast transport) or per-peer. Keep-alive also has
associ at ed paraneters:

*  DNCP_KEEPALI VE | NTERVAL: How often keep-alives are to be sent
by default (if enabled).

*  DNCP_KEEPALI VE_MJLTI PLI ER: How neny tinmes the
DNCP_KEEPALI VE_| NTERVAL (or peer-supplied keep-alive interval
val ue) node may not be heard fromto be considered still valid.
This is just a default used in absence of any other
configuration information or particul ar per-endpoint
configuration.

0 \Whether to support dense multicast-enabled Iink optimization
(Section 6.2) or not.

For some gui dance on choosing transport and security options, please
see Appendi x B.

Security Considerations

DNCP- based protocols nay use nulticast to indicate DNCP state changes
and for keep-alive purposes. However, no actual published data TLVs

will be sent across that channel. Therefore, an attacker nmay only
| earn hash values of the state within DNCP and may be able to trigger
uni cast synchroni zation attenpts between nodes on a local link this

way. A DNCP node MUST therefore rate limt its reactions to
mul ti cast packets.

When using DNCP to bootstrap a network, PKI-based sol utions may have
i ssues when validating certificates due to potentially unavail able
accurate time or due to the inability to use the network to either
check Certificate Revocation Lists or performonline validation

The Certificate-based trust consensus nmechanismdefined in this
docunent allows for a consenting revocation; however, in case of a
conprom sed device, the trust cache may be poi soned before the actua
revocati on happens allowing the distrusted device to rejoin the
network using a different identity. Stopping such an attack m ght
require physical intervention and flushing of the trust caches.

Stenberg & Barth St andards Track [ Page 34]



RFC 7787 Di stri buted Node Consensus Prot ocol April 2016

11. | ANA Consi derati ons
| ANA has set up a registry for the (decimal 16-bit) "DNCP TLV Types"
under "Distributed Node Consensus Protocol (DNCP)". The registration
procedure is Standards Action [RFC5226]. The initial contents are:
0: Reserved
1: Request network state
2: Request node state
3: Node endpoi nt
4: Network state
5: Node state
6: Reserved for future use (was: Custon)
7: Reserved for future use (was: Fragment count)
8. Peer
9: Keep-alive interva
10: Trust- Verdict
11-31: Unassi gned
32-511: Reserved for per-DNCP profile use
512-767: Unassi gned
768-1023: Reserved for Private Use [ RFC5226]

1024- 65535: Reserved for future use

Stenberg & Barth St andards Track [ Page 35]



RFC 7787

12.

12.

12.

Di stri buted Node Consensus Prot ocol April 2016

Ref er ences

1. Normative References

[ RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Level s", BCP 14, RFC 2119,
DA 10.17487/ RFC2119, March 1997,
<http://ww.rfc-editor.org/info/rfc2119>.

[ RFC5226] Narten, T. and H Alvestrand, "Quidelines for Witing an
| ANA Considerations Section in RFCs", BCP 26, RFC 5226,
DA 10.17487/ RFC5226, May 2008,
<http://ww.rfc-editor.org/infol/rfc5226>.

[ RFC6206] Levis, P., Causen, T., Hui, J., Grawali, O, and J. Ko,
"The Trickle Al gorithm, RFC 6206, DO 10.17487/ RFC6206,
March 2011, <http://www.rfc-editor.org/info/rfc6206>.

[ RFC6234] Eastlake 3rd, D. and T. Hansen, "US Secure Hash Al gorithns
(SHA and SHA-based HVAC and HKDF)", RFC 6234,
DO 10.17487/ RFC6234, May 2011,
<http://www. rfc-editor.org/info/rfc6234>.

2. Informative References

[ RFC3315] Droms, R, Ed., Bound, J., Volz, B., Lenon, T., Perkins,
C., and M Carney, "Dynanm c Host Configuration Protocol
for IPv6 (DHCPv6)", RFC 3315, DO 10.17487/ RFC3315, July
2003, <http://ww. rfc-editor.org/info/rfc3315>.

[RFC3493] dGlligan, R, Thonson, S., Bound, J., MCann, J., and W
Stevens, "Basic Socket Interface Extensions for |Pv6",
RFC 3493, DA 10.17487/ RFC3493, February 2003,
<http://ww.rfc-editor.org/info/rfc3493>.

[ RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", RFC 5246,
DA 10.17487/ RFC5246, August 2008,
<http://ww. rfc-editor.org/info/rfc5246>.

[ RFC6347] Rescorla, E. and N. Mdadugu, "Datagram Transport Layer
Security Version 1.2", RFC 6347, DA 10.17487/ RFC6347,
January 2012, <http://ww.rfc-editor.org/info/rfc6347>.

[ RFC7435] Dukhovni, V., "Opportunistic Security: Some Protection

Most of the Time", RFC 7435, DO 10.17487/ RFC7435,
Decenber 2014, <http://www.rfc-editor.org/info/rfc7435>.

Stenberg & Barth St andards Track [ Page 36]



RFC 7787 Di stri buted Node Consensus Prot ocol April 2016

[ RFC7596] Cui, Y., Sun, Q, Boucadair, M, Tsou, T., Lee, Y., and I.
Farrer, "Lightweight 4over6: An Extension to the Dual -
Stack Lite Architecture", RFC 7596, DO 10.17487/ RFC7596,
July 2015, <http://ww.rfc-editor.org/info/rfc7596>.

Stenberg & Barth St andards Track [ Page 37]



RFC 7787 Di stri buted Node Consensus Prot ocol April 2016

Appendi x A.  Alternative Mddes of Operation

Beyond what is described in the main text, the protocol allows for
other uses. These are provided as exanpl es.

A 1. Read-Only Operation

If a node uses just a single endpoint and does not need to publish
any TLVs, full DNCP node functionality is not required. Such a
limted node can acquire and maintain a view of the TLV space by

i npl ementing the processing logic as specified in Section 4.4. Such
node woul d not need Trickle, peer-nmaintenance, or even keep-alives at
all, as the DNCP nodes’ use of it would guarantee eventual receipt of
networ k state hashes, and synchroni zati on of node data, even in the
presence of unreliable transport.

A. 2. Forwardi ng Operation

If a node with a pair of endpoints does not need to publish any TLVs,
it can detect (for exanple) nodes with the highest node identifier on
each of the endpoints (if any). Any TLVs received fromone of them
woul d be forwarded verbati mas unicast to the other node with the

hi ghest node identifier

Any tinkering with the TLVs woul d renove guarantees of this scheme
wor ki ng; however, passive nonitoring would obviously be fine. This
type of sinple forwardi ng cannot be chained, as it does not send
anyt hi ng proactively.

Appendi x B. DNCP Profile Additional Guidance

Thi s appendi x explains inplications of design choices made when
specifying the DNCP profile to use particular transport or security
options.

B.1. Unicast Transport -- UDP or TCP?

The node data published by a DNCP node is limted to 64 KB due to the
16-bit size of the length field of the TLV it is published within.
Some transport choices may decrease this limt; if using, e.g., UDP
dat agranms for unicast transport, the upper bound of the node data
size is whatever the nodes and the underlying network can pass to
each other as DNCP does not define its own fragnentation schene. A
profile that chooses UDP has to be linmted to snall node data (e.g.
sonewhat snaller than | Pv6 default MIU if using | Pv6) or specify a
m ni mum that all nodes have to support. Even then, if using
non-1|ink-1ocal comruni cations, there is some concern about what

m ddl eboxes do to fragnmented packets. Therefore, the use of stream

Stenberg & Barth St andards Track [ Page 38]



RFC 7787 Di stri buted Node Consensus Prot ocol April 2016

transport such as TCP is probably a good idea if either
non-1ink-1ocal comrunication is desired or fragnmentation is expected
to cause problens.

TCP al so provides some other facilities, such as a relatively |ong
built-in keep-alive, which in conjunction with connection cl oses
occurring fromeventual failed retransm ssions nmay be sufficient to
avoid the use of in-protocol keep-alive defined in Section 6.1.
Additionally, it is reliable, so there is no need for Trickle on such
uni cast connecti ons.

The maj or downsi de of using TCP instead of UDP wi th DNCP-based
profiles lies in the | oss of control over the tinme at which TLVs are
received; while unreliable UDP datagrans al so have some del ay, TLVs
within reliable streamtransport may be del ayed significantly due to
retransm ssions. This is not a problemif no relative tine-dependent
information is stored within the TLVs in the DNCP-based protocol; for
such a protocol, TCP is a reasonable choice for unicast transport if
it is available.

B.2. (Optional) Milticast Transport

Mul ticast is needed for dynami c peer discovery and to trigger unicast
exchanges; for that, unreliable datagramtransport (=typically UDP)
is the only transport option defined within this specification

al t hough DNCP- based protocols nmay thensel ves define sone ot her
transport or peer discovery nmechanism (e.g., based on Milticast DNS
(nDNS) or DNS).

If nmulticast is used, a well-known address should be specified and
for, e.g., IPv6, respectively, the desired address scopes. |n nost
cases, link-local and possibly site-l1ocal are useful scopes.

B.3. (Optional) Transport Security

In terns of provided security, DILS and TLS are equival ent; they al so
consune a similar amount of state on the devices. Wile TLS is on
top of a stream protocol, using DTLS also requires relatively |ong
session caching within the DILS | ayer to avoi d expensive

reaut hentication/authorization steps if and when any state within the
DNCP networ k changes or per-peer keep-alive (if enabled) is sent.

TLS inplenentations (at the time of witing the specification) seem

nmore nmature and avail abl e (as open source) than DTLS ones. This nmay
be due to a long history of use with HTTPS.

Stenberg & Barth St andards Track [ Page 39]



RFC 7787 Di stri buted Node Consensus Prot ocol April 2016

Some libraries seemnot to support nultiplexing between insecure and
secure comuni cation on the sane port, so specifying distinct ports
for secured and unsecured comuni cati on nmay be benefici al

Appendi x C. Exanple Profile

This is the DNCP profile of SHSP, an experinental (and for the

pur poses of this docunment fictional) home autonation protocol. The
protocol itself is used to make a key-val ue store published by each
of the nodes available to all other nodes for distributed nonitoring
and control of a hone infrastructure. It defines only one additiona
TLV type: a key=value TLV that contains a single key=val ue assi gnnent
for publication.

o Unicast transport: |IPv6 TCP on port EXAMPLE-Pl since only absolute
ti mestanps are used within the key=val ue data and since it focuses
primarily on Linux-based nodes that support both protocols as
well. Connections fromand to non-link-local addresses are
i gnored to avoid exposing this protocol outside the secure |inks.

o Milticast transport: |Pv6 UDP on port EXAMPLE-P2 to |ink-1oca
scoped nul ticast address ff02: EXAMPLE. At | east one node per |ink
in the home is assuned to facilitate node di scovery w thout
dependi ng on any other infrastructure.

0 Security: None. It is to be used only on trusted |inks (WPA2-Xx
Wi rel ess, physically secure wired |inks).

0 Additional TLVs to be ignored: None. No DNCP security is
specified, and no new TLVs are defined outside of node data.

0 Node identifier |ength (DNCP_NODE | DENTI FI ER LENGTH): 32 bits that
are randoml y generat ed.

0 Node identifier collision handling: Pick new random node

identifier.

o Trickle paraneters: Imin =200 ns, Imax = 7, k = 1. |t neans at
| east one multicast per link in 25 seconds in stable state (0.2 *
277) .

0 Hash function H(x) + length: SHA-256, only 128 bits used. It’'s
relatively fast, and 128 bits should be plenty to prevent random
conflicts (64 bits would nost |ikely be sufficient, too).

o0 No in-protocol keep-alives (Section 6.1); TCP keep-alive is to be

used. In practice, TCP keep-alive is sel dom encountered anyway,
as changes in network state cause packets to be sent on the

Stenberg & Barth St andards Track [ Page 40]



RFC 7787 Di stri buted Node Consensus Prot ocol April 2016

uni cast connections, and those that fail sufficiently many
retransm ssions are dropped nuch before the keep-alive actually
woul d fire.

0 No support for dense nulticast-enabled |link optim zation
(Section 6.2); SHSP is a sinple protocol for a few nodes (network
wi de, not even to nmention on a single link) and therefore would
not provide any benefit.

Acknowl edgenent s

Thanks to A e Troan, Pierre Pfister, Mark Baugher, Mark Townsl ey,
Juliusz Chroboczek, Jiazi Yi, Mkael Abrahanmsson, Brian Carpenter
Thomas O ausen, DENG Hui, and Margaret Cullen for their contributions
to the docunent.

Thanks to Kaiwen Jin and Xavier Bonnetain for their rel ated research
wor k.

Aut hors’ Addresses
Mar kus St enberg
I ndependent
Hel si nki 00930
Fi nl and
Emai | : mar kus. stenberg@Kki . fi
Steven Barth
| ndependent
Halle 06114
Cer many

Emai |l : cyrus@penwt.org

Stenberg & Barth St andards Track [ Page 41]



