
Internet Engineering Task Force (IETF) D. Eastlake 3rd
Request for Comments: 7873 Huawei
Category: Standards Track M. Andrews
ISSN: 2070-1721 ISC
 May 2016

 Domain Name System (DNS) Cookies

Abstract

 DNS Cookies are a lightweight DNS transaction security mechanism that
 provides limited protection to DNS servers and clients against a
 variety of increasingly common denial-of-service and amplification/
 forgery or cache poisoning attacks by off-path attackers. DNS
 Cookies are tolerant of NAT, NAT-PT (Network Address Translation -
 Protocol Translation), and anycast and can be incrementally deployed.
 (Since DNS Cookies are only returned to the IP address from which
 they were originally received, they cannot be used to generally track
 Internet users.)

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 7841.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7873.

Eastlake & Andrews Standards Track [Page 1]

RFC 7873 DNS Cookies May 2016

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Eastlake & Andrews Standards Track [Page 2]

RFC 7873 DNS Cookies May 2016

Table of Contents

 1. Introduction ..4
 1.1. Contents of This Document4
 1.2. Definitions ..5
 2. Threats Considered ..5
 2.1. Denial-of-Service Attacks6
 2.1.1. DNS Amplification Attacks6
 2.1.2. DNS Server Denial of Service6
 2.2. Cache Poisoning and Answer Forgery Attacks7
 3. Comments on Existing DNS Security7
 3.1. Existing DNS Data Security7
 3.2. DNS Message/Transaction Security8
 3.3. Conclusions on Existing DNS Security8
 4. DNS COOKIE Option ...8
 4.1. Client Cookie ...10
 4.2. Server Cookie ...10
 5. DNS Cookies Protocol Specification11
 5.1. Originating a Request11
 5.2. Responding to a Request11
 5.2.1. No OPT RR or No COOKIE Option12
 5.2.2. Malformed COOKIE Option12
 5.2.3. Only a Client Cookie12
 5.2.4. A Client Cookie and an Invalid Server Cookie13
 5.2.5. A Client Cookie and a Valid Server Cookie13
 5.3. Processing Responses14
 5.4. Querying for a Server Cookie14
 6. NAT Considerations and Anycast Server Considerations15
 7. Operational and Deployment Considerations17
 7.1. Client and Server Secret Rollover17
 7.2. Counters ..18
 8. IANA Considerations ..18
 9. Security Considerations ..19
 9.1. Cookie Algorithm Considerations20
 10. Implementation Considerations20
 11. References ..20
 11.1. Normative References20
 11.2. Informative References21
 Appendix A. Example Client Cookie Algorithms23
 A.1. A Simple Algorithm ..23
 A.2. A More Complex Algorithm23
 Appendix B. Example Server Cookie Algorithms23
 B.1. A Simple Algorithm ..23
 B.2. A More Complex Algorithm24
 Acknowledgments ...25
 Authors’ Addresses ..25

Eastlake & Andrews Standards Track [Page 3]

RFC 7873 DNS Cookies May 2016

1. Introduction

 As with many core Internet protocols, the Domain Name System (DNS)
 was originally designed at a time when the Internet had only a small
 pool of trusted users. As the Internet has grown exponentially to a
 global information utility, the DNS has increasingly been subject to
 abuse.

 This document describes DNS Cookies, a lightweight DNS transaction
 security mechanism specified as an OPT [RFC6891] option. The
 DNS Cookie mechanism provides limited protection to DNS servers and
 clients against a variety of increasingly common abuses by off-path
 attackers. It is compatible with, and can be used in conjunction
 with, other DNS transaction forgery resistance measures such as those
 in [RFC5452]. (Since DNS Cookies are only returned to the IP address
 from which they were originally received, they cannot be used to
 generally track Internet users.)

 The protection provided by DNS Cookies is similar to that provided by
 using TCP for DNS transactions. Bypassing the weak protection
 provided by using TCP requires, among other things, that an off-path
 attacker guess the 32-bit TCP sequence number in use. Bypassing the
 weak protection provided by DNS Cookies requires such an attacker to
 guess a 64-bit pseudorandom "cookie" quantity. Where DNS Cookies are
 not available but TCP is, falling back to using TCP is reasonable.

 If only one party to a DNS transaction supports DNS Cookies, the
 mechanism does not provide a benefit or significantly interfere, but
 if both support it, the additional security provided is automatically
 available.

 The DNS Cookie mechanism is designed to work in the presence of NAT
 and NAT-PT (Network Address Translation - Protocol Translation)
 boxes, and guidance is provided herein on supporting the DNS Cookie
 mechanism in anycast servers.

1.1. Contents of This Document

 In Section 2, we discuss the threats against which the DNS Cookie
 mechanism provides some protection.

 Section 3 describes existing DNS security mechanisms and why they are
 not adequate substitutes for DNS Cookies.

 Section 4 describes the COOKIE option.

 Section 5 provides a protocol description.

Eastlake & Andrews Standards Track [Page 4]

RFC 7873 DNS Cookies May 2016

 Section 6 discusses some NAT considerations and anycast-related
 DNS Cookies design considerations.

 Section 7 discusses incremental deployment considerations.

 Sections 8 and 9 describe IANA considerations and security
 considerations, respectively.

1.2. Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119].

 "Off-path attacker", for a particular DNS client and server, is
 defined as an attacker who cannot observe the DNS request and
 response messages between that client and server.

 "Soft state" indicates information that is learned or derived by a
 host and that may be discarded when indicated by the policies of
 that host but can be re-instantiated later if needed. For
 example, it could be discarded after a period of time or when
 storage for caching such data becomes full. If operations that
 require soft state continue after the information has been
 discarded, the information will be automatically regenerated,
 albeit at some cost.

 "Silently discarded" indicates that there are no DNS protocol message
 consequences.

 "IP address" is used herein as a length-independent term and includes
 both IPv4 and IPv6 addresses.

2. Threats Considered

 DNS Cookies are intended to provide significant but limited
 protection against certain attacks by off-path attackers, as
 described below. These attacks include denial of service, cache
 poisoning, and answer forgery.

Eastlake & Andrews Standards Track [Page 5]

RFC 7873 DNS Cookies May 2016

2.1. Denial-of-Service Attacks

 The typical form of the denial-of-service attacks considered herein
 is to send DNS requests with forged source IP addresses to a server.
 The intent can be to attack that server or some other selected host,
 as described below.

 There are also on-path denial-of-service attacks that attempt to
 saturate a server with DNS requests having correct source addresses.
 Cookies do not protect against such attacks, but successful cookie
 validation improves the probability that the correct source IP
 address for the requests is known. This facilitates contacting the
 managers of the networks from which the requests originate or taking
 other actions for those networks.

2.1.1. DNS Amplification Attacks

 A request with a forged source IP address generally causes a response
 to be sent to that forged IP address. Thus, the forging of many such
 requests with a particular source IP address can result in enough
 traffic being sent to the forged IP address to interfere with service
 to the host at the IP address. Furthermore, it is generally easy in
 the DNS to create short requests that produce much longer responses,
 thus amplifying the attack.

 The DNS Cookie mechanism can severely limit the traffic amplification
 obtained by requests from an attacker that is off the path between
 the server and the request’s source address. Enforced DNS Cookies
 would make it hard for an off-path attacker to cause any more than
 rate-limited short error responses to be sent to a forged IP address,
 so the attack would be attenuated rather than amplified. DNS Cookies
 make it more effective to implement a rate-limiting scheme for error
 responses from the server. Such a scheme would further restrict
 selected host denial-of-service traffic from that server.

2.1.2. DNS Server Denial of Service

 DNS requests that are accepted cause work on the part of DNS servers.
 This is particularly true for recursive servers that may issue one or
 more requests and process the responses thereto, in order to
 determine their response to the initial request; the situation can be
 even worse for recursive servers implementing DNSSEC [RFC4033]
 [RFC4034] [RFC4035], because they may be induced to perform
 burdensome cryptographic computations in attempts to verify the
 authenticity of data they retrieve in trying to answer the request.

Eastlake & Andrews Standards Track [Page 6]

RFC 7873 DNS Cookies May 2016

 The computational or communications burden caused by such requests
 may not depend on a forged source IP address, but the use of such
 addresses makes

 + the source of the requests causing the denial-of-service attack
 harder to find and

 + restriction of the IP addresses from which such requests should be
 honored hard or impossible to specify or verify.

 The use of DNS Cookies should enable a server to reject forged
 requests from an off-path attacker with relative ease and before any
 recursive queries or public key cryptographic operations are
 performed.

2.2. Cache Poisoning and Answer Forgery Attacks

 The form of the cache poisoning attacks considered is to send forged
 replies to a resolver. Modern network speeds for well-connected
 hosts are such that, by forging replies from the IP addresses of a
 DNS server to a resolver for names that resolver has been induced to
 resolve or for common names whose resource records have short
 time-to-live values, there can be an unacceptably high probability of
 randomly coming up with a reply that will be accepted and cause false
 DNS information to be cached by that resolver (the Dan Kaminsky
 attack [Kaminsky]). This can be used to facilitate phishing attacks
 and other diversions of legitimate traffic to a compromised or
 malicious host such as a web server.

 With the use of DNS Cookies, a resolver can generally reject such
 forged replies.

3. Comments on Existing DNS Security

 Two forms of security have been added to DNS: data security and
 message/transaction security.

3.1. Existing DNS Data Security

 DNS data security is one part of DNSSEC and is described in
 [RFC4033], [RFC4034], [RFC4035], and updates thereto. It provides
 data origin authentication and authenticated denial of existence.
 DNSSEC is being deployed and can provide strong protection against
 forged data and cache poisoning; however, it has the unintended
 effect of making some denial-of-service attacks worse because of the
 cryptographic computational load it can require and the increased
 size in DNS response packets that it tends to produce.

Eastlake & Andrews Standards Track [Page 7]

RFC 7873 DNS Cookies May 2016

3.2. DNS Message/Transaction Security

 The second form of security that has been added to DNS provides
 "transaction" security through TSIG [RFC2845] or SIG(0) [RFC2931].
 TSIG could provide strong protection against the attacks for which
 the DNS Cookie mechanism provides weaker protection; however, TSIG is
 non-trivial to deploy in the general Internet because of the burdens
 it imposes. Among these burdens are pre-agreement and key
 distribution between client and server, keeping track of server-side
 key state, and required time synchronization between client and
 server.

 TKEY [RFC2930] can solve the problem of key distribution for TSIG,
 but some modes of TKEY impose a substantial cryptographic computation
 load and can be dependent on the deployment of DNS data security (see
 Section 3.1).

 SIG(0) [RFC2931] provides less denial-of-service protection than TSIG
 or, in one way, even DNS Cookies, because it authenticates complete
 transactions but does not authenticate requests. In any case, it
 also depends on the deployment of DNS data security and requires
 computationally burdensome public key cryptographic operations.

3.3. Conclusions on Existing DNS Security

 The existing DNS security mechanisms do not provide the services
 provided by the DNS Cookie mechanism: lightweight message
 authentication of DNS requests and responses with no requirement for
 pre-configuration or per-client server-side state.

4. DNS COOKIE Option

 The DNS COOKIE option is an OPT RR [RFC6891] option that can be
 included in the RDATA portion of an OPT RR in DNS requests and
 responses. The option length varies, depending on the circumstances
 in which it is being used. There are two cases, as described below.
 Both use the same OPTION-CODE; they are distinguished by their
 length.

Eastlake & Andrews Standards Track [Page 8]

RFC 7873 DNS Cookies May 2016

 In a request sent by a client to a server when the client does not
 know the server’s cookie, its length is 8, consisting of an 8-byte
 Client Cookie, as shown in Figure 1.

 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | OPTION-CODE = 10 | OPTION-LENGTH = 8 |
 +-+
 | |
 +-+- Client Cookie (fixed size, 8 bytes) -+-+-+-+
 | |
 +-+

 Figure 1: COOKIE Option, Unknown Server Cookie

 In a request sent by a client when a Server Cookie is known, and in
 all responses to such a request, the length is variable -- from 16 to
 40 bytes, consisting of an 8-byte Client Cookie followed by the
 variable-length (8 bytes to 32 bytes) Server Cookie, as shown in
 Figure 2. The variability of the option length stems from the
 variable-length Server Cookie. The Server Cookie is an integer
 number of bytes, with a minimum size of 8 bytes for security and a
 maximum size of 32 bytes for convenience of implementation.

 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | OPTION-CODE = 10 | OPTION-LENGTH >= 16, <= 40 |
 +-+
 | |
 +-+- Client Cookie (fixed size, 8 bytes) -+-+-+-+
 | |
 +-+
 | |
 / Server Cookie (variable size, 8 to 32 bytes) /
 / /
 +-+-+-+-...

 Figure 2: COOKIE Option, Known Server Cookie

Eastlake & Andrews Standards Track [Page 9]

RFC 7873 DNS Cookies May 2016

4.1. Client Cookie

 The Client Cookie SHOULD be a pseudorandom function of the Client IP
 Address, the Server IP Address, and a secret quantity known only to
 the client. This Client Secret SHOULD have at least 64 bits of
 entropy [RFC4086] and be changed periodically (see Section 7.1). The
 selection of the pseudorandom function is a matter private to the
 client, as only the client needs to recognize its own DNS Cookies.

 The Client IP Address is included so that the Client Cookie cannot be
 used to (1) track a client if the Client IP Address changes due to
 privacy mechanisms or (2) impersonate the client by some network
 device that was formerly on path but is no longer on path when the
 Client IP Address changes due to mobility. However, if the Client IP
 Address is being changed very often, it may be necessary to fix the
 Client Cookie for a particular server for several requests, to avoid
 undue inefficiency due to retries caused by that server not
 recognizing the Client Cookie.

 For further discussion of the Client Cookie field, see Section 5.1.
 For example methods of determining a Client Cookie, see Appendix A.

 In order to provide minimal authentication, a client MUST send
 Client Cookies that will usually be different for any two servers at
 different IP addresses.

4.2. Server Cookie

 The Server Cookie SHOULD consist of or include a 64-bit or larger
 pseudorandom function of the request source (client) IP address, a
 secret quantity known only to the server, and the request
 Client Cookie. (See Section 6 for a discussion of why the
 Client Cookie is used as input to the Server Cookie but the
 Server Cookie is not used as an input to the Client Cookie.) This
 Server Secret SHOULD have at least 64 bits of entropy [RFC4086] and
 be changed periodically (see Section 7.1). The selection of the
 pseudorandom function is a matter private to the server, as only the
 server needs to recognize its own DNS Cookies.

 For further discussion of the Server Cookie field, see Section 5.2.
 For example methods of determining a Server Cookie, see Appendix B.
 When implemented as recommended, the server need not maintain any
 cookie-related per-client state.

 In order to provide minimal authentication, a server MUST send
 Server Cookies that will usually be different for clients at any two
 different IP addresses or with different Client Cookies.

Eastlake & Andrews Standards Track [Page 10]

RFC 7873 DNS Cookies May 2016

5. DNS Cookies Protocol Specification

 This section discusses using DNS Cookies in the DNS protocol. The
 cycle of originating a request, responding to that request, and
 processing responses is covered in Sections 5.1, 5.2, and 5.3. A
 de facto extension to QUERY to allow the prefetching of a
 Server Cookie is specified in Section 5.4. Rollover of the Client
 Secrets and Server Secrets, and transient retention of the old cookie
 or secret, are covered in Section 7.1.

 DNS clients and servers SHOULD implement DNS Cookies to decrease
 their vulnerability to the threats discussed in Section 2.

5.1. Originating a Request

 A DNS client that implements DNS Cookies includes one DNS
 COOKIE option containing a Client Cookie in every DNS request
 it sends, unless DNS Cookies are disabled.

 If the client has a cached Server Cookie for the server against its
 IP address, it uses the longer cookie form and includes that
 Server Cookie in the option along with the Client Cookie (Figure 2).
 Otherwise, it just sends the shorter-form option with a Client Cookie
 (Figure 1).

5.2. Responding to a Request

 The Server Cookie, when it occurs in a COOKIE option in a request, is
 intended to weakly assure the server that the request came from a
 client that is both at the source IP address of the request and using
 the Client Cookie included in the option. This assurance is provided
 by the Server Cookie that server sent to that client in an earlier
 response appearing as the Server Cookie field in the request.

 At a server where DNS Cookies are not implemented and enabled, the
 presence of a COOKIE option is ignored and the server responds as if
 no COOKIE option had been included in the request.

 When DNS Cookies are implemented and enabled, there are five
 possibilities:

 (1) There is no OPT RR at all in the request, or there is an OPT RR
 but the COOKIE option is absent from the OPT RR.

 (2) A COOKIE option is present but is not a legal length or is
 otherwise malformed.

Eastlake & Andrews Standards Track [Page 11]

RFC 7873 DNS Cookies May 2016

 (3) There is a COOKIE option of valid length in the request with no
 Server Cookie.

 (4) There is a COOKIE option of valid length in the request with a
 Server Cookie, but that Server Cookie is invalid.

 (5) There is a COOKIE option of valid length in the request with a
 correct Server Cookie.

 These five possibilities are discussed in the subsections below.

 In all cases of multiple COOKIE options in a request, only the first
 (the one closest to the DNS header) is considered. All others are
 ignored.

5.2.1. No OPT RR or No COOKIE Option

 If there is no OPT record or no COOKIE option present in the request,
 then the server responds to the request as if the server doesn’t
 implement the COOKIE option.

5.2.2. Malformed COOKIE Option

 If the COOKIE option is too short to contain a Client Cookie, then
 FORMERR is generated. If the COOKIE option is longer than that
 required to hold a COOKIE option with just a Client Cookie (8 bytes)
 but is shorter than the minimum COOKIE option with both a
 Client Cookie and a Server Cookie (16 bytes), then FORMERR is
 generated. If the COOKIE option is longer than the maximum valid
 COOKIE option (40 bytes), then FORMERR is generated.

 In summary, valid cookie lengths are 8 and 16 to 40 inclusive.

5.2.3. Only a Client Cookie

 Based on server policy, including rate limiting, the server chooses
 one of the following:

 (1) Silently discard the request.

 (2) Send a BADCOOKIE error response.

 (3) Process the request and provide a normal response. The RCODE is
 NOERROR, unless some non-cookie error occurs in processing the
 request.

Eastlake & Andrews Standards Track [Page 12]

RFC 7873 DNS Cookies May 2016

 If the server responds choosing (2) or (3) above, it SHALL generate
 its own COOKIE option containing both the Client Cookie copied from
 the request and a Server Cookie it has generated, and it will add
 this COOKIE option to the response’s OPT record. Servers MUST, at
 least occasionally, respond to such requests to inform the client of
 the correct Server Cookie. This is necessary so that such a client
 can bootstrap to the more secure state where requests and responses
 have recognized Server Cookies and Client Cookies. A server is not
 expected to maintain per-client state to achieve this. For example,
 it could respond to every Nth request across all clients.

 If the request was received over TCP, the server SHOULD take the
 authentication provided by the use of TCP into account and SHOULD
 choose (3). In this case, if the server is not willing to accept the
 security provided by TCP as a substitute for the security provided by
 DNS Cookies but instead chooses (2), there is some danger of an
 indefinite loop of retries (see Section 5.3).

5.2.4. A Client Cookie and an Invalid Server Cookie

 The server examines the Server Cookie to determine if it is a valid
 Server Cookie that it had generated previously. This determination
 normally involves recalculating the Server Cookie (or the Hash part
 thereof) based on the Server Secret (or the previous Server Secret,
 if it has just changed); the received Client Cookie; the Client IP
 Address; and, possibly, other fields. See Appendix B.2 for an
 example. If the cookie is invalid, it could be because

 + it is too old

 + a client’s IP address or Client Cookie changed, and the DNS server
 is not aware of the change

 + an anycast cluster of servers is not consistently configured, or

 + an attempt to spoof the client has occurred

 The server SHALL process the request as if the invalid Server Cookie
 was not present, as described in Section 5.2.3.

5.2.5. A Client Cookie and a Valid Server Cookie

 When a valid Server Cookie is present in the request, the server can
 assume that the request is from a client that it has talked to before
 and defensive measures for spoofed UDP requests, if any, are no
 longer required.

Eastlake & Andrews Standards Track [Page 13]

RFC 7873 DNS Cookies May 2016

 The server SHALL process the request and include a COOKIE option in
 the response by (a) copying the complete COOKIE option from the
 request or (b) generating a new COOKIE option containing both the
 Client Cookie copied from the request and a valid Server Cookie it
 has generated.

5.3. Processing Responses

 The Client Cookie, when it occurs in a COOKIE option in a DNS reply,
 is intended to weakly assure the client that the reply came from a
 server at the source IP address used in the response packet, because
 the Client Cookie value is the value that client would send to that
 server in a request. In a DNS reply with multiple COOKIE options,
 all but the first (the one closest to the DNS header) are ignored.

 A DNS client where DNS Cookies are implemented and enabled examines
 the response for DNS Cookies and MUST discard the response if it
 contains an illegal COOKIE option length or an incorrect
 Client Cookie value. If the client is expecting the response to
 contain a COOKIE option and it is missing, the response MUST be
 discarded. If the COOKIE option Client Cookie is correct, the client
 caches the Server Cookie provided, even if the response is an error
 response (RCODE non-zero).

 If the extended RCODE in the reply is BADCOOKIE and the Client Cookie
 in the reply matches what was sent, it means that the server was
 unwilling to process the request because it did not have the correct
 Server Cookie in it. The client SHOULD retry the request using the
 new Server Cookie from the response. Repeated BADCOOKIE responses to
 requests that use the Server Cookie provided in the previous response
 may be an indication that either the shared secrets or the method for
 generating secrets in an anycast cluster of servers is inconsistent.
 If the reply to a retried request with a fresh Server Cookie is
 BADCOOKIE, the client SHOULD retry using TCP as the transport, since
 the server will likely process the request normally based on the
 security provided by TCP (see Section 5.2.3).

 If the RCODE is some value other than BADCOOKIE, including zero, the
 further processing of the response proceeds normally.

5.4. Querying for a Server Cookie

 In many cases, a client will learn the Server Cookie for a server as
 the "side effect" of another transaction; however, there may be times
 when this is not desirable. Therefore, a means is provided for
 obtaining a Server Cookie through an extension to the QUERY opcode
 for which opcode most existing implementations require that QDCOUNT
 be one (1) (see Section 4.1.2 of [RFC1035]).

Eastlake & Andrews Standards Track [Page 14]

RFC 7873 DNS Cookies May 2016

 For servers with DNS Cookies enabled, the QUERY opcode behavior is
 extended to support queries with an empty Question Section (a QDCOUNT
 of zero (0)), provided that an OPT record is present with a COOKIE
 option. Such servers will send a reply that has an empty
 Answer Section and has a COOKIE option containing the Client Cookie
 and a valid Server Cookie.

 If such a query provided just a Client Cookie and no Server Cookie,
 the response SHALL have the RCODE NOERROR.

 This mechanism can also be used to confirm/re-establish an existing
 Server Cookie by sending a cached Server Cookie with the
 Client Cookie. In this case, the response SHALL have the RCODE
 BADCOOKIE if the Server Cookie sent with the query was invalid and
 the RCODE NOERROR if it was valid.

 Servers that don’t support the COOKIE option will normally send
 FORMERR in response to such a query, though REFUSED, NOTIMP, and
 NOERROR without a COOKIE option are also possible in such responses.

6. NAT Considerations and Anycast Server Considerations

 In the classic Internet, DNS Cookies could simply be a pseudorandom
 function of the Client IP Address and a Server Secret or the Server
 IP Address and a Client Secret. You would want to compute the
 Server Cookie that way, so a client could cache its Server Cookie for
 a particular server for an indefinite amount of time and the server
 could easily regenerate and check it. You could consider the
 Client Cookie to be a weak client signature over the Server IP
 Address that the client checks in replies, and you could extend this
 signature to cover the request ID, for example, or any other
 information that is returned unchanged in the reply.

 But we have this reality called "NAT" [RFC3022] (including, for the
 purposes of this document, NAT-PT, which has been declared Historic
 [RFC4966]). There is no problem with DNS transactions between
 clients and servers behind a NAT box using local IP addresses. Nor
 is there a problem with NAT translation of internal addresses to
 external addresses or translations between IPv4 and IPv6 addresses,
 as long as the address mapping is relatively stable. Should the
 external IP address to which an internal client is being mapped
 change occasionally, the disruption is little more than when a client
 rolls over its COOKIE secret. Also, external access to a DNS server
 behind a NAT box is normally handled by a fixed mapping that forwards
 externally received DNS requests to a specific host.

Eastlake & Andrews Standards Track [Page 15]

RFC 7873 DNS Cookies May 2016

 However, NAT devices sometimes also map ports. This can cause
 multiple DNS requests and responses from multiple internal hosts to
 be mapped to a smaller number of external IP addresses, such as one
 address. Thus, there could be many clients behind a NAT box that
 appear to come from the same source IP address to a server outside
 that NAT box. If one of these were an attacker (think "zombie" or
 "botnet") behind a NAT box, that attacker could get the Server Cookie
 for some server for the outgoing IP address by just making some
 random request to that server. It could then include that
 Server Cookie in the COOKIE option of requests to the server with the
 forged local IP address of some other host and/or client behind the
 NAT box. (An attacker’s possession of this Server Cookie will not
 help in forging responses to cause cache poisoning, as such responses
 are protected by the required Client Cookie.)

 To fix this potential defect, it is necessary to distinguish
 different clients behind a NAT box from the point of view of the
 server. This is why the Server Cookie is specified as a pseudorandom
 function of both the request source IP address and the Client Cookie.
 From this inclusion of the Client Cookie in the calculation of the
 Server Cookie, it follows that, for any particular server, a stable
 Client Cookie is needed. If, for example, the request ID was
 included in the calculation of the Client Cookie, it would normally
 change with each request to a particular server. This would mean
 that each request would have to be sent twice: first, to learn the
 new Server Cookie based on this new Client Cookie based on the new
 ID, and then again using this new Client Cookie to actually get an
 answer. Thus, the input to the Client Cookie computation must be
 limited to the Server IP Address and one or more things that change
 slowly, such as the Client Secret.

 In principle, there could be a similar problem for servers, not due
 to NAT but due to mechanisms like anycast that may cause requests to
 a DNS server at an IP address to be delivered to any one of several
 machines. (External requests to a DNS server behind a NAT box
 usually occur via port forwarding such that all such requests go to
 one host.) However, it is impossible to solve this in the way that
 the similar problem was solved for NATed clients; if the
 Server Cookie was included in the calculation of the Client Cookie in
 the same way that the Client Cookie is included in the Server Cookie,
 you would just get an almost infinite series of errors as a request
 was repeatedly retried.

 For servers accessed via anycast, to successfully support
 DNS Cookies, either (1) the server clones must all use the same
 Server Secret or (2) the mechanism that distributes requests to the
 server clones must cause the requests from a particular client to go
 to a particular server for a sufficiently long period of time that

Eastlake & Andrews Standards Track [Page 16]

RFC 7873 DNS Cookies May 2016

 extra requests due to changes in Server Cookies resulting from
 accessing different server machines are not unduly burdensome. (When
 such anycast-accessed servers act as recursive servers or otherwise
 act as clients, they normally use a different unique address to
 source their requests, to avoid confusion in the delivery of
 responses.)

 For simplicity, it is RECOMMENDED that the same Server Secret be used
 by each DNS server in a set of anycast servers. If there is limited
 time skew in updating this secret in different anycast servers, this
 can be handled by a server accepting requests containing a
 Server Cookie based on either its old or new secret for the maximum
 likely time period of such time skew (see also Section 7.1).

7. Operational and Deployment Considerations

 The DNS Cookie mechanism is designed for incremental deployment and
 to complement the orthogonal techniques in [RFC5452]. Either or both
 techniques can be deployed independently at each DNS server and
 client. Thus, installation at the client and server end need not be
 synchronized.

 In particular, a DNS server or client that implements the DNS Cookie
 mechanism can interoperate successfully with a DNS client or server
 that does not implement this mechanism, although, of course, in this
 case it will not get the benefit of the mechanism and the server
 involved might choose to severely rate-limit responses. When such a
 server or client interoperates with a client or server that also
 implements the DNS Cookie mechanism, these servers and clients get
 the security benefits of the DNS Cookie mechanism.

7.1. Client and Server Secret Rollover

 The longer a secret is used, the higher the probability that it has
 been compromised. Thus, clients and servers are configured with a
 lifetime setting for their secret, and they roll over to a new secret
 when that lifetime expires, or earlier due to deliberate jitter as
 described below. The default lifetime is one day, and the maximum
 permitted is one month. To be precise and to make it practical to
 stay within limits despite long holiday weekends, daylight saving
 time shifts, and the like, clients and servers MUST NOT continue to
 use the same secret in new requests and responses for more than
 36 days and SHOULD NOT continue to do so for more than 26 hours.

 Many clients rolling over their secret at the same time could briefly
 increase server traffic, and exactly predictable rollover times for
 clients or servers might facilitate guessing attacks. For example,
 an attacker might increase the priority of attacking secrets they

Eastlake & Andrews Standards Track [Page 17]

RFC 7873 DNS Cookies May 2016

 believe will be in effect for an extended period of time. To avoid
 rollover synchronization and predictability, it is RECOMMENDED that
 pseudorandom jitter in the range of plus zero to minus at least 40%
 be applied to the time until a scheduled rollover of a COOKIE secret.

 It is RECOMMENDED that a client keep the Client Cookie it is
 expecting in a reply until there is no longer an outstanding request
 associated with that Client Cookie that the client is tracking. This
 avoids rejection of replies due to a bad Client Cookie right after a
 change in the Client Secret.

 It is RECOMMENDED that a server retain its previous secret after a
 rollover to a new secret for a configurable period of time not less
 than 1 second or more than 300 seconds, with a default configuration
 of 150 seconds. Requests with Server Cookies based on its previous
 secret are treated as a correct Server Cookie during that time. When
 a server responds to a request containing an old Server Cookie that
 the server is treating as correct, the server MUST include a new
 Server Cookie in its response.

7.2. Counters

 It is RECOMMENDED that implementations include counters of the
 occurrences of the various types of requests and responses described
 in Section 5.

8. IANA Considerations

 IANA has assigned the following DNS EDNS0 option code:

 Value Name Status Reference
 -------- ------ -------- ---------------
 10 COOKIE Standard RFC 7873

 IANA has assigned the following DNS error code as an early allocation
 per [RFC7120]:

 RCODE Name Description Reference
 -------- --------- ------------------------- ---------------
 23 BADCOOKIE Bad/missing Server Cookie RFC 7873

Eastlake & Andrews Standards Track [Page 18]

RFC 7873 DNS Cookies May 2016

9. Security Considerations

 DNS Cookies provide a weak form of authentication of DNS requests and
 responses. In particular, they provide no protection against
 "on-path" adversaries; that is, they provide no protection against
 any adversary that can observe the plaintext DNS traffic, such as an
 on-path router, bridge, or any device on an on-path shared link
 (unless the DNS traffic in question on that path is encrypted).

 For example, if a host is connected via an unsecured IEEE Std. 802.11
 link (Wi-Fi), any device in the vicinity that could receive and
 decode the 802.11 transmissions must be considered "on path". On the
 other hand, in a similar situation but one where 802.11 Robust
 Security (WPA2, also called "Wi-Fi Protected Access 2") is
 appropriately deployed on the Wi-Fi network nodes, only the
 Access Point via which the host is connecting is "on path" as far as
 the 802.11 link is concerned.

 Despite these limitations, deployment of DNS Cookies on the global
 Internet is expected to provide a significant reduction in the
 available launch points for the traffic amplification and denial-of-
 service forgery attacks described in Section 2 above.

 Work is underway in the IETF DPRIVE working group to provide
 confidentiality for DNS requests and responses that would be
 compatible with DNS Cookies.

 Should stronger message/transaction security be desired, it is
 suggested that TSIG or SIG(0) security be used (see Section 3.2);
 however, it may be useful to use DNS Cookies in conjunction with
 these features. In particular, DNS Cookies could screen out many DNS
 messages before the cryptographic computations of TSIG or SIG(0) are
 required, and if SIG(0) is in use, DNS Cookies could usefully screen
 out many requests given that SIG(0) does not screen requests but only
 authenticates the response of complete transactions.

 An attacker that does not know the Server Cookie could do a variety
 of things, such as omitting the COOKIE option or sending a random
 Server Cookie. In general, DNS servers need to take other measures,
 including rate-limiting responses, to protect from abuse in such
 cases. See further information in Section 5.2.

 When a server or client starts receiving an increased level of
 requests with bad Server Cookies or replies with bad Client Cookies,
 it would be reasonable for it to believe that it is likely under
 attack, and it should consider a more frequent rollover of its
 secret. More rapid rollover decreases the benefit to a
 cookie-guessing attacker if they succeed in guessing a cookie.

Eastlake & Andrews Standards Track [Page 19]

RFC 7873 DNS Cookies May 2016

9.1. Cookie Algorithm Considerations

 The cookie computation algorithm for use in DNS Cookies SHOULD be
 based on a pseudorandom function at least as strong as 64-bit FNV
 (Fowler/Noll/Vo [FNV]), because an excessively weak or trivial
 algorithm could enable adversaries to guess cookies. However, in
 light of the lightweight plaintext token security provided by
 DNS Cookies, a strong cryptography hash algorithm may not be
 warranted in many cases and would cause an increased computational
 burden. Nevertheless, there is nothing wrong with using something
 stronger -- for example, HMAC-SHA-256 [RFC6234] truncated to 64 bits,
 assuming that a DNS processor has adequate computational resources
 available. DNS implementations or applications that need somewhat
 stronger security without a significant increase in computational
 load should consider more frequent changes in their client and/or
 Server Secret; however, this does require more frequent generation of
 a cryptographically strong random number [RFC4086]. See Appendices A
 and B for specific examples of cookie computation algorithms.

10. Implementation Considerations

 The DNS COOKIE option specified herein is implemented in BIND 9.10
 using an experimental option code. BIND 9.10.3 (and later) use the
 allocated option code.

11. References

11.1. Normative References

 [RFC1035] Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
 November 1987, <http://www.rfc-editor.org/info/rfc1035>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC4086] Eastlake 3rd, D., Schiller, J., and S. Crocker,
 "Randomness Requirements for Security", BCP 106, RFC 4086,
 DOI 10.17487/RFC4086, June 2005,
 <http://www.rfc-editor.org/info/rfc4086>.

Eastlake & Andrews Standards Track [Page 20]

RFC 7873 DNS Cookies May 2016

 [RFC6891] Damas, J., Graff, M., and P. Vixie, "Extension Mechanisms
 for DNS (EDNS(0))", STD 75, RFC 6891,
 DOI 10.17487/RFC6891, April 2013,
 <http://www.rfc-editor.org/info/rfc6891>.

 [RFC7120] Cotton, M., "Early IANA Allocation of Standards Track Code
 Points", BCP 100, RFC 7120, DOI 10.17487/RFC7120,
 January 2014, <http://www.rfc-editor.org/info/rfc7120>.

11.2. Informative References

 [FNV] Fowler, G., Noll, L., Vo, K., and D. Eastlake 3rd, "The
 FNV Non-Cryptographic Hash Algorithm", Work in Progress,
 draft-eastlake-fnv-10, October 2015.

 [Kaminsky] Olney, M., Mullen, P., and K. Miklavcic, "Dan Kaminsky’s
 2008 DNS Vulnerability", July 2008, <https://www.ietf.org/
 mail-archive/web/dnsop/current/pdf2jgx6rzxN4.pdf>.

 [RFC2845] Vixie, P., Gudmundsson, O., Eastlake 3rd, D., and B.
 Wellington, "Secret Key Transaction Authentication for DNS
 (TSIG)", RFC 2845, DOI 10.17487/RFC2845, May 2000,
 <http://www.rfc-editor.org/info/rfc2845>.

 [RFC2930] Eastlake 3rd, D., "Secret Key Establishment for DNS
 (TKEY RR)", RFC 2930, DOI 10.17487/RFC2930,
 September 2000, <http://www.rfc-editor.org/info/rfc2930>.

 [RFC2931] Eastlake 3rd, D., "DNS Request and Transaction Signatures
 (SIG(0)s)", RFC 2931, DOI 10.17487/RFC2931,
 September 2000, <http://www.rfc-editor.org/info/rfc2931>.

 [RFC3022] Srisuresh, P. and K. Egevang, "Traditional IP Network
 Address Translator (Traditional NAT)", RFC 3022,
 DOI 10.17487/RFC3022, January 2001,
 <http://www.rfc-editor.org/info/rfc3022>.

 [RFC4033] Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "DNS Security Introduction and Requirements",
 RFC 4033, DOI 10.17487/RFC4033, March 2005,
 <http://www.rfc-editor.org/info/rfc4033>.

 [RFC4034] Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "Resource Records for the DNS Security Extensions",
 RFC 4034, DOI 10.17487/RFC4034, March 2005,
 <http://www.rfc-editor.org/info/rfc4034>.

Eastlake & Andrews Standards Track [Page 21]

RFC 7873 DNS Cookies May 2016

 [RFC4035] Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "Protocol Modifications for the DNS Security
 Extensions", RFC 4035, DOI 10.17487/RFC4035, March 2005,
 <http://www.rfc-editor.org/info/rfc4035>.

 [RFC4966] Aoun, C. and E. Davies, "Reasons to Move the Network
 Address Translator - Protocol Translator (NAT-PT) to
 Historic Status", RFC 4966, DOI 10.17487/RFC4966,
 July 2007, <http://www.rfc-editor.org/info/rfc4966>.

 [RFC5452] Hubert, A. and R. van Mook, "Measures for Making DNS
 More Resilient against Forged Answers", RFC 5452,
 DOI 10.17487/RFC5452, January 2009,
 <http://www.rfc-editor.org/info/rfc5452>.

 [RFC6234] Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
 (SHA and SHA-based HMAC and HKDF)", RFC 6234,
 DOI 10.17487/RFC6234, May 2011,
 <http://www.rfc-editor.org/info/rfc6234>.

Eastlake & Andrews Standards Track [Page 22]

RFC 7873 DNS Cookies May 2016

Appendix A. Example Client Cookie Algorithms

A.1. A Simple Algorithm

 A simple example method to compute Client Cookies is the FNV64 [FNV]
 of the Client IP Address, the Server IP Address, and the Client
 Secret:

 Client Cookie =
 FNV64(Client IP Address | Server IP Address | Client Secret)

 where "|" indicates concatenation. Some computational resources may
 be saved by pre-computing FNV64 through the Client IP Address. (If
 the order of the items concatenated above is changed to put the
 Server IP Address last, it might be possible to further reduce the
 computational effort by pre-computing FNV64 through the bytes of both
 the Client IP Address and the Client Secret, but this would reduce
 the strength of the Client Cookie and is NOT RECOMMENDED.)

A.2. A More Complex Algorithm

 A more complex algorithm to calculate Client Cookies is given below.
 It uses more computational resources than the simpler algorithm shown
 in Appendix A.1.

 Client Cookie =
 HMAC-SHA256-64(Client IP Address | Server IP Address,
 Client Secret)

Appendix B. Example Server Cookie Algorithms

B.1. A Simple Algorithm

 An example of a simple method producing a 64-bit Server Cookie is the
 FNV64 [FNV] of the request IP address, the Client Cookie, and the
 Server Secret.

 Server Cookie =
 FNV64(Client IP Address | Client Cookie | Server Secret)

 where "|" represents concatenation. (If the order of the items
 concatenated was changed, it might be possible to reduce the
 computational effort by pre-computing FNV64 through the bytes of the
 Server Secret and Client Cookie, but this would reduce the strength
 of the Server Cookie and is NOT RECOMMENDED.)

Eastlake & Andrews Standards Track [Page 23]

RFC 7873 DNS Cookies May 2016

B.2. A More Complex Algorithm

 Since the Server Cookie has a variable size, the server can store
 various information in that field as long as it is hard for an
 adversary to guess the entire quantity used for authentication.
 There should be 64 bits of entropy in the Server Cookie; for example,
 it could have a sub-field of 64 bits computed pseudorandomly with the
 Server Secret as one of the inputs to the pseudorandom function.
 Types of additional information that could be stored include a
 timestamp and/or a nonce.

 The example below is one variation of the Server Cookie that has been
 implemented in BIND 9.10.3 (and later) releases, where the
 Server Cookie is 128 bits, composed as follows:

 Sub-field Size
 --------- ---------
 Nonce 32 bits
 Time 32 bits
 Hash 64 bits

 With this algorithm, the server sends a new 128-bit cookie back with
 every request. The Nonce field assures a low probability that there
 would be a duplicate.

 The Time field gives the server time and makes it easy to reject old
 cookies.

 The Hash part of the Server Cookie is the part that is hard to guess.
 In BIND 9.10.3 (and later), its computation can be configured to use
 AES, HMAC-SHA-1, or, as shown below, HMAC-SHA-256:

 hash =
 HMAC-SHA256-64(Server Secret,
 (Client Cookie | Nonce | Time | Client IP Address))

 where "|" represents concatenation.

Eastlake & Andrews Standards Track [Page 24]

RFC 7873 DNS Cookies May 2016

Acknowledgments

 The suggestions and contributions of the following are gratefully
 acknowledged:

 Alissa Cooper, Bob Harold, Paul Hoffman, David Malone, Yoav Nir,
 Gayle Noble, Dan Romascanu, Tim Wicinski, and Peter Yee

Authors’ Addresses

 Donald E. Eastlake 3rd
 Huawei Technologies
 155 Beaver Street
 Milford, MA 01757
 United States

 Phone: +1-508-333-2270
 Email: d3e3e3@gmail.com

 Mark Andrews
 Internet Systems Consortium
 950 Charter Street
 Redwood City, CA 94063
 United States

 Email: marka@isc.org

Eastlake & Andrews Standards Track [Page 25]

