RFC: 793

TRANSM SSI ON CONTROL PROTOCOL

DARPA | NTERNET PROGRAM

PROTOCOL SPECI FI CATI ON

Sept ember 1981

prepared for

Def ense Advanced Research Projects Agency
I nformati on Processing Techni ques O fice
1400 W1 son Boul evard
Arlington, Virginia 22209

by

I nformati on Sciences Institute
Uni versity of Southern California
4676 Admiralty Way
Marina del Rey, California 90291

Sept ember 1981

Transni ssi on Control Protocol

TABLE OF CONTENTS

PREFACE i

1. I NTRODUCTT ON ..o e e e e e e e e e e 1
1.1 Motivati On ... 1
L. 2 SCOPE .ot 2
1.3 About This DOCUMBNL e e e 2
1.4 Interfaces ... 3
1.5 Operati On ... 3
2. PHI LOSOPHY .. e e 7
2.1 Elenents of the Internetwork System 7
2.2 Model of Operation e 7
2.3 The Host Environment i, 8
2.4 Interfaces 9
2.5 Relation to Gher Protocols i, 9
2.6 Reliable Comunication i, 9
2.7 Connection Establishnment and Cearing 10
2.8 Data Communi cati On 12
2.9 Precedence and SeCUrity e 13
2.10 Robustness Principle 13
3. FUNCTIONAL SPECIFI CATI ON . .ottt e e e e e e 15
3.1 Header FOrmat 15
3.2 Termnol OgY . ..o 19
3.3 Sequence NUMDEr S 24
3.4 Establishing a connection 30
3.5 dosing a Connection 37
3.6 Precedence and SecCUrity 40
3.7 Data Communi cati On 40
3.8 Interfaces e 44
3.9 Event ProCesSiNg i 52
GL OSSO ARY . it 79
REFERENCES 85

[Page i]

Sept ember 1981
Transni ssi on Control Protocol

[Page ii]

Sept ember 1981
Transni ssi on Control Protocol

PREFACE

Thi s docunent describes the DoD Standard Transni ssion Control Protocol
(TCP). There have been nine earlier editions of the ARPA TCP
specification on which this standard is based, and the present text
draws heavily fromthem There have been many contributors to this work
both in terns of concepts and in terns of text. This edition clarifies
several details and renobves the end-of-letter buffer-size adjustnents,
and redescribes the letter nmechanismas a push function.

Jon Poste

Edi t or

[Page iii]

RFC. 793

Repl aces: RFC 761

I ENs: 129, 124, 112, 81
55, 44, 40, 27, 21, 5

TRANSM SSI ON CONTRCL PROTOCOL

DARPA | NTERNET PROGRAM
PROTOCOL SPECI FI CATI ON

1. | NTRODUCTI ON

The Transmi ssion Control Protocol (TCP) is intended for use as a highly
reliable host-to-host protocol between hosts in packet-switched conputer
communi cati on networks, and in interconnected systens of such networks.

Thi s docunent describes the functions to be perforned by the
Transm ssion Control Protocol, the programthat inplenents it, and its
interface to prograns or users that require its services

1.1. Moti vati on

Conput er comuni cation systens are playing an increasingly inportant
role in mlitary, governnent, and civilian environnments. This
document focuses its attention primarily on mlitary conputer

communi cati on requirenments, especially robustness in the presence of
communi cation unreliability and availability in the presence of
congestion, but many of these problens are found in the civilian and
governnent sector as well.

As strategic and tactical conputer comruni cation networks are

devel oped and deployed, it is essential to provide neans of

i nterconnecting themand to provide standard interprocess

conmmuni cati on protocols which can support a broad range of
applications. 1In anticipation of the need for such standards, the
Deputy Undersecretary of Defense for Research and Engi neering has
decl ared the Transm ssion Control Protocol (TCP) described herein to
be a basis for DoD-wi de inter-process conmunication protoco

st andardi zati on.

TCP is a connection-oriented, end-to-end reliable protocol designed to
fit into a |ayered hierarchy of protocols which support mnulti-network
applications. The TCP provides for reliable inter-process

communi cati on between pairs of processes in host conputers attached to
di stinct but interconnected conputer comunication networks. Very few
assunptions are made as to the reliability of the comunication
protocols below the TCP layer. TCP assunes it can obtain a sinple,
potentially unreliable datagram service fromthe | ower |eve

protocols. In principle, the TCP should be able to operate above a

wi de spectrum of comuni cation systens rangi ng from hard-wred
connections to packet-sw tched or circuit-sw tched networks.

[Page 1]

Sept ember 1981
Transni ssi on Control Protocol
I ntroduction

TCP i s based on concepts first described by Cerf and Kahn in [1]. The
TCP fits into a |layered protocol architecture just above a basic
Internet Protocol [2] which provides a way for the TCP to send and
receive variable-length segnents of information enclosed in internet
dat agram "envel opes”. The internet datagram provides a nmeans for
addr essi ng source and destination TCPs in different networks. The
internet protocol also deals with any fragmentation or reassenbly of
the TCP segnents required to achieve transport and delivery through
mul ti pl e networks and interconnecting gateways. The internet protoco
also carries information on the precedence, security classification
and conpartnmentation of the TCP segnents, so this information can be
communi cat ed end-to-end across multiple networks.

Prot ocol Layering

Fom e e e ek +
| hi gher -1 evel |
o e e e e e e e ea oo +
| TCcP |
i +
| internet protocol

Fom e e e ek +
| communi cati on networ K|
o e e e e e e e ea oo +

Figure 1

Much of this docunent is witten in the context of TCP inplenentations
whi ch are co-resident with higher level protocols in the host

computer. Some conputer systens will be connected to networks via
front-end computers which house the TCP and internet protocol |ayers,
as well as network specific software. The TCP specification describes
an interface to the higher |evel protocols which appears to be

i mpl ement abl e even for the front-end case, as long as a suitable
host-to-front end protocol is inplenented.

1.2. Scope
The TCP is intended to provide a reliable process-to-process
communi cati on service in a nultinetwork environment. The TCP is
i ntended to be a host-to-host protocol in conmon use in multiple
net wor ks.
1.3. About this Docunent
Thi s docunent represents a specification of the behavior required of

any TCP inplenmentation, both in its interactions with higher |eve
protocols and in its interactions with other TCPs. The rest of this

[Page 2]

Sept ember 1981
Transni ssi on Control Protocol
I ntroduction

section offers a very brief view of the protocol interfaces and
operation. Section 2 sumuarizes the phil osophical basis for the TCP
design. Section 3 offers both a detailed description of the actions
required of TCP when various events occur (arrival of new segnents,
user calls, errors, etc.) and the details of the formats of TCP
segnent s.

1.4. Interfaces

The TCP interfaces on one side to user or application processes and on
the other side to a | ower level protocol such as Internet Protocol

The interface between an application process and the TCP is
illustrated in reasonable detail. This interface consists of a set of
calls nuch like the calls an operating system provides to an
application process for manipulating files. For exanple, there are
calls to open and cl ose connections and to send and receive data on
est abli shed connections. It is also expected that the TCP can
asynchronously conmuni cate with application programs. Although
considerable freedomis pernmtted to TCP inplenentors to design
interfaces which are appropriate to a particular operating system
environnent, a mninumfunctionality is required at the TCP/ user
interface for any valid inplenmentation

The interface between TCP and | ower |evel protocol is essentially
unspecified except that it is assuned there is a nechani sm whereby the
two | evel s can asynchronously pass infornation to each other
Typically, one expects the lower |evel protocol to specify this
interface. TCP is designed to work in a very general environnment of

i nterconnected networks. The |ower |evel protocol which is assuned

t hroughout this docunment is the Internet Protocol [2].

1.5. CQperation

As noted above, the primary purpose of the TCP is to provide reliable,
securabl e logical circuit or connection service between pairs of
processes. To provide this service on top of a less reliable internet
conmuni cati on systemrequires facilities in the follow ng areas:

Basi ¢ Data Transfer
Reliability

Fl ow Control

Mul ti pl exi ng

Connecti ons

Precedence and Security

The basic operation of the TCP in each of these areas is described in
the foll ow ng paragraphs.

[Page 3]

Sept ember 1981
Transni ssi on Control Protocol
I ntroduction

Basi ¢ Data Transfer:

The TCP is able to transfer a continuous stream of octets in each
direction between its users by packagi ng sone nunber of octets into
segnents for transm ssion through the internet system |n general
the TCPs decide when to block and forward data at their own

conveni ence.

Sonetinmes users need to be sure that all the data they have
submitted to the TCP has been transnmitted. For this purpose a push
function is defined. To assure that data subnmitted to a TCP is
actually transmtted the sending user indicates that it should be
pushed through to the receiving user. A push causes the TCPs to
pronptly forward and deliver data up to that point to the receiver
The exact push point might not be visible to the receiving user and
the push function does not supply a record boundary marker.

Reliability:

The TCP nust recover fromdata that is danaged, |ost, duplicated, or
delivered out of order by the internet communication system This

i s achieved by assigning a sequence nunber to each octet
transmtted, and requiring a positive acknow edgnent (ACK) fromthe
receiving TCP. |If the ACKis not received within a tineout
interval, the data is retransmtted. At the receiver, the sequence
nunbers are used to correctly order segnents that may be received
out of order and to elimnate duplicates. Damage is handl ed by
addi ng a checksumto each segnent transnitted, checking it at the
recei ver, and discardi ng damaged segnents.

As long as the TCPs continue to function properly and the internet
system does not becone conpletely partitioned, no transm ssion
errors will affect the correct delivery of data. TCP recovers from
i nternet communication systemerrors

F

ow Control

TCP provides a neans for the receiver to govern the anobunt of data
sent by the sender. This is achieved by returning a "wi ndow' with
every ACK indicating a range of acceptable sequence nunbers beyond
the | ast segnment successfully received. The wi ndow indicates an
al | oned number of octets that the sender may transnit before

recei ving further perm ssion

[Page 4]

Sept ember 1981
Transni ssi on Control Protocol
I ntroduction

Mul ti pl exi ng:

To allow for many processes within a single Host to use TCP

communi cation facilities sinultaneously, the TCP provides a set of
addresses or ports within each host. Concatenated with the network
and host addresses fromthe internet comunication layer, this forns
a socket. A pair of sockets uniquely identifies each connection.
That is, a socket may be sinultaneously used in nultiple

connecti ons.

The binding of ports to processes is handled independently by each
Host. However, it proves useful to attach frequently used processes
(e.g., a "logger"” or tinesharing service) to fixed sockets which are
made known to the public. These services can then be accessed

t hrough the known addresses. Establishing and |earning the port
addresses of other processes may involve nore dynani ¢ nechani sns.

Connecti ons:

The reliability and flow control nechani sns descri bed above require
that TCPs initialize and maintain certain status information for
each data stream The conbination of this information, including
sockets, sequence nunbers, and w ndow sizes, is called a connection.
Each connection is uniquely specified by a pair of sockets
identifying its two sides.

When two processes wi sh to communicate, their TCP's nust first
establish a connection (initialize the status infornmation on each
side). Wen their comunication is conplete, the connection is
termnated or closed to free the resources for other uses.

Si nce connections nust be established between unreliable hosts and
over the unreliable internet comunication system a handshake
mechani sm wi th cl ock-based sequence nunbers is used to avoid
erroneous initialization of connections.

Precedence and Security:
The users of TCP may indicate the security and precedence of their

conmuni cation. Provision is nade for default values to be used when
t hese features are not needed.

[Page 5]

Sept ember 1981
Transni ssi on Control Protocol

[Page 6]

Sept ember 1981

2.

Transni ssi on Control Protocol

2. PHI LOSOPHY
1. Elenents of the Internetwork System

The internetwork environment consists of hosts connected to networks
which are in turn interconnected via gateways. It is assumed here
that the networks may be either |ocal networks (e.g., the ETHERNET) or
| arge networks (e.g., the ARPANET), but in any case are based on
packet sw tching technology. The active agents that produce and
consunme nessages are processes. Various levels of protocols in the
net wor ks, the gateways, and the hosts support an interprocess

communi cati on systemthat provides two-way data fl ow on | ogica
connecti ons between process ports.

The term packet is used generically here to nean the data of one
transacti on between a host and its network. The format of data bl ocks
exchanged within the a network will generally not be of concern to us.

Hosts are conputers attached to a network, and fromthe conmuni cation
network’s point of view, are the sources and destinations of packets.
Processes are viewed as the active elenents in host conputers (in
accordance with the fairly common definition of a process as a program
in execution). Even ternminals and files or other |1/O devices are

vi ewed as communicating with each other through the use of processes.
Thus, all communication is viewed as inter-process conmuni cation

Since a process may need to distingui sh anong several conmunication
streans between itself and anot her process (or processes), we inagine
t hat each process may have a nunber of ports through which it

communi cates with the ports of other processes.

.2. Mddel of QOperation

Processes transmit data by calling on the TCP and passi ng buffers of
data as argunents. The TCP packages the data fromthese buffers into
segrments and calls on the internet nodule to transmt each segnment to
the destination TCP. The receiving TCP places the data froma segnent
into the receiving user’s buffer and notifies the receiving user. The
TCPs include control information in the segnents which they use to
ensure reliable ordered data transm ssion

The nmodel of internet comunication is that there is an internet

prot ocol modul e associated with each TCP which provides an interface
to the local network. This internet nodul e packages TCP segnents

i nside internet datagrans and routes these datagrans to a destination
internet nmodule or internediate gateway. To transnit the datagram
through the |l ocal network, it is enbedded in a |ocal network packet.

The packet switches may perform further packagi ng, fragnentation, or

[Page 7]

Sept ember 1981
Transni ssi on Control Protocol
Phi | osophy

ot her operations to achieve the delivery of the |ocal packet to the
destination internet nodule.

At a gateway between networks, the internet datagramis "unw apped"
fromits |ocal packet and exanined to determ ne through which network
the internet datagram should travel next. The internet datagramis
then "wrapped” in a |ocal packet suitable to the next network and
routed to the next gateway, or to the final destination

A gateway is permtted to break up an internet datagraminto snaller
internet datagramfragments if this is necessary for transm ssion

t hrough the next network. To do this, the gateway produces a set of

i nternet datagramnms; each carrying a fragnent. Fragnents may be
further broken into smaller fragnents at subsequent gateways. The

i nternet datagram fragment format is designed so that the destination
i nternet nodul e can reassenble fragnents into internet datagrans.

A destination internet nodul e unw aps the segnent fromthe datagram
(after reassenbling the datagram if necessary) and passes it to the
destination TCP

This sinple nodel of the operation glosses over nany details. One

i mportant feature is the type of service. This provides infornmation
to the gateway (or internet nodule) to guide it in selecting the
service paraneters to be used in traversing the next network.
Included in the type of service information is the precedence of the
datagram Datagrans nmay also carry security information to permit
host and gateways that operate in multilevel secure environnents to
properly segregate datagranms for security considerations.

2.3. The Host Environnent

The TCP is assuned to be a nodule in an operating system The users
access the TCP much like they would access the file system The TCP
may call on other operating systemfunctions, for exanple, to nanage
data structures. The actual interface to the network is assuned to be
controlled by a device driver nodule. The TCP does not call on the
network device driver directly, but rather calls on the internet

dat agram protocol nodule which may in turn call on the device driver

The mechani snms of TCP do not preclude inplenmentation of the TCP in a
front-end processor. However, in such an inplenmentation, a
host-to-front-end protocol nust provide the functionality to support
the type of TCP-user interface described in this docunent.

[Page 8]

Sept ember 1981

2.

Transni ssi on Control Protocol
Phi | osophy

4. I nterfaces

The TCP/user interface provides for calls made by the user on the TCP
to OPEN or CLOSE a connection, to SEND or RECEI VE data, or to obtain
STATUS about a connection. These calls are like other calls from user
prograns on the operating system for exanple, the calls to open, read
from and close a file.

The TCP/internet interface provides calls to send and receive

dat agrans addressed to TCP nodul es in hosts anywhere in the internet
system These calls have paraneters for passing the address, type of
service, precedence, security, and other control information

.5. Relation to G her Protocols

The following diagramillustrates the place of the TCP in the protoco
hi erar chy:

Hom - - + ----- + ----- + L +
| Telnet| | FTP | |Voice|l ... | | Application Leve
Hom oo + H----- + H----- + +-- o - +
| | |
F--- - + F--- - + F--- - +
| TCP | | RTP | ... | | Host Leve
L + L + L +
| | |
e +
| Internet Protocol & ICMP | Gateway Leve
Fom e m e e e e e e e e e e e +
|
o +
| Local Network Protocol | Net work Leve
o m e e e e e e +

Prot ocol Rel ationships
Fi gure 2.
It is expected that the TCP will be able to support higher |eve

protocols efficiently. It should be easy to interface higher |eve
protocols |Iike the ARPANET Tel net or AUTOCDIN Il THP to the TCP

.6. Reliable Communication

A stream of data sent on a TCP connection is delivered reliably and in
order at the destination

[Page 9]

Sept ember 1981
Transni ssi on Control Protocol
Phi | osophy

Transmission is nmade reliable via the use of sequence nunbers and
acknow edgnments. Conceptually, each octet of data is assigned a
sequence nunber. The sequence nunber of the first octet of data in a
segrment is transmitted with that segnent and is called the segnent
sequence nunmber. Segnents al so carry an acknow edgnent nunber which
is the sequence nunber of the next expected data octet of

transmi ssions in the reverse direction. Wen the TCP transmts a
segment containing data, it puts a copy on a retransni ssion queue and
starts a tinmer; when the acknowl edgnent for that data is received, the
segrment is deleted fromthe queue. |If the acknow edgnent is not
received before the timer runs out, the segnment is retransmtted.

An acknow edgrment by TCP does not guarantee that the data has been
delivered to the end user, but only that the receiving TCP has taken
the responsibility to do so.

To govern the flow of data between TCPs, a flow control mechanismis
enpl oyed. The receiving TCP reports a "w ndow' to the sending TCP
Thi s wi ndow specifies the nunber of octets, starting with the

acknow edgnent nunber, that the receiving TCP is currently prepared to
receive.

2.7. Connection Establishnment and d earing

To identify the separate data streans that a TCP nmay handl e, the TCP
provides a port identifier. Since port identifiers are selected

i ndependently by each TCP they night not be unique. To provide for
uni que addresses within each TCP, we concatenate an internet address
identifying the TCP with a port identifier to create a socket which
wi || be unique throughout all networks connected together.

A connection is fully specified by the pair of sockets at the ends. A
| ocal socket nmmy participate in many connections to different foreign
sockets. A connection can be used to carry data in both directions,
that is, it is "full duplex".

TCPs are free to associate ports with processes however they choose.
However, several basic concepts are necessary in any inplenentation
There nust be well-known sockets which the TCP associates only with
the "appropriate" processes by sone nmeans. W envision that processes
may "own" ports, and that processes can initiate connections only on
the ports they own. (Means for inplenenting ownership is a |loca

i ssue, but we envision a Request Port user command, or a nethod of

uni quely allocating a group of ports to a given process, e.g., by
associating the high order bits of a port nanme with a given process.)

A connection is specified in the OPEN call by the local port and
forei gn socket argunents. In return, the TCP supplies a (short) |oca

[Page 10]

Sept ember 1981
Transni ssi on Control Protocol
Phi | osophy

connection nanme by which the user refers to the connection in
subsequent calls. There are several things that nust be renenbered
about a connection. To store this information we inagine that there
is a data structure called a Transmi ssion Control Block (TCB). One

i mpl enentation strategy woul d have the | ocal connection nane be a
pointer to the TCB for this connection. The OPEN call also specifies
whet her the connection establishnment is to be actively pursued, or to
be passively waited for

A passive OPEN request neans that the process wants to accept inconing
connection requests rather than attenpting to initiate a connection
Oten the process requesting a passive OPEN will accept a connection
request fromany caller. 1In this case a foreign socket of all zeros
is used to denote an unspecified socket. Unspecified foreign sockets
are allowed only on passive OPENs.

A service process that wi shed to provide services for unknown ot her
processes woul d i ssue a passive OPEN request with an unspecified
foreign socket. Then a connection could be made with any process that
requested a connection to this local socket. It would help if this

| ocal socket were known to be associated with this service.

Vel | - known sockets are a conveni ent mechanismfor a priori associating
a socket address with a standard service. For instance, the

"Tel net-Server" process is permanently assigned to a particul ar
socket, and other sockets are reserved for File Transfer, Renote Job
Entry, Text Cenerator, Echoer, and Sink processes (the |ast three
being for test purposes). A socket address night be reserved for
access to a "Look-Up" service which would return the specific socket
at which a newWy created service would be provided. The concept of a
wel | - known socket is part of the TCP specification, but the assignnment
of sockets to services is outside this specification. (See [4].)

Processes can issue passive OPENs and wait for matching active OPENs
from ot her processes and be inforned by the TCP when connecti ons have
been established. Two processes which issue active OPENs to each
other at the same tinme will be correctly connected. This flexibility
is critical for the support of distributed conputing in which
conmponents act asynchronously with respect to each other

There are two principal cases for matching the sockets in the |oca
passi ve OPENs and an foreign active OPENs. In the first case, the

| ocal passive OPENs has fully specified the foreign socket. 1In this
case, the match nust be exact. |In the second case, the l|ocal passive
OPENs has |l eft the foreign socket unspecified. |In this case, any

foreign socket is acceptable as long as the local sockets natch.
O her possibilities include partially restricted matches.

[Page 11]

Sept ember 1981
Transni ssi on Control Protocol
Phi | osophy

If there are several pending passive OPENs (recorded in TCBs) with the
sanme | ocal socket, an foreign active OPEN will be matched to a TCB

with the specific foreign socket in the foreign active OPEN, if such a
TCB exists, before selecting a TCB with an unspecified foreign socket.

The procedures to establish connections utilize the synchronize (SYN)
control flag and involves an exchange of three nessages. This
exchange has been terned a three-way hand shake [3].

A connection is initiated by the rendezvous of an arriving segnent
containing a SYN and a waiting TCB entry each created by a user OPEN
command. The matching of |ocal and foreign sockets determ nes when a
connection has been initiated. The connection becones "established"
when sequence nunbers have been synchroni zed in both directions.

The clearing of a connection also involves the exchange of segnents,
in this case carrying the FIN control fl ag.

2. 8. Dat a Conmuni cati on

The data that flows on a connection may be thought of as a stream of
octets. The sending user indicates in each SEND call whether the data
in that call (and any preceeding calls) should be i medi ately pushed
through to the receiving user by the setting of the PUSH fl ag.

A sending TCP is allowed to collect data fromthe sending user and to
send that data in segnents at its own conveni ence, until the push
function is signaled, then it nmust send all unsent data. Wen a
receiving TCP sees the PUSH flag, it nust not wait for nore data from
the sending TCP before passing the data to the receiving process.

There is no necessary rel ationshi p between push functions and segnent
boundaries. The data in any particular segment nay be the result of a
single SEND call, in whole or part, or of nultiple SEND calls.

The purpose of push function and the PUSH flag is to push data through
fromthe sending user to the receiving user. It does not provide a
record service

There is a coupling between the push function and the use of buffers
of data that cross the TCP/user interface. Each time a PUSH flag is
associated with data placed into the receiving user’s buffer, the
buffer is returned to the user for processing even if the buffer is
not filled. |If data arrives that fills the user’'s buffer before a
PUSH i s seen, the data is passed to the user in buffer size units.

TCP al so provides a neans to comuni cate to the receiver of data that
at some point further along in the data streamthan the receiver is

[Page 12]

Sept ember 1981
Transni ssi on Control Protocol
Phi | osophy

currently reading there is urgent data. TCP does not attenpt to
define what the user specifically does upon being notified of pending
urgent data, but the general notion is that the receiving process wll
take action to process the urgent data quickly.

2.9. Precedence and Security

The TCP nakes use of the internet protocol type of service field and
security option to provide precedence and security on a per connection
basis to TCP users. Not all TCP nodules will necessarily function in
a multilevel secure environnent; sone nmay be linmted to unclassified
use only, and others may operate at only one security |evel and
compartment. Consequently, sone TCP inplenentations and services to
users may be limted to a subset of the nmultilevel secure case

TCP nmodul es which operate in a multilevel secure environnent nust
properly mark outgoing segnments with the security, conpartment, and
precedence. Such TCP nodul es nmust also provide to their users or

hi gher | evel protocols such as Telnet or THP an interface to all ow
themto specify the desired security |level, conpartnent, and
precedence of connecti ons.

2.10. Robustness Principle
TCP inplementations will follow a general principle of robustness: be

conservative in what you do, be liberal in what you accept from
ot hers.

[Page 13]

Sept ember 1981
Transni ssi on Control Protocol

[Page 14]

Sept ember 1981
Transni ssi on Control Protocol

3. FUNCTI ONAL SPECI FI CATI ON
3.1. Header For nat

TCP segnents are sent as internet datagrans. The Internet Protoco
header carries several information fields, including the source and
destination host addresses [2]. A TCP header follows the internet
header, supplying information specific to the TCP protocol. This
division allows for the existence of host |evel protocols other than
TCP.

TCP Header For mat

0 1 2 3
01234567890123456789012345678901
B Lt r s i i i o o T s ks S R S
| Source Port | Desti nation Port |
B s T s s e T o e S T ks et s oot ST S S S o S S 3

| Sequence Numnber
B T S S e s e i s S i S S S S S S T S SR S S S i S S S
Acknowl edgnent Nunber |
B i T e S i i i i T S S e e S i o i I T N S
| | U Al PR S| F| |
t| Reserved |RC SIS VY| I]| W ndow |
|+ |

| G K HTINN

+

T T e S S i S S S i wuity SN S

|

+-

|

|

|

+-

| Checksum | Ur gent Pointer |
B Lt r s i i i o o T s ks S R S
| Opti ons | Paddi ng

+-

|

+-

B T T o S T o il s S S S S S i S il i
dat a |
B s o s o S S e e S i TRIE TR TR S S S e e o o e i =
TCP Header For nat
Note that one tick mark represents one bit position.
Fi gure 3.
Source Port: 16 bits
The source port numnber.

Destination Port: 16 bits

The destination port nunber.

[Page 15]

Sept ember 1981
Transm ssi on Control Protocol
Functi onal Specification

Sequence Number: 32 bits

The sequence nunber of the first data octet in this segnent (except
when SYN is present). If SYNis present the sequence nunber is the
initial sequence nunmber (ISN) and the first data octet is |SN+1

Acknowl edgnment Nunmber: 32 bits

If the ACK control bit is set this field contains the value of the
next sequence nunber the sender of the segnment is expecting to
receive. Once a connection is established this is always sent.

Data Offset: 4 bits

The nunber of 32 bit words in the TCP Header. This indicates where
the data begins. The TCP header (even one including options) is an
i ntegral nunber of 32 bits |ong.

Reserved: 6 bits
Reserved for future use. Mist be zero.
Control Bits: 6 bits (fromleft to right):

URG Urgent Pointer field significant
ACK: Acknowl edgnent field significant
PSH: Push Function

RST: Reset the connection

SYN: Synchroni ze sequence nunbers
FIN. No nore data from sender

W ndow. 16 bits

The nunber of data octets beginning with the one indicated in the
acknow edgnment field which the sender of this segnent is willing to
accept.

Checksum 16 bits

The checksumfield is the 16 bit one's conpl enent of the one’s
conpl enent sumof all 16 bit words in the header and text. If a
segnment contains an odd nunber of header and text octets to be
checksummed, the last octet is padded on the right with zeros to
forma 16 bit word for checksum purposes. The pad is not
transmitted as part of the segnment. \While conputing the checksum
the checksumfield itself is replaced with zeros.

The checksum al so covers a 96 bit pseudo header conceptually

[Page 16]

Sept ember 1981
Transm ssi on Control Protocol
Functi onal Specification

prefixed to the TCP header. This pseudo header contains the Source
Address, the Destination Address, the Protocol, and TCP | ength.
This gives the TCP protection agai nst m srouted segments. This
information is carried in the Internet Protocol and is transferred
across the TCP/ Network interface in the arguments or results of
calls by the TCP on the IP

Fom e oo - Fom e oo - Fom e oo - Fom e oo - +
| Sour ce Address |
E R E R E R E R +
| Desti nati on Address |
Fomm e o - Fomm e o - Fomm e o - Fomm e o - +
| zero | PTCL | TCP Length

Fom e oo - Fom e oo - Fom e oo - Fom e oo - +

The TCP Length is the TCP header length plus the data length in
octets (this is not an explicitly transnmitted quantity, but is
conmputed), and it does not count the 12 octets of the pseudo
header .

Urgent Pointer: 16 bits

This field communi cates the current value of the urgent pointer as a
positive offset fromthe sequence nunber in this segnent. The
urgent pointer points to the sequence nunber of the octet follow ng
the urgent data. This field is only be interpreted in segnents with
the URG control bit set.

Options: variable
Options may occupy space at the end of the TCP header and are a
multiple of 8 bits inlength. Al options are included in the
checksum An option nmay begin on any octet boundary. There are two
cases for the format of an option:
Case 1: A single octet of option-kind.

Case 2: An octet of option-kind, an octet of option-length, and
the actual option-data octets.

The option-length counts the two octets of option-kind and
option-length as well as the option-data octets.

Note that the list of options nay be shorter than the data of fset
field might inply. The content of the header beyond the
End- of - Opti on option nust be header padding (i.e., zero).

A TCP nust inplenent all options.

[Page 17]

Sept ember 1981
Transni ssi on Control Protocol

Functi onal Specification

Currently defined options include (kind indicated in octal):

Ki nd Length Meani ng
0 - End of option list.
1 - No- Oper at i on.
2 4 Maxi mum Segnent Si ze.

Specific Option Definitions

End of Option List

This option code indicates the end of the option list. This

m ght not coincide with the end of the TCP header according to
the Data Ofset field. This is used at the end of all options,
not the end of each option, and need only be used if the end of
the options woul d not otherw se coincide with the end of the TCP
header .

No- Oper ati on

This option code may be used between options, for exanple, to
align the beginning of a subsequent option on a word boundary.
There is no guarantee that senders will use this option, so
recei vers nust be prepared to process options even if they do
not begin on a word boundary.

Maxi mum Segnent Si ze

oo oo I oo +
| 00000010 00000100| max seg size
Fom e e e - Fom e e e - Fomm e e o Fom e e e - +

Ki nd=2 Lengt h=4

[Page 18]

Sept ember 1981
Transm ssi on Control Protocol
Functi onal Specification

Maxi mum Segnent Size Option Data: 16 bits

If this option is present, then it conmuni cates the nmaxi num
receive segnent size at the TCP which sends this segnent.

This field nmust only be sent in the initial connection request
(i.e., in segments with the SYN control bit set). |If this
option is not used, any segnent size is allowed.

Paddi ng: variabl e

The TCP header padding is used to ensure that the TCP header ends
and data begins on a 32 bit boundary. The padding is conposed of
zeros.

3.2. Term nol ogy

Bef ore we can di scuss very much about the operation of the TCP we need
to introduce sone detailed term nology. The nmaintenance of a TCP
connection requires the renenbering of several variables. W conceive
of these variables being stored in a connection record called a
Transm ssion Control Block or TCB. Anobng the variables stored in the
TCB are the |l ocal and renote socket nunbers, the security and
precedence of the connection, pointers to the user’'s send and receive
buffers, pointers to the retransnmt queue and to the current segnent.
In addition several variables relating to the send and receive
sequence nunbers are stored in the TCB

Send Sequence Vari abl es

SND. UNA - send unacknow edged

SND. NXT - send next

SND. WAD - send wi ndow

SND. UP - send urgent pointer

SND. W.1 - segnent sequence nunber used for |ast wi ndow update

SND. W.2 - segnent acknow edgment nunber used for |ast w ndow
updat e

I SS - initial send sequence nunber

Recei ve Sequence Vari abl es

RCV. NXT - recei ve next

RCV. WND - receive w ndow
RCV. UP - receive urgent pointer
I RS - initial receive sequence nunber

[Page 19]

Sept ember 1981
Transm ssi on Control Protocol
Functi onal Specification

The follow ng diagranms nmay help to relate sone of these variables to
t he sequence space.

Send Sequence Space

SND. UNA SND. NXT SND. UNA
+SND. WND

- ol d sequence nunmbers whi ch have been acknow edged
- sequence nunbers of unacknow edged data

sequence nunmbers allowed for new data transm ssion
- future sequence nunbers which are not yet allowed

A WN P
1

Send Sequence Space

Fi gure 4.

The send window is the portion of the sequence space labeled 3 in
figure 4.

Recei ve Sequence Space

1 - old sequence nunbers which have been acknow edged

2 - sequence nunbers all owed for new reception

3 - future sequence nunbers which are not yet all owed
Recei ve Sequence Space

Fi gure 5.

The receive window is the portion of the sequence space labeled 2 in
figure 5.

There are al so sonme variabl es used frequently in the discussion that
take their values fromthe fields of the current segnent.

[Page 20]

Sept ember 1981
Transm ssi on Control Protocol
Functi onal Specification

Current Segnent Vari abl es

SEG SEQ - segnent sequence nunber

SEG ACK - segnment acknow edgnment number
SEG LEN - segnent |ength

SEG WAD - segnent w ndow

SEG UP - segnent urgent pointer

SEG PRC - segnent precedence val ue

A connection progresses through a series of states during its
lifetine. The states are: LISTEN, SYN SENT, SYN RECEI VED,

ESTABLI SHED, FIN-WAIT-1, FIN-WAIT-2, CLOSE-WAIT, CLOSING LAST-ACK
TIME-VWAIT, and the fictional state CLOSED. CLOSED is fictiona
because it represents the state when there is no TCB, and therefore,
no connection. Briefly the neanings of the states are:

LI STEN - represents waiting for a connection request fromany renote
TCP and port.

SYN-SENT - represents waiting for a matching connection request
after having sent a connection request.

SYN- RECEI VED - represents waiting for a confirm ng connection
request acknow edgnent after having both received and sent a
connection request.

ESTABLI SHED - represents an open connection, data received can be
delivered to the user. The normal state for the data transfer phase
of the connection

FINNVWAIT-1 - represents waiting for a connection term nation request
fromthe renote TCP, or an acknow edgnent of the connection
term nation request previously sent.

FINWAIT-2 - represents waiting for a connection termination request
fromthe renote TCP.

CLCSE-WAIT - represents waiting for a connection ternination request
fromthe | ocal user.

CLOSI NG - represents waiting for a connection termnation request
acknow edgnment fromthe renmote TCP

LAST- ACK - represents waiting for an acknow edgnent of the
connection termnation request previously sent to the renote TCP
(whi ch includes an acknow edgnment of its connection termination
request).

[Page 21]

Sept ember 1981
Transm ssi on Control Protocol
Functi onal Specification

TIME-VWAIT - represents waiting for enough tinme to pass to be sure
the renote TCP received the acknow edgnent of its connection
term nation request.

CLCSED - represents no connection state at all

A TCP connection progresses fromone state to another in response to
events. The events are the user calls, OPEN, SEND, RECEl VE, CLCSE,
ABORT, and STATUS; the inconing segnents, particularly those

contai ning the SYN, ACK, RST and FIN flags; and tineouts.

The state diagramin figure 6 illustrates only state changes, together
with the causing events and resulting actions, but addresses neither
error conditions nor actions which are not connected with state
changes. In a later section, nore detail is offered with respect to
the reaction of the TCP to events.

NOTE BENE: this diagramis only a sunmary and nust not be taken as
the total specification

[Page 22]

Sept ember 1981

Transni ssi on Control Protocol

Functi onal Specification
————————— +o--------- active OPEN
CLOSED | L
————————— SR CEEE TR \ create TCB
| A \ \" snd SYN
passi ve OPEN | | CLCSE \ \
---------------------- \ \
create TCB | | delete TCB \ \
\Y | \ \
--------- + CLCSE | \
LISTEN | —-emmeo--- |
--------- + delete TCB | |
rcv SYN | | SEND | |
----------- | v
Fomem- - + snd SYN, ACK / \ snd SYN Fomem- - +
| R hRREEEEEEEE > |
SYN	rcv SYN	SYN
R 0D I I e	SENT	
	snd ACK	
R RREEEEEE		
Fomem- - + rcv ACK of SYN \ /[rcv SYN, ACK Fomem- - +		

| X | | snd ACK

| Y Y

| CLCSE 0 Aeeeeeeo- +

| ------- ESTAB |

| snd FIN Ao +

| CLCSE | | rcv FIN

Voo | |-

R + snd FIN / \ snd ACK R +
| FIN G e R > CLCSE |

WAIT-1 | --------mmmmma - - - | VAT |
Fomem- - + rcv FIN \ Fomem- - +

| rev ACK of FIN = ------- | CLCSE |

| -------m - snd ACK | eeeeae-

\% X \% snd FIN V
Fomm e e o + e e e e e + Fomm e e o +
| FI NWAI T- 2| CLOSI NG | | LAST- ACK|
N + Heeeeeanas + N +

| rcv ACK of FIN | rcv ACK of FIN |

| rev FIN eeemeeae - | Ti meout =2MSL -------------- |

------- X Vv X Vv
\ snd ACK o H--------- +del ete TCB L +
------------------------ > TIME WAIT|------------------> CLOSED |
--------- + S

TCP Connection State Di agram

Fi gure 6.

[Page 23]

Sept ember 1981

Transni ssi on Control Protocol
Functi onal Specification

3.

3. Sequence Numbers

A fundanental notion in the design is that every octet of data sent
over a TCP connection has a sequence nunber. Since every octet is
sequenced, each of them can be acknow edged. The acknow edgnent
mechani sm enpl oyed is cunul ati ve so that an acknow edgnent of sequence
nunber X indicates that all octets up to but not including X have been
received. This nechanismallows for straight-forward duplicate
detection in the presence of retransm ssion. Nunbering of octets
within a segment is that the first data octet imediately follow ng
the header is the | owest nunbered, and the followi ng octets are
nunbered consecutively.

It is essential to renenber that the actual sequence nunber space is
finite, though very large. This space ranges fromO0 to 2**32 - 1
Since the space is finite, all arithnmetic dealing with sequence
nunmbers nust be performed nmodul o 2**32. This unsigned arithmetic
preserves the relationship of sequence nunbers as they cycle from
2**32 - 1 to 0 again. There are sone subtleties to conputer nodul o
arithnmetic, so great care should be taken in progranm ng the

conpari son of such values. The synbol "=<" neans "less than or equal"
(rmodul o 2**32).

The typical kinds of sequence nunber conparisons which the TCP nust
perform i ncl ude:

(a) Deternining that an acknow edgnment refers to sone sequence
nunber sent but not yet acknow edged.

(b) Deternmining that all sequence numbers occupi ed by a segnent
have been acknow edged (e.g., to renove the segnment froma
retransm ssi on queue).

(c) Deternining that an incom ng segnment contains sequence nunbers
which are expected (i.e., that the segnment "overl aps" the
recei ve wi ndow).

[Page 24]

Sept ember 1981
Transm ssi on Control Protocol
Functi onal Specification

In response to sending data the TCP will receive acknow edgnents. The
foll owi ng conpari sons are needed to process the acknow edgnents.

SND. UNA = ol dest unacknow edged sequence nunber

SND. NXT = next sequence nunber to be sent

SEG ACK = acknow edgnent fromthe receiving TCP (next sequence
nunber expected by the receiving TCP)

SEG SEQ = first sequence nunber of a segnent

SEG LEN = the nunber of octets occupied by the data in the segnent

(counting SYN and FIN)
SEG SEQ+SEG LEN-1 = | ast sequence nunber of a segnent

A new acknow edgnent (called an "acceptable ack"), is one for which
the inequality bel ow hol ds:

SND. UNA < SEG ACK =< SND. NXT
A segrment on the retransm ssion queue is fully acknow edged if the sum
of its sequence number and length is less or equal than the
acknow edgnment value in the incom ng segnent.

When data is received the followi ng conpari sons are needed:

RCV. NXT = next sequence nunber expected on an inconing segnents, and
is the left or |ower edge of the receive w ndow

RCV. NXT+RCV. WND- 1 = | ast sequence nunber expected on an inconing
segrment, and is the right or upper edge of the receive w ndow

SEG SEQ = first sequence nunber occupied by the inconi ng segnent

SEG SEQ+SEG LEN-1 = | ast sequence nunber occupied by the incom ng
segment

A segnment is judged to occupy a portion of valid receive sequence
space if

RCV. NXT =< SEG SEQ < RCV. NXT+RCV. WND
or

RCV. NXT =< SEG SEQ+SEG LEN-1 < RCV. NXT+RCV. WND

[Page 25]

Sept ember 1981
Transm ssi on Control Protocol
Functi onal Specification

The first part of this test checks to see if the begi nning of the
segrment falls in the window, the second part of the test checks to see
if the end of the segnment falls in the window, if the segnent passes
either part of the test it contains data in the w ndow.

Actually, it is alittle nore conplicated than this. Due to zero
wi ndows and zero |length segments, we have four cases for the
acceptability of an incom ng segnent:

Segnment Receive Test
Length W ndow

0 0 SEG. SEQ = RCV. NXT

0 >0 RCV. NXT =< SEG SEQ < RCV. NXT+RCV. WND
>0 0 not acceptabl e

>0 >0 RCV. NXT =< SEG SEQ < RCV. NXT+RCV. WAD

or RCV. NXT =< SEG SEQ+SEG LEN-1 < RCV. NXT+RCV. WD

Note that when the receive windowis zero no segnents should be
accept abl e except ACK segnents. Thus, it is be possible for a TCP to
mai ntain a zero receive window while transmtting data and receiving
ACKs. However, even when the receive windowis zero, a TCP nust
process the RST and URG fields of all incom ng segnents.

W have taken advantage of the numbering schene to protect certain
control information as well. This is achieved by inplicitly including
some control flags in the sequence space so they can be retransmtted
and acknow edged wi thout confusion (i.e., one and only one copy of the
control will be acted upon). Control information is not physically
carried in the segnment data space. Consequently, we nust adopt rules
for inplicitly assigning sequence nunbers to control. The SYN and FIN
are the only controls requiring this protection, and these controls
are used only at connection opening and closing. For sequence nunber
pur poses, the SYN is considered to occur before the first actual data
octet of the segnment in which it occurs, while the FINis considered
to occur after the last actual data octet in a segnment in which it
occurs. The segnment length (SEG LEN) includes both data and sequence
space occupying controls. When a SYNis present then SEG SEQ is the
sequence nunmber of the SYN

[Page 26]

Sept ember 1981
Transm ssi on Control Protocol
Functi onal Specification

Initial Sequence Number Sel ection

The protocol places no restriction on a particular connection being
used over and over again. A connection is defined by a pair of
sockets. New instances of a connection will be referred to as

i ncarnations of the connection. The problemthat arises fromthis is
-- "how does the TCP identify duplicate segnents from previous

i ncarnati ons of the connection?" This problem becones apparent if the
connection is being opened and cl osed in quick succession, or if the
connection breaks with | oss of nmenory and is then reestablished.

To avoid confusion we nust prevent segnments from one incarnation of a
connection from being used while the sanme sequence nunbers may stil

be present in the network froman earlier incarnation. W want to
assure this, even if a TCP crashes and | oses all know edge of the
sequence nunbers it has been using. When new connections are created,
an initial sequence nunber (I1SN) generator is enployed which selects a
new 32 bit ISN. The generator is bound to a (possibly fictitious) 32
bit clock whose |l ow order bit is increnmented roughly every 4

m croseconds. Thus, the I SN cycles approxi mately every 4.55 hours.
Since we assune that segnents will stay in the network no nore than

t he Maxi mum Segnent Lifetime (MSL) and that the MSL is |less than 4.55
hours we can reasonably assunme that I1SN's will be unique.

For each connection there is a send sequence nunber and a receive
sequence nunber. The initial send sequence nunber (ISS) is chosen by
the data sending TCP, and the initial receive sequence nunber (IRS) is
| earned during the connection establishing procedure.

For a connection to be established or initialized, the two TCPs nust
synchroni ze on each other’s initial sequence nunbers. This is done in
an exchange of connection establishing segnents carrying a control bit
called "SYN' (for synchronize) and the initial sequence numbers. As a
short hand, segnents carrying the SYN bit are also called "SYNs".

Hence, the solution requires a suitable nechanismfor picking an
initial sequence nunber and a slightly involved handshake to exchange
the 1SN s.

The synchroni zation requires each side to send it’s own initial
sequence nunber and to receive a confirmation of it in acknow edgnent
fromthe other side. Each side nust also receive the other side's
initial sequence nunber and send a confirm ng acknow edgment .

1) A--> B SYN ny sequence nunber is X
2) A <-- B ACK your sequence nunmber is X
3) A<-- B SYN ny sequence nunber is Y
4) A --> B ACK your sequence nunber is Y

[Page 27]

Sept ember 1981
Transm ssi on Control Protocol
Functi onal Specification

Because steps 2 and 3 can be conbined in a single nessage this is
called the three way (or three nessage) handshake.

A three way handshake is necessary because sequence nunbers are not
tied to a global clock in the network, and TCPs may have different
mechani sms for picking the ISNs. The receiver of the first SYN has
no way of know ng whether the segnent was an ol d del ayed one or not,
unless it renenbers the |ast sequence nunber used on the connection
(which is not always possible), and so it nmust ask the sender to
verify this SYN. The three way handshake and the advantages of a

cl ock-driven schenme are discussed in [3].

Knowi ng When to Keep Qui et

To be sure that a TCP does not create a segnent that carries a
sequence nunber which may be duplicated by an old segment remaining in
the network, the TCP nust keep quiet for a maxi mum segnment lifetinme
(MSL) before assigning any sequence nunbers upon starting up or
recovering froma crash in which nenory of sequence nunbers in use was
lost. For this specification the MSL is taken to be 2 mnutes. This
is an engi neering choice, and may be changed if experience indicates
it is desirable to do so. Note that if a TCPis reinitialized in sone
sense, yet retains its menory of sequence nunmbers in use, then it need
not wait at all; it nust only be sure to use sequence nunbers | arger
than those recently used.

The TCP Quiet Tine Concept

Thi s specification provides that hosts which "crash" wi thout
retai ning any know edge of the | ast sequence numbers transmitted on
each active (i.e., not closed) connection shall delay emtting any
TCP segnents for at |east the agreed Maxi num Segnent Lifetime (ML)
in the internet system of which the host is a part. |n the
par agr aphs bel ow, an explanation for this specification is given
TCP inpl enmentors may violate the "quiet tinme" restriction, but only
at the risk of causing sone old data to be accepted as new or new
data rejected as old duplicated by sone receivers in the internet
system

TCPs consunme sequence nunber space each tinme a segnent is forned and
entered into the network output queue at a source host. The
duplicate detection and sequencing algorithmin the TCP protoco
relies on the unique binding of segnent data to sequence space to
the extent that sequence nunbers will not cycle through all 2**32
val ues before the segnent data bound to those sequence nunbers has
been delivered and acknow edged by the receiver and all duplicate
copi es of the segnents have "drained" fromthe internet. Wthout
such an assunption, two distinct TCP segnents coul d conceivably be

[Page 28]

Sept ember 1981
Transm ssi on Control Protocol
Functi onal Specification

assigned the same or overl appi ng sequence nunbers, causing confusion
at the receiver as to which data is new and which is old. Renenber
that each segnent is bound to as many consecutive sequence nunbers
as there are octets of data in the segnent.

Under normal conditions, TCPs keep track of the next sequence nunber
to emt and the ol dest awaiting acknow edgnent so as to avoid

m st akenly using a sequence nunber over before its first use has
been acknowl edged. This al one does not guarantee that old duplicate
data is drained fromthe net, so the sequence space has been nade
very large to reduce the probability that a wandering duplicate wll
cause trouble upon arrival. At 2 negabits/sec. it takes 4.5 hours
to use up 2**32 octets of sequence space. Since the maxi mum segment
lifetinme in the net is not likely to exceed a few tens of seconds,
this is deened anple protection for foreseeable nets, even if data
rates escalate to 10’s of negabits/sec. At 100 negabits/sec, the
cycle time is 5.4 minutes which may be a little short, but stil

wi thin reason.

The basic duplicate detection and sequencing algorithmin TCP can be
def eated, however, if a source TCP does not have any nenory of the
sequence nunbers it last used on a given connection. For exanple, if
the TCP were to start all connections with sequence nunber 0, then
upon crashing and restarting, a TCP m ght re-forman earlier
connection (possibly after half-open connection resolution) and emt
packets with sequence nunbers identical to or overlapping with
packets still in the network which were enmitted on an earlier

i ncarnati on of the same connection. |n the absence of know edge
about the sequence nunbers used on a particul ar connection, the TCP
specification recommends that the source delay for MSL seconds
before emtting segnents on the connection, to allow tinme for
segnents fromthe earlier connection incarnation to drain fromthe
system

Even hosts which can renenber the tinme of day and used it to select
initial sequence nunber values are not imune fromthis problem
(i.e., even if time of day is used to select an initial sequence
nunber for each new connection incarnation).

Suppose, for exanple, that a connection is opened starting with
sequence number S. Suppose that this connection is not used nuch
and that eventually the initial sequence nunber function (I1SN(t))
takes on a value equal to the sequence nunber, say S1, of the |ast
segnment sent by this TCP on a particular connection. Now suppose,

at this instant, the host crashes, recovers, and establishes a new

i ncarnation of the connection. The initial sequence nunber chosen is
S1 = ISN(t) -- last used sequence nunmber on old incarnation of
connection! |If the recovery occurs quickly enough, any old

[Page 29]

Sept ember 1981
Transm ssi on Control Protocol
Functi onal Specification

duplicates in the net bearing sequence nunbers in the nei ghborhood
of S1 may arrive and be treated as new packets by the receiver of
the new i ncarnation of the connection

The problemis that the recovering host may not know for how long it
crashed nor does it know whether there are still old duplicates in
the systemfromearlier connection incarnations.

One way to deal with this problemis to deliberately delay emtting
segrments for one MSL after recovery froma crash- this is the "quite
time" specification. Hosts which prefer to avoid waiting are
willing to risk possible confusion of old and new packets at a given
destination may choose not to wait for the "quite tinme".

| npl enentors may provide TCP users with the ability to select on a
connection by connection basis whether to wait after a crash, or may
informally inplement the "quite time" for all connections.

Qovi ously, even where a user selects to "wait," this is not
necessary after the host has been "up" for at |east MSL seconds.

To sumari ze: every segnent emtted occupi es one or nore sequence
nunbers in the sequence space, the nunbers occupied by a segnent are
"busy" or "in use" until MSL seconds have passed, upon crashing a

bl ock of space-time is occupied by the octets of the last emtted
segrment, if a new connection is started too soon and uses any of the
sequence nunbers in the space-tine footprint of the |last segnent of
t he previous connection incarnation, there is a potential sequence
nunber overlap area which could cause confusion at the receiver

3.4. Establishing a connection

The "three-way handshake" is the procedure used to establish a
connection. This procedure normally is initiated by one TCP and
responded to by another TCP. The procedure also works if two TCP
simultaneously initiate the procedure. When sinultaneous attenpt
occurs, each TCP receives a "SYN' segnment which carries no

acknow edgnment after it has sent a "SYN'. O course, the arrival of
an ol d duplicate "SYN' segnent can potentially nmake it appear, to the
reci pient, that a sinultaneous connection initiation is in progress.
Proper use of "reset" segnents can di sanbi guate these cases

Several exanples of connection initiation follow Although these
exanpl es do not show connecti on synchronization using data-carrying
segnents, this is perfectly legitimate, so long as the receiving TCP
doesn’'t deliver the data to the user until it is clear the data is
valid (i.e., the data nust be buffered at the receiver until the
connection reaches the ESTABLI SHED state). The three-way handshake
reduces the possibility of false connections. It is the

[Page 30]

Sept ember 1981
Transm ssi on Control Protocol
Functi onal Specification

i npl ementation of a trade-off between nenory and nessages to provide
i nformati on for this checking.

The sinpl est three-way handshake is shown in figure 7 below. The
figures should be interpreted in the following way. Each line is
nunbered for reference purposes. Right arrows (-->) indicate
departure of a TCP segnent fromTCP Ato TCP B, or arrival of a
segment at B fromA Left arrows (<--), indicate the reverse.
Ellipsis (...) indicates a segnent which is still in the network
(delayed). An "XXX" indicates a segnent which is |lost or rejected.
Comrent s appear in parentheses. TCP states represent the state AFTER
the departure or arrival of the segnent (whose contents are shown in
the center of each line). Segnent contents are shown in abbreviated
form wth sequence nunber, control flags, and ACK field. O her
fields such as wi ndow, addresses, |engths, and text have been |left out
in the interest of clarity.

TCP A TCP B
1. CLOSED LI STEN
2. SYN- SENT --> <SEQ=100><CTL=SYN> --> SYN- RECEI VED

3. ESTABLI SHED <-- <SEQ=300><ACK=101><CTL=SYN, ACK> <-- SYN- RECEI VED
4. ESTABLI SHED --> <SEQ=101><ACK=301><CTL=ACK> --> ESTABLI SHED
5. ESTABLI SHED --> <SEQ=101><ACK=301><CTL=ACK><DATA> --> ESTABLI SHED
Basi ¢ 3-Way Handshake for Connection Synchroni zation
Fi gure 7.

Inline 2 of figure 7, TCP A begins by sending a SYN segnent
indicating that it will use sequence nunmbers starting with sequence
nunber 100. In line 3, TCP B sends a SYN and acknow edges the SYN it
received fromTCP A Note that the acknow edgnent field indicates TCP
B is now expecting to hear sequence 101, acknow edgi ng the SYN which
occupi ed sequence 100.

At line 4, TCP A responds with an enpty segnent containing an ACK for
TCP B's SYN;, and in line 5 TCP A sends sone data. Note that the
sequence nunber of the segnent inline 5is the same as in line 4
because the ACK does not occupy sequence nunber space (if it did, we
woul d wi nd up ACKi ng ACK s!).

[Page 31]

Sept ember 1981
Transm ssi on Control Protocol
Functi onal Specification

Simul taneous initiation is only slightly nore conplex, as is shown in
figure 8. Each TCP cycles from CLOSED to SYN- SENT to SYN RECEI VED to
ESTABLI SHED.

TCP A TCP B
1. CLOSED CLOSED
2. SYN- SENT --> <SEQ=100><CTL=SYN>
3. SYN RECEI VED <-- <SEQ=300><CTL=SYN> <-- SYN- SENT
4, ... <SEQ=100><CTL=SYN> --> SYN- RECEI VED

5. SYN- RECEI VED - -> <SEQ=100><ACK=301><CTL=SYN, ACK> ..
6. ESTABLI SHED <-- <SEQ=300><ACK=101><CTL=SYN, ACK> <-- SYN- RECEI VED
7. ... <SEQ=101><ACK=301><CTL=ACK> --> ESTABLI SHED
Si mul t aneous Connection Synchroni zation
Fi gure 8.

The principle reason for the three-way handshake is to prevent old
duplicate connection initiations from causing confusion. To deal with
this, a special control nessage, reset, has been devised. |f the
receiving TCP is in a non-synchronized state (i.e., SYN SENT

SYN- RECEI VED), it returns to LISTEN on receiving an acceptable reset.
If the TCP is in one of the synchronized states (ESTABLI SHED
FINWAIT-1, FIN-WAIT-2, CLOSE-WAIT, CLOSING LAST-ACK, TIME-WAIT), it
aborts the connection and informs its user. W discuss this latter
case under "hal f-open" connections bel ow.

[Page 32]

Sept ember 1981
Transm ssi on Control Protocol
Functi onal Specification

TCP A TCP B
1. CLOSED LI STEN
2. SYN-SENT --> <SEQ=100><CTL=SYN>
3. (duplicate) ... <SEQ=90><CTL=SYN> --> SYN RECEI VED

4. SYN- SENT <-- <SEQ=300><ACK=91><CTL=SYN, ACK> <-- SYN- RECEl VED

5. SYN- SENT --> <SEQ@=91><CTL=RST> --> LI STEN

6. ... <SEQ=100><CTL=SYN> --> SYN- RECEI VED
7. SYN- SENT <-- <SEQ=400><ACK=101><CTL=SYN, ACK> <-- SYN- RECEI VED
8. ESTABLI SHED - -> <SEQ=101><ACK=401><CTL=ACK> --> ESTABLI SHED
Recovery from A d Duplicate SYN
Fi gure 9.

As a sinple exanple of recovery fromold duplicates, consider

figure 9. At line 3, an old duplicate SYN arrives at TCP B. TCP B
cannot tell that this is an old duplicate, so it responds normally
(line 4). TCP A detects that the ACK field is incorrect and returns a
RST (reset) with its SEQ field selected to nmake the segnent

believable. TCP B, on receiving the RST, returns to the LI STEN state.
When the original SYN (pun intended) finally arrives at line 6, the
synchroni zati on proceeds normally. |If the SYNat line 6 had arrived
before the RST, a nore conpl ex exchange ni ght have occurred with RST s
sent in both directions.

Hal f - Open Connections and O her Anomalies

An established connection is said to be "half-open" if one of the
TCPs has closed or aborted the connection at its end wi thout the
know edge of the other, or if the two ends of the connection have
becone desynchroni zed owing to a crash that resulted in | oss of
menory. Such connections will automatically becone reset if an
attenpt is made to send data in either direction. However, half-open
connections are expected to be unusual, and the recovery procedure is
nmldly invol ved.

If at site A the connection no |onger exists, then an attenpt by the

[Page 33]

Sept ember 1981
Transm ssi on Control Protocol
Functi onal Specification

user at site Bto send any data on it will result in the site B TCP
receiving a reset control nessage. Such a nessage indicates to the
site B TCP that sonething is wong, and it is expected to abort the
connecti on.

Assume that two user processes A and B are conmunicating with one

anot her when a crash occurs causing | oss of menory to A's TCP
Dependi ng on the operating system supporting A's TCP, it is likely
that sone error recovery nechani smexists. Wen the TCP is up again,
Ais likely to start again fromthe beginning or froma recovery
point. As aresult, Awll probably try to OPEN the connection again
or try to SEND on the connection it believes open. |In the latter

case, it receives the error nmessage "connection not open” fromthe
local (A's) TCP. In an attenpt to establish the connection, A's TCP
will send a segnent containing SYN. This scenario |leads to the
exanpl e shown in figure 10. After TCP A crashes, the user attenpts to
re-open the connection. TCP B, in the neantine, thinks the connection

i s open.

TCP A TCP B
1. (CRASH (send 300, recei ve 100)
2. CLCSED ESTABLI SHED
3. SYN-SENT --> <SEQ=400><CTL=SYN> --> (?7?)
4. (1) <-- <SEQ=300><ACK=100><CTL=ACK> <-- ESTABLI SHED
5. SYNSENT --> <SEQ=100><CTL=RST> --> (Abort!!)
6. SYN SENT CLCSED
7. SYN-SENT --> <SEQ=400><CTL=SYN> -->

Hal f - Open Connecti on Di scovery
Fi gure 10.

When the SYN arrives at line 3, TCP B, being in a synchronized state,
and the incom ng segnent outside the wi ndow, responds with an

acknow edgnent indicati ng what sequence it next expects to hear (ACK
100). TCP A sees that this segnent does not acknow edge anything it
sent and, being unsynchroni zed, sends a reset (RST) because it has
detected a hal f-open connection. TCP B aborts at line 5. TCP A wll

[Page 34]

Sept ember 1981
Transm ssi on Control Protocol
Functi onal Specification

continue to try to establish the connection; the problemis now
reduced to the basic 3-way handshake of figure 7.

An interesting alternative case occurs when TCP A crashes and TCP B
tries to send data on what it thinks is a synchronized connection
This is illustrated in figure 11. 1In this case, the data arriving at
TCP A fromTCP B (line 2) is unacceptable because no such connection
exists, so TCP A sends a RST. The RST is acceptable so TCP B
processes it and aborts the connection

TCP A TCP B
1. (CRASH) (send 300, recei ve 100)
2. (??) <-- <SEQ=300><ACK=100><DATA=10><CTL=ACK> <-- ESTABLI SHED
3. --> <SEQ=100><CTL=RST> --> (ABORT!)
Active Side Causes Hal f-Open Connection Discovery
Fi gure 11.
In figure 12, we find the two TCPs A and B with passive connections
waiting for SYN. An old duplicate arriving at TCP B (line 2) stirs B
into action. A SYNACK is returned (line 3) and causes TCP A to

generate a RST (the ACKin line 3 is not acceptable). TCP B accepts
the reset and returns to its passive LISTEN state.

TCP A TCP B
1. LISTEN LI STEN
2. ... <SEQ=Z><CTL=SYN> --> SYN RECEI VED

3. (??) <-- <SEQ@X><ACK=Z+1><CTL=SYN, ACK> <-- SYN RECEI VED
4. --> <SEQ=Z+1><CTL=RST> --> (return to LISTEN)
5. LISTEN LI STEN

O d Duplicate SYN Initiates a Reset on two Passive Sockets

Fi gure 12.

[Page 35]

Sept ember 1981
Transm ssi on Control Protocol
Functi onal Specification

A variety of other cases are possible, all of which are accounted for
by the following rules for RST generation and processing.

Reset Generation

As a general rule, reset (RST) nmust be sent whenever a segnent arrives
whi ch apparently is not intended for the current connection. A reset
nmust not be sent if it is not clear that this is the case.

There are three groups of states:

1. If the connection does not exist (CLOSED) then a reset is sent
in response to any inconm ng segnent except another reset. In
particul ar, SYNs addressed to a non-exi stent connection are rejected
by this neans.

If the incoming segment has an ACK field, the reset takes its
sequence number fromthe ACK field of the segnent, otherw se the
reset has sequence number zero and the ACK field is set to the sum
of the sequence nunber and segnent |ength of the incom ng segnent.
The connection remains in the CLOSED state

2. If the connection is in any non-synchroni zed state (LI STEN

SYN- SENT, SYN- RECEI VED), and the incom ng segnment acknow edges
sonet hi ng not yet sent (the segment carries an unacceptabl e ACK), or
if an inconming segnent has a security level or conpartnent which
does not exactly nmatch the |evel and conpartnment requested for the
connection, a reset is sent.

I f our SYN has not been acknow edged and the precedence |evel of the
i ncom ng segnent is higher than the precedence | evel requested then
either raise the local precedence level (if allowed by the user and
the systen) or send a reset; or if the precedence |evel of the

i nconm ng segnent is lower than the precedence |evel requested then
continue as if the precedence nmatched exactly (if the renote TCP

cannot raise the precedence level to match ours this will be
detected in the next segnent it sends, and the connection will be
termnated then). |If our SYN has been acknow edged (perhaps in this

i ncom ng segnent) the precedence | evel of the inconing segnent nust
mat ch the | ocal precedence level exactly, if it does not a reset
nmust be sent.

If the incom ng segnent has an ACK field, the reset takes its
sequence nunber fromthe ACK field of the segnent, otherw se the
reset has sequence nunber zero and the ACK field is set to the sum
of the sequence nunber and segnent |ength of the incom ng segnent.
The connection remains in the sane state.

[Page 36]

Sept ember 1981
Transm ssi on Control Protocol
Functi onal Specification

3. If the connection is in a synchronized state (ESTABLI SHED
FIN-WAIT-1, FIN-WAIT-2, CLOSE-WAIT, CLOSING LAST-ACK, TIM=-WAIT),
any unaccept abl e segnent (out of w ndow sequence nunber or
unaccepti bl e acknow edgnent nunber) nust elicit only an enpty
acknow edgnment segnent containing the current send-sequence nunber
and an acknow edgnent indicating the next sequence number expected
to be received, and the connection remains in the sane state.

If an incom ng segnent has a security level, or conpartnent, or
precedence whi ch does not exactly match the I evel, and conpartnent,
and precedence requested for the connection,a reset is sent and
connection goes to the CLOSED state. The reset takes its sequence
nunber fromthe ACK field of the incom ng segment.

Reset Processing

In all states except SYN-SENT, all reset (RST) segnents are validated
by checking their SEQfields. Areset is valid if its sequence nunber
isin the window In the SYN-SENT state (a RST received in response
to an initial SYN), the RST is acceptable if the ACK field

acknow edges the SYN

The receiver of a RST first validates it, then changes state. |If the
receiver was in the LISTEN state, it ignores it. |If the receiver was
i n SYN-RECEI VED state and had previously been in the LI STEN state,
then the receiver returns to the LI STEN state, otherw se the receiver
aborts the connection and goes to the CLOSED state. |f the receiver
was in any other state, it aborts the connection and advi ses the user
and goes to the CLOSED state.

3.5. dosing a Connection

CLCSE is an operation neaning "l have no nore data to send." The
notion of closing a full-duplex connection is subject to anbi guous
interpretation, of course, since it may not be obvious how to treat
the receiving side of the connection. W have chosen to treat CLOSE
in a sinplex fashion. The user who CLOSEs may continue to RECEI VE
until he is told that the other side has CLOSED al so. Thus, a program
could initiate several SENDs followed by a CLOSE, and then continue to
RECEI VE until|l signaled that a RECEl VE fail ed because the other side
has CLOSED. W assune that the TCP will signal a user, even if no
RECEI VEs are outstanding, that the other side has closed, so the user
can termnate his side gracefully. A TCP will reliably deliver al

buf fers SENT before the connection was CLOSED so a user who expects no
data in return need only wait to hear the connection was CLOSED
successfully to know that all his data was received at the destination
TCP. Users nust keep readi ng connections they close for sending unti
the TCP says no nore data.

[Page 37]

Sept ember 1981
Transm ssi on Control Protocol
Functi onal Specification

There are essentially three cases:
1) The user initiates by telling the TCP to CLOSE the connection
2) The renote TCP initiates by sending a FIN control signa
3) Both users CLOSE sinultaneously

Case 1. Local user initiates the close

In this case, a FIN segnent can be constructed and placed on the

out goi ng segnent queue. No further SENDs fromthe user will be
accepted by the TCP, and it enters the FINNWAIT-1 state. RECEI VEs
are allowed in this state. Al segnents preceding and including FIN
will be retransmitted until acknow edged. Wen the other TCP has
bot h acknowl edged the FIN and sent a FIN of its own, the first TCP
can ACK this FIN Note that a TCP receiving a FIN will ACK but not
send its owmn FIN until its user has CLOSED the connection al so.

Case 2: TCP receives a FIN fromthe network

If an unsolicited FIN arrives fromthe network, the receiving TCP
can ACK it and tell the user that the connection is closing. The
user will respond with a CLOSE, upon which the TCP can send a FIN to
the other TCP after sending any remaining data. The TCP then waits
until its owm FIN is acknow edged whereupon it deletes the
connection. |If an ACK is not forthcoming, after the user tineout
the connection is aborted and the user is told.

Case 3: both users close sinultaneously

A sinmul taneous CLCSE by users at both ends of a connection causes
FIN segments to be exchanged. When all segnents preceding the FINs
have been processed and acknow edged, each TCP can ACK the FIN it
has received. Both will, upon receiving these ACKs, delete the
connecti on.

[Page 38]

Sept ember 1981

TCP A
ESTABLI| SHED

(d ose)
FIN-WAIT-1

FI' N-WAI T- 2

TIME-VWAI T
TIME-VWAI T

(2 MBL)
CLOSED

TCP A
ESTABLI SHED

(d ose)
FIN-WAIT-1

CLOSI NG

TI ME-WAI T
(2 MBL)
CLOSED

>

<--

>
<- -

-->
<- -

Transni ssi on Contr ol

Functi onal

<SEQ=100><ACK=300><CTL=FI N, ACK>

<SEQ=300><ACK=101><CTL=ACK>

<SEQ=300><ACK=101><CTL=FI N, ACK>

<SEQ=101><ACK=301><CTL=ACK>

Nor mal Cl ose Sequence

Fi gure 13.

<SEQ=100><ACK=300><CTL=FI N, ACK>
<SEQ=300><ACK=100><CTL=FI N, ACK>
<SEQ=100><ACK=300><CTL=FI N, ACK>

<SEQ=101><ACK=301><CTL=ACK>

<SEQ=301><ACK=101><CTL=ACK>
<SEQ=101><ACK=301><CTL=ACK>

Si mul t aneous Cl ose Sequence

Fi gure 14.

Pr ot ocol
Speci fication

TCP B

ESTABLI| SHED

CLOSE-WAI T
CLOSE-WAI' T

(d ose)
LAST- ACK

CLOSED

TCP B
ESTABLI SHED

(d ose)
FIN-WAIT-1

CLOSI NG

TI ME-WAI T
(2 MBL)
CLOSED

[Page 39]

Sept ember 1981

Transni ssi on Control Protocol
Functi onal Specification

3.

6. Precedence and Security

The intent is that connection be allowed only between ports operating
with exactly the sane security and conpartnent values and at the
hi gher of the precedence |evel requested by the two ports.

The precedence and security paraneters used in TCP are exactly those
defined in the Internet Protocol (IP) [2]. Throughout this TCP
specification the term"security/conpartnent” is intended to indicate
the security paranmeters used in I P including security, conpartnent,
user group, and handling restriction.

A connection attenpt with m smatched security/conpartnent values or a
| ower precedence val ue nust be rejected by sending a reset. Rejecting
a connection due to too | ow a precedence only occurs after an

acknow edgnment of the SYN has been received.

Note that TCP nodul es which operate only at the default val ue of
precedence will still have to check the precedence of incom ng
segnments and possibly raise the precedence | evel they use on the
connecti on.

The security paramaters nay be used even in a non-secure environment
(the values would indicate unclassified data), thus hosts in

non- secure environnents nmust be prepared to receive the security
paraneters, though they need not send them

.7. Data Conmuni cation

Once the connection is established data is communi cated by the
exchange of segnments. Because segnents may be | ost due to errors
(checksumtest failure), or network congestion, TCP uses

retransm ssion (after a tinmeout) to ensure delivery of every segnent.
Duplicate segnents may arrive due to network or TCP retransm ssion
As di scussed in the section on sequence nunbers the TCP perfornmns
certain tests on the sequence and acknow edgnment nunbers in the
segnents to verify their acceptability.

The sender of data keeps track of the next sequence nunber to use in
the variabl e SND. NXT. The receiver of data keeps track of the next
sequence nunmber to expect in the variable RCV.NXT. The sender of data
keeps track of the ol dest unacknow edged sequence nunber in the
variable SND.UNA. If the data flowis nmonentarily idle and all data
sent has been acknow edged then the three variables will be equal.

When the sender creates a segnent and transmits it the sender advances
SND. NXT. When the receiver accepts a segnent it advances RCV. NXT and
sends an acknow edgnent. Wen the data sender receives an

[Page 40]

Sept ember 1981
Transm ssi on Control Protocol
Functi onal Specification

acknow edgment it advances SND. UNA. The extent to which the val ues of
these variables differ is a neasure of the delay in the conmunication
The amount by which the variables are advanced is the length of the
data in the segnent. Note that once in the ESTABLI SHED state al
segments nust carry current acknow edgnent infornation

The CLOSE user call inplies a push function, as does the FIN contro
flag in an incom ng segnent.

Retransm ssi on Ti meout

Because of the variability of the networks that conpose an

i nternetwork system and the wi de range of uses of TCP connections the
retransm ssion tineout nust be dynamically determ ned. One procedure
for determining a retransm ssion tine out is given here as an
illustration.

An Exanpl e Retransmi ssion Timeout Procedure

Measure the el apsed tine between sending a data octet with a
particul ar sequence number and receiving an acknow edgnent that
covers that sequence nunmber (segnents sent do not have to match
segrments received). This neasured el apsed tinme is the Round Trip
Time (RTT). Next conpute a Snoothed Round Trip Tine (SRTT) as:

SRTT = (ALPHA * SRTT) + ((1-ALPHA) * RTT)
and based on this, conmpute the retransmi ssion timeout (RTO as:
RTO = mi n[UBCUND, max[LBOUND, (BETA* SRTT)]]

where UBOUND i s an upper bound on the tineout (e.g., 1 mnute),
LBOUND is a | ower bound on the timeout (e.g., 1 second), ALPHA is
a smoothing factor (e.g., .8 to .9), and BETA is a delay variance
factor (e.g., 1.3 to 2.0).

The Conmuni cation of Urgent |Information

The objective of the TCP urgent nechanismis to allow the sendi ng user
to stinulate the receiving user to accept some urgent data and to
pernmit the receiving TCP to indicate to the receiving user when all
the currently known urgent data has been received by the user.

This mechanismpermits a point in the data streamto be designated as
the end of urgent information. Wenever this point is in advance of

t he recei ve sequence nunber (RCV.NXT) at the receiving TCP, that TCP
must tell the user to go into "urgent node"; when the receive sequence
nunber catches up to the urgent pointer, the TCP nust tell user to go

[Page 41]

Sept ember 1981
Transm ssi on Control Protocol
Functi onal Specification

into "normal node". If the urgent pointer is updated while the user
is in "urgent node", the update will be invisible to the user.

The met hod enploys a urgent field which is carried in all segnents
transmitted. The URG control flag indicates that the urgent field is
meani ngf ul and nust be added to the segnent sequence nunber to yield
the urgent pointer. The absence of this flag indicates that there is
no urgent data outstanding.

To send an urgent indication the user nmust also send at | east one data
octet. |If the sending user also indicates a push, tinely delivery of
the urgent information to the destination process is enhanced.

Managi ng t he W ndow

The wi ndow sent in each segnent indicates the range of sequence
nunmbers the sender of the window (the data receiver) is currently
prepared to accept. There is an assunption that this is related to
the currently avail able data buffer space available for this
connecti on.

Indicating a | arge wi ndow encourages transmi ssions. |f nore data
arrives than can be accepted, it will be discarded. This will result
i n excessive retransm ssions, adding unnecessarily to the |load on the
network and the TCPs. Indicating a small w ndow may restrict the
transm ssion of data to the point of introducing a round trip delay
bet ween each new segnent transmtted.

The mechani sms provided allow a TCP to advertise a large w ndow and to
subsequently advertise a nuch smaller w ndow wi thout having accepted
that nmuch data. This, so called "shrinking the window," is strongly
di scouraged. The robustness principle dictates that TCPs will not
shrink the wi ndow thensel ves, but will be prepared for such behavi or
on the part of other TCPs.

The sending TCP nust be prepared to accept fromthe user and send at

| east one octet of new data even if the send window is zero. The
sending TCP nust regularly retransmt to the receiving TCP even when
the window is zero. Two minutes is recommended for the retransni ssion
interval when the window is zero. This retransm ssion is essential to
guar antee that when either TCP has a zero wi ndow the re-opening of the
wi ndow will be reliably reported to the other.

When the receiving TCP has a zero wi ndow and a segnent arrives it nust
still send an acknow edgnent showi ng its next expected sequence nunber
and current w ndow (zero).

The sendi ng TCP packages the data to be transmitted into segnments

[Page 42]

Sept ember 1981
Transm ssi on Control Protocol
Functi onal Specification

which fit the current wi ndow, and nay repackage segnents on the
retransm ssi on queue. Such repackaging is not required, but may be
hel pful .

In a connection with a one-way data flow, the wi ndow information will
be carried in acknow edgnent segnents that all have the sanme sequence
nunber so there will be no way to reorder themif they arrive out of
order. This is not a serious problem but it will allow the w ndow
informati on to be on occasion tenporarily based on old reports from
the data receiver. A refinement to avoid this problemis to act on
the wi ndow i nformation from segnents that carry the highest

acknow edgnment nunber (that is segnments with acknow edgrment nunber
equal or greater than the highest previously received).

The wi ndow nanagenent procedure has significant influence on the
communi cati on performance. The followi ng corments are suggestions to
i mpl emrent ers.

W ndow Managenent Suggesti ons

Al'locating a very snall w ndow causes data to be transnmitted in
many small segments when better performance is achi eved using
fewer |arge segnments.

One suggestion for avoiding small windows is for the receiver to
defer updating a window until the additional allocation is at

| east X percent of the naxinmum allocation possible for the
connection (where X night be 20 to 40).

Anot her suggestion is for the sender to avoid sending small
segnments by waiting until the window is |arge enough before
sending data. |If the the user signals a push function then the
data nust be sent even if it is a snmall segnent.

Note that the acknow edgnents should not be del ayed or unnecessary
retransmssions will result. One strategy would be to send an
acknow edgnment when a small segment arrives (with out updating the
wi ndow i nformation), and then to send anot her acknow edgnent wth
new wi ndow i nformati on when the w ndow is | arger.

The segnment sent to probe a zero wi ndow nay al so begin a break up
of transmitted data into smaller and smaller segnents. |If a
segnment containing a single data octet sent to probe a zero w ndow
is accepted, it consunes one octet of the w ndow now avail abl e.

If the sending TCP sinply sends as nuch as it can whenever the

wi ndow i s non zero, the transnmitted data will be broken into
alternating big and snmall segnments. As tinme goes on, occasional
pauses in the receiver naking wi ndow allocation available wll

[Page 43]

Sept ember 1981
Transm ssi on Control Protocol
Functi onal Specification

result in breaking the big segnents into a small and not quite so
big pair. And after a while the data transnission will be in
nostly small segnents.

The suggestion here is that the TCP inplenentati ons need to
actively attenpt to conbine small w ndow allocations into |arger
wi ndows, since the mechani snms for nmanagi ng the wi ndow tend to | ead
to many snmall wi ndows in the sinplest mnded i npl enentations.

3.8. Interfaces

There are of course two interfaces of concern: the user/ TCP interface
and the TCP/lower-level interface. W have a fairly el aborate nodel

of the user/TCP interface, but the interface to the |ower |eve
protocol nmodule is left unspecified here, since it will be specified
in detail by the specification of the lowel |evel protocol. For the
case that the lower level is IP we note sone of the paraneter val ues
that TCPs mi ght use.

User/ TCP Interface

The followi ng functional description of user commands to the TCP is,
at best, fictional, since every operating systemwill have different
facilities. Consequently, we must warn readers that different TCP

i npl ement ati ons may have different user interfaces. However, al
TCPs must provide a certain mninumset of services to guarantee
that all TCP inplenentations can support the sane protoco

hi erarchy. This section specifies the functional interfaces
required of all TCP inplenmentations.

TCP User Conmands

The follow ng sections functionally characterize a USER/ TCP
interface. The notation used is sinmilar to nbpst procedure or
function calls in high level |anguages, but this usage is not
meant to rule out trap type service calls (e.g., SVCs, UUGCs,
EMIS) .

The user commands descri bed bel ow specify the basic functions the
TCP must performto support interprocess conmunication

I ndi vi dual inplenentations nmust define their own exact format, and
may provi de conbi nations or subsets of the basic functions in
single calls. In particular, sone inplenentations may wi sh to
automatically OPEN a connection on the first SEND or RECEI VE

i ssued by the user for a given connection

[Page 44]

Sept ember 1981
Transm ssi on Control Protocol
Functi onal Specification

In providing interprocess communication facilities, the TCP nust
not only accept conmands, but nust also return infornmation to the
processes it serves. The latter consists of:

(a) general information about a connection (e.g., interrupts,
renote cl ose, binding of unspecified foreign socket).

(b) replies to specific user conmands indicating success or
various types of failure.

Open

Format: OPEN (local port, foreign socket, active/passive
[, timeout] [, precedence] [, security/conpartnent] [, options])
-> | ocal connection nane

We assune that the local TCP is aware of the identity of the
processes it serves and will check the authority of the process
to use the connection specified. Depending upon the

i npl ementation of the TCP, the local network and TCP identifiers
for the source address will either be supplied by the TCP or the
| ower |evel protocol (e.g., IP). These considerations are the
result of concern about security, to the extent that no TCP be
abl e to masquerade as another one, and so on. Sinilarly, no
process can masquerade as another w thout the collusion of the
TCP.

If the active/passive flag is set to passive, then this is a
call to LISTEN for an inconing connection. A passive open nay
have either a fully specified foreign socket to wait for a
particul ar connection or an unspecified foreign socket to wait
for any call. A fully specified passive call can be nade active
by the subsequent execution of a SEND.

A transmnission control block (TCB) is created and partially
filled in with data fromthe OPEN command paraneters.

On an active OPEN conmand, the TCP will begin the procedure to
synchroni ze (i.e., establish) the connection at once.

The tineout, if present, pernmits the caller to set up a tineout
for all data submitted to TCP. |If data is not successfully
delivered to the destination within the timeout period, the TCP
will abort the connection. The present global default is five
ni nut es.

The TCP or sone conponent of the operating systemwll verify
the users authority to open a connection with the specified

[Page 45]

Sept ember 1981
Transm ssi on Control Protocol
Functi onal Specification

precedence or security/conpartnent. The absence of precedence
or security/conpartnent specification in the OPEN call indicates
the default val ues nust be used.

TCP will accept inconming requests as matching only if the
security/conpartnment information is exactly the same and only if
the precedence is equal to or higher than the precedence
requested in the OPEN call.

The precedence for the connection is the higher of the val ues
requested in the OPEN call and received fromthe inconing
request, and fixed at that value for the life of the
connection. | nplementers may want to give the user control of
this precedence negotiation. For exanple, the user mght be
all owed to specify that the precedence nust be exactly natched,
or that any attenpt to raise the precedence be confirned by the
user.

A local connection nane will be returned to the user by the TCP
The | ocal connection nanme can then be used as a short hand term
for the connection defined by the <local socket, foreign socket>
pair.

Send

Format: SEND (local connection nane, buffer address, byte
count, PUSH flag, URGENT flag [,tineout])

This call causes the data contained in the indicated user buffer
to be sent on the indicated connection. |f the connection has
not been opened, the SEND is considered an error. Sone

i mpl enentations nmay allow users to SEND first; in which case, an
aut onati ¢ OPEN woul d be done. |If the calling process is not

aut horized to use this connection, an error is returned.

If the PUSH flag is set, the data nust be transmtted pronptly
to the receiver, and the PUSH bit will be set in the |ast TCP
segnment created fromthe buffer. |If the PUSH flag is not set,
the data nmay be conbined with data from subsequent SENDs for
transm ssion efficiency.

If the URGENT flag is set, segnents sent to the destination TCP
wi |l have the urgent pointer set. The receiving TCP will signa
the urgent condition to the receiving process if the urgent

poi nter indicates that data preceding the urgent pointer has not
been consumed by the receiving process. The purpose of urgent
is to stimulate the receiver to process the urgent data and to
indicate to the receiver when all the currently known urgent

[Page 46]

Sept ember 1981
Transm ssi on Control Protocol
Functi onal Specification

data has been received. The nunber of tinmes the sending user’s
TCP signals urgent will not necessarily be equal to the nunber
of tinmes the receiving user will be notified of the presence of
urgent data.

If no foreign socket was specified in the OPEN, but the
connection is established (e.g., because a LI STEN ng connection
has becone specific due to a foreign segnent arriving for the

| ocal socket), then the designated buffer is sent to the inplied
foreign socket. Users who nmake use of OPEN with an unspecified
foreign socket can nmake use of SEND without ever explicitly
knowi ng the foreign socket address.

However, if a SEND is attenpted before the foreign socket
becones specified, an error will be returned. Users can use the
STATUS call to deternmine the status of the connection. In sone
i mpl enentations the TCP may notify the user when an unspecified
socket is bound.

If atimeout is specified, the current user tineout for this
connection is changed to the new one.

In the sinplest inplenmentation, SEND would not return control to
the sending process until either the transm ssion was conpl ete
or the tineout had been exceeded. However, this sinple nethod
is both subject to deadl ocks (for exanple, both sides of the
connection mght try to do SENDs before doi ng any RECEI VEs) and
of fers poor performance, so it is not recommended. A nore
sophi sticated inplenmentation would return imrediately to all ow
the process to run concurrently with network I/Q, and,
furthernore, to allow nmultiple SENDs to be in progress.
Multiple SENDs are served in first cone, first served order, so
the TCP will queue those it cannot service i mediately.

We have inplicitly assunmed an asynchronous user interface in
which a SEND | ater elicits sone kind of SIGNAL or
pseudo-interrupt fromthe serving TCP. An alternative is to
return a response imediately. For instance, SENDs night return
i medi ate | ocal acknow edgnent, even if the segnent sent had not
been acknow edged by the distant TCP. W could optinistically

assume eventual success. |If we are wong, the connection wll
cl ose anyway due to the tinmeout. |In inplenmentations of this
ki nd (synchronous), there will still be some asynchronous

signals, but these will deal with the connection itself, and not
with specific segnents or buffers

In order for the process to distinguish anong error or success
i ndications for different SENDs, it nmight be appropriate for the

[Page 47]

Sept ember 1981
Transm ssi on Control Protocol
Functi onal Specification

buffer address to be returned along with the coded response to
the SEND request. TCP-to-user signals are discussed bel ow,

i ndi cating the information which should be returned to the
calling process.

Recei ve

Format: RECElIVE (local connection nanme, buffer address, byte
count) -> byte count, urgent flag, push flag

This command al l ocates a receiving buffer associated with the
speci fied connection. |f no OPEN precedes this command or the
calling process is not authorized to use this connection, an
error is returned.

In the sinplest inplenentation, control would not return to the
calling programuntil either the buffer was filled, or sone
error occurred, but this schenme is highly subject to deadl ocks.
A nore sophisticated i nplenentation would pernit severa

RECEI VEs to be outstanding at once. These would be filled as
segnments arrive. This strategy permts increased throughput at
the cost of a nore el aborate schenme (possibly asynchronous) to
notify the calling programthat a PUSH has been seen or a buffer

filled.

I f enough data arrive to fill the buffer before a PUSH i s seen
the PUSH flag will not be set in the response to the RECElI VE
The buffer will be filled with as nuch data as it can hold. |If

a PUSH is seen before the buffer is filled the buffer will be
returned partially filled and PUSH i ndi cat ed.

If there is urgent data the user will have been inforned as soon
as it arrived via a TCP-to-user signal. The receiving user
should thus be in "urgent node". |If the URGENT flag is on
additional urgent data remains. |If the URGENT flag is off, this
call to RECEIVE has returned all the urgent data, and the user
may now | eave "urgent node". Note that data follow ng the
urgent pointer (non-urgent data) cannot be delivered to the user
in the same buffer with preceedi ng urgent data unless the
boundary is clearly marked for the user

To di stingui sh anong several outstanding RECEI VEs and to take
care of the case that a buffer is not conpletely filled, the
return code is acconpanied by both a buffer pointer and a byte
count indicating the actual length of the data received.

Alternative inplenentations of RECElIVE ni ght have the TCP

[Page 48]

Sept ember 1981
Transm ssi on Control Protocol
Functi onal Specification

al l ocate buffer storage, or the TCP m ght share a ring buffer
with the user.

Cl ose
Format: CLOSE (local connection nane)

This command causes the connection specified to be closed. |If
the connection is not open or the calling process is not

aut horized to use this connection, an error is returned.

O osing connections is intended to be a graceful operation in
the sense that outstanding SENDs will be transmitted (and
retransmtted), as flow control permts, until all have been
serviced. Thus, it should be acceptable to nmake several SEND
calls, followed by a CLOSE, and expect all the data to be sent
to the destination. It should also be clear that users should
continue to RECElI VE on CLOSI NG connections, since the other side
may be trying to transmt the last of its data. Thus, CLOSE

means "I have no nore to send" but does not nmean "I wll not
receive any nore." It nmay happen (if the user level protocol is
not well thought out) that the closing side is unable to get rid
of all its data before tining out. 1In this event, CLOSE turns

into ABORT, and the closing TCP gives up
The user may CLOSE the connection at any time on his own
initiative, or in response to various pronpts fromthe TCP
(e.g., renote close executed, transm ssion tineout exceeded,
destination inaccessible).
Because cl osing a connection requires communication with the
foreign TCP, connections may remain in the closing state for a
short tine. Attenpts to reopen the connection before the TCP
replies to the CLOSE conmand will result in error responses
Close also inplies push function

St at us
Format: STATUS (Il ocal connection nane) -> status data
This is an inplementation dependent user conmmand and coul d be
excl uded wi thout adverse effect. Information returned would
typically come fromthe TCB associated with the connection

This command returns a data bl ock containing the foll ow ng
i nformati on:

| ocal socket,

[Page 49]

Sept ember 1981
Transm ssi on Control Protocol
Functi onal Specification

forei gn socket,

| ocal connection nane,

recei ve w ndow,

send wi ndow,

connection state,

nunber of buffers awaiting acknow edgnent,
nunber of buffers pending receipt,
urgent state,

pr ecedence,

security/ conpartnent,

and transm ssion timeout.

Dependi ng on the state of the connection, or on the

i npl enentation itself, sone of this information may not be
avai l abl e or neaningful. |If the calling process is not

aut hori zed to use this connection, an error is returned. This
prevents unauthorized processes fromgaining information about a
connecti on.

Abor t
Format: ABORT (local connection nane)

This command causes all pending SENDs and RECEI VES to be
aborted, the TCB to be renpbved, and a special RESET nessage to
be sent to the TCP on the other side of the connection
Dependi ng on the inplenentation, users nmay receive abort

i ndi cations for each outstanding SEND or RECEIVE, or may sinply
recei ve an ABORT-acknow edgnent.

TCP-t o- User Messages

It is assuned that the operating system environnent provides a
means for the TCP to asynchronously signal the user program \Wen
the TCP does signal a user program certain information is passed
to the user. Oten in the specification the information will be
an error nessage. In other cases there will be information
relating to the conpletion of processing a SEND or RECEI VE or

ot her user call

The following information is provided:

Local Connection Name Al ways
Response String Al ways

Buf f er Address Send & Receive
Byte count (counts bytes received) Recei ve

Push fl ag Recei ve

Urgent flag Recei ve

[Page 50]

Sept ember 1981

Transni ssi on Control Protocol
Functi onal Specification

TCP/ Lower - Level Interface

The TCP calls on a |ower |evel protocol nobdule to actually send and
receive informati on over a network. One case is that of the ARPA

i nternetwork system where the lower level nodule is the Internet
Protocol (IP) [2].

If the lower level protocol is IP it provides argunents for a type
of service and for a tinme to live. TCP uses the follow ng settings
for these paraneters

Type of Service = Precedence: routine, Delay: normal, Throughput:
normal, Reliability: normal; or 00000000.

Tinme to Live = one mnute, or 00111100.

Note that the assuned maxi num segnent lifetine is two minutes.
Here we explicitly ask that a segnment be destroyed if it cannot
be delivered by the internet systemw thin one m nute.

If the lower level is IP (or other protocol that provides this
feature) and source routing is used, the interface nust allow the
route information to be comunicated. This is especially inportant
so that the source and destination addresses used in the TCP
checksum be the originating source and ultinmate destination. It is
al so inportant to preserve the return route to answer connection
requests.

Any | ower level protocol will have to provide the source address,
destination address, and protocol fields, and sone way to determne
the "TCP I ength", both to provide the functional equivlent service
of P and to be used in the TCP checksum

[Page 51]

Sept ember 1981

Transni ssi on Control Protocol
Functi onal Specification

3.

9. Event Processing

The processing depicted in this section is an exanple of one possible
i mpl ementation. Oher inplementations may have slightly different
processi ng sequences, but they should differ fromthose in this
section only in detail, not in substance.

The activity of the TCP can be characterized as responding to events.
The events that occur can be cast into three categories: user calls,
arriving segments, and timeouts. This section describes the
processing the TCP does in response to each of the events. |In many
cases the processing required depends on the state of the connection

Events that occur:
User Calls

OPEN
SEND
RECEI VE
CLOSE
ABORT
STATUS

Arriving Segments
SEGMENT ARRI VES
Ti meout s

USER TI MEQUT
RETRANSM SSI ON TI MEQUT
TI VE-WAI T Tl MEQUT

The nodel of the TCP/user interface is that user comrands receive an
i medi ate return and possibly a del ayed response via an event or
pseudo interrupt. |In the follow ng descriptions, the term"signal"
means cause a del ayed response.

Error responses are given as character strings. For exanple, user
commands referencing connections that do not exist receive "error
connecti on not open".

Pl ease note in the following that all arithnmetic on sequence nunbers,
acknow edgment nunbers, wi ndows, et cetera, is nodulo 2**32 the size
of the sequence nunber space. Also note that "=<" neans |ess than or
equal to (modul o 2**32).

[Page 52]

Sept ember 1981
Transm ssi on Control Protocol
Functi onal Specification

A natural way to think about processing incomng segnents is to

i magi ne that they are first tested for proper sequence nunber (i.e.
that their contents lie in the range of the expected "receive w ndow'
in the sequence nunber space) and then that they are generally queued
and processed i n sequence nunber order

When a segnent overl aps other already received segnents we reconstruct
the segnent to contain just the new data, and adjust the header fields
to be consistent.

Note that if no state change is nmentioned the TCP stays in the sane
state.

[Page 53]

Sept ember 1981
Transni ssi on Control Protocol

Functi onal Specification
OPEN Cal |

OPEN Cal |
CLOSED STATE (i.e., TCB does not exist)

Create a new transm ssion control block (TCB) to hold connection
state information. Fill in local socket identifier, foreign
socket, precedence, security/conpartnent, and user tineout
information. Note that sonme parts of the foreign socket nay be
unspecified in a passive OPEN and are to be filled in by the
paraneters of the incomng SYN segnent. Verify the security and
precedence requested are allowed for this user, if not return
"error: precedence not allowed" or "error: security/conpartnent

not allowed." |If passive enter the LISTEN state and return. |If
active and the foreign socket is unspecified, return "error:
foreign socket unspecified"; if active and the foreign socket is

specified, issue a SYN segnent. An initial send sequence nunber
(ISS) is selected. A SYN segnment of the form <SEQ=lI SS><CTL=SYN>
is sent. Set SND.UNA to ISS, SND.NXT to | SS+1, enter SYN- SENT
state, and return.

If the caller does not have access to the local socket specified,

return "error: connection illegal for this process". |If there is
no roomto create a new connection, return "error: insufficient
resources".

LI STEN STATE

If active and the foreign socket is specified, then change the
connection from passive to active, select an ISS. Send a SYN
segnment, set SND.UNA to ISS, SND.NXT to |ISS+1. Enter SYN SENT
state. Data associated with SEND nay be sent with SYN segnent or
queued for transm ssion after entering ESTABLI SHED state. The
urgent bit if requested in the command nust be sent with the data
segrments sent as a result of this command. |If there is no roomto
queue the request, respond with "error: insufficient resources”

I f Foreign socket was not specified, then return "error: foreign
socket unspecified"

[Page 54]

Sept ember 1981

Transni ssi on Control Protocol

Functi onal Specification
OPEN Cal |

SYN- SENT STATE
SYN- RECEI VED STATE
ESTABLI SHED STATE
FI' N-WAI T-1 STATE

FI' N-WAI T-2 STATE
CLOSE-WAI T STATE
CLOSI NG STATE
LAST- ACK STATE

TI VE-WAI T STATE

Return "error: connection already exists".

[Page 55]

Sept ember 1981
Transm ssi on Control Protocol
Functi onal Specification
SEND Cal |

SEND Cal |
CLOSED STATE (i.e., TCB does not exist)

If the user does not have access to such a connection, then return
"error: connection illegal for this process”

O herwi se, return "error: connection does not exist".
LI STEN STATE

If the foreign socket is specified, then change the connection
frompassive to active, select an ISS. Send a SYN segnent, set
SND. UNA to ISS, SND.NXT to ISS+1. Enter SYN SENT state. Data
associ ated with SEND may be sent with SYN segnent or queued for
transm ssion after entering ESTABLI SHED state. The urgent bit if
requested in the command nust be sent with the data segnents sent
as a result of this conmand. |If there is no roomto queue the
request, respond with "error: insufficient resources". |If
Forei gn socket was not specified, then return "error: foreign
socket unspecified"

SYN- SENT STATE
SYN- RECEI VED STATE

Queue the data for transmi ssion after entering ESTABLI SHED st at e.
If no space to queue, respond with "error: insufficient
resources".

ESTABLI SHED STATE
CLOSE-WAI T STATE

Segnenti ze the buffer and send it with a piggybacked

acknow edgnment (acknow edgnment value = RCV.NXT). |If there is
insufficient space to remenber this buffer, sinply return "error:
i nsufficient resources”

If the urgent flag is set, then SND. UP <- SND. NXT-1 and set the
urgent pointer in the outgoing segments.

[Page 56]

Sept ember 1981
Transni ssi on Control Protocol

Functi onal Specification
SEND Cal |

FIN-WAI T-1 STATE
FI' N-WAI T-2 STATE
CLOSI NG STATE
LAST- ACK STATE
TI ME-WAI T STATE

Return "error: connection closing" and do not service request.

[Page 57]

Sept ember 1981
Transni ssi on Control Protocol

Functi onal Specification
RECEI VE Cal |

RECEI VE Cal |
CLOSED STATE (i.e., TCB does not exist)

If the user does not have access to such a connection, return
"error: connection illegal for this process”

O herwi se return "error: connection does not exist".

LI STEN STATE
SYN- SENT STATE
SYN- RECEI VED STATE

Queue for processing after entering ESTABLI SHED state. |If there
is no roomto queue this request, respond with "error
i nsufficient resources”

ESTABLI SHED STATE
FIN-WAI T-1 STATE
FI' N-WAI T-2 STATE

If insufficient incom ng segnents are queued to satisfy the

request, queue the request. |If there is no queue space to
renenber the RECEIVE, respond with "error: insufficient
resources”.

Reassenbl e queued inconi ng segnents into receive buffer and return
to user. Mark "push seen" (PUSH) if this is the case

If RCV.UP is in advance of the data currently being passed to the
user notify the user of the presence of urgent data.

When the TCP takes responsibility for delivering data to the user
that fact nust be communicated to the sender via an

acknow edgnment. The formation of such an acknow edgnent is
descri bed below in the discussion of processing an incomn ng
segnment .

[Page 58]

Sept ember 1981
Transm ssi on Control Protocol
Functi onal Specification
RECEI VE Cal |

CLOSE-WAI T STATE

Since the renote side has already sent FIN, RECElIVES nust be
satisfied by text already on hand, but not yet delivered to the
user. If no text is awaiting delivery, the RECEIVE will get a
"error: connection closing" response. O herw se, any remaining
text can be used to satisfy the RECElI VE

CLOSI NG STATE
LAST- ACK STATE
TI ME-WAI T STATE

Return "error: connection closing"

[Page 59]

Sept ember 1981

Transni ssi on Control Protocol
Functi onal Specification

CLCSE Cal |

CLCSE Cal |

CLOSED STATE (i.e., TCB does not exist)

If the user does not have access to such a connection, return
"error: connection illegal for this process”

O herwi se, return "error: connection does not exist".
LI STEN STATE

Any out standi ng RECEI VEs are returned with "error: cl osing"
responses. Delete TCB, enter CLOSED state, and return

SYN- SENT STATE

Delete the TCB and return "error: closing" responses to any
queued SENDs, or RECEI VEs.

SYN- RECEI VED STATE

If no SENDs have been issued and there is no pending data to send,
then forma FIN segnent and send it, and enter FIN-WAIT-1 state;
ot herwi se queue for processing after entering ESTABLI SHED st at e.

ESTABLI SHED STATE

Queue this until all preceding SENDs have been segnentized, then
forma FIN segnent and send it. |In any case, enter FINNWAIT-1
st at e.

FI'N-WAI T-1 STATE
FI N-WAI T-2 STATE

Strictly speaking, this is an error and should receive a "error:
connection closing” response. An "ok" response would be
acceptable, too, as long as a second FINis not enmitted (the first
FIN nmay be retransmtted though).

[Page 60]

Sept ember 1981
Transni ssi on Control Protocol

Functi onal Specification
CLCSE Cal |

CLOSE-WAI T STATE

Queue this request until all preceding SENDs have been
segrmenti zed; then send a FIN segnment, enter CLOSING state.

CLOSI NG STATE
LAST- ACK STATE
TI ME- WAl T STATE

Respond with "error: connection closing"

[Page 61]

Sept ember 1981
Transni ssi on Control Protocol

Functi onal Specification
ABORT Cal

ABORT Cal |
CLOSED STATE (i.e., TCB does not exist)

If the user should not have access to such a connection, return
"error: connection illegal for this process”

O herwi se return "error: connection does not exist".

LI STEN STATE

Any out st andi ng RECEI VEs shoul d be returned with "error

connection reset" responses. Delete TCB, enter CLOSED state, and
return.

SYN- SENT STATE

Al'l queued SENDs and RECEI VEs shoul d be given "connection reset”
notification, delete the TCB, enter CLOSED state, and return

SYN- RECEI VED STATE
ESTABLI SHED STATE
FI'N-WAI T-1 STATE
FI' N-WAI T-2 STATE
CLOSE-WAI T STATE

Send a reset segnent:
<SEQ=SND. NXT><CTL=RST>
Al'l queued SENDs and RECEI VEs shoul d be given "connection reset"
notification; all segnments queued for transm ssion (except for the
RST formed above) or retransm ssion should be flushed, delete the
TCB, enter CLOSED state, and return
CLOSI NG STATE

LAST- ACK STATE
TI ME- WAI T STATE

Respond with "ok" and delete the TCB, enter CLOSED state, and
return.

[Page 62]

Sept ember 1981
Transm ssi on Control Protocol
Functi onal Specification
STATUS Cal |

STATUS Cal |
CLOSED STATE (i.e., TCB does not exist)

If the user should not have access to such a connection, return
"error: connection illegal for this process".

O herwi se return "error: connection does not exist".

LI STEN STATE

Return "state LI STEN', and the TCB pointer.

SYN- SENT STATE

Return "state = SYN-SENT", and the TCB pointer.
SYN- RECEI VED STATE

Return "state = SYN RECEI VED', and the TCB pointer.
ESTABLI SHED STATE

Return "state = ESTABLI SHED', and the TCB pointer.
FI N-WAI T-1 STATE

Return "state = FINNWAIT-1", and the TCB pointer.
FI N-WAI T- 2 STATE

Return "state = FINNWAIT-2", and the TCB pointer.
CLOSE- WAI T STATE

Return "state = CLOSE-WAI T, and the TCB pointer.

CLOSI NG STATE

Return "state = CLOSING', and the TCB pointer.
LAST- ACK STATE

LAST- ACK", and the TCB pointer.

Return "state

[Page 63]

Sept ember 1981
Transm ssi on Control Protocol
Functi onal Specification
STATUS Cal |

TI ME-WAI T STATE

Return "state = TIME-WAIT", and the TCB pointer.

[Page 64]

Sept ember 1981
Transni ssi on Control Protocol

Functi onal Specification
SEGVENT ARRI VES

SEGVENT ARRI VES
If the state is CLOSED (i.e., TCB does not exist) then
all data in the inconm ng segnent is discarded. An incomn ng
segnment containing a RST is discarded. An incom ng segnent not
containing a RST causes a RST to be sent in response. The
acknow edgnent and sequence field values are selected to nake the
reset sequence acceptable to the TCP that sent the offending
segnent .
If the ACK bit is off, sequence nunber zero is used,
<SEQ@=0><ACK=SEG. SEQ+SEG. LEN><CTL=RST, ACK>
If the ACK bit is on,
<SEQ=SEG. ACK><CTL=RST>
Ret ur n.
If the state is LISTEN then
first check for an RST
An inconming RST should be ignored. Return.
second check for an ACK
Any acknow edgnent is bad if it arrives on a connection still in
the LI STEN state. An acceptable reset segnent should be forned
for any arriving ACK-bearing segnent. The RST should be
formatted as foll ows:
<SEQ=SEG. ACK><CTL=RST>
Ret ur n.
third check for a SYN
If the SYN bit is set, check the security. |If the
security/conpartment on the incom ng segnent does not exactly
mat ch the security/conpartnent in the TCB then send a reset and

return.

<SEQ=SEG ACK><CTL=RST>

[Page 65]

Sept ember 1981
Transm ssi on Control Protocol
Functi onal Specification
SEGVENT ARRI VES

If the SEGPRCis greater than the TCB. PRC then if all owed by
the user and the system set TCB. PRC<-SEG PRC, if not all owed
send a reset and return.

<SEQ=SEG. ACK><CTL=RST>
If the SEG PRC is |less than the TCB. PRC then conti nue.
Set RCV.NXT to SEG SEQ+1l, IRS is set to SEG SEQ and any ot her
control or text should be queued for processing later. |[ISS
shoul d be selected and a SYN segnent sent of the form

<SEQ=| SS><ACK=RCV. NXT><CTL=SYN, ACK>

SND. NXT is set to I SS+1 and SND. UNA to I SS. The connection
state should be changed to SYN-RECEI VED. Note that any other

i ncomi ng control or data (conbined with SYN) will be processed
in the SYN-RECElI VED state, but processing of SYN and ACK shoul d
not be repeated. If the listen was not fully specified (i.e.,

the foreign socket was not fully specified), then the
unspecified fields should be filled in now.

fourth other text or control
Any ot her control or text-bearing segnent (not containing SYN
must have an ACK and thus woul d be discarded by the ACK
processing. An incom ng RST segnent could not be valid, since
it could not have been sent in response to anything sent by this
i ncarnation of the connection. So you are unlikely to get here,
but if you do, drop the segnent, and return.

If the state is SYN SENT then

first check the ACK bit

If the ACK bit is set

If SEG ACK =< | SS, or SEG ACK > SND. NXT, send a reset (unless
the RST bit is set, if so drop the segnent and return)

<SEQ=SEG. ACK><CTL=RST>
and di scard the segnent. Return.
I f SND. UNA =< SEG ACK =< SND. NXT then the ACK is acceptabl e.

second check the RST bit

[Page 66]

Sept ember 1981
Transni ssi on Control Protocol

Functi onal Specification
SEGVENT ARRI VES

If the RST bit is set
If the ACK was acceptable then signal the user "error

connection reset", drop the segment, enter CLOSED st ate,
delete TCB, and return. Oherwise (no ACK) drop the segnent

and return.
third check the security and precedence

If the security/conpartnent in the segnment does not exactly
mat ch the security/conpartnment in the TCB, send a reset

If there is an ACK
<SEQ=SEG ACK><CTL=RST>
O herw se
<SEQ=0><ACK=SEG. SEQ+SEG. LEN><CTL=RST, ACK>
If there is an ACK

The precedence in the segment nust match the precedence in the
TCB, if not, send a reset

<SEQ=SEG ACK><CTL=RST>
If there is no ACK
If the precedence in the segnment is higher than the precedence
inthe TCB then if allowed by the user and the systemraise
the precedence in the TCB to that in the segnment, if not
allowed to raise the prec then send a reset.
<SEQ=0><ACK=SEG. SEQ+SEG. LEN><CTL=RST, ACK>

If the precedence in the segnent is |ower than the precedence
in the TCB conti nue.

If a reset was sent, discard the segnent and return
fourth check the SYN bit

This step should be reached only if the ACKis ok, or there is
no ACK, and it the segnment did not contain a RST

If the SYNbit is on and the security/conpartnent and precedence

[Page 67]

Sept ember 1981
Transm ssi on Control Protocol
Functi onal Specification
SEGVENT ARRI VES

are acceptable then, RCV.NXT is set to SEG SEQ+1l, IRSis set to
SEG SEQ SND. UNA shoul d be advanced to equal SEG ACK (if there
is an ACK), and any segnents on the retransm ssion queue which
are thereby acknow edged shoul d be renoved.

If SND.UNA > ISS (our SYN has been ACKed), change the connection
state to ESTABLI SHED, form an ACK segnent

<SEQ=SND. NXT><ACK=RCV. NXT><CTL=ACK>
and send it. Data or controls which were queued for
transm ssion may be included. |If there are other controls or
text in the segnent then continue processing at the sixth step
bel ow where the URG bit is checked, otherw se return.
O herwi se enter SYN RECElI VED, form a SYN, ACK segnent

<SEQ=Il SS><ACK=RCV. NXT><CTL=SYN, ACK>
and send it. |If there are other controls or text in the
segment, queue them for processing after the ESTABLI SHED state
has been reached, return.

fifth, if neither of the SYN or RST bits is set then drop the
segnment and return.

[Page 68]

Sept ember 1981
Transm ssi on Control Protocol
Functi onal Specification
SEGVENT ARRI VES

O herwi se,
first check sequence nunber

SYN- RECEI VED STATE
ESTABLI SHED STATE
FIN-WAI T-1 STATE
FI' N-WAI T-2 STATE
CLOSE-WAI T STATE
CLOSI NG STATE
LAST- ACK STATE

TI ME-WAI T STATE

Segnments are processed in sequence. Initial tests on arriva
are used to discard old duplicates, but further processing is
done in SEG SEQ order. If a segnment’s contents straddle the
boundary between old and new, only the new parts should be

pr ocessed.

There are four cases for the acceptability test for an inconing
segment :

Segnment Receive Test
Length W ndow

0 0 SEG SEQ = RCV. NXT

0 >0 RCV. NXT =< SEG SEQ < RCV. NXT+RCV. WND
>0 0 not acceptabl e

>0 >0 RCV. NXT =< SEG. SEQ < RCV. NXT+RCV. WAD

or RCV.NXT =< SEG SEQ+SEG LEN-1 < RCV. NXT+RCV. WD
If the RCV.VWND i s zero, no segnents will be acceptable, but
speci al all owance should be nade to accept valid ACKs, URGs and
RSTs.
If an incomi ng segnent is not acceptable, an acknow edgnent
shoul d be sent in reply (unless the RST bit is set, if so drop
the segnment and return):

<SEQ=SND. NXT><ACK=RCV. NXT><CTL=ACK>

After sending the acknow edgnment, drop the unacceptabl e segnent
and return.

[Page 69]

Sept ember 1981

Transni ssi on Control Protocol

Functi onal Specification
SEGVENT ARRI VES

In the following it is assuned that the segnent is the idealized
segrment that begins at RCV. NXT and does not exceed the w ndow.
One could tailor actual segnents to fit this assunption by
trimming off any portions that lie outside the w ndow (including
SYN and FIN), and only processing further if the segnment then
begi ns at RCV.NXT. Segnents w th higher begining sequence
nunbers may be held for |ater processing.

second check the RST bit,
SYN- RECEI VED STATE
If the RST bit is set

If this connection was initiated with a passive OPEN (i.e.
came fromthe LISTEN state), then return this connection to
LI STEN state and return. The user need not be infornmed. |If
this connection was initiated with an active OPEN (i.e., came
from SYN-SENT state) then the connection was refused, signa
the user "connection refused". |In either case, all segnments
on the retransm ssi on queue should be renoved. And in the
active OPEN case, enter the CLOSED state and delete the TCB
and return.

ESTABLI SHED
FI'N-VWAIT-1
FI' N-WAI T- 2
CLOSE-WAI' T

If the RST bit is set then, any outstandi ng RECElI VEs and SEND
shoul d receive "reset" responses. Al segment queues should be
flushed. Users should also receive an unsolicited genera
"connection reset" signal. Enter the CLOSED state, delete the
TCB, and return.

CLOSI NG STATE
LAST- ACK STATE
TIME-WAI T

If the RST bit is set then, enter the CLOSED state, delete the
TCB, and return.

[Page 70]

Sept ember 1981
Transm ssi on Control Protocol
Functi onal Specification
SEGVENT ARRI VES

third check security and precedence
SYN RECEI VED

If the security/conpartnent and precedence in the segment do not
exactly match the security/conpartnment and precedence in the TCB
then send a reset, and return

ESTABLI SHED STATE

If the security/conpartnent and precedence in the segment do not
exactly match the security/conpartnment and precedence in the TCB
then send a reset, any outstandi ng RECEI VEs and SEND shoul d
receive "reset" responses. Al segnment queues should be
flushed. Users should also receive an unsolicited genera
"connection reset" signal. Enter the CLOSED state, delete the
TCB, and return.

Note this check is placed followi ng the sequence check to prevent
a segnent froman old connection between these ports with a
different security or precedence from causing an abort of the
current connection

fourth, check the SYN bit,

SYN- RECEI VED
ESTABLI SHED STATE
FI N-WAI T STATE-1
FI N-WAI T STATE- 2
CLOSE-WAI T STATE
CLOSI NG STATE
LAST- ACK STATE

TI VE-WAI T STATE

If the SYNis in the windowit is an error, send a reset, any
out st andi ng RECElI VEs and SEND shoul d receive "reset" responses,
all segnment queues should be flushed, the user should al so
receive an unsolicited general "connection reset" signal, enter
the CLOSED state, delete the TCB, and return.

If the SYNis not in the windowthis step would not be reached

and an ack woul d have been sent in the first step (sequence
nunber check).

[Page 71]

Sept ember 1981

Transni ssi on Control Protocol

Functi onal

Speci fication
SEGVENT ARRI VES

fifth check the ACK field,

if the ACK bit is off drop the segnment and return

if the ACK bit is on

SYN- RECEI VED STATE

I f SND. UNA =< SEG ACK =< SND. NXT then enter ESTABLI SHED state
and continue processing.

If the segnent acknow edgnent is not acceptable, forma
reset segnent,

<SEQ=SEG. ACK><CTL=RST>

and send it.

ESTABLI SHED STATE

[Page 72]

If SND. UNA < SEG ACK =< SND. NXT then, set SND. UNA <- SEG ACK.
Any segnments on the retransni ssion queue which are thereby
entirely acknow edged are rempved. Users should receive
positive acknow edgnents for buffers which have been SENT and
fully acknow edged (i.e., SEND buffer should be returned with
"ok" response). If the ACKis a duplicate

(SEG ACK < SND. UNA), it can be ignored. |If the ACK acks
sonet hi ng not yet sent (SEG ACK > SND. NXT) then send an ACK,
drop the segnent, and return.

If SND. UNA < SEG ACK =< SND. NXT, the send wi ndow shoul d be
updated. If (SND.W.1 < SEG SEQ or (SND.W.1 = SEG SEQ and
SND. W.2 =< SEG ACK)), set SND. WD <- SEG WND, set

SND. W.1 <- SEG SEQ and set SND.W.2 <- SEG ACK

Note that SND. WAD i s an offset from SND. UNA, that SND. W.1
records the sequence nunber of the |ast segnent used to update
SND. WND, and that SND.W.2 records the acknowl edgnent nunber of
the | ast segment used to update SND. WND. The check here
prevents using old segnments to update the w ndow.

Sept ember 1981
Transm ssi on Control Protocol
Functi onal Specification
SEGVENT ARRI VES

FIN-WAI T-1 STATE

In addition to the processing for the ESTABLI SHED state, if
our FIN is now acknow edged then enter FIN-WAIT-2 and continue
processing in that state.

FI' N-WAI T-2 STATE

In addition to the processing for the ESTABLI SHED state, if
the retransm ssion queue is enpty, the user’s CLOSE can be
acknow edged ("ok") but do not delete the TCB

CLOSE-WAI T STATE
Do the sanme processing as for the ESTABLI SHED st at e.
CLCSI NG STATE

In addition to the processing for the ESTABLI SHED state, if
the ACK acknow edges our FIN then enter the TIME-WAIT state,
ot herwi se ignore the segnent.

LAST- ACK STATE

The only thing that can arrive in this state is an
acknow edgment of our FIN. If our FINis now acknow edged,
delete the TCB, enter the CLOSED state, and return

TI ME-WAI T STATE

The only thing that can arrive in this state is a
retransm ssion of the renote FIN. Acknow edge it, and restart
the 2 MSL tinmeout.

si xth, check the URG bit,

ESTABLI SHED STATE
FI'N-WAI T-1 STATE
FI N-WAI T-2 STATE

If the URG bit is set, RCV.UP <- max(RCV.UP, SEG UP), and signa
the user that the renote side has urgent data if the urgent
pointer (RCV.UP) is in advance of the data consuned. |If the
user has already been signaled (or is still in the "urgent
nmode") for this continuous sequence of urgent data, do not
signal the user again.

[Page 73]

Sept ember 1981
Transm ssi on Control Protocol
Functi onal Specification

SEGVENT ARRI VES

CLOSE-WAI T STATE
CLOSI NG STATE
LAST- ACK STATE
TIME-VWAI T

Thi s should not occur, since a FIN has been received fromthe
renote side. |lgnore the URG

seventh, process the segnent text,

ESTABLI SHED STATE
FI' N-WAI T-1 STATE
FI' N-WAI T-2 STATE

Once in the ESTABLI SHED state, it is possible to deliver segnent
text to user RECElIVE buffers. Text from segnments can be noved
into buffers until either the buffer is full or the segnent is
enpty. |If the segnment enpties and carries an PUSH flag, then
the user is informed, when the buffer is returned, that a PUSH
has been received.

When the TCP takes responsibility for delivering the data to the
user it must al so acknow edge the recei pt of the data.

Once the TCP takes responsibility for the data it advances
RCV. NXT over the data accepted, and adjusts RCV. WD as
apporopriate to the current buffer availability. The total of
RCV. NXT and RCV. WND shoul d not be reduced.
Pl ease note the w ndow nmanagenent suggestions in section 3.7.
Send an acknow edgnment of the form

<SEQ=SND. NXT><ACK=RCV. NXT><CTL=ACK>

Thi s acknow edgnent shoul d be piggybacked on a segnent being
transmitted if possible without incurring undue del ay.

[Page 74]

Sept ember 1981

Transni ssi on Control Protocol
Functi onal Specification

SEGVENT ARRI VES

e

CLOSE-WAI T STATE
CLOSI NG STATE
LAST- ACK STATE
TI ME-WAI T STATE

Thi s should not occur, since a FIN has been received fromthe
renote side. |lgnore the segnent text.

ghth, check the FIN bit,

Do not process the FINif the state is CLOSED, LISTEN or SYN- SENT
since the SEG SEQ cannot be validated; drop the segnent and
return.

If the FIN Dbit is set, signal the user "connection closing" and
return any pending RECEI VEs with same nessage, advance RCV. NXT
over the FIN, and send an acknow edgnent for the FIN. Note that
FIN inplies PUSH for any segment text not yet delivered to the
user.

SYN- RECEI VED STATE
ESTABLI SHED STATE

Enter the CLOSE-WAI T st at e.

FI N-WAI T-1 STATE
If our FIN has been ACKed (perhaps in this segnment), then
enter TIME-WAIT, start the tine-wait tinmer, turn off the other
timers; otherwi se enter the CLOSI NG st at e.

FI' N-WAI T-2 STATE

Enter the TIME-WAIT state. Start the tine-wait tiner, turn
off the other tiners.

CLOSE- WAI T STATE

Remain in the CLOSE-WAIT state.
CLOSI NG STATE

Remain in the CLOSING state.
LAST- ACK STATE

Remain in the LAST- ACK state.

[Page 75]

Transni ssi on Control Protocol
Functi onal Specification

TI ME-WAI T STATE

Remain in the TIME-WAIT state.

ti meout.

and return.

[Page 76]

Sept ember 1981

SEGVENT ARRI VES

Restart the 2 MSL tinme-wait

Sept ember 1981
Transni ssi on Control Protocol

Functi onal Specification
USER TI MEQUT

USER TI MECQUT

For any state if the user tineout expires, flush all queues, signa
the user "error: connection aborted due to user tinmeout" in genera
and for any outstanding calls, delete the TCB, enter the CLCSED

state and return.
RETRANSM SSI ON TI MEQUT
For any state if the retransmi ssion tinmeout expires on a segnent in

the retransm ssi on queue, send the segnment at the front of the
retransm ssi on queue again, reinitialize the retransm ssion tiner,

and return.

TI VE-WAI T Tl MEQUT

If the time-wait tinmeout expires on a connection delete the TCB
enter the CLOSED state and return.

[Page 77]

Sept ember 1981
Transni ssi on Control Protocol

[Page 78]

Sept ember 1981
Transni ssi on Control Protocol

GLOSSARY

1822
BBN Report 1822, "The Specification of the Interconnection of
a Host and an I MP". The specification of interface between a
host and the ARPANET.

ACK

A control bit (acknow edge) occupying no sequence space, which
i ndi cates that the acknow edgnment field of this segnent

speci fies the next sequence nunber the sender of this segment
is expecting to receive, hence acknow edgi ng recei pt of all
previ ous sequence nunbers.

ARPANET nessage
The unit of transmi ssion between a host and an IMP in the
ARPANET. The nmaxi mum size is about 1012 octets (8096 bits).

ARPANET packet
A unit of transmission used internally in the ARPANET between
| MPs. The nmaxi mum size is about 126 octets (1008 bits).

connection
A | ogi cal communication path identified by a pair of sockets.

dat agram
A nmessage sent in a packet sw tched conputer comunications
net wor k.

Desti nati on Address
The destination address, usually the network and host
identifiers.

FI'N
A control bit (finis) occupying one sequence nunber, which
i ndi cates that the sender will send no nore data or contro
occupyi ng sequence space.

f ragnment
A portion of a logical unit of data, in particular an internet
fragment is a portion of an internet datagram

FTP

A file transfer protocol.

[Page 79]

Sept ember 1981
Transni ssi on Control Protocol

d ossary

header
Control infornmation at the beginning of a nessage, segnent,
fragment, packet or block of data.

host

A computer. In particular a source or destination of nessages
fromthe point of view of the conmunication network

I dentification
An Internet Protocol field. This identifying value assigned
by the sender aids in assenbling the fragnents of a datagram

The Interface Message Processor, the packet switch of the
ARPANET.

i nternet address
A source or destination address specific to the host |evel

i nt ernet datagram
The unit of data exchanged between an internet nodul e and the
hi gher | evel protocol together with the internet header

i nternet fragnent
A portion of the data of an internet datagramw th an internet

header .

I P
I nt ernet Protocol

I RS
The Initial Receive Sequence nunber. The first sequence
nunber used by the sender on a connection

| SN
The Initial Sequence Nunmber. The first sequence nunber used
on a connection, (either 1SS or IRS). Selected on a clock
based procedure.

| SS
The Initial Send Sequence number. The first sequence number
used by the sender on a connection

| eader

Control information at the beginning of a message or bl ock of
data. In particular, in the ARPANET, the control information
on an ARPANET nessage at the host-IMP interface.

[Page 80]

Sept ember 1981
Transni ssi on Control Protocol
d ossary

| eft sequence
This is the next sequence nunber to be acknow edged by the
data receiving TCP (or the |lowest currently unacknow edged
sequence nunber) and is sonetines referred to as the | eft edge
of the send wi ndow.

| ocal packet
The unit of transmission within a |ocal network.

nodul e
An inplenentation, usually in software, of a protocol or other
procedure.
MBL
Maxi mum Segnent Lifetinme, the time a TCP segnent can exist in
the internetwork system Arbitrarily defined to be 2 ninutes.
oct et
An eight bit byte.
Options
An Option field may contain several options, and each option
may be several octets in length. The options are used
primarily in testing situations; for exanple, to carry
timestanps. Both the Internet Protocol and TCP provide for
options fields.
packet
A package of data with a header which may or nmay not be
logically conplete. More often a physical packaging than a
| ogi cal packagi ng of data.
port
The portion of a socket that specifies which |ogical input or
out put channel of a process is associated with the data.
process
A programin execution. A source or destination of data from
the point of view of the TCP or other host-to-host protocol
PUSH
A control bit occupying no sequence space, indicating that
this segnent contains data that nust be pushed through to the
recei ving user.
RCV. NXT

recei ve next sequence numnber

[Page 81]

Transm ssi
d ossary

RCV. UP

RCV. WND

Sept ember 1981
on Control Protoco

recei ve urgent pointer

recei ve w ndow

recei ve next sequence nunber

recei ve w

RST

SEG ACK

SEG. LEN

SEG PRC

SEG. SEQ

SEG UP

[Page 82]

This is the next sequence nunber the local TCP is expecting to
receive.

ndow

This represents the sequence nunbers the | ocal (receiving) TCP
iswlling to receive. Thus, the |local TCP considers that
segnments overl apping the range RCV.NXT to

RCV. NXT + RCV. WAD - 1 carry acceptable data or control
Segrment s cont ai ni ng sequence nunbers entirely outside of this
range are considered duplicates and di scarded.

A control bit (reset), occupying no sequence space, indicating
that the receiver should delete the connection w thout further
interaction. The receiver can deternine, based on the
sequence nunmber and acknow edgnent fields of the incom ng
segment, whether it should honor the reset comand or ignore
it. In no case does receipt of a segnment containing RST give
rise to a RST in response

Real Time Protocol: A host-to-host protocol for comunication
of time critical information

segrment acknow edgnent

segment | ength

segment precedence val ue

segnent sequence

segnment urgent pointer field

Sept ember 1981
Transni ssi on Control Protocol
d ossary

SEG. WND
segnment wi ndow field

segnent
A logical unit of data, in particular a TCP segnent is the
unit of data transfered between a pair of TCP nodul es.

segrment acknow edgnent
The sequence nunber in the acknow edgnent field of the
arriving segnent.

segment | ength
The ampbunt of sequence nunber space occupi ed by a segnent,
i ncluding any controls which occupy sequence space.

segment sequence
The nunber in the sequence field of the arriving segnment.

send sequence
This is the next sequence nunber the |ocal (sending) TCP will
use on the connection. It is initially selected froman
initial sequence nunber curve (ISN) and is increnmented for
each octet of data or sequenced control transmitted.

send w ndow
This represents the sequence nunbers which the renote
(receiving) TCP is willing to receive. It is the value of the
wi ndow field specified in segnents fromthe renote (data
receiving) TCP. The range of new sequence nunbers whi ch may
be emitted by a TCP |lies between SND. NXT and
SND. UNA + SND. WND - 1. (Retransm ssions of sequence nunbers
bet ween SND. UNA and SND. NXT are expected, of course.)

SND. NXT
send sequence
SND. UNA
| eft sequence
SND. UP
send urgent pointer
SND. W.1
segment sequence nunber at |ast wi ndow update
SND. W.2

segment acknow edgment nunber at |ast w ndow update

[Page 83]

Sept ember 1981
Transni ssi on Control Protocol
d ossary

SND. WND
send wi ndow

socket
An address which specifically includes a port identifier, that
is, the concatenation of an Internet Address with a TCP port.

Sour ce Address
The source address, usually the network and host identifiers.

SYN
A control bit in the incom ng segnment, occupying one sequence
nunber, used at the initiation of a connection, to indicate
where the sequence nunbering will start.

TCB
Transm ssion control block, the data structure that records
the state of a connection

TCB. PRC
The precedence of the connection.

TCP
Transm ssion Control Protocol: A host-to-host protocol for
reliable comunication in internetwork environnents.

TOS

Type of Service, an Internet Protocol field.

Type of Service
An Internet Protocol field which indicates the type of service
for this internet fragnent.

URG
A control bit (urgent), occupying no sequence space, used to
i ndicate that the receiving user should be notified to do
urgent processing as long as there is data to be consuned wth
sequence nunbers |l ess than the value indicated in the urgent
poi nter.

urgent pointer
A control field neaningful only when the URG bit is on. This
field conmmuni cates the value of the urgent pointer which
i ndi cates the data octet associated with the sending user’s
urgent call.

[Page 84]

Sept ember 1981

[1]

[2]

[3]

[4]

Transni ssi on Control Protocol

REFERENCES

Cerf, V., and R Kahn, "A Protocol for Packet Network
I nt erconmuni cati on", | EEE Transacti ons on Communi cati ons,
Vol . COM22, No. 5, pp 637-648, My 1974.

Postel, J. (ed.), "Internet Protocol - DARPA Internet Program
Prot ocol Specification", RFC 791, USC I nfornation Sciences
Institute, Septenber 1981.

Dal al, Y. and C. Sunshine, "Connection Managenent in Transport
Protocol s, Computer Networks, Vol. 2, No. 6, pp. 454-473,
Decenber 1978.

Postel, J., "Assigned Nunbers", RFC 790, USC/Infornation Sciences
Institute, Septenber 1981.

[Page 85]

