
Network Working Group E. Harslem
Request for Comments: 80 J. Heafner
NIC: 5608 RAND
 1 December 1970

 PROTOCOLS AND DATA FORMATS

 Because of recent discussions of protocols and data formats we issue
 this note to highlight our current attitudes and investigations in
 those regards. We first discuss some specific sequences, and then
 offer some thoughts on two general implementation approaches that
 will handle these and other specifics. We wish to place emphasis on
 the _general solutions_ and not on the specifics.

INITIAL CONNECTION PROTOCOLS

 We wish to make two points concerning specific Initial Connection
 Protocols (IPCs). Firstly, the IPC described in NEW/RFC #66--its
 generality and a restatement of that ICP. Secondly, a proposal for a
 variant ICP using basically the same logic as NWG/RFC #66.

I. NWG/RFC #66

 The only technical error in this IPC is that as diagrammed both the
 Server and User send ALL messages before the connections are
 established which is inconsistent with Network Document No. 1. This
 can easily be remedied as will be shown in the restatement below.

 In terms of generality, any ICP that is adopted as a standard should
 apply to more situations than a process calling a logger. That is,
 some Network service processes that hook directly to a user process,
 independent of logger action, could perhaps use a standard ICP.
 Thus, as is shown below, the process name field of the server socket
 should be a parameter with a value of zero being a special case for
 loggers.

 Restatement of NWG/RFC #66 (using the same wording where appropriate)

 1. To initiate contact, the using process attaches a receive
 socket (US) and requests connection to process SERV socket #1
 in the serving HOST. (SERV = 0 for ICP to the logger.) As a
 result the using NCP sends:

Harslem, et. al. [Page 1]

RFC 80 Protocols and Data Formats 1 December 1970

 1 4 3 1 1
 +-----+---------------------+---------------+-----+-----+
 | RTS | US | SERV | 1 | P |
 +-----+---------------------+---------------+-----+-----+

 over link 1, where P is the receive link.

 2. The serving process (SERV) may decide to refuse to the call, in
 which case it closes the connection. If it accepts the call,
 the serving process completes the connection (via an INIT
 system call, hence an STR).

 1 3 1 4
 +-----+----------------+-----+--------------------+
 | STR | SERV | 1 | US |
 +-----+----------------+-----+--------------------+

 3. When the connection is completed, the user process allocates a
 nominal amount of space to the connection, resulting in the NCP
 sending:

 1 1 4
 +-----+-----+--------------------+
 | ALL | P | SPACE |
 +-----+-----+--------------------+

 where SPACE is the amount.

 4. The serving process then selects the socket pair it wishes to
 assign this user. It sends exactly an even 32 bit number over
 the connection. This even 32 bit number (SS) is the receive
 socket in the serving HOST. This socket and the next higher
 numbered socket are reserved for the using process.

 5. It then closes the connection. The serving NCP sends (step 4):

 4
 +---------------------+
 | SS |
 +---------------------+

 on link P, and (step 5):

Harslem, et. al. [Page 2]

RFC 80 Protocols and Data Formats 1 December 1970

 1 3 1 4
 +-----+----------------+-----+--------------------+
 | CLS | SERV | 1 | US |
 +-----+----------------+-----+--------------------+

 on the control link (which is echoed by the using NCP).

 6. Now that both server and user are aware of the remote socket
 pair for the duplex connection, <STR, RTS>s can be exchanged.

 Sever sends User

 1 4 4
 +-----+--------------------+--------------------+
 | STR | SS + 1 | US |
 +-----+--------------------+--------------------+---+
 | RTS | SS | SS + 1 | Q |
 +-----+--------------------+--------------------+---+

 where Q is the Server’s receive link.

 User sends Server

 1 4 4
 +-----+--------------------+--------------------+
 | STR | US + 1 | SS |
 +-----+--------------------+--------------------+---+
 | RTS | US | SS + 1 | R |
 +-----+--------------------+--------------------+---+

 where R is the User’s receive link.

 ALLocates may then be sent and transmission begun.

II. A Variation of NWG/RFC #66

 This variation reduces Network messages and eliminates duplication of
 information transfer.

 Steps 3 and 4 above are deleted. The user process is not notified
 directly which of the Server’s sockets it will be assigned. The user
 process, however, will listen on sockets US and US + 1 for calls from
 SERV after step 5 above. It can reject any spurious calls. In
 accepting the calls from SERV, the connection is established.

 The following sample sequence illustrates this ICP. (The notation is
 as above).

Harslem, et. al. [Page 3]

RFC 80 Protocols and Data Formats 1 December 1970

 1. User --> Server

 1 4 3 1 1
 +-----+--------------------+----------------+-----+-----+
 | RTS | US | SERV | 1 | P |
 +-----+--------------------+----------------+-----+-----+

 2. Server --> User

 If accepted:

 1 3 1 4
 +-----+----------------+-----+---------------------+
 | STR | SERV | 1 | US |
 +-----+----------------+-----+---------------------+
 | CLS | SERV | 1 | US |
 +-----+----------------+-----+---------------------+

 If rejected:

 1 3 1 4
 +-----+----------------+-----+---------------------+
 | CLS | SERV | 1 | US |
 +-----+----------------+-----+---------------------+

 3. If accepted, user listens on US and US + 1.

 4. Server --> User

 1 4 4
 +-----+--------------------+---------------------+
 | STR | SS + 1 | US |
 +-----+--------------------+---------------------+---+
 | RTS | SS | US + 1 | Q |
 +-----+--------------------+---------------------+---+

 5. User accepts the calls, hence:

 User --> Sender

 1 4 4
 +-----+---------------------+--------------------+
 | STR | US + 1 | SS + 1 |
 +-----+---------------------+--------------------+---+
 | RTS | US + 1 | SS | R |
 +-----+---------------------+--------------------+---+

 and the connection is established.

Harslem, et. al. [Page 4]

RFC 80 Protocols and Data Formats 1 December 1970

 This reduces the number of network messages by two and only passes
 the information regarding the Server’s sockets once via RTS and STR.

 PRE-SPECIFIED DATA FORMATS

 We would like to adopt those suggestions for data formats in NWG/RFC
 #42 and #63. We subscribe to multiple standards as solutions to
 particular problem classes.

 AN ADAPTABLE MECHANISM

 We would like to adapt to Network use, problem programs that were
 not planned with the Network in mind, and which, no doubt, will
 not easily succumb to Network standards existing at the time of
 their inclusion. This incompatibility problem is just as
 fundamental a part of the research underlying the Network as is
 different Host hardware. To require extensive front-ends on each
 such program is not a reasonable goal. We view the Network as an
 amalgamation of a) Hosts that provide services; b) parasite Hosts
 that interface terminals to the services, and c) a spectrum of
 Hosts that behave as both users and providers of services. To
 require that each parasite Host handle different protocols and
 data formats for all services that its users need is not a
 reasonable goal. The result is programs and terminals that wish
 to communicate but do not speak the same language.

 One approach to the protocol and data format problems is to
 provide an adaptable mechanism that programs and terminals can use
 to easily access Network resources. ARPA is sponsoring the
 Adaptive Communicator Project at Rand which is a research effort
 to investigate a teachable front-end process to interface man to
 program. The variety of terminal devices being explored include
 voice, tablets, sophisticated graphics terminals, etc.

 The Adaptive Communicator looks very encouraging but it will not
 be ready for some time. The Network Project at Rand chose to take
 the adaptable approach (_not_ adaptive, i.e., no heuristics, no
 self-learning). Our problem is to get Rand researchers onto the
 Network easily, assuming that they have different simultaneous
 applications calling for different program protocols and data
 configurations.

 Protocols and data formats will be described separately to
 illustrate what we mean by adaptation. Protocols are sequences of
 "system calls" that correspond to (and result in NCP’s issuance
 of) NCP commands. Data formats are the descriptions of regular
 message contents and are not meaningful to an NCP.

Harslem, et. al. [Page 5]

RFC 80 Protocols and Data Formats 1 December 1970

 The Form Machine (adapting to data formats)

 To put the reader in context, the Form Machine is of the class of
 finite state machines that recognize a form of _regular_
 expressions_ which, in our case, describe data formats. The
 notation, however, is aimed at particular descriptions and
 therefore can be more succinct, for our purposes, than the
 language of regular expressions.

 The Form Machine is an experimental software package that couples
 a variety of programs and terminals whose data format requirements
 are different. We envision Form Machines located (to reduce
 Network traffic) at various service providing Hosts.

 To test the Form Machine idea, we are implementing two IBM OS-
 callable subroutines; a compiler that compiles statements which
 describe forms of data formats; and an executor that executes a
 compiled form on a data stream.

 To describe the Form Machine test, it is necessary to mention
 another program at Rand--the Network Services Program (NSP), which
 is a multi-access program that interfaces the Network Control
 Program both to arbitrary programs and to Video Graphics Consoles.
 (We view a terminal as just another program with a different
 interface, i.e., # characters/line, # lines/page, unique hardware
 features, the application to which it is put, etc.) The Form
 Machine subroutines are callable from NSP upon consoles or program
 direction.

 Operationally, a console user names and specifies the data forms
 that he will use. The forms are compiled and stored for later
 use. At some future time when the user wishes to establish
 Network connections and transmit data, he dynamically associates
 named forms with each side of a port--a symbolically named Network
 full duplex connection. Data streams incoming or outgoing are
 executed according to the compiled form and the transformed data
 stream is then passed along to the console/program or to the
 Network, respectively.

 The details of the syntax of our Form Machine notation are
 unimportant to the collective Network community. However, the
 provisions of the notation are of interest. It will eventually
 encompass the description of high performance CRT displays, TTY,
 and arbitrary file structures. To test its viability, a subset of
 such features is being implemented.

Harslem, et. al. [Page 6]

RFC 80 Protocols and Data Formats 1 December 1970

 The current version is characterized by the following features:

 1) Character code translation (viz., decimal, octal,
 hexidecimal, 8 bit ASCII, 7 bit ASCII, EBCDIC, and
 binary).

 2) Multiple break strings (many terminals have multiple
 termination signals).

 3) Insertion of literals (used primarily for display
 information presentation).

 4) Skip or delete arbitrary strings (used to remove record
 sequence numbers, etc., that are not to be displayed).

 5) Record sequence number generation.

 6) String-length computation and insertion.

 7) _Arbitrary_ data string length specifications, e.g., "a
 hex literal string followed by an _arbitrary_ number of
 EBCDIC characters, followed by a break string,".

 8) Concatenation of Network messages, i.e., the execution of
 compiled forms on incomplete data strings.

 9) Data field transposition.

 10) Both explicit and indefinite multiplicative factors for
 both single and multi-line messages.

 Features that are not being implemented but will be added, if
 successful, include:

 1) Graphics oriented descriptions.

 2) General number translations.

 3) Conditional statements.

 4) A pointer capability.

 The Protocol Manager (adapting to NCP command sequences)

 The NSP allows terminal users and programs to work at the NCP
 protocol level; i.e., LISTEN, INIT, et al. It also allows them to
 transmit and massage information meaningful only to themselves.
 This "hands-on" approach is desirable from the systems

Harslem, et. al. [Page 7]

RFC 80 Protocols and Data Formats 1 December 1970

 programmer’s, or exploratory point of view. However, it is
 desirable to eliminate the laborious "handshaking" for the
 researcher who repeatedly uses a given remote program by allowing
 him to define, store, retrieve, and execute "canned" protocol
 sequences.

 We are currently specifying a Protocol Manager as a module of NSP
 that will allow the above operations on NCP command sequences.
 Features of the module are:

 1) The sequences may contain "break points" to permit the
 console user to dynamically inject any contextually needed
 information.

 2) The parameters of a command may contain tokens whose values
 are supplied by the remote party during the protocol dialog.
 For example, in Note #66 the socket number provided by the
 server is to be used by the user in subsequent RTS, STR
 commands.

 REQUEST

 We would like to hear from anyone concerning the notion of
 adaptation to data formats and protocol. Is this a reasonable
 approach? What should it encompass?

 JFH:EFH:hs

Harslem, et. al. [Page 8]

RFC 80 Protocols and Data Formats 1 December 1970

 Distribution

 Albert Vezza, MIT
 Alfred Cocanower, MERIT
 Gerry Cole, SDC
 Bill English, SRI
 Bob Flegel, Utah
 James Forgie, LL
 Peggy Karp, MITRE
 Nico Haberman, Carnegie-Mellon
 John Heafner, RAND
 Bob Kahn, BB&N
 Margie Lannon, Harvard
 James Madden, Univ. of Ill.
 Thomas O’Sullivan, Raytheon
 Larry Roberts, ARPA
 Robert Sproull, Stanford
 Ron Stoughton, UCSB
 Chuck Rose, Case University
 Benita Kirstel, UCLA

 [This RFC was put into machine readable form for entry]
 [into the online RFC archives by Lorrie Shiota, 10/01]

Harslem, et. al. [Page 9]

