Network Working Group P. Deutsch
Request for Comments: 1952 Aladdin Enterprises
Category: Informational May 1996

GZIP file format specification version 4.3

Status of ThisMemo

Thismemo providesinformation for the Internet community. This memo does not specify an Internet stan-
dard of any kind. Distribution of thismemo is unlimited.

|ESG Note:

The IESG takes no position on the validity of any Intellectual Property Rights statements contained in this
document.

Notices

Copyright (©) 1996 L. Peter Deutsch

Permission is granted to copy and distribute this document for any purpose and without charge, including
tranglationsinto other languages and incorporation into compil ations, provided that the copyright notice and
thisnotice are preserved, and that any substantive changes or deletionsfrom the origina are clearly marked.

A pointer to the latest version of this and related documentation in HTML format can be found at the URL
< ftp://ftp.uu.net/graphics/png/documents/zlib/zdoc-index.html >

Abstract

This specification defines a lossless compressed data format that is compatible with the widely used GZIP
utility. The format includes a cyclic redundancy check value for detecting data corruption. The format
presently uses the DEFLATE method of compression but can be easily extended to use other compression
methods. The format can be implemented readily in a manner not covered by patents.

Deutsch Informational [Page 1]

RFC 1952 GZIP File Format Specification May 1996

Contents
1 Introduction 2
11 PUIPOSE . . . o o e 2
12 Intendedaudience 2
13 SCOPE. . . o 2
14 ComplianCe 3
15 Definitionsof termsand conventionsused L. 3
1.6 Changesfrompreviousversions. i 3
2 Detailed specification 3
21 Ovedlconventions e 3
22 Fileformat e 4
23 Memberformat e 4
231 Member headerandtrailer 5
Extrafield. 7
Compliance 8
3 References 8
4 Security CONSIAErations 8
5 Acknowledgements 9
6 Author'sAddress 9
7 Appendix: Jean-Loup Gailly’sgzip utility 9
8 Appendix: SampleCRC Code. 10

1 Introduction

1.1 Purpose

The purpose of this specification isto define alossless compressed data format that:

¢ Isindependent of CPU type, operating system, file system, and character set, and hence can be used
for interchange;

¢ Can compress or decompress a data stream (as opposed to a randomly accessiblefile) to produce an-
other data stream, using only an a priori bounded amount of intermediate storage, and hence can be
used in data communications or similar structures such as Unix filters;

e Compresses datawith efficiency comparable to the best currently availabl e generd -purpose compres-
sion methods, and in particular considerably better than the “compress’ program;

¢ Can beimplemented readily in amanner not covered by patents, and hence can be practiced freely;

e |scompatiblewith thefile format produced by the current widely used gzip utility, in that conforming
decompressors will be able to read data produced by the existing gzip compressor.

The dataformat defined by this specification does not attempt to:

Deutsch Informational [Page 2]

RFC 1952 GZIP File Format Specification May 1996

¢ Provide random access to compressed data;

e Compress specialized data (e.g., raster graphics) as well as the best currently available specialized al-
gorithms.

1.2 Intended audience

This specification is intended for use by implementors of softwareto compress datainto gzip format and/or
decompress data from gzip format.

Thetext of the specification assumes a basic background in programming at thelevel of bitsand other prim-
itive data representations.

1.3 Scope

The specification specifies a compression method and a file format (the latter assuming only that afile can
store a sequence of arbitrary bytes). It does not specify any particular interface to afile system or anything
about character sets or encodings (except for file names and comments, which are optional).

1.4 Compliance

Unless otherwiseindicated below, a compliant decompressor must be able to accept and decompress any file
that conformsto all the specificationspresented here; acompliant compressor must producefilesthat conform
to al the specifications presented here. The material in the appendicesis not part of the specification per se
and is not relevant to compliance.

1.5 De€finitionsof termsand conventions used

byte: 8 bitsstored or transmitted as a unit (same as an octet). (For this specification, abyteis exactly 8 bits,
even on machines which store a character on anumber of bitsdifferent from8.) See below for the numbering
of bitswithin abyte.

1.6 Changesfrom previousversions

There have been no technical changes to the gzip format since version 4.1 of this specification. In version
4.2, some terminology was changed, and the sample CRC code was rewritten for clarity and to eliminatethe
requirement for the caller to do pre- and post-conditioning. Version 4.3 is a conversion of the specification
to RFC style.

Deutsch Informational [Page 3]

RFC 1952 GZIP File Format Specification May 1996

2 Detailed specification

2.1 Overall conventions

In the diagrams below, a box like this:

+-- -+

| | <-- the vertical bars might be mssing
+---+

represents one byte; abox like this:

represents a variable number of bytes.

Bytes stored within a computer do not have a“bit order”, since they are alwaystreated as a unit. However,
abyte considered as an integer between 0 and 255 does have amost- and | east-significant bit, and since we
write numbers with the most-significant digit on the | ft, we also write byteswith the most-significant bit on
the left. In the diagrams bel ow, we number the bits of a byte so that bit O isthe least-significant bit, i.e., the
bits are numbered:

Thisdocument doesnot addresstheissueof theorder inwhich bitsof abytearetransmitted on abit-sequential
medium, since the dataformat described hereis byte- rather than bit-oriented.

Within a computer, a number may occupy multiple bytes. All multi-byte numbers in the format described
here are stored with the | east-significant byte first (at the lower memory address). For example, the decimal
number 520 is stored as:

+ nore significant byte = 2 x 256
| ess significant byte = 8

+ ——

Deutsch Informational [Page 4]

RFC 1952 GZIP File Format Specification May 1996

2.2 Fileformat

A gzip file consists of a series of “members’ (compressed data sets). The format of each member is spec-
ified in the following section. The members simply appear one after another in the file, with no additional
information before, between, or after them.

2.3 Member format

Each member hasthe following structure:

e S T AR S S S S
[1D1]1D2] CM | FLG MT1 ME | XFL]| OS | (nore-->)
e S T AR S S S S

(if FLG.FEXTRA set)

Fo e - -+ - ——=——=—=—=—+
| XLEN |...XLEN bytes of "extra field"...| (nore-->)
Fo e - -+ - ——=——=—=—=—+

(if FLG.FNAME set)

| ...original file name, zero-terminated...| (nore-->)

|...file coment, zero-terminated...| (nore-->)

(if FLG.FHCRC set)

o - -+
| CRC16 |

o - -+

+==—=—=—== ==+
| ...conpressed blocks...| (nore-->)
+==—=—=—== ==+

0 1 2 3 4 5 6 7
S S

| CRC32 | | SI ZE |
e g R S S SRS

Deutsch Informational [Page 5]

RFC 1952 GZIP File Format Specification May 1996

2.3.1 Member header and trailer

ID1 (I Dentification 1)

ID2 (I Dentification 2)
These havethefixed valuesID1 = 31 (0x1f,\ 037), ID2 =139 (0x8b,\ 213), to identify thefileasbeing
in gzip format.

CM (Compression M ethod)

Thisidentifies the compression method used in the file. CM = 0-7 are reserved. CM = 8 denotes the
“deflate” compression method, which is the one customarily used by gzip and which is documented
elsewhere.

FLG (FLaGs)
Thisflag byteis divided into individua bits as follows:

bit O FTEXT

bit 1 FHCRC
bit 2 FEXTRA
bit 3 FNAMVE
bit 4 FCOMVENT
bit 5 reserved
bit 6 reserved
bit 7 reserved

If FTEXT isset, thefileis probably ASCII text. Thisisan optional indication, which the compressor
may set by checking a small amount of the input data to see whether any non-ASCII characters are
present. In case of doubt, FTEXT is cleared, indicating binary data. For systems which have different
fileformats for ascii text and binary data, the decompressor can use FTEXT to choose the appropriate
format. We deliberately do not specify the algorithm used to set this bit, since a compressor always
has the option of leaving it cleared and a decompressor always has the option of ignoringit and letting
some other program handle i ssues of data conversion.

If FHCRC is set, a CRC16 for the gzip header is present, immediately before the compressed data
The CRC16 consistsof thetwo least significant bytes of the CRC32 for al bytes of the gzip header up
to and not including the CRC16. [The FHCRC bit was never set by versionsof gzip upto 1.2.4, even
though it was documented with a different meaning in gzip 1.2.4.]

If FEXTRA is set, optiona extrafields are present, as described in afollowing section.

If FNAME isset, an original file name is present, terminated by a zero byte. The name must consist of
SO 8859-1 (LATIN-1) characters; on operating systems using EBCDIC or any other character set for
file names, the name must be translated to the |SO LATIN-1 character set. Thisisthe origina name of
the file being compressed, with any directory components removed, and, if the file being compressed
ison afile system with case insensitive names, forced to lower case. Thereisno origina file name if
the data was compressed from a source other than a named file; for example, if the source was stdin
on aUnix system, thereis no file name.

Deutsch Informational [Page 6]

RFC 1952 GZIP File Format Specification May 1996

If FCOMMENT is set, a zero-terminated file comment is present. Thiscomment isnot interpreted; it
isonly intended for human consumption. The comment must consist of SO 8859-1 (LATIN-1) char-
acters. Line breaks should be denoted by asingleline feed character (10 decimal).

Reserved FL G bits must be zero.

MTIME (Modification TIME)

Thisgivesthe most recent modification time of the original file being compressed. Thetimeisin Unix
format, i.e., seconds since 00:00:00 GMT, Jan. 1, 1970. (Note that this may cause problemsfor MS-
DOSand other systemsthat uselocal rather than Universal time.) If the compressed data did not come
fromafile, MTIME is set to the time at which compression started. MTIME = 0 means no time stamp
isavailable.

XFL (eXtraFLags)
These flags are available for use by specific compression methods. The “deflate” method (CM = 8)
setsthese flags as follows:

XFL = 2 - conpressor used nmaxi mum conpressi on,
sl owest al gorithm
XFL = 4 - conpressor used fastest algorithm

OS (Operating System)

Thisidentifies the type of file system on which compression took place. Thismay be useful in deter-
mining end-of-line convention for text files. The currently defined values are as follows:

0 - FAT filesystem (M5-DOS, OS/2, NT/Wn32)
1 - Anmiga

2 - VM5 (or OpenVMb)

3 - Unix

4 - VM CMVB

5 - Atari TOS

6 - HPFS filesystem (OS/2, NT)
7 - Macintosh

8 - Z-System

9 - CPIM

10 - TOPS-20

11 - NTFS fil esystem (NT)

12 - Q@OS

13 - Acorn RI SCCS
255 - unknown

XLEN (eXtra LENgth)
If FLG.FEXTRA issdt, thisgivesthe length of the optional extrafield. See below for details.

CRC32 (CRC-32)

This contains a Cyclic Redundancy Check value of the uncompressed data computed according to
CRC-32 agorithm used in the ISO 3309 standard and in section 8.1.1.6.2 of ITU-T recommendation

Deutsch Informational [Page 7]

RFC 1952 GZIP File Format Specification May 1996

V.42. (See http://www.iso.ch for ordering 1SO documents. See gopher://info.itu.ch for an online ver-
sionof ITU-T V.42.)

ISIZE (Input SIZE)
This containsthe size of the origina (uncompressed) input data modulo 2°32.

Extrafield If theFLG.FEXTRA bitisset, an “extrafield” ispresent in the header, with total length XLEN
bytes. It consists of a series of subfields, each of the form:

e T e BT e ey o3
[SI1]SI2] LEN |... LEN bytes of subfield data ...|
e T e BT e ey o3

Sl1 and SI2 provideasubfield 1D, typically two ASCI| | etters with some mnemonic value. Jean-Loup Gailly
<gzip@prep.ai.mit.edu> ismaintaining aregistry of subfield I Ds; please send him any subfield ID you wish
to use. Subfield IDswith SI2 = 0 are reserved for future use. The following IDs are currently defined:

SI'1 Sl 2 Dat a

0x41 ("A) Ox70 ("P) Apollo file type information
LEN givesthe length of the subfield data, excluding the 4 initial bytes.

Compliance A compliant compressor must produce files with correct ID1, ID2, CM, CRC32, and ISIZE,
but may set al the other fields in the fixed-length part of the header to default values (255 for OS, O for all
others). The compressor must set al reserved bitsto zero.

A compliant decompressor must check 1D1, ID2, and CM, and provide an error indication if any of these
have incorrect values. It must examine FEXTRA/XLEN, FNAME, FCOMMENT and FHCRC at least so
it can skip over the optional fields if they are present. It need not examine any other part of the header or
trailer; in particular, a decompressor may ignore FTEXT and OS and aways produce binary output, and
still be compliant. A compliant decompressor must give an error indication if any reserved bit is non-zero,
since such a bit could indicate the presence of anew field that would cause subsequent datato beinterpreted
incorrectly.

3 References

[1] “Information Processing - 8-bit single-byte coded graphic character sets - Part 1: Latin aphabet No.1”
(1SO 8859-1:1987). The ISO 8859-1 (L atin-1) character set is a superset of 7-bit ASCII. Files defining this
character set are available asiso_8859-1.* in ftp://ftp.uu.net/graphics/png/documents/

[2] 1SO 3309

Deutsch Informational [Page §]

RFC 1952 GZIP File Format Specification May 1996

[3] ITU-T recommendation V.42

[4] Deutsch, L.P,“"DEFLATE Compressed Data Format Specification”, available in ftp://ftp.uu.net/pub/
archiving/zip/doc/

[5] Gailly, J-L., GZIP documentation, available as gzip-* .tar in ftp://prep.ai.mit.edu/pub/gnu/

[6] Sarwate, D.V., “Computation of Cyclic Redundancy Checks via Table Look-Up”, Communications of
the ACM, 31(8), pp.1008-1013.

[7] Schwaderer, W.D., “CRC Calculation”, April 85 PC Tech Journal, pp.118-133.
[8] ftp://ftp.adel @i de.edu.au/pub/rocksoft/papers/crc_v3.txt, describing the CRC concept.

4 Security Considerations

Any data compression method involvesthe reduction of redundancy in the data. Consequently, any corrup-
tion of the datais likely to have severe effects and be difficult to correct. Uncompressed text, on the other
hand, will probably still be readable despite the presence of some corrupted bytes.

It isrecommended that systems using this data format provide some means of validating the integrity of the
compressed data, such as by setting and checking the CRC-32 check value.

5 Acknowledgements

Trademarks cited in this document are the property of their respective owners.

Jean-L oup Gailly designed thegzip format and wrote, withMark Adler, therelated software described inthis
specification. Glenn Randers-Pehrson converted this document to RFC and HTML format.

6 Author’'s Address

L. Peter Deutsch

Al addi n Enterprises
203 Santa Margarita Ave.
Menl o Park, CA 94025

Phone: (415) 322-0103 (AM only)
FAX: (415) 322-1734
EMai | : <ghost @l addi n. con®

Questions about the technical content of this specification can be sent by email to:

Deutsch Informational [Page 9]

RFC 1952 GZIP File Format Specification May 1996

Jean-Loup Gailly <gzip@rep.ai.mt.edu> and
Mar k Adl er <nmadl er @l ummi . cal t ech. edu>

Editoria comments on this specification can be sent by email to:

L. Peter Deutsch <ghost @l addi n. con> and
d enn Rander s- Pehr son <randeg@l umi . r pi . edu>

7 Appendix: Jean-Loup Gailly’sgzip utility

The most widely used implementation of gzip compression, and the original documentation on which this
specification is based, were created by Jean-Loup Gailly <gzip@prep.ai.mit.edu>. Since thisimplementa-
tion is a de facto standard, we mention some more of itsfeatures here. Again, the material in thissectionis
not part of the specification per se, and implementations need not follow it to be compliant.

When compressing or decompressing afile, gzip preserves the protection, ownership, and modification time
attributes on the local file system, since there is no provision for representing protection attributes in the
gzip file format itself. Since the file format includes a modification time, the gzip decompressor provides a
command line switch that assignsthe modification time from thefile, rather than the local modification time
of the compressed input, to the decompressed output.

8 Appendix: Sample CRC Code

The following sample code represents a practical implementation of the CRC (Cyclic Redundancy Check).
(See aso 1SO 3309 and ITU-T V.42 for aformal specification.)

The samplecodeisinthe ANSI C programming language. Non C users may find it easier to read with these
hints:

& Bi twi se AND oper at or.
- Bi twi se excl usi ve- OR operator.
>> Bitwi se right shift operator. \Wen applied to an

unsi gned quantity, as here, right shift inserts zero
bit(s) at the left.

! Logi cal NOT operator.

++ "n++" increnents the variable n.

OXNNN Ox introduces a hexadeci mal (base 16) constant.
Suffix L indicates a long value (at |east 32 bits).

[* Table of CRCs of all 8-bit nessages. */
unsi gned | ong crc_tabl e[256] ;

/* Flag: has the table been computed? Initially false. */
int crc_tablecomuted = 0;

Deutsch Informational [Page 10]

RFC 1952 GZIP File Format Specification

/*

Make the table for a fast CRC. */

voi d make_crc_tabl e(voi d)

{

1

/*

t

*/

unsi gned | ong c;
int n, k;

for (n = 0; n < 256; n++) {
¢ = (unsigned long) n;
for (k = 0; k <8; k++) {
if (c &1) {
c = 0xedbh88320L ~ (c >> 1);
} else {
c =c > 1;
}
}
crctable[n] = c;

1

crc_tabl econputed = 1;

Update a running crc with the bytes buf[0..len-1] and return
he updated crc. The crc should be initialized to zero.
post -condi ti oning (one’'s conpl enent)
function so it shouldn’t be done by the caller.

unsi gned long crc = OL;

whil e (read-buffer(buffer, length) != EOF) {
crc = updatecrc(crc, buffer, length);

1

if (crc !'= original crc) error();

unsi gned | ong update_crc(unsigned | ong crc,

{

Deutsch

unsi gned char *buf, int |en)
unsigned long ¢ = crc ~ OxfffffffflL;
int n;

if (!crc_tabl econputed)
make_crc_tabl e();
for (n = 0; n < len; n++)

}
return c ~ OxffffffffL;

c =crc_table[(c ~ buf[n]) & Oxff] = (c >> 8);

Informational

is performed within this
Usage exanpl e:

May 1996

[Page 11]

RFC 1952 GZIP File Format Specification May 1996

/* Return the CRC of the bytes buf[0..len-1]. */
unsi gned |1 ong crc(unsigned char *buf, int |en)
{

return updatecrc(OL, buf, len);

1

Deutsch Informational [Page 12]

