
Network Working Group J. Vollbrecht
Request for Comments: 4137 Meetinghouse Data Communications
Category: Informational P. Eronen

Nokia
N. Petroni

University of Maryland
Y. Ohba

TARI
August 2005

State Machines for Extensible Authentication Protocol (EAP)
Peer and Authenticator

Status of This Memo

This memo provides information for the Internet community. It does not specify an Internet standard of any
kind. Distribution of this memo is unlimited.

Copyright Notice

Copyright (C) The Internet Society (2005).

Abstract

This document describes a set of state machines for Extensible Authentication Protocol (EAP) peer, EAP
stand-alone authenticator (non-pass-through), EAP backend authenticator (for use on Authentication,
Authorization, and Accounting (AAA) servers), and EAP full authenticator (for both local and pass-through).
This set of state machines shows how EAP can be implemented to support deployment in either a
peer/authenticator or peer/authenticator/AAA Server environment. Thepeer and stand-alone authenticator
machines are illustrative of how the EAP protocol defined in RFC 3748 may be implemented. The backend
and full/pass-through authenticators illustrate how EAP/AAA protocol support defined in RFC 3579 may be
implemented. Wherethere are differences, RFC 3748 and RFC 3579 are authoritative.

The state machines are based on the EAP "Switch" model. This model includes events and actions for the
interaction between the EAP Switch and EAP methods.A brief description of the EAP "Switch" model is
given in the Introduction section.

The state machine and associated model are informative only. Implementations may achieve the same results
using different methods.

Vollbrecht, et al. Informational [Page 1]

RFC 4137 EAP State Machines August 2005

Table of Contents

1. Introduction:The EAP Switch Model...3
2. Specificationof Requirements...4
3. NotationalConventions Used in State Diagrams ... 4

3.1. NotationalSpecifics ...4
3.2. StateMachine Symbols .. 6
3.3. DocumentAuthority ...7

4. PeerState Machine .. 8
4.1. Interface between Peer State Machine and Lower Layer ... 9
4.2. Interface between Peer State Machine and Methods .. 11
4.3. PeerState Machine Local Variables ...12
4.4. PeerState Machine Procedures .. 13
4.5. PeerState Machine States .. 14

5. Stand-AloneAuthenticator State Machine .. 16
5.1. Interface between Stand-Alone Authenticator State Machine and Lower Layer 17
5.2. Interface between Stand-Alone Authenticator State Machine and Methods 19
5.3. Stand-AloneAuthenticator State Machine Local Variables ...20
5.4. EAPStand-Alone Authenticator Procedures ... 21
5.5. EAPStand-Alone Authenticator States .. 23

6. EAPBackend Authenticator .. 25
6.1. Interface between Backend Authenticator State Machine and Lower Layer 27
6.2. Interface between Backend Authenticator State Machine .. 28
6.3. Backend Authenticator State Machine Local Variables ...28
6.4. EAPBackend Authenticator Procedures .. 29
6.5. EAPBackend Authenticator States .. 29

7. EAPFull Authenticator ... 30
7.1. Interface between Full Authenticator State Machine and Lower Layers ... 31
7.2. Interface between Full Authenticator State Machine and Methods ...33
7.3. FullAuthenticator State Machine Local Variables ...33
7.4. EAPFull Authenticator Procedures ... 34
7.5. EAPFull Authenticator States ... 34

8. ImplementationConsiderations ...36
8.1 Robustness ..36
8.2 Method/Method and Method/Lower-Layer Interfaces ...36
8.3 Peer State Machine Interoperability with Deployed Implementatios...36

9. SecurityConsiderations ...37
10. Acknowledgements ..38
11. References .. 38

11.1. Normative References ...38
11.2. Informative References ..38

Appendix. ASCII Versions of State Diagrams ... 39
A.1. EAPPeer State Machine (Figure 3) .. 39
A.2. EAPStand-Alone Authenticator State Machine (Figure 4) .. 42
A.3. EAPBackend Authenticator State Machine (Figure 5).. 45
A.4. EAPFull Authenticator State Machine (Figures 6 and 7).. 48

Vollbrecht, et al. Informational [Page 2]

RFC 4137 EAP State Machines August 2005

1. Intr oduction: The EAP Switch Model

This document offers a proposed state machine for RFCs [RFC3748] and [RFC3579]. There are state
machines for the peer, the stand-alone authenticator, a backend authenticator, and a full/pass-through
authenticator. Accompanying each state machine diagram is a description of the variables, the functions, and
the states in the diagram. Whenever possible, the same notation has been used in each of the state machines.

An EAP authentication consists of one or more EAP methods in sequence followed by an EAP Success or
EAP Failure sent from the authenticator to the peer. The EAP switches control negotiation of EAP methods
and sequences of methods.

Peer Peer | Authenticator Auth
Method | Method

\ | /
\ | /
Peer | Auth
EAP <-----|----------> EAP
Switch | Switch

Figure 1: EAP Switch Model

At both the peer and authenticator, one or more EAP methods exist. TheEAP switches select which
methods each is willing to use, and negotiate between themselves to pick a method or sequence of methods.

Note that the methods may also have state machines. The details of these are outside the scope of this paper.

Peer | Authenticator | Backend
| / Local |
| / Method |

Peer | Auth | Backend
EAP -|-----> EAP | --> EAP
Switch | Switch | / Server

| \ | /
| \ pass-through |
| |

Figure 2: EAP Pass-Through Model

The Full/Pass-Through state machine allows an NAS or edge device to pass EAP Response messages to a
backend server where the authentication method resides. This paper includes a state machine for the EAP
authenticator that supports both local and pass-through methods as well as a state machine for the backend
authenticator existing at the AAA server. A simple stand-alone authenticator is also provided to show a
basic, non-pass-through authenticator’s behavior.

Vollbrecht, et al. Informational [Page 3]

RFC 4137 EAP State Machines August 2005

This document describes a set of state machines that can manage EAP authentication from the peer to an
EAP method on the authenticator or from the peer through the authenticator pass-through method to the EAP
method on the backend EAP server.

Some environments where EAP is used, such as PPP, may support peer-to-peer operation. That is, both
parties act as peers and authenticators at the same time, in two simultaneous and independent EAP
conversations. Inthis case, the implementation at each node has to perform demultiplexing of incoming
EAP packets. EAPpackets with code set to Response are delivered to the authenticator state machine, and
EAP packets with code set to Request, Success, or Failure are delivered to the peer state machine.

The state diagrams presented in this document have been coordinated with the diagrams in [1X-2004]. The
format of the diagrams is adapted from the format therein. The interface between the state machines defined
here and the IEEE 802.1X-2004 state machines is also explained in Appendix F of [1X-2004].

2. Specificationof Requirements

In this document, several words are used to signify the requirements of the specification. These words are
often capitalized. The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" are to be interpreted as
described in [RFC2119].

3. NotationalConventions Used in State Diagrams

3.1. NotationalSpecifics

The following state diagrams have been completed based on the conventions specified in [1X-2004], section
8.2.1. Thecomplete text is reproduced here:

State diagrams are used to represent the operation of the protocol by a number of cooperating state
machines, each comprising a group of connected, mutually exclusive states. Onlyone state of each
machine can be active at any giv en time.

Each state is represented in the state diagram as a rectangular box, divided into two parts by a
horizontal line. The upper part contains the state identifier, written in uppercase letters. The lower
part contains any procedures that are executed upon entry to the state.

All permissible transitions between states are represented by arrows, the arrowhead denoting the
direction of the possible transition. Labels attached to arrows denote the condition(s) that must be
met in order for the transition to take place. All conditions are expressions that evaluate to TRUE or
FALSE; if a condition evaluates to TRUE, then the condition is met. The label UCT denotes an
unconditional transition (i.e., UCT always evaluates to TRUE). A transition that is global in nature
(i.e., a transition that occurs from any of the possible states if the condition attached to the arrow is
met) is denoted by an open arrow; i.e., no specific state is identified as the origin of the transition.
When the condition associated with a global transition is met, it supersedes all other exit conditions
including UCT. The special global condition BEGIN supersedes all other global conditions, and once
asserted it remains asserted until all state blocks have executed to the point that variable assignments
and other consequences of their execution remain unchanged.

Vollbrecht, et al. Informational [Page 4]

RFC 4137 EAP State Machines August 2005

On entry to a state, the procedures defined for the state (if any) are executed exactly once, in the order
that they appear on the page. Each action is deemed to be atomic; i.e., execution of a procedure
completes before the next sequential procedure starts to execute. Noprocedures execute outside a
state block. The procedures in only one state block execute at a time, even if the conditions for
execution of state blocks in different state machines are satisfied, and all procedures in an executing
state block complete execution before the transition to and execution of any other state block occurs.
That is, the execution of any state block appears to be atomic with respect to the execution of any
other state block, and the transition condition to that state from the previous state is TRUE when
execution commences. The order of execution of state blocks in different state machines is undefined
except as constrained by their transition conditions.A variable that is set to a particular value in a
state block retains this value until a subsequent state block executes a procedure that modifies the
value.

On completion of all the procedures within a state, all exit conditions for the state (including all
conditions associated with global transitions) are evaluated continuously until one of the conditions is
met. Thelabel ELSE denotes a transition that occurs if none of the other conditions for transitions
from the state are met (i.e., ELSE evaluates to TRUE if all other possible exit conditions from the
state evaluate to FALSE). Wheretwo or more exit conditions with the same level of precedence
become TRUE simultaneously, the choice as to which exit condition causes the state transition to take
place is arbitrary.

Where it is necessary to split a state machine description across more than one diagram, a transition
between two states that appear on different diagrams is represented by an exit arrow drawn with
dashed lines, plus a reference to the diagram that contains the destination state. Similarly, dashed
arrows and a dashed state box are used on the destination diagram to show the transition to the
destination state. In a state machine that has been split in this way, any global transitions that can
cause entry to states defined in one of the diagrams are deemed potential exit conditions for all the
states of the state machine, regardless of which diagram the state boxes appear in.

Should a conflict exist between the interpretation of a state diagram and either the corresponding
global transition tables or the textual description associated with the state machine, the state diagram
takes precedence. The interpretation of the special symbols and operators used in the state diagrams
is as defined in Section 3.2; these symbols and operators are derived from the notation of the C++
programming language, ISO/IEC 14882. If a boolean variable is described in this clause as being set,
it has or is assigned the value TRUE; if it is described as being reset or clear, it has the value FALSE.

In addition to the above notation, there are a couple of clarifications specific to this document. First, all
boolean variables are initialized to FALSE before the state machine execution begins. Second,the following
notational shorthand is specific to this document:

<variable> = <expression1> | <expression2> | ...

Execution of a statement of this form will result in <variable> having a value of exactly one of the
expressions. Thelogic for which of those expressions gets executed is outside of the state machine
and could be environmental, configurable, or based on another state machine, such as that of the
method.

Vollbrecht, et al. Informational [Page 5]

RFC 4137 EAP State Machines August 2005

3.2. StateMachine Symbols

()

Used to force the precedence of operators in Boolean expressions and to delimit the argument(s) of
actions within state boxes.

;

Used as a terminating delimiter for actions within state boxes. Ifa state box contains multiple
actions, the order of execution follows the normal English language conventions for reading text.

=

Assignment action. The value of the expression to the right of the operator is assigned to the variable
to the left of the operator. If this operator is used to define multiple assignments (e.g., a = b = X), the
action causes the value of the expression following the right-most assignment operator to be assigned
to all the variables that appear to the left of the right-most assignment operator.

!

Logical NOT operator.

&&

Logical AND operator.

||

Logical OR operator.

if...then...

Conditional action. If the Boolean expression following the "if" evaluates to TRUE, then the action
following the "then" is executed.

{ statement 1, ... statement N }

Compound statement. Braces are used to group statements that are executed together as if they were
a single statement.

!=

Inequality. Evaluates to TRUE if the expression to the left of the operator is not equal in value to the
expression to the right.

Vollbrecht, et al. Informational [Page 6]

RFC 4137 EAP State Machines August 2005

==

Equality. Evaluates to TRUE if the expression to the left of the operator is equal in value to the
expression to the right.

>

Greater than. Evaluates to TRUE if the value of the expression to the left of the operator is greater
than the value of the expression to the right.

<=

Less than or equal to. Evaluates to TRUE if the value of the expression to the left of the operator is
either less than or equal to the value of the expression to the right.

++

Increment the preceding integer operator by 1.

+

Arithmetic addition operator.

&

Bitwise AND operator.

3.3. DocumentAuthority

Should a conflict exist between the interpretation of a state diagram and either the corresponding global
transition tables or the textual description associated with the state machine, the state diagram takes
precedence. Whena discrepancy occurs between any part of this document (text or diagram) and any of the
related documents ([RFC3748], [RFC3579], etc.), the latter (the other document) is considered authoritative
and takes precedence.

Vollbrecht, et al. Informational [Page 7]

RFC 4137 EAP State Machines August 2005

4. Peer State Machine

The following is a diagram of the EAP peer state machine. Also included is an explanation of the primitives
and procedures referenced in the diagram, as well as a clarification of notation.

IDLE

SEND_RESPONSE

lastId = reqId

lastRespData = eapRespData

eapReq = FALSE

eapResp = TRUE

idleWhile = ClientTimeout

UCT

DISABLED

INITIALIZE

selectedMethod = NONE

methodState = NONE

allowNotifications = TRUE

decision = FAIL

idleWhile = ClientTimeout

lastId = NONE

eapSuccess = FALSE

eapFail = FALSE

eapKeyData = NONE

eapKeyAvailable = FALSE

eapRestart = FALSE

portEnabled

UCT

RETRANSMIT

eapRespData = lastRespData

eapReq

!portEnabled

NOTIFICATION

processNotify(eapReqData)

eapRespData = buildNotify(reqId)

else

rxReq &&

(reqId == lastId)

UCT

(methodState != CONT) &&

((rxFailure && decision != UNCOND_SUCC) ||

(rxSuccess && decision == FAIL)) &&

(reqId == lastId)

rxSuccess &&

(reqId == lastId) &&

(decision != FAIL)

UCT

UCT

GET_METHOD

if (allowMethod(reqMethod)) {

 selectedMethod = reqMethod

 methodState = INIT

} else {

 eapRespData = buildNak(reqId)

}

else

rxReq &&

(reqId != lastId) &&

(reqMethod ==

selectedMethod) &&

(methodState != DONE)

rxReq &&

(reqId != lastId) &&

(selectedMethod == NONE) &&

(reqMethod != IDENTITY) &&

(reqMethod != NOTIFICATION)

ignore

IDENTITY

processIdentity(eapReqData)

eapRespData = buildIdentity(reqId)

rxReq &&

(reqId != lastId) &&

(selectedMethod == NONE) &&

(reqMethod == IDENTITY)

rxReq &&

(reqId != lastId) &&

(reqMethod == NOTIFICATION) &&

allowNotifications

UCT

else

FAILURE

eapFail = TRUE

SUCCESS

if (eapKeyData != NONE)

 eapKeyAvailable = TRUE

eapSuccess = TRUE

(methodState == DONE) &&

(decision == FAIL)

selectedMethod == reqMethod

RECEIVED

(rxReq, rxSuccess, rxFailure, reqId, reqMethod) =

 parseEapReq(eapReqData)

METHOD

intCheck = m.integrityCheck(eapReqData)

if (intCheck) {

 m.process(eapReqData)

 methodState = CONT | MAY_CONT | DONE

 decision = FAIL | COND_SUCC | UNCOND_SUCC

 allowNotifications = TRUE | FALSE

 eapRespData = m.buildResp(reqId)

eapKeyData
 = NONE | m.getKey()

}

(altAccept && decision != FAIL) ||

(idleWhile == 0 &&

decision == UNCOND_SUCC)

altReject ||

(idleWhile == 0 &&

decision != UNCOND_SUCC) ||

(altAccept &&

methodState != CONT &&

decision == FAIL)

METHOD

ignore = m.check(eapReqData)

if (!ignore) {

 (methodState, decision, allowNotifications) =

 m.process(eapReqData)

 /* methodState is CONT, MAY_CONT, or
DONE
 */

 /* decision is
 FAIL
,
COND_SUCC
, or
UNCOND_SUCC
 */

 eapRespData = m.buildResp(reqId)

 if (m.isKeyAvailable())

 eapKeyData
 = m.getKey()

}

DISCARD

eapReq = FALSE

eapNoResp = TRUE

eapRestart && portEnabled

Figure 3: EAP Peer State Machine

Vollbrecht, et al. Informational [Page 8]

RFC 4137 EAP State Machines August 2005

4.1. Interfacebetween Peer State Machine and Lower Layer

The lower layer presents messages to the EAP peer state machine by storing the packet in eapReqData and
setting the eapReq signal to TRUE. Notethat despite the name of the signal, the lower layer does not
actually inspect the contents of the EAP packet (it could be a Success or Failure message instead of a
Request).

When the EAP peer state machine has finished processing the message, it sets either eapResp or eapNoResp.
If it sets eapResp, the corresponding response packet is stored in eapRespData. The lower layer is
responsible for actually transmitting this message. When the EAP peer state machine authentication is
complete, it will set eapSuccess or eapFailure to indicate to the lower layer that the authentication has
succeeded or failed.

4.1.1. Variables (Lower Layer to Peer)

eapReq (boolean)

Set to TRUE in lower layer, FALSE in peer state machine. Indicates that a request is available in the
lower layer.

eapReqData (EAP packet)

Set in lower layer when eapReq is set to TRUE. Thecontents of the available request.

portEnabled (boolean)

Indicates that the EAP peer state machine should be ready for communication. This is set to TRUE
when the EAP conversation is started by the lower layer. If at any point the communication port or
session is not available, portEnabled is set to FALSE, and the state machine transitions to
DISABLED. To avoid unnecessary resets, the lower layer may dampen link down indications when it
believes that the link is only temporarily down and that it will soon be back up (see [RFC3748],
Section 7.12). In this case, portEnabled may not always be equal to the "link up" flag of the lower
layer.

idleWhile (integer)

Outside timer used to indicate how much time remains before the peer will time out while waiting for
a valid request.

eapRestart (boolean)

Indicates that the lower layer would like to restart authentication.

altAccept (boolean)

Alternate indication of success, as described in [RFC3748].

Vollbrecht, et al. Informational [Page 9]

RFC 4137 EAP State Machines August 2005

altReject (boolean)

Alternate indication of failure, as described in [RFC3748].

4.1.2. Variables (peer to lower layer)

eapResp (boolean)

Set to TRUE in peer state machine, FALSE in lower layer. Indicates that a response is to be sent.

eapNoResp (boolean)

Set to TRUE in peer state machine, FALSE in lower layer. Indicates that the request has been
processed, but that there is no response to send.

eapSuccess (boolean)

Set to TRUE in peer state machine, FALSE in lower layer. Indicates that the peer has reached the
SUCCESS state.

eapFail (boolean)

Set to TRUE in peer state machine, FALSE in lower layer. Indicates that the peer has reached the
FAILURE state.

eapRespData (EAP packet)

Set in peer state machine when eapResp is set to TRUE. TheEAP packet that is the response to send.

eapKeyData (EAP key)

Set in peer state machine when keying material becomes available. Setduring the METHOD state.
Note that this document does not define the structure of the type "EAP key". We expect that it will be
defined in [Keying].

eapKeyAv ailable (boolean)

Set to TRUE in the SUCCESS state if keying material is available. Theactual key is stored in
eapKeyData.

4.1.3. Constants

ClientTimeout (integer)

Configurable amount of time to wait for a valid request before aborting, initialized by
implementation-specific means (e.g., a configuration setting).

Vollbrecht, et al. Informational [Page 10]

RFC 4137 EAP State Machines August 2005

4.2. Interfacebetween Peer State Machine and Methods

IN: eapReqData (includes reqId)

OUT: ignore, eapRespData, allowNotifications, decision

IN/OUT: methodState, (method-specific state)

The following describes the interaction between the state machine and EAP methods.

If methodState==INIT, the method starts by initializing its own method-specific state.

Next, the method must decide whether to process the packet or to discard it silently. If the packet appears to
have been sent by someone other than the legitimate authenticator (for instance, if message integrity check
fails) and the method is capable of treating such situations as non-fatal, the method can set ignore=TRUE. In
this case, the method should not modify any other variables.

If the method decides to process the packet, it behaves as follows.

o It updates its own method-specific state.

o If the method has derived keying material it wants to export, it stores the keying material to eapKeyData.

o It creates a response packet (with the same identifier as the request) and stores it to eapRespData.

o It sets ignore=FALSE.

Next, the method must update methodState and decision according to the following rules.

methodState=CONT: The method always continues at this point (and the
peer wants to continue it). The decision variable is always set to FAIL.

methodState=MAY_CONT: At this point, the authenticator can decide
either to continue the method or to end the conversation. Thedecision variable tells us what to do if
the conversation ends. If the current situation does not satisfy the peer’s security policy (that is, if the
authenticator now decides to allow access, the peer will not use it), set decision=FAIL. Otherwise,
set decision=COND_SUCC.

methodState=DONE: The method never continues at this point (or the
peer sees no point in continuing it).

If either (a) the authenticator has informed us that it will not allow access, or (b) we’re not willing to
talk to this authenticator (e.g., our security policy is not satisfied), set decision=FAIL. (Note that this
state can occur even if the method still has additional messages left, if continuing it cannot change the
peer’s decision to success).

If both (a) the server has informed us that it will allow access, and the next packet will be EAP
Success, and (b) we’re willing to use this access, set decision=UNCOND_SUCC.

Vollbrecht, et al. Informational [Page 11]

RFC 4137 EAP State Machines August 2005

Otherwise, we do not know what the server’s decision is, but are willing to use the access if the server
allows. Inthis case, set decision=COND_SUCC.

Finally, the method must set the allowNotifications variable. Ifthe new methodState is either CONT or
MAY_CONT, and if the method specification does not forbid the use of Notification messages, set
allowNotifications=TRUE. Otherwise,set allowNotifications=FALSE.

4.3. Peer State Machine Local Variables

4.3.1. Long-Term (Maintained between Packets)

selectMethod (EAP type)

Set in GET_METHOD state. The method that the peer believes is currently "in progress"

methodState (enumeration)

As described above.

lastId (integer)

0-255 or NONE. Set in SEND_RESPONSE state. The EAP identifier value of the last request.

lastRespData (EAP packet)

Set in SEND_RESPONSE state. The EAP packet last sent from the peer.

decision (enumeration)

As described above.

NOTE: EAP type can be normal type (0..253,255), or an extended type consisting of type 254, Vendor-Id,
and Vendor-Type.

4.3.2. Short-Term (Not Maintained between Packets)

rxReq (boolean)

Set in RECEIVED state. Indicates that the current received packet is an EAP request.

rxSuccess (boolean)

Set in RECEIVED state. Indicates that the current received packet is an EAP Success.

rxFailure (boolean)

Set in RECEIVED state. Indicates that the current received packet is an EAP Failure.

Vollbrecht, et al. Informational [Page 12]

RFC 4137 EAP State Machines August 2005

reqId (integer)

Set in RECEIVED state. The identifier value associated with the current EAP request.

reqMethod (EAP type)

Set in RECEIVED state. The method type of the current EAP request.

ignore (boolean)

Set in METHOD state. Indicates whether the method has decided to drop the current packet.

4.4. Peer State Machine Procedures

NOTE: For method procedures, the method uses its internal state in addition to the information provided by
the EAP layer. The only arguments that are explicitly shown as inputs to the procedures are those provided
to the method by EAP. Those inputs provided by the method’s internal state remain implicit.

parseEapReq()

Determine the code, identifier value, and type of the current request. In the case of a parsing error
(e.g., the length field is longer than the received packet), rxReq, rxSuccess, and rxFailure will all be
set to FALSE. Thevalues of reqId and reqMethod may be undefined as a result. Returns three
booleans, one integer, and one EAP type.

processNotify()

Process the contents of Notification Request (for instance, display it to the user or log it). The return
value is undefined.

buildNotify()

Create the appropriate notification response. Returns an EAP packet.

processIdentity()

Process the contents of Identity Request. Return value is undefined.

buildIdentity()

Create the appropriate identity response. Returns an EAP packet.

m.check()

Method-specific procedure to test for the validity of a message. Returns a boolean.

Vollbrecht, et al. Informational [Page 13]

RFC 4137 EAP State Machines August 2005

m.process()

Method procedure to parse and process a request for that method. Returns a methodState
enumeration, a decision enumeration, and a boolean.

m.buildResp()

Method procedure to create a response message. Returns an EAP packet.

m.getKey()

Method procedure to obtain key material for use by EAP or lower layers. Returns an EAP key.

4.5. Peer State Machine States

DISABLED

This state is reached whenever service from the lower layer is interrupted or unavailable. Immediate
transition to INITIALIZE occurs when the port becomes enabled.

INITIALIZE

Initializes variables when the state machine is activated.

IDLE

The state machine spends most of its time here, waiting for something to happen.

RECEIVED

This state is entered when an EAP packet is received. Thepacket header is parsed here.

GET_METHOD

This state is entered when a request for a new type comes in. Either the correct method is started, or
a Nak response is built.

METHOD

The method processing happens here. The request from the authenticator is processed, and an
appropriate response packet is built.

SEND_RESPONSE

This state signals the lower layer that a response packet is ready to be sent.

Vollbrecht, et al. Informational [Page 14]

RFC 4137 EAP State Machines August 2005

DISCARD

This state signals the lower layer that the request was discarded, and no response packet will be sent
at this time.

IDENTITY

Handles requests for Identity method and builds a response.

NOTIFICATION

Handles requests for Notification method and builds a response.

RETRANSMIT

Retransmits the previous response packet.

SUCCESS

A final state indicating success.

FAILURE

A final state indicating failure.

Vollbrecht, et al. Informational [Page 15]

RFC 4137 EAP State Machines August 2005

5. Stand-AloneAuthenticator State Machine

The following is a diagram of the stand-alone EAP authenticator state machine. This diagram should be
used for those interested in a self-contained, or non-pass-through, authenticator. Included is an explanation
of the primitives and procedures referenced in the diagram, as well as a clarification of notation.

UCT

UCT
ignore

IDLE

SEND_REQUEST

retransCount = 0

lastReqData = eapReqData

eapResp = FALSE

eapReq = TRUE

UCT

DISABLED

INITIALIZE

currentId = NONE

eapSuccess = FALSE

eapFail = FALSE

eapTimeout = FALSE

eapKeyData = NONE

eapKeyAvailable = FALSE

eapRestart = FALSE

DISCARD

eapResp = FALSE

eapNoReq = TRUE

SUCCESS

eapReqData = buildSuccess(currentId)

if (eapKeyData != NONE)

 eapKeyAvailable = TRUE

eapSuccess = TRUE

FAILURE

eapReqData = buildFailure(currentId)

eapFail = TRUE

NAK

m.reset()

Policy.update(<...>)

UCT

decision == FAILURE
 decision == SUCCESS

methodState == END

SELECT_ACTION

decision = Policy.getDecision()

rxResp &&

(respId == currentId) &&

(respMethod == currentMethod)

rxResp &&

(respId == currentId) &&

(respMethod==NAK ||

respMethod==EXPANDED_NAK) &&

(
methodState == PROPOSED)

RETRANSMIT

retransCount++

if (retransCount <= MaxRetrans) {

 eapReqData = lastReqData

 eapReq = TRUE

}

else

eapResp

else

retransWhile==0

!portEnabled

retransCount > MaxRetrans

portEnabled

UCT

TIMEOUT_FAILURE

eapTimeout = TRUE

INTEGRITY_CHECK

ignore =

 m.check(eapRespData)

METHOD_RESPONSE

m.process(eapRespData)

if (m.isDone()) {

 Policy.update(<...>)

 eapKeyData = m.getKey()

 methodState = END

} else

 methodState = CONTINUE

METHOD_REQUEST

currentId = nextId(currentId)

eapReqData = m.buildReq(currentId)

methodTimeout = m.getTimeout()

PROPOSE_METHOD

currentMethod = Policy.getNextMethod()

m.init()

if (currentMethod==IDENTITY ||

 currentMethod==NOTIFICATION)

 methodState = CONTINUE

else

 methodState = PROPOSED

else

!ignore

else

UCT

retransWhile = calculateTimeout(retransCount, eapSRTT, eapRTTVAR, methodTimeout)

/* SUCCESS, FAILURE, or CONTINUE */

RECEIVED

(rxResp,respId,respMethod)=

 parseEapResp(eapRespData)

eapRestart && portEnabled

Figure 4: EAP Stand-Alone Authenticator State Machine

Vollbrecht, et al. Informational [Page 16]

RFC 4137 EAP State Machines August 2005

5.1. Interfacebetween Stand-Alone Authenticator State Machine and Lower Layer

The lower layer presents messages to the EAP authenticator state machine by storing the packet in
eapRespData and setting the eapResp signal to TRUE.

When the EAP authenticator state machine has finished processing the message, it sets one of the signals
eapReq, eapNoReq, eapSuccess, and eapFail. If it sets eapReq, eapSuccess, or eapFail, the corresponding
request (or success/failure) packet is stored in eapReqData. The lower layer is responsible for actually
transmitting this message.

5.1.1. Variables (Lower Layer to Stand-Alone Authenticator)

eapResp (boolean)

Set to TRUE in lower layer, FALSE in authenticator state machine. Indicates that an EAP response is
available for processing.

eapRespData (EAP packet)

Set in lower layer when eapResp is set to TRUE. TheEAP packet to be processed.

portEnabled (boolean)

Indicates that the EAP authenticator state machine should be ready for communication. This is set to
TRUE when the EAP conversation is started by the lower layer. If at any point the communication
port or session is not available, portEnabled is set to FALSE, and the state machine transitions to
DISABLED. To avoid unnecessary resets, the lower layer may dampen link down indications when it
believes that the link is only temporarily down and that it will soon be back up (see [RFC3748],
Section 7.12). In this case, portEnabled may not always be equal to the "link up" flag of the lower
layer.

retransWhile (integer)

Outside timer used to indicate how long the authenticator has waited for a new (valid) response.

eapRestart (boolean)

Indicates that the lower layer would like to restart authentication.

eapSRTT (integer)

Smoothed round-trip time. (See [RFC3748], Section 4.3.)

eapRTTVAR (integer)

Round-trip time variation. (See[RFC3748], Section 4.3.)

Vollbrecht, et al. Informational [Page 17]

RFC 4137 EAP State Machines August 2005

5.1.2. Variables (Stand-Alone Authenticator To Lower Layer)

eapReq (boolean)

Set to TRUE in authenticator state machine, FALSE in lower layer. Indicates that a new EAP request
is ready to be sent.

eapNoReq (boolean)

Set to TRUE in authenticator state machine, FALSE in lower layer. Indicates the most recent
response has been processed, but there is no new request to send.

eapSuccess (boolean)

Set to TRUE in authenticator state machine, FALSE in lower layer. Indicates that the state machine
has reached the SUCCESS state.

eapFail (boolean)

Set to TRUE in authenticator state machine, FALSE in lower layer. Indicates that the state machine
has reached the FAILURE state.

eapTimeout (boolean)

Set to TRUE in the TIMEOUT_FAILURE state if the authenticator has reached its maximum number
of retransmissions without receiving a response.

eapReqData (EAP packet)

Set in authenticator state machine when eapReq, eapSuccess, or eapFail is set to TRUE. Theactual
EAP request to be sent (or success/failure).

eapKeyData (EAP key)

Set in authenticator state machine when keying material becomes available. Setduring the
METHOD state. Note that this document does not define the structure of the type "EAP key". We
expect that it will be defined in [Keying].

eapKeyAv ailable (boolean)

Set to TRUE in the SUCCESS state if keying material is available. Theactual key is stored in
eapKeyData.

Vollbrecht, et al. Informational [Page 18]

RFC 4137 EAP State Machines August 2005

5.1.3. Constants

MaxRetrans (integer)

Configurable maximum for how many retransmissions should be attempted before aborting.

5.2. Interfacebetween Stand-Alone Authenticator State Machine and Methods

IN: eapRespData, methodState

OUT: ignore, eapReqData

IN/OUT: currentId, (method-specific state), (policy)

The following describes the interaction between the state machine and EAP methods.

m.init (in: -, out: -)

When the method is first started, it must initialize its own method-specific state, possibly using some
information from Policy (e.g., identity).

m.buildReq (in: integer, out: EAP packet)

Next, the method creates a new EAP Request packet, with the given identifier value, and updates its method-
specific state accordingly.

m.getTimeout (in: -, out: integer or NONE)

The method can also provide a hint for retransmission timeout with m.getTimeout.

m.check (in: EAP packet, out: boolean)

When a new EAP Response is received, the method must first decide whether to process the packet or to
discard it silently. If the packet looks like it was not sent by the legitimate peer (e.g., if it has an invalid
Message Integrity Check (MIC), which should never occur), the method can indicate this by returning
FALSE. Inthis case, the method should not modify its own method-specific state.

m.process (in: EAP packet, out: -)

m.isDone (in: -, out: boolean)

m.getKey (in: -, out: EAP key or NONE)

Next, the method processes the EAP Response and updates its own method-specific state. Now the options
are to continue the conversation (send another request) or to end this method.

Vollbrecht, et al. Informational [Page 19]

RFC 4137 EAP State Machines August 2005

If the method wants to end the conversation, it

o Tells Policy about the outcome of the method and possibly other information.

o If the method has derived keying material it wants to export, returns it from m.getKey().

o Indicates that the method wants to end by returning TRUE from m.isDone().

Otherwise, the method continues by sending another request, as described earlier.

5.3. Stand-AloneAuthenticator State Machine Local Variables

5.3.1. Long-Term (Maintained between Packets)

currentMethod (EAP type)

EAP type, IDENTITY, or NOTIFICATION.

currentId (integer)

0-255 or NONE. Usually updated in PROPOSE_METHOD state. Indicates the identifier value of
the currently outstanding EAP request.

methodState (enumeration)

As described above.

retransCount (integer)

Reset in SEND_REQUEST state and updated in RETRANSMIT state. Current number of
retransmissions.

lastReqData (EAP packet)

Set in SEND_REQUEST state. EAP packet containing the last sent request.

methodTimeout (integer)

Method-provided hint for suitable retransmission timeout, or NONE.

5.3.2. Short-Term (Not Maintained between Packets)

rxResp (boolean)

Set in RECEIVED state. Indicates that the current received packet is an EAP response.

Vollbrecht, et al. Informational [Page 20]

RFC 4137 EAP State Machines August 2005

respId (integer)

Set in RECEIVED state. The identifier from the current EAP response.

respMethod (EAP type)

Set in RECEIVED state. The method type of the current EAP response.

ignore (boolean)

Set in METHOD state. Indicates whether the method has decided to drop the current packet.

decision (enumeration)

Set in SELECT_ACTION state.Temporarily stores the policy decision to succeed, fail, or continue.

5.4. EAPStand-Alone Authenticator Procedures

NOTE: For method procedures, the method uses its internal state in addition to the information provided by
the EAP layer. The only arguments that are explicitly shown as inputs to the procedures are those provided
to the method by EAP. Those inputs provided by the method’s internal state remain implicit.

calculateTimeout()

Calculates the retransmission timeout, taking into account the retransmission count, round-trip time
measurements, and method-specific timeout hint (see [RFC3748], Section 4.3). Returns an integer.

parseEapResp()

Determines the code, identifier value, and type of the current response. In the case of a parsing error
(e.g., the length field is longer than the received packet), rxResp will be set to FALSE. Thevalues of
respId and respMethod may be undefined as a result. Returns a boolean, an integer, and an EAP type.

buildSuccess()

Creates an EAP Success Packet. Returnsan EAP packet.

buildFailure()

Creates an EAP Failure Packet. Returnsan EAP packet.

nextId()

Determines the next identifier value to use, based on the previous one. Returns an integer.

Vollbrecht, et al. Informational [Page 21]

RFC 4137 EAP State Machines August 2005

Policy.update()

Updates all variables related to internal policy state. Thereturn value is undefined.

Policy.getNextMethod()

Determines the method that should be used at this point in the conversation based on predefined
policy. Policy.getNextMethod() MUST comply with [RFC3748] (Section 2.1), which forbids the use
of sequences of authentication methods within an EAP conversation. Thus,if an authentication
method has already been executed within an EAP dialog, Policy.getNextMethod() MUST NOT
propose another authentication method within the same EAP dialog. Returns an EAP type.

Policy.getDecision()

Determines if the policy will allow SUCCESS, FAIL, or is yet to determine (CONTINUE). Returns a
decision enumeration.

m.check()

Method-specific procedure to test for the validity of a message. Returns a boolean.

m.process()

Method procedure to parse and process a response for that method. The return value is undefined.

m.init()

Method procedure to initialize state just before use. The return value is undefined.

m.reset()

Method procedure to indicate that the method is ending in the middle of or before completion. The
return value is undefined.

m.isDone()

Method procedure to check for method completion. Returns a boolean.

m.getTimeout()

Method procedure to determine an appropriate timeout hint for that method. Returns an integer.

m.getKey()

Method procedure to obtain key material for use by EAP or lower layers. Returns an EAP key.

Vollbrecht, et al. Informational [Page 22]

RFC 4137 EAP State Machines August 2005

m.buildReq()

Method procedure to produce the next request. Returns an EAP packet.

5.5. EAPStand-Alone Authenticator States

DISABLED

The authenticator is disabled until the port is enabled by the lower layer.

INITIALIZE

Initializes variables when the state machine is activated.

IDLE

The state machine spends most of its time here, waiting for something to happen.

RECEIVED

This state is entered when an EAP packet is received. Thepacket header is parsed here.

INTEGRITY_CHECK

A method state in which the integrity of the incoming packet from the peer is verified by the method.

METHOD_RESPONSE

A method state in which the incoming packet is processed.

METHOD_REQUEST

A method state in which a new request is formulated if necessary.

PROPOSE_METHOD

A state in which the authenticator decides which method to try next in the authentication.

SELECT_ACTION

Between methods, the state machine re-evaluates whether its policy is satisfied and succeeds, fails, or
remains undecided.

SEND_REQUEST

This state signals the lower layer that a request packet is ready to be sent.

Vollbrecht, et al. Informational [Page 23]

RFC 4137 EAP State Machines August 2005

DISCARD

This state signals the lower layer that the response was discarded, and no new request packet will be
sent at this time.

NAK

This state processes Nak responses from the peer.

RETRANSMIT

Retransmits the previous request packet.

SUCCESS

A final state indicating success.

FAILURE

A final state indicating failure.

TIMEOUT_FAILURE

A final state indicating failure because no response has been received. Becauseno response was
received, no new message (including failure) should be sent to the peer. Note that this is different
from the FAILURE state, in which a message indicating failure is sent to the peer.

Vollbrecht, et al. Informational [Page 24]

RFC 4137 EAP State Machines August 2005

6. EAPBackend Authenticator

When operating in pass-through mode, there are conceptually two parts to the authenticator: the part that
passes packets through, and the backend that actually implements the EAP method. The following diagram
shows a state machine for the backend part of this model when using a AAA server. Note that this diagram
is identical to Figure 4 except that no retransmit is included in the IDLE state because with RADIUS,
retransmit is handled by the NAS. Also,a PICK_UP_METHOD state and variable in INITIALIZE state are
added to allow the Method to "pick up" a method started in a NAS. Includedis an explanation of the
primitives and procedures referenced in the diagram, many of which are the same as above. Note that the
"lower layer" in this case is some AAA protocol (e.g., RADIUS).

Vollbrecht, et al. Informational [Page 25]

RFC 4137 EAP State Machines August 2005

UCT

UCT

ignore

IDLE

SEND_REQUEST

aaaEapResp = FALSE

aaaEapReq = TRUE

UCT

DISCARD

aaaEapResp = FALSE

aaaEapNoReq = TRUE

SUCCESS

aaaEapReqData = buildSuccess(currentId)

if (aaaEapKeyData != NONE)

 aaaEapKeyAvailable = TRUE

aaaEapSuccess = TRUE

FAILURE

aaaEapReqData = buildFailure(currentId)

aaaEapFail = TRUE

NAK

m.reset()

Policy.update(<...>)

UCT

decision == FAILURE
 decision == SUCCESS

methodState == END

SELECT_ACTION

decision = Policy.getDecision()

rxResp &&

(respId == currentId) &&

(respMethod == currentMethod)

rxResp &&

(respId == currentId) &&

(respMethod==NAK ||

respMethod==EXPANDED_NAK) &&

(
methodState == PROPOSED)

aaaEapResp

else

INTEGRITY_CHECK

ignore =

 m.check(aaaEapRespData)

METHOD_RESPONSE

m.process(aaaEapRespData)

if (m.isDone()) {

 Policy.update(<...>)

 aaaEapKeyData = m.getKey()

 methodState = END

} else

 methodState = CONTINUE

METHOD_REQUEST

currentId = nextId(currentId)

aaaEapReqData = m.buildReq(currentId)

aaaMethodTimeout = m.getTimeout()

PROPOSE_METHOD

currentMethod = Policy.getNextMethod()

m.init()

if (currentMethod==IDENTITY ||

 currentMethod==NOTIFICATION)

 methodState = CONTINUE

else

 methodState = PROPOSED

else

!ignore

else

UCT

INITIALIZE

currentMethod = NONE

(rxResp,respId,respMethod) =

 parseEapResp(aaaEapRespData)

if (rxResp)

 currentId = respId

else

 currentId = NONE

PICK_UP_METHOD

if (Policy.doPickUp(respMethod)) {

 currentMethod = respMethod

 m.initPickUp()

}

!rxResp

currentMethod==NONE

DISABLED

!backendEnabled

else

rxResp &&

(respMethod==NAK ||

respMethod==EXPANDED_NAK)

else

backendEnabled &&

aaaEapResp

/* SUCCESS, FAILURE, or CONTINUE */

RECEIVED

(rxResp,respId,respMethod)=

 parseEapResp(aaaEapRespData)

Figure 5: EAP Backend Authenticator State Machine

Vollbrecht, et al. Informational [Page 26]

RFC 4137 EAP State Machines August 2005

6.1. Interfacebetween Backend Authenticator State Machine and Lower Layer

The lower layer presents messages to the EAP backend authenticator state machine by storing the packet in
aaaEapRespData and setting the aaaEapResp signal to TRUE.

When the EAP backend authenticator state machine has finished processing the message, it sets one of the
signals aaaEapReq, aaaEapNoReq, aaaSuccess, and aaaFail. If it sets eapReq, eapSuccess, or eapFail, the
corresponding request (or success/failure) packet is stored in aaaEapReqData. The lower layer is responsible
for actually transmitting this message.

6.1.1. Variables (AAA Interface to Backend Authenticator)

aaaEapResp (boolean)

Set to TRUE in lower layer, FALSE in authenticator state machine. Usually indicates that an EAP
response, stored in aaaEapRespData, is available for processing by the AAA server. If
aaaEapRespData is set to NONE, it indicates that the AAA server should send the initial EAP
request.

aaaEapRespData (EAP packet)

Set in lower layer when eapResp is set to TRUE. TheEAP packet to be processed, or NONE.

backendEnabled (boolean)

Indicates that there is a valid link to use for the communication. If at any point the port is not
available, backendEnabled is set to FALSE, and the state machine transitions to DISABLED.

6.1.2. Variables (Backend Authenticator to AAA Interface)

aaaEapReq (boolean)

Set to TRUE in authenticator state machine, FALSE in lower layer. Indicates that a new EAP request
is ready to be sent.

aaaEapNoReq (boolean)

Set to TRUE in authenticator state machine, FALSE in lower layer. Indicates that the most recent
response has been processed, but there is no new request to send.

aaaSuccess (boolean)

Set to TRUE in authenticator state machine, FALSE in lower layer. Indicates that the state machine
has reached the SUCCESS state.

Vollbrecht, et al. Informational [Page 27]

RFC 4137 EAP State Machines August 2005

aaaFail (boolean)

Set to TRUE in authenticator state machine, FALSE in lower layer. Indicates that the state machine
has reached the FAILURE state.

aaaEapReqData (EAP packet)

Set in authenticator state machine when aaaEapReq, aaaSuccess, or aaaFail is set to TRUE. The
actual EAP request to be sent (or success/failure).

aaaEapKeyData (EAP key)

Set in authenticator state machine when keying material becomes available. Setduring the
METHOD_RESPONSE state. Note that this document does not define the structure of the type "EAP
key". We expect that it will be defined in [Keying].

aaaEapKeyAv ailable (boolean)

Set to TRUE in the SUCCESS state if keying material is available. Theactual key is stored in
aaaEapKeyData.

aaaMethodTimeout (integer)

Method-provided hint for suitable retransmission timeout, or NONE. (Note that this hint is for the
EAP retransmissions done by the pass-through authenticator, not for retransmissions of AAA
packets.)

6.2. Interfacebetween Backend Authenticator State Machine and Methods

The backend method interface is almost the same as in stand-alone authenticator described in Section 5.2.
The only difference is that some methods on the backend may support "picking up" a conversation started by
the pass-through. That is, the EAP Request packet was sent by the pass-through, but the backend must
process the corresponding EAP Response. Usually only the Identity method supports this, but others are
possible.

When "picking up" a conversation, m.initPickUp() is called instead of m.init(). Next, m.process() must
examine eapRespData and update its own method-specific state to match what it would have been if it had
actually sent the corresponding request. (Obviously, this only works for methods that can determine what the
initial request contained; Identity and EAP-TLS are good examples.)

After this, the processing continues as described in Section 5.2.

6.3. Backend Authenticator State Machine Local Variables

For definitions of the variables used in the Backend Authenticator, see Section 5.3.

Vollbrecht, et al. Informational [Page 28]

RFC 4137 EAP State Machines August 2005

6.4. EAPBackend Authenticator Procedures

Most of the procedures of the backend authenticator have already been defined in Section 5.4. This section
contains definitions for those not existent in the stand-alone version, as well as those that are defined
differently.

NOTE: For method procedures, the method uses its internal state in addition to the information provided by
the EAP layer. The only arguments that are explicitly shown as inputs to the procedures are those provided
to the method by EAP. Those inputs provided by the method’s internal state remain implicit.

Policy.doPickUp()

Notifies the policy that an already-chosen method is being picked up and will be completed. Returns
a boolean.

m.initPickUp()

Method procedure to initialize state when continuing from an already-started method. The return
value is undefined.

6.5. EAPBackend Authenticator States

Most of the states of the backend authenticator have already been defined in Section 5.5. This section
contains definitions for those not existent in the stand-alone version, as well as those that are defined
differently.

PICK_UP_METHOD

Sets an initial state for a method that is being continued and that was started elsewhere.

Vollbrecht, et al. Informational [Page 29]

RFC 4137 EAP State Machines August 2005

7. EAPFull Authenticator

The following two diagrams show the state machine for a complete authenticator. The first diagram is
identical to the stand-alone state machine, shown in Figure 4, with the exception that the SELECT_ACTION
state has an added transition to PASSTHROUGH. Thesecond diagram also keeps most of the logic, except
the four method states, and it shows how the state machine works once it goes to pass-through mode.

The first diagram is largely a reproduction of that found above, with the added hooks for a transition to
PASSTHROUGH mode.

UCT

UCT
ignore

IDLE

SEND_REQUEST

retransCount = 0

lastReqData = eapReqData

eapResp = FALSE

eapReq = TRUE

UCT

DISABLED

INITIALIZE

currentId = NONE

eapSuccess = FALSE

eapFail = FALSE

eapTimeout = FALSE

eapKeyData = NONE

eapKeyAvailable = FALSE

eapRestart = FALSE

DISCARD

eapResp = FALSE

eapNoReq = TRUE

SUCCESS

eapReqData = buildSuccess(currentId)

if (eapKeyData != NONE)

 eapKeyAvailable = TRUE

eapSuccess = TRUE

FAILURE

eapReqData = buildFailure(currentId)

eapFail = TRUE

NAK

m.reset()

Policy.update(<...>)

UCT

decision == FAILURE
 decision == SUCCESS

methodState == END

SELECT_ACTION

decision = Policy.getDecision()

rxResp &&

(respId == currentId) &&

(respMethod == currentMethod)

rxResp &&

(respId == currentId) &&

(respMethod==NAK ||

respMethod==EXPANDED_NAK) &&

(
methodState == PROPOSED)

RETRANSMIT

retransCount++

if (retransCount <= MaxRetrans) {

 eapReqData = lastReqData

 eapReq = TRUE

}

else

eapResp

else

retransWhile==0

!portEnabled

retransCount > MaxRetrans

portEnabled

UCT

TIMEOUT_FAILURE

eapTimeout = TRUE

INTEGRITY_CHECK

ignore =

 m.check(eapRespData)

METHOD_RESPONSE

m.process(eapRespData)

if (m.isDone()) {

 Policy.update(<...>)

 eapKeyData = m.getKey()

 methodState = END

} else

 methodState = CONTINUE

METHOD_REQUEST

currentId = nextId(currentId)

eapReqData = m.buildReq(currentId)

methodTimeout = m.getTimeout()

PROPOSE_METHOD

currentMethod = Policy.getNextMethod()

m.init()

if (currentMethod==IDENTITY ||

 currentMethod==NOTIFICATION)

 methodState = CONTINUE

else

 methodState = PROPOSED

else

!ignore

else

UCT

retransWhile = calculateTimeout(retransCount, eapSRTT, eapRTTVAR, methodTimeout)

decision==PASSTHROUGH

/* SUCCESS, FAILURE, CONTINUE, or PASSTHROUGH */

RECEIVED

(rxResp,respId,respMethod)=

 parseEapResp(eapRespData)

eapRestart && portEnabled

Figure 6: EAP Full Authenticator State Machine (Part 1)

The second diagram describes the functionality necessary for an authenticator operating in pass-through
mode. Thissection of the diagram is the counterpart of the backend diagram above.

Vollbrecht, et al. Informational [Page 30]

RFC 4137 EAP State Machines August 2005

UCT

UCT

IDLE2

SEND_REQUEST2

retransCount = 0

lastReqData = eapReqData

eapResp = FALSE

eapReq = TRUE

UCT

DISCARD2

eapResp = FALSE

eapNoReq = TRUE

RETRANSMIT2

retransCount++

if (retransCount <= MaxRetrans) {

 eapReqData = lastReqData

 eapReq = TRUE

}

else

eapResp

else

retransWhile==0

retransCount > MaxRetrans

retransWhile = calculateTimeout(retransCount, eapSRTT, eapRTTVAR, methodTimeout)

AAA_IDLE

aaaFail = FALSE

aaaSuccess = FALSE

aaaEapReq = FALSE

aaaEapNoReq = FALSE

aaaEapResp = TRUE

aaaEapReq

aaaTimeout

UCT

AAA_RESPONSE

eapReqData = aaaEapReqData

currentId = getId(eapReqData)

methodTimeout = aaaMethodTimeout

SUCCESS2

eapReqData = aaaEapReqData

eapKeyData = aaaEapKeyData

eapKeyAvalable = aaaEapKeyAvailable

eapSuccess = TRUE

FAILURE2

eapReqData = aaaEapReqData

eapFail = TRUE
TIMEOUT_FAILURE2

eapTimeout = TRUE

rxResp &&

(respId == currentId)

aaaEapNoReq

aaaFail
 aaaSuccess

AAA_REQUEST

if (respMethod==IDENTITY)

 aaaIdentity = eapRespData

aaaEapRespData = eapRespData

currentId != NONE

decision==PASSTHROUGH

currentId == NONE

RECEIVED2

(rxResp,respId,respMethod)=

 parseEapResp(eapRespData)

INITIALIZE_PASSTHROUGH

aaaEapRespData = NONE

Figure 7: EAP Full Authenticator State Machine (Part 2)

7.1. Interfacebetween Full Authenticator State Machine and Lower Layers

The full authenticator is unique in that it interfaces to multiple lower layers in order to support pass-through
mode. Theinterface to the primary EAP transport layer is the same as described in Section 5. The following
describes the interface to the second lower layer, which represents an interface to AAA. Note that there is
not necessarily a direct interaction between the EAP layer and the AAA layer, as in the case of [1X-2004].

Vollbrecht, et al. Informational [Page 31]

RFC 4137 EAP State Machines August 2005

7.1.1. Variables (AAA Interface to Full Authenticator)

aaaEapReq (boolean)

Set to TRUE in lower layer, FALSE in authenticator state machine. Indicates that a new EAP request
is available from the AAA server.

aaaEapNoReq (boolean)

Set to TRUE in lower layer, FALSE in authenticator state machine. Indicates that the most recent
response has been processed, but that there is no new request to send.

aaaSuccess (boolean)

Set to TRUE in lower layer. Indicates that the AAA backend authenticator has reached the
SUCCESS state.

aaaFail (boolean)

Set to TRUE in lower layer. Indicates that the AAA backend authenticator has reached the FAILURE
state.

aaaEapReqData (EAP packet)

Set in the lower layer when aaaEapReq, aaaSuccess, or aaaFail is set to TRUE. Theactual EAP
request to be sent (or success/ failure).

aaaEapKeyData (EAP key)

Set in lower layer when keying material becomes available from the AAA server. Note that this
document does not define the structure of the type "EAP key". We expect that it will be defined in
[Keying].

aaaEapKeyAv ailable (boolean)

Set to TRUE in the lower layer if keying material is available. Theactual key is stored in
aaaEapKeyData.

aaaMethodTimeout (integer)

Method-provided hint for suitable retransmission timeout, or NONE. (Note that this hint is for the
EAP retransmissions done by the pass-through authenticator, not for retransmissions of AAA
packets.)

Vollbrecht, et al. Informational [Page 32]

RFC 4137 EAP State Machines August 2005

7.1.2. Variables (full authenticator to AAA interface)

aaaEapResp (boolean)

Set to TRUE in authenticator state machine, FALSE in the lower layer. Indicates that an EAP
response is available for processing by the AAA server.

aaaEapRespData (EAP packet)

Set in authenticator state machine when eapResp is set to TRUE. TheEAP packet to be processed.

aaaIdentity (EAP packet)

Set in authenticator state machine when an IDENTITY response is received. Makes that identity
available to AAA lower layer.

aaaTimeout (boolean)

Set in AAA_IDLE if, after a configurable amount of time, there is no response from the AAA layer.
The AAA layer in the NAS is itself alive and OK, but for some reason it has not received a valid
Access-Accept/Reject indication from the backend.

7.1.3. Constants

Same as Section 5.

7.2. Interfacebetween Full Authenticator State Machine and Methods

Same as stand-alone authenticator (Section 5.2).

7.3. Full Authenticator State Machine Local Variables

Many of the variables of the full authenticator have already been defined in Section 5. This section contains
definitions for those not existent in the stand-alone version, as well as those that are defined differently.

7.3.1. Short-Term (Not Maintained between Packets)

decision (enumeration)

Set in SELECT_ACTION state.Temporarily stores the policy decision to succeed, fail, continue
with a local method, or continue in pass-through mode.

Vollbrecht, et al. Informational [Page 33]

RFC 4137 EAP State Machines August 2005

7.4. EAPFull Authenticator Procedures

All the procedures defined in Section 5 exist in the full version. Inaddition, the following procedures are
defined.

getId()

Determines the identifier value chosen by the AAA server for the current EAP request. The return
value is an integer.

7.5. EAPFull Authenticator States

All the states defined in Section 5 exist in the full version. Inaddition, the following states are defined.

INITIALIZE_PASSTHROUGH

Initializes variables when the pass-through portion of the state machine is activated.

IDLE2

The state machine waits for a response from the primary lower layer, which transports EAP traffic
from the peer.

IDLE

The state machine spends most of its time here, waiting for something to happen.

RECEIVED2

This state is entered when an EAP packet is received and the authenticator is in PASSTHROUGH
mode. Thepacket header is parsed here.

AAA_REQUEST

The incoming EAP packet is parsed for sending to the AAA server.

AAA_IDLE

Idle state that tells the AAA layer that it has a response and then waits for a new request, a no-request
signal, or success/failure.

AAA_RESPONSE

State in which the request from the AAA interface is processed into an EAP request.

SEND_REQUEST2

This state signals the lower layer that a request packet is ready to be sent.

Vollbrecht, et al. Informational [Page 34]

RFC 4137 EAP State Machines August 2005

DISCARD2

This state signals the lower layer that the response was discarded, and that no new request packet will
be sent at this time.

RETRANSMIT2

Retransmits the previous request packet.

SUCCESS2

A final state indicating success.

FAILURE2

A final state indicating failure.

TIMEOUT_FAILURE2

A final state indicating failure because no response has been received. Becauseno response was
received, no new message (including failure) should be sent to the peer. Note that this is different
from the FAILURE2 state, in which a message indicating failure is sent to the peer.

Vollbrecht, et al. Informational [Page 35]

RFC 4137 EAP State Machines August 2005

8. ImplementationConsiderations

8.1. Robustness

In order to deal with erroneous cases that are not directly related to the protocol behavior, implementations
may need additional considerations to provide robustness against errors.

For example, an implementation of a state machine may spend a significant amount of time in a particular
state performing the procedure defined for the state without returning a response. If such an implementation
is made on a multithreading system, the procedure may be performed in a separate thread so that the
implementation can perform appropriate action without blocking on the state for a long time (or forever if the
procedure never completes due to, e.g., a non-responding user or a bug in an application callback function).

The following states are identified as the possible places of blocking:

o IDENTITY state in the peer state machine. It may take some time to process Identity request when a
user input is needed for obtaining an identity from the user. The user may never input an identity. An
implementation may define an additional state transition from IDENTITY state to FAILURE state so
that authentication can fail if no identity is obtained from the user before ClientTimeout timer
expires.

o METHOD state in the peer state machine and in METHOD_RESPONSE state in the authenticator
state machines. It may take some time to perform method-specific procedures in these states. An
implementation may define an additional state transition from METHOD state and
METHOD_RESPONSE state to FAILURE or TIMEOUT_FAILURE state so that authentication can
fail if no method processing result is obtained from the method before methodTimeout timer expires.

8.2. Method/Methodand Method/Lower-Layer Interfaces

Implementations may define additional interfaces to pass method-specific information between methods and
lower layers. These interfaces are beyond the scope of this document.

8.3. Peer State Machine Interoperability with Deployed Implementations

Number of deployed EAP authenticator implementations, mainly in RADIUS authentication servers, have
been observed to increment the Identifier field incorrectly when generating EAP Success and EAP Failure
packets which is against the MUST requirement in RFC 3748 section 4.2. The peer state machine is based
on RFC 3748, and as such it will discard such EAP Success and EAP Failure packets.

As a workaround for the potential interoperability issue with existing implementations, conditions for peer
state machine transitions from RECEIVED state to SUCCESS and FAILURE states MAY be changed from
"(reqId == lastId)" to "((reqId == lastId) || (reqId == (lastId + 1) & 255))". However, because this behavior
does not conform to RFC 3748, such a workaround is not recommended, and if included, it should be
implemented as an optional workaround that can be disabled.

Vollbrecht, et al. Informational [Page 36]

RFC 4137 EAP State Machines August 2005

9. SecurityConsiderations

This document’s intent is to describe the EAP state machine fully. To this end, any security concerns with
this document are likely a reflection of security concerns with EAP itself.

An accurate state machine can help reduce implementation errors. Although [RFC3748] remains the
normative protocol description, this state machine should help in this regard.

As noted in [RFC3748], some security concerns arise because of the following EAP packets:

1. EAP-Request/Response Identity
2. EAP-Response/NAK
3. EAP-Success/Failure

Because these packets are not cryptographically protected by themselves, an attacker can modify or insert
them without immediate detection by the peer or authenticator.

Following Figure 3 specification, an attacker may cause denial of service by:

o Sending an EAP-Failure to the peer before the peer has started an EAP authentication method. As
long as the peer has not modified the methodState variable (initialized to NONE), the peer MUST
accept an EAP-Failure.

o Forcing the peer to engage in endless EAP-Request/Response Identity exchanges before it has started
an EAP authentication method. As long as the peer has not modified the selectedMethod variable
(initialized to NONE), the peer MUST accept an EAP-Request/Identity and respond to it with an
EAP-Response/Identity.

Following Figure 4 specification, an attacker may cause denial of service by:

o Sending a NAK to the authenticator after the authenticator first proposes an EAP authentication
method to the peer. When the methodState variable has the value PROPOSED, the authenticator is
obliged to process a NAK that is received in response to its first packet of an EAP authentication
method.

There MAY be some cases when it is desired to prevent such attacks. This can be done by modifying initial
values of some variables of the EAP state machines. However, such modifications are NOT
RECOMMENDED.

There is a trade-off between mitigating these denial-of-service attacks and being able to deal with EAP peers
and authenticators in general.For instance, if a NAK is ignored when it is sent to the authenticator after it
has just proposed an EAP authentication method to the peer, then a legitimate peer that is not able or willing
to process the proposed EAP authentication method would fail without an opportunity to negotiate another
EAP method.

Vollbrecht, et al. Informational [Page 37]

RFC 4137 EAP State Machines August 2005

10. Acknowledgements

The work in this document was done as part of the EAP Design Team. Itwas done primarily by Nick
Petroni, John Vollbrecht, Pasi Eronen, and Yoshihiro Ohba. Nick started this work with Bryan Payne and
Chuk Seng at the University of Maryland. John Vollbrecht of Meetinghouse Data Communications started
independently with help from Dave Spence at Interlink Networks. Johnand Nick collaborated to create a
common document, and then were joined by Pasi Eronen of Nokia, who has made major contributions in
creating coherent state machines, and by Yoshihiro Ohba of Toshiba, who insisted on including pass-through
documentation and provided significant support for understanding implementation issues.

In addition, significant response and conversation has come from the design team, especially Jari Arkko of
Ericsson and Bernard Aboba of Microsoft, as well as the rest of the team. It has also been reviewed by IEEE
802.1, and has had input from Jim Burns of Meetinghouse and Paul Congdon of Hewlett Packard.

11. References

11.1. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997.

[RFC3579] Aboba,B. and P. Calhoun, "RADIUS (Remote Authentication Dial In User Service)
Support For Extensible Authentication Protocol (EAP)", RFC 3579, September 2003.

[RFC3748] Aboba,B., Blunk, L., Vollbrecht, J., Carlson, J., and H. Levkowetz, Ed., "Extensible
Authentication Protocol (EAP)", RFC 3748, June 2004.

11.2. Informative References

[Keying] Aboba,B., Simon, D., Arkko, J., Eronen, P., Levkowetz, H., "Extensible Authentication
Protocol (EAP) Key Management Framework", Work in Progress, July 2005.

[1X-2004] Instituteof Electrical and Electronics Engineers, "Standard for Local and Metropolitan
Area Networks: Port-Based Network Access Control", IEEE 802.1X-2004, December
2004.

Vollbrecht, et al. Informational [Page 38]

RFC 4137 EAP State Machines August 2005

Appendix A. ASCII versions of state diagrams

This appendix contains the state diagrams in ASCII format. Please use the PDF version whenever possible;
it is much easier to understand.

The notation is as follows: state name and pseudocode executed when entering it are shown on the left;
outgoing transitions with their conditions are shown on the right.

A.1. EAP Peer State Machine (Figure 3)

(global transitions) | !portEnabled | DISABLED

|------------------------+--------------
| eapRestart && | INITIALIZE
| portEnabled |

-----------------------------+------------------------+--------------
DISABLED | portEnabled | INITIALIZE
-----------------------------+------------------------+--------------
INITIALIZE | |

| |
selectedMethod = NONE | |
methodState = NONE | |
allowNotifications = TRUE | |
decision = FAIL | UCT | IDLE
idleWhile = ClientTimeout | |
lastId = NONE | |
eapSuccess = FALSE | |
eapFail = FALSE | |
eapKeyData = NONE | |
eapKeyAvailable = FALSE | |
eapRestart = FALSE | |
-----------------------------+------------------------+--------------
IDLE | eapReq | RECEIVED

|------------------------+--------------
| (altAccept && |
| decision != FAIL) || |
| (idleWhile == 0 && | SUCCESS
| decision == |
| UNCOND_SUCC) |
|------------------------+--------------

Vollbrecht, et al. Informational [Page 39]

RFC 4137 EAP State Machines August 2005

|------------------------+--------------
| altReject || |
| (idleWhile == 0 && |
| decision != |
| UNCOND_SUCC) || | FAILURE
| (altAccept && |
| methodState != CONT && |
| decision == FAIL) |

-----------------------------+------------------------+--------------
RECEIVED | rxReq && | METHOD

| (reqId != lastId) && |
(rxReq,rxSuccess,rxFailure, | (reqMethod == |
reqId,reqMethod) = | selectedMethod) && |
parseEapReq(eapReqData) | (methodState != DONE) |

|------------------------+--------------
| rxReq && |
| (reqId != lastId) && |
| (selectedMethod == |
| NONE) && | GET_METHOD
| (reqMethod != |
| IDENTITY) && |
| (reqMethod != |
| NOTIFICATION) |
|------------------------+--------------
| rxReq && |
| (reqId != lastId) && |
| (selectedMethod == | IDENTITY
| NONE) && |
| (reqMethod == |
| IDENTITY) |
|------------------------+--------------
| rxReq && |
| (reqId != lastId) && |
| (reqMethod == | NOTIFICATION
| NOTIFICATION) && |
| allowNotifications |
|------------------------+--------------
| rxReq && | RETRANSMIT
| (reqId == lastId) |
|------------------------+--------------
| rxSuccess && |
| (reqId == lastId) && | SUCCESS
| (decision != FAIL) |
|------------------------+--------------

Vollbrecht, et al. Informational [Page 40]

RFC 4137 EAP State Machines August 2005

|------------------------+--------------
| (methodState!=CONT) && |
| ((rxFailure && |
| decision != |
| UNCOND_SUCC) || | FAILURE
| (rxSuccess && |
| decision == FAIL)) && |
| (reqId == lastId) |
|------------------------+--------------
| else | DISCARD

-----------------------------+------------------------+--------------
METHOD | |

| |
ignore = m.check(eapReqData) | ignore | DISCARD
if (!ignore) { | |
(methodState, decision, | |
allowNotifications) = |------------------------+--------------
m.process(eapReqData) | |
/* methodState is CONT, | |

MAY_CONT, or DONE */ | (methodState==DONE) && | FAILURE
/* decision is FAIL, | (decision == FAIL) |

COND_SUCC, or | |
UNCOND_SUCC */ | |

eapRespData = |------------------------+--------------
m.buildResp(reqId) | |

if (m.isKeyAvailable()) | else | SEND_RESPONSE
eapKeyData = m.getKey() | |

} | |
-----------------------------+------------------------+--------------
GET_METHOD | |

| selectedMethod == |
if (allowMethod(reqMethod)) {| reqMethod | METHOD
selectedMethod = reqMethod | |
methodState = INIT | |

} else { |------------------------+--------------
eapRespData = | |
buildNak(reqId) | else | SEND_RESPONSE

} | |
-----------------------------+------------------------+--------------
IDENTITY | |

| |
processIdentity(eapReqData) | UCT | SEND_RESPONSE
eapRespData = | |
buildIdentity(reqId) | |

-----------------------------+------------------------+--------------

Vollbrecht, et al. Informational [Page 41]

RFC 4137 EAP State Machines August 2005

-----------------------------+------------------------+--------------
NOTIFICATION | |

| |
processNotify(eapReqData) | UCT | SEND_RESPONSE
eapRespData = | |
buildNotify(reqId) | |

-----------------------------+------------------------+--------------
RETRANSMIT | |

| UCT | SEND_RESPONSE
eapRespData = lastRespData | |
-----------------------------+------------------------+--------------
DISCARD | |

| UCT | IDLE
eapReq = FALSE | |
eapNoResp = TRUE | |
-----------------------------+------------------------+--------------
SEND_RESPONSE | |

| |
lastId = reqId | |
lastRespData = eapRespData | UCT | IDLE
eapReq = FALSE | |
eapResp = TRUE | |
idleWhile = ClientTimeout | |
-----------------------------+------------------------+--------------
SUCCESS | |

| |
if (eapKeyData != NONE) | |
eapKeyAvailable = TRUE | |

eapSuccess = TRUE | |
-----------------------------+------------------------+--------------
FAILURE | |

| |
eapFail = TRUE | |

Figure 8

A.2. EAP Stand-Alone Authenticator State Machine (Figure 4)

(global transitions) | !portEnabled | DISABLED

|---------------------+----------------
| eapRestart && | INITIALIZE
| portEnabled |

------------------------------+---------------------+----------------
DISABLED | portEnabled | INITIALIZE
------------------------------+---------------------+----------------

Vollbrecht, et al. Informational [Page 42]

RFC 4137 EAP State Machines August 2005

------------------------------+---------------------+----------------
INITIALIZE | |

| |
currentId = NONE | |
eapSuccess = FALSE | |
eapFail = FALSE | UCT | SELECT_ACTION
eapTimeout = FALSE | |
eapKeyData = NONE | |
eapKeyAvailable = FALSE | |
eapRestart = FALSE | |
------------------------------+---------------------+----------------
IDLE | |

| retransWhile == 0 | RETRANSMIT
retransWhile = | |
calculateTimeout(|---------------------+----------------
retransCount, eapSRTT, | eapResp | RECEIVED
eapRTTVAR, methodTimeout) | |

------------------------------+---------------------+----------------
RETRANSMIT | |

| retransCount > | TIMEOUT_FAILURE
retransCount++ | MaxRetrans |
if (retransCount<=MaxRetrans){| |
eapReqData = lastReqData |---------------------+----------------
eapReq = TRUE | else | IDLE

} | |
------------------------------+---------------------+----------------
RECEIVED | rxResp && |

| (respId == |
(rxResp,respId,respMethod)= | currentId) && |
parseEapResp(eapRespData) | (respMethod == NAK |

| || | NAK
| respMethod == |
| EXPANDED_NAK) && |
| (methodState == |
| PROPOSED) |
|---------------------+----------------
| rxResp && |
| (respId == |
| currentId) && | INTEGRITY_CHECK
| (respMethod == |
| currentMethod) |
|---------------------+----------------
| else | DISCARD

------------------------------+---------------------+----------------

Vollbrecht, et al. Informational [Page 43]

RFC 4137 EAP State Machines August 2005

------------------------------+---------------------+----------------
NAK | |

| UCT | SELECT_ACTION
m.reset() | |
Policy.update(<...>) | |
------------------------------+---------------------+----------------
SELECT_ACTION | decision == FAILURE | FAILURE

| |
decision = |---------------------+----------------
Policy.getDecision() | decision == SUCCESS | SUCCESS

/* SUCCESS, FAILURE, or |---------------------+----------------
CONTINUE */ | else | PROPOSE_METHOD

------------------------------+---------------------+----------------
INTEGRITY_CHECK | ignore | DISCARD

|---------------------+----------------
ignore = m.check(eapRespData) | !ignore | METHOD_RESPONSE
------------------------------+---------------------+----------------
METHOD_RESPONSE | |

| methodState == END | SELECT_ACTION
m.process(eapRespData) | |
if (m.isDone()) { | |
Policy.update(<...>) |---------------------+----------------
eapKeyData = m.getKey() | |
methodState = END | else | METHOD_REQUEST

} else | |
methodState = CONTINUE | |

------------------------------+---------------------+----------------
PROPOSE_METHOD | |

| |
currentMethod = | |
Policy.getNextMethod() | |

m.init() | UCT | METHOD_REQUEST
if (currentMethod==IDENTITY ||| |
currentMethod==NOTIFICATION)| |
methodState = CONTINUE | |

else | |
methodState = PROPOSED | |

------------------------------+---------------------+----------------
METHOD_REQUEST | |

| |
currentId = nextId(currentId) | UCT | SEND_REQUEST
eapReqData = | |
m.buildReq(currentId) | |

methodTimeout = m.getTimeout()| |
------------------------------+---------------------+----------------

Vollbrecht, et al. Informational [Page 44]

RFC 4137 EAP State Machines August 2005

------------------------------+---------------------+----------------
DISCARD | |

| UCT | IDLE
eapResp = FALSE | |
eapNoReq = TRUE | |
------------------------------+---------------------+----------------
SEND_REQUEST | |

| |
retransCount = 0 | UCT | IDLE
lastReqData = eapReqData | |
eapResp = FALSE | |
eapReq = TRUE | |
------------------------------+---------------------+----------------
TIMEOUT_FAILURE | |

| |
eapTimeout = TRUE | |
------------------------------+---------------------+----------------
FAILURE | |

| |
eapReqData = | |
buildFailure(currentId) | |

eapFail = TRUE | |
------------------------------+---------------------+----------------
SUCCESS | |

| |
eapReqData = | |
buildSuccess(currentId) | |

if (eapKeyData != NONE) | |
eapKeyAvailable = TRUE | |

eapSuccess = TRUE | |

Figure 9

A.3. EAP Backend Authenticator State Machine (Figure 5)

(global transitions) | !backendEnabled | DISABLED
------------------------------+---------------------+----------------
DISABLED | backendEnabled && | INITIALIZE

| aaaEapResp |
------------------------------+---------------------+----------------

Vollbrecht, et al. Informational [Page 45]

RFC 4137 EAP State Machines August 2005

------------------------------+---------------------+----------------
INITIALIZE | !rxResp | SELECT_ACTION

|---------------------+----------------
currentMethod = NONE | rxResp && |
(rxResp,respId,respMethod)= | (respMethod == NAK |
parseEapResp(aaaEapRespData)| || | NAK

if (rxResp) | respMethod == |
currentId = respId | EXPANDED_NAK) |

else |---------------------+----------------
currentId = NONE | else | PICK_UP_METHOD

------------------------------+---------------------+----------------
PICK_UP_METHOD | |

| currentMethod == | SELECT_ACTION
if (Policy.doPickUp(| NONE |

respMethod)) { | |
currentMethod = respMethod |---------------------+----------------
m.initPickUp() | else | METHOD_RESPONSE

} | |
------------------------------+---------------------+----------------
IDLE | aaaEapResp | RECEIVED
------------------------------+---------------------+----------------
RECEIVED | rxResp && |

| (respId == |
(rxResp,respId,respMethod)= | currentId) && |
parseEapResp(aaaEapRespData)| (respMethod == NAK |

| || | NAK
| respMethod == |
| EXPANDED_NAK) && |
| (methodState == |
| PROPOSED) |
|---------------------+----------------
| rxResp && |
| (respId == |
| currentId) && | INTEGRITY_CHECK
| (respMethod == |
| currentMethod) |
|---------------------+----------------
| else | DISCARD

------------------------------+---------------------+----------------
NAK | |

| UCT | SELECT_ACTION
m.reset() | |
Policy.update(<...>) | |
------------------------------+---------------------+----------------

Vollbrecht, et al. Informational [Page 46]

RFC 4137 EAP State Machines August 2005

------------------------------+---------------------+----------------
SELECT_ACTION | decision == FAILURE | FAILURE

| |
decision = |---------------------+----------------
Policy.getDecision() | decision == SUCCESS | SUCCESS

/* SUCCESS, FAILURE, or |---------------------+----------------
CONTINUE */ | else | PROPOSE_METHOD

------------------------------+---------------------+----------------
INTEGRITY_CHECK | ignore | DISCARD

| |
ignore = |---------------------+----------------
m.check(aaaEapRespData) | !ignore | METHOD_RESPONSE

------------------------------+---------------------+----------------
METHOD_RESPONSE | |

| methodState == END | SELECT_ACTION
m.process(aaaEapRespData) | |
if (m.isDone()) { | |
Policy.update(<...>) |---------------------+----------------
aaaEapKeyData = m.getKey() | |
methodState = END | else | METHOD_REQUEST

} else | |
methodState = CONTINUE | |

------------------------------+---------------------+----------------
PROPOSE_METHOD | |

| |
currentMethod = | |
Policy.getNextMethod() | |

m.init() | UCT | METHOD_REQUEST
if (currentMethod==IDENTITY ||| |
currentMethod==NOTIFICATION)| |
methodState = CONTINUE | |

else | |
methodState = PROPOSED | |

------------------------------+---------------------+----------------
METHOD_REQUEST | |

| |
currentId = nextId(currentId) | |
aaaEapReqData = | UCT | SEND_REQUEST
m.buildReq(currentId) | |

aaaMethodTimeout = | |
m.getTimeout() | |

------------------------------+---------------------+----------------
DISCARD | |

| UCT | IDLE
aaaEapResp = FALSE | |
aaaEapNoReq = TRUE | |
------------------------------+---------------------+----------------

Vollbrecht, et al. Informational [Page 47]

RFC 4137 EAP State Machines August 2005

------------------------------+---------------------+----------------
SEND_REQUEST | |

| UCT | IDLE
aaaEapResp = FALSE | |
aaaEapReq = TRUE | |
------------------------------+---------------------+----------------
FAILURE | |

| |
aaaEapReqData = | |
buildFailure(currentId) | |

aaaEapFail = TRUE | |
------------------------------+---------------------+----------------
SUCCESS | |

| |
aaaEapReqData = | |
buildSuccess(currentId) | |

if (aaaEapKeyData != NONE) | |
aaaEapKeyAvailable = TRUE | |

aaaEapSuccess = TRUE | |

Figure 10

A.4. EAP Full Authenticator State Machine (Figures 6 and 7)

This state machine contains all the states from EAP stand-alone authenticator state machine, except that
SELECT_ACTION state is replaced with the following:

SELECT_ACTION | decision == FAILURE | FAILURE

| |
decision = |---------------------+----------------
Policy.getDecision() | decision == SUCCESS | SUCCESS

/* SUCCESS, FAILURE, CONTINUE,|---------------------+----------------
or PASSTHROUGH */ | decision == | INITIALIZE_

| PASSTHROUGH | PASSTHROUGH
|---------------------+----------------
| else | PROPOSE_METHOD

Figure 11

And the following new states are added:

INITIALIZE_PASSTHROUGH | currentId != NONE | AAA_REQUEST

|---------------------+----------------
aaaEapRespData = NONE | currentId == NONE | AAA_IDLE
------------------------------+---------------------+----------------

Vollbrecht, et al. Informational [Page 48]

RFC 4137 EAP State Machines August 2005

------------------------------+---------------------+----------------
IDLE2 | |

| retransWhile == 0 | RETRANSMIT2
retransWhile = | |
calculateTimeout(|---------------------+----------------
retransCount, eapSRTT, | eapResp | RECEIVED2
eapRTTVAR, methodTimeout) | |

------------------------------+---------------------+----------------
RETRANSMIT2 | |

| retransCount > | TIMEOUT_
retransCount++ | MaxRetrans | FAILURE2
if (retransCount<=MaxRetrans){| |
eapReqData = lastReqData |---------------------+----------------
eapReq = TRUE | else | IDLE2

} | |
------------------------------+---------------------+----------------
RECEIVED2 | rxResp && |

| (respId == | AAA_REQUEST
(rxResp,respId,respMethod)= | currentId) |
parseEapResp(eapRespData) |---------------------+----------------

| else | DISCARD2
------------------------------+---------------------+----------------
AAA_REQUEST | |

| |
if (respMethod == IDENTITY) { | UCT | AAA_IDLE
aaaIdentity = eapRespData | |

aaaEapRespData = eapRespData | |
------------------------------+---------------------+----------------
AAA_IDLE | aaaEapNoReq | DISCARD2

|---------------------+----------------
aaaFail = FALSE | aaaEapReq | AAA_RESPONSE
aaaSuccess = FALSE |---------------------+----------------
aaaEapReq = FALSE | aaaTimeout | TIMEOUT_
aaaEapNoReq = FALSE | | FAILURE2
aaaEapResp = TRUE |---------------------+----------------

| aaaFail | FAILURE2
|---------------------+----------------
| aaaSuccess | SUCCESS2

------------------------------+---------------------+----------------
AAA_RESPONSE | |

| |
eapReqData = aaaEapReqData | UCT | SEND_REQUEST2
currentId = getId(eapReqData) | |
methodTimeout = | |
aaaMethodTimeout | |

------------------------------+---------------------+----------------

Vollbrecht, et al. Informational [Page 49]

RFC 4137 EAP State Machines August 2005

------------------------------+---------------------+----------------
DISCARD2 | |

| UCT | IDLE2
eapResp = FALSE | |
eapNoReq = TRUE | |
------------------------------+---------------------+----------------
SEND_REQUEST2 | |

| |
retransCount = 0 | UCT | IDLE2
lastReqData = eapReqData | |
eapResp = FALSE | |
eapReq = TRUE | |
------------------------------+---------------------+----------------
TIMEOUT_FAILURE2 | |

| |
eapTimeout = TRUE | |
------------------------------+---------------------+----------------
FAILURE2 | |

| |
eapReqData = aaaEapReqData | |
eapFail = TRUE | |
------------------------------+---------------------+----------------
SUCCESS2 | |

| |
eapReqData = aaaEapReqData | |
eapKeyData = aaaEapKeyData | |
eapKeyAvailable = | |
aaaEapKeyAvailable | |

eapSuccess = TRUE | |

Figure 12

Vollbrecht, et al. Informational [Page 50]

RFC 4137 EAP State Machines August 2005

Authors’ Addresses

John Vollbrecht
Meetinghouse Data Communications
9682 Alice Hill Drive
Dexter, MI 48130
USA

EMail: jrv@mtghouse.com

Pasi Eronen
Nokia Research Center
P.O. Box 407
FIN-00045 Nokia Group,
Finland

EMail: pasi.eronen@nokia.com

Nick L. Petroni, Jr.
University of Maryland, College Park
A.V. Williams Building
College Park, MD 20742
USA

EMail: npetroni@cs.umd.edu

Yoshihiro Ohba
Toshiba America Research, Inc.
1 Telcordia Drive
Piscataway, NJ 08854
USA

EMail: yohba@tari.toshiba.com

Vollbrecht, et al. Informational [Page 51]

RFC 4137 EAP State Machines August 2005

Full Copyright Statement

Copyright (C) The Internet Society (2005).

This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth
therein, the authors retain all their rights.

This document and the information contained herein are provided on an "AS IS" basis and THE
CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY),
THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY
THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights
that might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; nor does it represent that it
has made any independent effort to identify any such rights. Information on the procedures with respect to
rights in RFC documents can be found in BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available,
or the result of an attempt made to obtain a general license or permission for the use of such proprietary
rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at
http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications,
or other proprietary rights that may cover technology that may be required to implement this standard.
Please address the information to the IETF at ietf-ipr@ietf.org.

Acknowledgement

Funding for the RFC Editor function is currently provided by the Internet Society.

Vollbrecht, et al. Informational [Page 52]

