NIC 15717
RFC 500

A Paper
Mo, 73-411

THE INTEGRATION OF DATA MANAGEMENT SYSTEMS
ON A COMPUTER NETWORK

by

A, SHOSHANI and I. SPIEGLER
System Development Corporation
Santa Monica, California

D1 el WU
HUNTSVILLE, ALABAMA / APRI

First publication rights reserved by American Institute of Aeronautics and Astronautics.A
1290 Avenue of the Americas, New York, N. Y. 10019. Abstracts may be published without
permission if credit is given to author and to AIAA. (Price: AIAA Member $1.50. Nonmember $2.00).

Note: This paper available at AIAA New York office for six months;
thereafter, photoprint copies are available at photocopy prices from
AIAA Library, 750 3rd Avenue, New York, New York 10017

THE INTEGRATION OF DATA MANAGEMENT SYSTEMS

ON A COMPUTER NETWORK#*

A. Shoshani, I. Spiegler
System Development Corporation

Santa Monica,

abstract

In this paper we discuss an approach to inte-
grating data management systems on a computer net-
work for the purpose of data sharing. Our approach
to integration suggests the use of a common lan-—
guage and translation interfaces to target data
management languages. Properties of the common
language are explored, and a method of implementing
the translation interfaces by a meta-compiler is
described. More flexibility can be achieved by the
use of a natural language processor that permits
user requests to be stated in English and trans-—
lated into the formally structured common language.
Finally, some conclusions are drawn regarding the
desirability and feasibility of this approach.

Eptroduction

The need for data sharing arises in many applica-
tion areas. Fxamples are reservation systems,
hospital networks, library networks, centralized or
distributed banking svstems, and military and govern-—
ment information systems. These systems accunulate
large amounts of data that are of interest to a
large community of users. The resulting data bases
may become too large for economical duplication for
different applications. Aside from that, using the
same data for different applications often requires
restructuring data, a task that is difficult and
expensive. Finally, there is a growing need for
real-time and on-line data sharing. Computer met-
works provide the basic facilities necessary to
meet these needs.

Examples of computer networks are discussed in
the literature 1, 2, 3, 4, For our purpose, it
suffices to know that a computer network is a col-
lection of computer systems interconnected through
a communication network.

In a previous paperS we discussed a number of
approaches to data sharing in computer networks.
The different approaches (labeled as the central-
{zed, integrated, data transformation, and stand-
arized approaches) have properties that make them
attractive and applicable under different conditions.
We chose to pursue our investigation of the inte~
grated approach because it has the advantage of
permitting the sharing of data among network nodes
without interrupting the continued use of existing
data management systems and existing data bases.

The integrated approach suggests the use of ‘a
common language and translation interfacec to tar-
get data management languages. Therefore, it per-
mits the continued access of a particular data
management system either through its local data
management language or through the common language.
However, the use of the common language permits the

- of operation.

California

access of other data management systems in the net-
work in addition to the local one. This dual mode
of operation would allow users of existing data
management systems to use the common language facil-
ity without relinquishing their previous local mode
This is an important advantage of the
integrated approach, since it allows data sharing to
be introduced into computer networks in an evolu-
tionary manner and is more likely to be accepted by
existing users. Another advantage of the integrated
approach is that it permits the co-existence of many
systems, thus allowing for further development of
new systems and their integration into the network
without disturbing existing systems.

Next, we present an overview of the integrated
approach, then discuss the properties of the common
language and our experience in implementing trans-
lation interfaces using a meta-compiler.

Overview of the Integrated Approach

Conceptually, the integrated approach provides a
way in which all users on a computer network can
access all data management systems, as shovn in
Figure 1. A user, regardless of his physical loca-
tion, can issue a request expressed in the common
language to be processed by a remote data management
system (DMS). An interface module associated with
that DMS accepts the request and translates it into
the language of the DIMS. The DMS performs the
function requested and returns the reply to the user.
Note that all data management functions are performed
by existing data management systems. The task of
the interfaces is merely to perform the translation
of the request. There is one interface for every
data management system. The returned reply can also
be transformed into a common language format. In
fact, this is a useful concept if we wish to combine
returned data from more than one DMS into a single
reply. This situation arises when data are dis-
tributed on several systems and need to be shared
for a common reply. An example could be a hospital
network, where every node is a local system asso-
ciated with a hospital; we might want to integrate
information about all local blood banks so that they
could be accessed jointly.

Depending on the physical location of the inter-
faces, two main variations of the integrated
approach are possible. In the integrated-distributed

“yvariation, the interfaces are physically co-located
with the corresponding data management systems, as
shown in Figure 2. 1In the integrated-central vari-
ation, all the interfaces are physically located in
one node and implemented on that central system, as
shown in Figure 3. One difference in properties
between the two variations is that the integrated-
distributed one has fail-soft characteristics, be-
cause the failure of one node does not disturb data

*This research is supported by the Advanced Research Projects Agency of the Department of Defense under

Contract No, DAHC15-73-C-0080.

g8-417

ah

accessing between other nodes. However, the inte-
grated-central approach should be easier to imple-
ment, because all interfaces are implemented and
maintained in one central system.

The interfaces described above are associated
with the serving node. An additional variation is
to associate an interface with the using node. The
using interface can perform additional functions or
some of the functions of the serving interface; thus,
the nature of messages between nodes will vary.

. For example, it can accept a request from the user

in the comron language and represent it in some
intermediate language before sending it to-the
serving interface. This will permit more compact
descriptions of requests to be sent between nodes.
In the next section (on the common language) we dis-
cuss an example of a serving interface--a natural
language processor which translates English requests
into a precise intermediate language. ’

An important problem associated with the inte-
grated approach is the control of traffic. Infor-
mation about the source and destination of requests
and returned data must be coordinated. This func-
tion is usually taken care of by the message switch-
ing mechanisms of the computer network. The situa-
tion is much more complex in the case of data
returned from a distributed data base which need to
be integrated. Another problem that cannot be over-
looked is that of privacy and security. It appears
that a central node which will check the legality
of requests according to a central authorization
file would be an appropriate and efficient way to
solve this problem.

The Common Language

The use of a common language should disengage
the individual users from concern as to where the
data are located and in what form data can be
accessed or stored. Some obvious properties of a
well-defined common language are that it be easy
to use and learn and that it be capable of express-
ing the functions desired. In addition, a common
language should be based on general enough data
structures to allow the reference of complex
information. Currently, we limit ourselves to
hierarchical data structures which are powerful
enough for a large range of applications (hierar-
chical structures are discussed later in the section
about the intermediate language).

COMMON

/ LANGUAGE
USER ///
M

The design of a user-level language usually
involves -a compromise between the properties men-
tioned above--ease of use and functional expressive
power. It may be advantageous to separate these
characteristics--that is, have a user-oriented lan-
guage for ease of use, and a formal intermediate
language powerful enough to express any functions
desired. The intermediate language can be as -com-
plex as one likes, since it is invisible to the
user. A transformation process is necessary from
the user-oriented language to the 'intermediate lan-
guage. In the next section we describe in detail
our investigation of the functional properties of
the intermediate language, which we call ILDS (In-
termediate Language for Data Sharing). Because ILDS
is a precise language, it is possible to build
translator interfaces from it to target data manage-
ment languages by using a meta-compiler. Our
experience with implementing translators is described
in a later section.

A user-oriented language that is most natural, of
course, is English. We make use of CONVERSE6, an
experimental English-language DMS. Placing the
CONVERSE "front end,'" a natural language translator,
as an additional block in Figure 1, divides the
line representing the common language into input and
output parts. The input is an English request on
which the CONVERSE front end performs syntax
analysis and semantic interpretation to produce
well-defined intermediate language (IL) statements

~as its output. Our experience with the CONVERSE

natural language translator suggested the following
important conclusion. A context-restricted environ-
ment (represented by a target data base) requires a
translation process which is more powerful than the
syntax~based parsing techniques on which CONVERSE

is based. A semantic conceptualization of the data
base is required which represents the possible
English requests addressed to the data base. These
concepts, which represent the possible user view of
the data base, need to be represented in the machine
if user requests are to be successfully interpreted.
Much of our work is currently oriented in this
direction. A natural language processor also needs
to have access to information about the data base in
order to "understand" the English request. There-~
fore, with every data base, a data base description
(DBD) is required which contains the semantic con-
cepts of the data base. This suggests the use of a
central file which contains DBDs of data bases to

be shared on the network. '

DATA
RS A MANAGEMENT
INTERFACE — {AGEME
1
! DATA
TRANSLATOR
—— MANAGEMENT
INTERFACE J - AGENE
2 2
> .
i .
* 3
DATA
TERFACE: MANAGEMENT
N SYSTEM
N

Figure 1. Conceptual Representation of the Integrated Approach

NODE |

NODE

2

DATA . DATA
MANAGEMENT TRANSLATOR TRANSLATOR MANAGEMENT
SYSTEM INTERFACE INTERFACE SYSTEM
1 1 2 2

!

!

TO NETWORK

COMPUTER SYSTEM
.._. & INTERFACES

N

/

COMPUTER SYSTEM
& INTERFACES -——'»
TO NETWORK

COMMUNICATION SYSTEM

NODEN

Figure 2.

NODE N

Figure 3.

(EITHER CENTRAL COR
DISTRIBUTED)

/

DY

COMPUTER SYSTEM

\

& INTERFACES
TO NETWORK

!

NODE 3

| IS

TRANSLATOR
INTERFACE
3

DATA
MANAGEMENT
SYSTEN
3

The Integrated-Distributed Approach

CENTRAL (NODE 1)

DATA
MANAGEMENT
SYSTEM

TRANSLATOR

!

COUPUTER
‘ > SYSTEM &
USERS)=—>| |NTERFACES

TO NETWORK

/ INTERFACE
1

TRANSLATOR
INTERFACE

INTERFACE
N

2.
\ TRANSLATOR

COMMUNICATION SYSTEM
(EITHER CENTRAL OR
DISTRIBUTED)

t _NODE3
'

COMPUTER

MANAGEMENT
SY S'EEM

SYSTEM & |
INTERF ACES
TO NETWORK

NODE 2

COMPUTER
SYSTEM &
INTERFACES
TO NETWORK

DATA
MANAGEMENT
svs;eu

The Integrated-Central Approach

73~4171

Note that if a precise user-oriented language is
used, no Information about the data base is neces-
sary. However, a precise knowledge of the data
base is required by the user (which is a common
assumption made when using current data management
languages).

Functional Properties of the Intermediate Language

Our main concern in the development of ILDS was
to identify the possible functions which operate
on data structures. In putting those functions
into a syntax form, we attempt to present the func-
tions clearly even at the expense of having a less
concise form. 1In what follows, the basic assump-
tions about data structures are presented and a
detailed description of the functions operating on

~ them is given.

As mentioned earlier, we decided to limit our-
selves to hierarchical data structures because they
are sufficient for a large number of application
areas. (In the future, we might expand to more
general network data structures). Hierarchical data
structures (sometimes called tree structures), which
are common to most existing data management systems,
represent a logical way of organizing data. Descrip-
tions of hierarchical data structures can be found
in many references (for example 7, 8; for the
purpose of introducing our terminolegy, let us
refer to an example of a hierarchical data structure
in Figure 4. The name of the hierarchy is RD (for
the Research and Development Division). It has two
branches, represented in the leftmost table in
Figure 4. Every column in that table, except
PROJECTS, is called a "data element" (DE). The
elements in a column are called "values" of the DE.
Thus, "TECH" and "DMS" are values of the DE "BNAME".
Rows in that table are called entries. (In Figure
4sentries are numbered for the purpose of later
reference in examples). The column called "PROJECTS"
is called a "repeating group" (RG) because it has
many instances of projects associated with every
entry. For the purpose of unified reference,
"BRANCHES" is also considered to be a repeating
group. Thus, in this example, we have three

HIERARCHY NAME: RD

repeating groups (BRANCHES, PROJECTS, MEMBERS).

Each table, however, is an instance of a repeating
group. Thus, the BRANCHES RG has one instance, the
PROJECTS RG has two instances, and the MEMBERS RG
has five instances. We say that three DEs and one
repeating group "belong" to the BRANCHES RG (BNAME,
BHEAD, BSEC and PROJECTS respectively). Similar
relationships hold for the other repeating groups.
Note that, in general, a repeating group can have
more than one repeating group "belonging"” to it.

For the purpose of simplicity, we assume that DE
names and RG names are unique, even though uniqueness
of DE names in different RGs is not necessary, since
the DEs can be distinguished by the RG they belong
to.

The terms "hierarchy", "repeating group" (RG),
"data element" (DE), "value", and "entry" discussed
above will be used in the following description of
the intermediate language ILDS. First, we describe
a kernel version of ILDS whose syntax is given in
the appendix. Then, we explain additional possible
functions which can be added to the kernel version,
depending on what level of complexity one chooses
to employ.

The kernel version has four functions: create,
delete, update, and query. These functions are
described in terms of three basic elements: quali-~
fier, output, and replacement. The qualifier con~
sists of functions that can be applied recursively
to a hierarchy to determine what entries qualify.
The entries that qualify can be operated upon by
an output function to produce values, or by a re-
placement function to change values in those entrics.
Thius, the create function has only a replacement
part, which specifies how to create new entries; the
delete function has only a qualifier part, which
selects entries to delete; the update function has
a qualifier part which selects entries to be modi-
fied according to a replacement part; and the query
function has a qualifier part which selects entries
on which an output part operates to return values.

In the kernel version, the qualifier part is most
powerful, since it is composed. of recursive applica-
tions of elementary "entry-functions" (efunction

MNAME SALARY EYEARS CYEARS

&'] sMITH] 15000 3 3

9 | kKELLY[20000 | 5 4

) 10 | Foxc |12000 | 2 1

PNAME PLEADER MEMBE
3 et FLEADER JEMBERS 11| BULL |12500 | 2 1
6[10 [ROSI-‘.N ~4__l ’

S MNAME SALARY EYEARS CYEARS

BRANCHES : 12 [BELL | 9000 | 1 1

BYAME BHEAD BSEC PROJECTS iz ?ﬁgﬁ igggg g g

1 [TECH | HALL [MARY o
©2{DMS {LOVE |JANET

MIAME SALARY EYEARS CYEARS

15 [MOORE| 17000 | 7 7

16 | MaY {16500 | 7 2

17 prutz J13500 | 3 2

PNAME PL¥ADER MEMBERS

T TCoM® TRENT MANME,_SALARY EYEARS CYEARS

6|Dps |LovE o TS HARE [14000 T 2 1

7 | GRAPH| SHAW e 19 {LEE {12000 | 2 2

20 | LEWIs| 16000 | 5 3

21 [HUrT 10000 | 3 1
MYAME_SALARY EYEARS CYEARS

T 22 [KORN [18000] & 1

23 | RYAN [14000 | 4 3

Figure 4. An Hierarchical Data Structure

€{3-417

in the syntax). The syntax form:

qualifier = efuncticn (qualifier)

means that a qualifier is formed by applying an
entry-function on entries that qualified by the
inner qualifier to get a new set of qualified
entries. Thus, an entry-function is one that maps
sets of entries into sets of entries. An addi-
tional restriction on a qualifier is that it repre-
sents a set of entries of the same repeating group.
This fact is reflected in the structure of entry-
functions, which will be examined later. To ter-
minate the recursive form we need, of course, a
terminal qualifier (tqualifier), which in our case
is a hierarchy name (hname). Thus, the first
entry-function in a qualifier cperates on the named
hierarchy. The use of a hierarchy name in a quali-
fier also provides for operations across multiple
hierarchies to be expressed.

Every entry-function has an "implied" RG associ-
ated with it, which is the RG for which entries
qualify after the application of the entry-function.
We will indicate the implied RG of every entry-
function when discussing each entry-function.

First, however, we need to explain some additional
terms used in the syntax. The term ''val” means a
value or a set of values which can be either explic-
itly specified or extracted from the data base

(we will explain later how values can be extracted).
The term "col" (column) is either a DE or a recur-
sive application of arithmetic operations on one OT
more DEs. TFor example, "((SALARY/12) + 50)" is a
legal "col" (which might mean monthly salary + $50).
The term "pred" (predicate) means one of the com-
monly used predicates: equal, grzater, less,

greater or equal, less or equal, not equal. The
term "sop" (sct operator) stands for ome of the
operators on a set of values: sum, average, max imum
value, minimum value, and count number of values

in the set.

The significance of the entry-functions is that
they represent the most elementary functions for
qualifying entries in a hierarchy. The entry
functions are described below:

e Select. The select fuanction is the
mon qualification function. Its form is:
select=col pred val, which means: compare according
to "pred" every value specified by "ecol" with the
value "val" and, if the comparison succeeds, qual-
ify the correspornding entry in the RG "implied" by
the DE in "col". For example: (SALARY EQ 12000(RD))
means: for the RD division to compare each value
in the "SALARY" "col" (here 'tol'is a DE) to 12000,
and if they are equal, qualify the entry in the RG
"MEMBERS'", which is the RG implied by the DE
"SALARY" (the "SALARY" DE belongs to the "MEMBERS"
RG). Thus, in Figure 4, entries 10 and 19 in the
UMEMBERS" RG qualify. An example of a "col" which
is not a simple DE is: ((SALARY/12) EQ 1000 (RD)),
which qualifies entries in the "MEMBERS" RG with
monthly salary equal to $1000. This, of course,
is an equivalent example to the previous one.

most com-

e Group. The group function operates across
levels of the hierarchy. It qualifies entries in
a RG according to a set operation (SOP) on values
in a RG which belongs to it. For example: qualify
entries in the "PROJECTS'" RG for which the average
"SALARY" per project is greater than 15000. 1Its
form is: group = rg sop col pred val. For the

example above we have: (PROJECTS AVG SALARY GR 15000
(RD)) (entries 5,7 qualified). The implied RG for
the group function is, of course, the RG which
appears in the function. Note that the group func-
tion can operate across more than one level, such

as the entries in the "BRANCHES" RG for which aver-
age "SALARY' per branch is greater than 15000.

e Scope. This function, too, operates across
levels of the hierarchy. Its purpose is to qualify
entries in a RG in one level as a result of entries
that qualified in a RG in another level. For
example, suppose that we want to qualify branches if
they contain at least one project that qualified in
our previous example. We apply a scope function
(which is simply--scope = rg) to the previous exam-—
ple as follows: (BRANCHES (PROJECTS AVG SALARY GR
15000 (RD))) (entry 2 qualified). We can either
"scope up" or "scope down", depending on whether the
scope RG (RGy) is at a level higher or lower than
the implied RG of the qualifier it operates on (RG).
When "scoping up", we qualify entries in RGg for
which there is at least one entry qualified in RG .
When "scoping down", we qualify all entries in
RGg for every entry that qualified in RG_. The
previous example is one of "scoping up", the follow-
ing example is one of "scoping down': (MEMBERS (PNAME
EQ 10 (RD))), which simply qualifies all members of
the IO project.

e Compare. The compare function qualifies an
entry by comparing values from two columns for that
entry. For example, suppose that we want to qualify
members that have the same number of years of
experience (EYEARS) and years with the company
(CYEARS). The syntax representation for this exanmple
is: (COMP EYEARS EQ CYEARS (RD)). Entries qualify
by comparing EYFARS and CYEARS pairwise by entry
(entries 8, 12, 13, 15, 19 qualify). The syntax form
for this function is: compare = COMP col pred col.
Both "col" elements in this function must belong to
the same RG. This RG is, therefore, the implied

. RG.

e Loop. This function is similar in form to the
compare function: loop =LOOP col pred col. However,
instead of comparing values from the columns pair-
wise, it compares one value from the first column
with each value from the second column; then it
repeats the process for all other values from the
first column. For example, suppose we want to qual-
ify entries in the "BRANCHES'" RG for which a branch
head (BHEAD) is also a project leader (PLEADER). This
example 1s expressed by: (LOOP BHEAD EQ PLEADER (RD))
(entry 2 qualify). Note that the columns can belong
to different RGs; therefore, their order is Impor-
tant. We adopt the convention that the implied RG
is the one to which the first column belongs.

e Logical Qualification. This function is a
compound one which permits qualifiers to be joined
logically by the AND and OR logical operator (lop).
It is expressed in a recursive form to allow quali-
fiers to be joined logically as many times as neces-
sary. For example, if we want to qualify members
whose salary is greater than $18,000 or who have more
than 6 years of experience, we join two select func-
tions as follows: ((OR (SALARY GR 18000) (EYEARS GR
6)) (RD)) (entries 10,15,16 qualify). 1t is permitted
to join qualifiers whose implied RGs are in different
levels in the hierarchy; however, the implied RG of
the joined qualifier is always the lower of the two.

73-417

When an entry~function is being applied to a has many levels of qualifiers imbedded in it, one
qualifier, scoping functions often become redun- for every application of an entry-function. It
dant as in the following example:) might be useful to attach an output function to the

different levels, rather than to the top-level
E NT (PROJE NAM MS . ’
(PLEADER EQ KENT (PROJECTS(BNAME EQ D (RD)))) qualifier only. Output attachment is important for

which means: in the DMS branch, qualify these separating the output process from the qualifica-
entries in the PROJECTS RG for which project leader tion process.

is KENT. (In this case only entry 5 qualifies).

The scope function PROJECTS in the form above is e Multiple application of entry-functions to a
not necessary since the form: qualifier. Once a qualifier was expressed it might

be desirable to allow more than one entry-function

h EQ DMS
(PLEADER EQ KENT (BNAME EQ (RD))) to apply to it. This will form a "tree structure'

implies a scoping down between the two implied RGs whose nodes are qualifiers and whose arcs are entry-
"MEMBERS" (from BNAME) and "PROJECTS" (from PLEADER). functions. Output attachment can be made to the
Scope functions are necessary, however, as can be nodes of the tree. An easy way to express both
illustrated in the following example: this function and the output attachment function is
) by a numbering scheme for the qualifiers in dif-
(MEMBERS (PROJECTS (YEARS GR 6 (RD)))) ferent levels. Entry-functions and output-functions

which means: for the project which has a member refer to the qualifier they operate on by its number.

with more than 6 years of experience, qualify all

members. After selecting on "YEARS" entries 15,
16 qualify . After scoping down to "MEMBERS" RG,

entries 15, 16, 17 qualified.

e Additional output functions. These include
the important functions of output formatting and
sorting.

o Additional reference functions for qualifica-
tion. These include:

We mentioned earlier that values can be ex-
tracted from the data base. This is done by apply-
ing a value-function (vfunction) to a qualifier. function--to qualify, for example

» s

Thu the value-function maps entries into values.’ s .
S, P projects for which every member has salary greater

The simplest value fu?ctloz 1?1 vfun?tion‘= czl. than $15,000. This function is also called "the
It allows the extraction of a the values under a universal quantifier".

"col" for those entries that qualified. Thus, in
the example of Figure 4, the form (MNAME) (SALARY
EQ 12000 (RD)) returns the values FONG and LEE. A
more complex value-function is the single-value-func-
tion (svf) which extracts one value only by apply~
ing a set-operation (sop) on the values of a column.
For example, (AVG SALARY) (EYEARS GR 4(RD)) extracts
the average salary of members with more than &4 years
of experience. An extension of the svf is the
multiple-value-function (mvf) which extracts mul-~
tiple values by grouping the entries it operates e Programmi 1 £ .
on. For example, (PROJECTS AVE SALARY) (EYEARS GR functionsgco “T a““ga%e unctions. These are
4(RD)) extracts the average salary per project for - mmonly used in programming languages,
members with more than 4 years of experience. such-as conditional statements (IF statements),
repeated execution (FOR statements) and subroutines.

- "Every"

- "Same" function--to qualify, for example, pro-

jects with the same project leader.

- "Order reference " functions--to extract elements
from ordered lists in a data base. For example, if
a list of people is ordered by age (oldest first) in
a data base, one can obtain the youngest of them by
requesting the last person on the list.

The value-function is used, most naturally, for
output, but it is also used to extract values to be
used for further qualification. For example, to
qualify members with salary greater than the average
salary, we need to extract the average salary using

e Additional data management functiong. 1In the

kernel version of ILDS, our main emphasis is on
qualification for the purpose of retrieval of data.
Many additional data management functions are sur-

a value-function as follows: SALARY GR (AVG veyed in the literature?,10, such as data defini-
-SALARY (RD)). Another output function is TF (true- tion functions and data modification functions.
false), which returns false if no entries qualify, (The kernel version has only a basic, simple re-
otherwise true. This function is necessary for placement part for the update and create functions.)

answering questions about the data base, such as
(TF) (PLEADER EQ LOVE (RD)) to represent: 'is LOVE Ihe Translator Interfaces
a project leader?" '
We decided to implement several translator inter-
Additional Properties of the Intermediate Language faces in order to gain actual experience, possibly
- identify unforeseen problems, and develop a better
The kernel version of ILDS is not an attempt to Idea of the feasibility of the integrated approach.

represent all possible functions on a hierarchical We describe below some functions that an interface

data base, rather, it provides us with a powerful must perform.

enough tool for our experimentation with trans-

lating from it into target data management lan- e Translation from the common language to fhe

guages and from English into it. In the course of target data management language (DML). The trans-

developing ILDS, we recognized manv functional lation process has to be tailored for the specific

properties which are not expressed in the kernel DML, in that it needs to take advantage of special

version. We describe them briefly below: functions that can be expressed by the DML. If

these are two ways of representing a request in the

¢ Output attachment. A qualifier that is DML, the more efficient one must be chosen. In the

formed by a repeated application of entry-functions case of ILDS, we have to consider whether a quali-

T3-4. ¢

/
£i.r with multiple entry-functions can be expressed
jointly through a single request in the DML.

o Appropriate refusal of a request. If the tar-
get data management.system is not capable of perform-

ing a request expressed in the common language, then
the interface needs to refuse it properly. Rather
than refusing it as 'cannot be done", an indication
as to why it cannot be done might help the user to

- rephrase his question.

e Translation of returned data. Replies from
the data management system must be put in a common
data format if there is a need to integrate replies
coming from different systems (this point was dis-
cussed earlier). Furthermore, a common data format
is necessary for returning complex data such as
reports. In that case, a report which is produced
by a system in order to be output on some local 1/0
device needs to be shipped to another remote systen
which might have different 1/0 devices. A "post-
processor' at the remote node would then receive
the report in the commcn data format and output it
on an 1/0 device designated by the user who issued
the request. The problem of shipping data and files
on computer networks has been recognized as a
general one, and work in this direction has been
initiatedtl. If gencral mechanisms for data trans-—
fer are available on a computer network, then the
interface should use them for returned data.

¢ Translation of error messages into a common
error format. Every data management system usually
has its own error-message format. It is useful to
have them translated into a ccmmon format so that

with only one errcor format.

users have to be familiar
o Control functions. The interfaces need to have

control mechanisms to nandle multiple requests

coming from different users on the network. This

type of control mechanism should normally be part of

network functions performed by every node. An

additional control mechanism is necessary in order

to establish communication between the interface and

the target data management system. Control func-

tions should use interprocess communication mecha-

nisms available on the computer network, such as

the experimental one described in™%.

Our experiments with implementing interfaces con-
centrated in the area of translation from the com-
mon language to the target data management languages
because we wanted to learn more about this process
of translation and its implications. An important
conclusion was that if temporary storage functions
(or their equivalent) are available in the target
data management svstem, then it is possible to en-—
hance the apparent functional power of that system
by splitting complex requests in the common language
into a series of requests in the DML. For example,
in the case of DS/2 (an SDC data management system)
a "SUBSET qualifier"” function restricts the data
base for the next operation according to the quali-
fier. The translator to DS/2 can take advantage
of this function bv representing; say, a complex
query request as a series of SUBSET functions
followed by a simple request that can be expressed
in the DS/2 DML.

"As menticned before, we implemented the trans-
lation by means of a meta-compiler (an SDC product
called CWIC13). This invelved writing programs in
the CWIC language, a task that was quite complex
but not lengthv. We implemented two translators

from an earlier version of ILDS (which was based on
relational data structures) to the DS/2 and TpMS/
data management languages. We spent 2-3 man-months
to implement and debug each translator on the CWIC
system.

SUMMARY AND CONCLUSIONS

The integration of data management systems on &
computer network might be achieved by using the
methodology of a common language and translation
interface. 1In addition to the advantage of inte-
grating existing data management systems and data,
this approach facilitates the evolutionary develop-
ment of new systems. The dual mode of accessing
data--using the data management language or the
common language--should be of great value for
gradual adaptation to.computer network data sharing.
A disadvantage of this approach is that translator
interfaces add a level of language translation.
However, our experience shows that the translation
of data management languages is a manageable task.
Furthermore, considering that control, communica-
tion, and data transfer functions need be performed
in any approach for data sharing on a network, the
addition of translation tasks may not be so signifi-
cant.

The separation of the common language into two
Jjevels-—the English language for user convenience
and an intermediate language for precise expressive
power—-helped us to concentrate on exploring the
functional properties desirable in a common language.
The common language should represent a "union" of
data management languages, so that it can repre-
sent requests for all data management systems. Our
approach was to identify the elementary functions
on logical data structures and allow for their
recursive application. A kernel version of this
language was defined and experimental translators
from it to two example data management systems were
built by the use of a meta-compiler.

Our experience shows that these translators were
relatively easy to implement with a meta-compiler
(about 2-3 man-month per translator). Another
important conclusion was that it is possible to add
functional power to target data management systems
by translating a single request in the common lan-
guage into a series of requests in the target data
management language.

The use of English as a cormmon language is not
useful for sophisticated users. . It is very dif-
ficult, for example, to express in English a pre-
cise report request. In addition, a description of
the target data base must be available to the
natural language processor for it to process English
requests. Therefore, a precise common language is
necessary whether or not an English input mode is
available.

To summarize, the integration of data manage-
ment systems on a computer network using techniques
described in-this paper offers many advantages.

Tt should lead to sharing of existing and new data,
to gradual acceptance of the computer network data
sharing concept, to the natural survival of better
data management svstems and elimination of less
useful, less efficient ones, and to the elimina-
tion of duplicated work in the area of data man-
agement svstem development. Its feasibility is
predicated on a well defined computer network with

T3-417

s

e

2 advanced interprocess communication and data trans-
fer capabilities.

Acknowledgment

We would like to thank Gunther Luther of SDC for
his help and many ideas in the development of ILDS.

Appendix: Kernel Version of ILDS

The syntax for ILDS is expressed in BNF iorm
except for braces ({ }) which are used to indicate
that the elements between them may appear one or
more times. Note that parentheses are terminal
symbols in the syntax.

The Syntax

ilds ti= (<create>)l(<delete>)|(<update>)

[(<query>)

creat CREATE - (<replacement>)

delete DELETE (<qualifier>)

update H UPDATE (<replacement>)(<qualifiers)

query ::= RETURN ({<output>})(<qualifier>)

output ti= <vfunction> | TF

qualifier ::= <efunction>(<qualifier>)| (<tqualifier>)

efunction ::= <select>|<group>|<scope> | <compare>
{<loop>|{<lqual>

select 1:= <cols<preds<val>

group ti= <rg><sop><col><pred><val>

scaope i=ocrg>

compare 2:= COMP <col><pred><col>

loop ::= LOOP <col><pred><col>

lqual : (<lop><lqual><lqual>)| (<qualifier>)

val : (<vfunction>(<qualifier>))| ({<pval>})

vfunction ::= <col>|(<svf>)| (<mvf>)

svf : <sop><col>|<sop> (<mvf>)

mvf 11= <rg><sop><col>

col ::= <de> | (<uop><col>) | (<col><bop><col>)
| {(<col><bop><val>)| (<val><bop><col>)

pval 11= <string>|<number> .

tqualifier::= <hname>

replacement: := {(<de><val>)}

lop ::= AND | OR

pred ::= EQ | GR| LS | GQ | LQ | NQ

uop ti= -

bop : +] =] k) /| k%

sop : SUM | AVG | MAX | MIN | COUNT

hname : identifier

de H identifier

rg : identifier

To shorten the syntax presentation here, the
elements string, identifier and number are not
expressed in detail. (Their interpretation is the
normal one: number--any integer, fixed point or
floating point number; string--a concatenation of
one or more letters, digits and special characters,
identifier--is a string whose first character is
a letter).

An example of a query

The following is a query written in the ILDS
language and the representation of its parsed tree.
The query requests names of emplovees in the DMS
branch whose salary is greater than the amount of
$10000 plus $1000 for every year of experience.

(RETURN (MNAME) (COMP SALARY GR (10000+ (EYEARS*1600)) (BNAME EQ DI]S (RD))))
de) de :l; p_val . de y}gd val tqual
val bop col ct!l
col c;l/pred col select
comr/été —’/,//qualifiér
output qualifier

query ~*

10.

11.

12.

13.

References

Farber, David J. "Networks: An Introduction”,
Datamatiom, Vol. 18, 4 April 1972, pp. 36-40

Bell, G. C. et al. "Computer Networks", Computer,.
September-October 1970, pp. 13-21.

Roberts, L. G., and Wessler, B. '"The ARPA
Computer Network", in Computer Communication
Networks, edited by Abramson and Kus, Prentice
Hall, 1972.

McKay, D. B., and Karp, D. P., "Network 440--—
IBM Research Computer Sciences Department
Computer Netwerk", IBM Research Report RC3431,
July 1971.

Shoshani, A., "Data Sharing in Computer Networks",
WESCON Conference, Computer Networks Session,
Sept. 1972 (Also, ARPA NIC Document 12623,
Stanford Research Institute, Oct. 1972).

Kellogg, C., et al, "The CONVERSE Natural
Language Data Management System: Current
Status and Plans", Proceedings of the Symposium
on Information Storage and Retrieval, Univer-
sity of Maryland, 1971.

Bleier, Robert E., "Treating Hierarchical Data
Structures in the SDC Time-Shared Data Manage-
ment System (TDMS)", Proceeding of ACM National

Meeting 1967, pp. 41-49.

Engles, Robert W., "A Tutorial on Data-Base
Organization", Annual Review of Automated
Programming, Vol. 7, Part 1, 1972, pp. 1-64.

Fry, J. P. et al, "Data Management Systems Survey"
MIP-329, The MITRE Corporation, May 1969.

"Feature Analysis of Generalized Data Base

‘Management Systems', CODASYL Systems Committee,

April 1971.

Crocker, S. D. et al, "Function-oriented Proto-
cols for the ARPA Computer Network", Proceedings
of AFIPS 1972 SICC, pp. 271-280.

Carr, S., Crocker, S., Cerf, V. "HOST-HOST
Communication Protocol in the ARPA Network',
Proceedings of AFIPS 1970 SJCC, pp. 589-598.

Book, E., Schorre, D. V., and Sherman, S. J.,
"The CWIC/360 System, A Compiler for Writing
and Implementing Compilers", ACM SIGPLAN

Notices, Vol. 5, No. 6, June 1970, pp. 11-29.

73-417

