
RFC 8725
JSON Web Token Best Current Practices

Abstract
JSON Web Tokens, also known as JWTs, are URL-safe JSON-based security tokens that contain a
set of claims that can be signed and/or encrypted. JWTs are being widely used and deployed as a
simple security token format in numerous protocols and applications, both in the area of digital
identity and in other application areas. This Best Current Practices document updates RFC 7519
to provide actionable guidance leading to secure implementation and deployment of JWTs.

Stream: Internet Engineering Task Force (IETF)
RFC: 8725
BCP: 225
Updates: 7519
Category: Best Current Practice
Published: February 2020
ISSN: 2070-1721
Authors: Y. Sheffer

Intuit
D. Hardt M. Jones

Microsoft

Status of This Memo
This memo documents an Internet Best Current Practice.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on BCPs is
available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc8725

Copyright Notice
Copyright (c) 2020 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.

https://trustee.ietf.org/license-info

Sheffer, et al. Best Current Practice Page 1

https://www.rfc-editor.org/rfc/rfc8725
https://www.rfc-editor.org/rfc/rfc7519
https://www.rfc-editor.org/info/rfc8725
https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

1.1. Target Audience

1.2. Conventions Used in this Document

2. Threats and Vulnerabilities

2.1. Weak Signatures and Insufficient Signature Validation

2.2. Weak Symmetric Keys

2.3. Incorrect Composition of Encryption and Signature

2.4. Plaintext Leakage through Analysis of Ciphertext Length

2.5. Insecure Use of Elliptic Curve Encryption

2.6. Multiplicity of JSON Encodings

2.7. Substitution Attacks

2.8. Cross-JWT Confusion

2.9. Indirect Attacks on the Server

3. Best Practices

3.1. Perform Algorithm Verification

3.2. Use Appropriate Algorithms

3.3. Validate All Cryptographic Operations

3.4. Validate Cryptographic Inputs

3.5. Ensure Cryptographic Keys Have Sufficient Entropy

3.6. Avoid Compression of Encryption Inputs

3.7. Use UTF-8

3.8. Validate Issuer and Subject

3.9. Use and Validate Audience

3.10. Do Not Trust Received Claims

3.11. Use Explicit Typing

3.12. Use Mutually Exclusive Validation Rules for Different Kinds of JWTs

RFC 8725 JWT BCP February 2020

Sheffer, et al. Best Current Practice Page 2

4. Security Considerations

5. IANA Considerations

6. References

6.1. Normative References

6.2. Informative References

Acknowledgements

Authors' Addresses

1. Introduction
JSON Web Tokens, also known as JWTs , are URL-safe JSON-based security tokens that
contain a set of claims that can be signed and/or encrypted. The JWT specification has seen rapid
adoption because it encapsulates security-relevant information in one easy-to-protect location,
and because it is easy to implement using widely available tools. One application area in which
JWTs are commonly used is representing digital identity information, such as OpenID Connect ID
Tokens and OAuth 2.0 access tokens and refresh tokens, the details of
which are deployment-specific.

Since the JWT specification was published, there have been several widely published attacks on
implementations and deployments. Such attacks are the result of under-specified security
mechanisms, as well as incomplete implementations and incorrect usage by applications.

The goal of this document is to facilitate secure implementation and deployment of JWTs. Many
of the recommendations in this document are about implementation and use of the
cryptographic mechanisms underlying JWTs that are defined by JSON Web Signature (JWS)

, JSON Web Encryption (JWE) , and JSON Web Algorithms (JWA) .
Others are about use of the JWT claims themselves.

These are intended to be minimum recommendations for the use of JWTs in the vast majority of
implementation and deployment scenarios. Other specifications that reference this document
can have stricter requirements related to one or more aspects of the format, based on their
particular circumstances; when that is the case, implementers are advised to adhere to those
stricter requirements. Furthermore, this document provides a floor, not a ceiling, so stronger
options are always allowed (e.g., depending on differing evaluations of the importance of
cryptographic strength vs. computational load).

Community knowledge about the strength of various algorithms and feasible attacks can change
quickly, and experience shows that a Best Current Practice (BCP) document about security is a
point-in-time statement. Readers are advised to seek out any errata or updates that apply to this
document.

[RFC7519]

[OpenID.Core] [RFC6749]

[RFC7515] [RFC7516] [RFC7518]

RFC 8725 JWT BCP February 2020

Sheffer, et al. Best Current Practice Page 3

1.1. Target Audience
The intended audiences of this document are:

Implementers of JWT libraries (and the JWS and JWE libraries used by those libraries),
Implementers of code that uses such libraries (to the extent that some mechanisms may not
be provided by libraries, or until they are), and
Developers of specifications that rely on JWTs, both inside and outside the IETF.

•
•

•

1.2. Conventions Used in this Document
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

2. Threats and Vulnerabilities
This section lists some known and possible problems with JWT implementations and
deployments. Each problem description is followed by references to one or more mitigations to
those problems.

2.1. Weak Signatures and Insufficient Signature Validation
Signed JSON Web Tokens carry an explicit indication of the signing algorithm, in the form of the
"alg" Header Parameter, to facilitate cryptographic agility. This, in conjunction with design flaws
in some libraries and applications, has led to several attacks:

The algorithm can be changed to "none" by an attacker, and some libraries would trust this
value and "validate" the JWT without checking any signature.
An "RS256" (RSA, 2048 bit) parameter value can be changed into "HS256" (HMAC, SHA-256),
and some libraries would try to validate the signature using HMAC-SHA256 and using the
RSA public key as the HMAC shared secret (see and).

For mitigations, see Sections 3.1 and 3.2.

•

•

[McLean] [CVE-2015-9235]

2.2. Weak Symmetric Keys
In addition, some applications use a keyed Message Authentication Code (MAC) algorithm, such
as "HS256", to sign tokens but supply a weak symmetric key with insufficient entropy (such as a
human-memorable password). Such keys are vulnerable to offline brute-force or dictionary
attacks once an attacker gets hold of such a token .

For mitigations, see Section 3.5.

[Langkemper]

RFC 8725 JWT BCP February 2020

Sheffer, et al. Best Current Practice Page 4

2.3. Incorrect Composition of Encryption and Signature
Some libraries that decrypt a JWE-encrypted JWT to obtain a JWS-signed object do not always
validate the internal signature.

For mitigations, see Section 3.3.

2.4. Plaintext Leakage through Analysis of Ciphertext Length
Many encryption algorithms leak information about the length of the plaintext, with a varying
amount of leakage depending on the algorithm and mode of operation. This problem is
exacerbated when the plaintext is initially compressed, because the length of the compressed
plaintext and, thus, the ciphertext depends not only on the length of the original plaintext but
also on its content. Compression attacks are particularly powerful when there is attacker-
controlled data in the same compression space as secret data, which is the case for some attacks
on HTTPS.

See for general background on compression and encryption and for a
specific example of attacks on HTTP cookies.

For mitigations, see Section 3.6.

[Kelsey] [Alawatugoda]

2.5. Insecure Use of Elliptic Curve Encryption
Per , several Javascript Object Signing and Encryption (JOSE) libraries fail to validate their
inputs correctly when performing elliptic curve key agreement (the "ECDH-ES" algorithm). An
attacker that is able to send JWEs of its choosing that use invalid curve points and observe the
cleartext outputs resulting from decryption with the invalid curve points can use this
vulnerability to recover the recipient's private key.

For mitigations, see Section 3.4.

[Sanso]

2.6. Multiplicity of JSON Encodings
Previous versions of the JSON format, such as the obsoleted , allowed several different
character encodings: UTF-8, UTF-16, and UTF-32. This is not the case anymore, with the latest
standard only allowing UTF-8 except for internal use within a "closed ecosystem". This
ambiguity, where older implementations and those used within closed environments may
generate non-standard encodings, may result in the JWT being misinterpreted by its recipient.
This, in turn, could be used by a malicious sender to bypass the recipient's validation checks.

For mitigations, see Section 3.7.

[RFC7159]

[RFC8259]

RFC 8725 JWT BCP February 2020

Sheffer, et al. Best Current Practice Page 5

2.7. Substitution Attacks
There are attacks in which one recipient will be given a JWT that was intended for it and will
attempt to use it at a different recipient for which that JWT was not intended. For instance, if an
OAuth 2.0 access token is legitimately presented to an OAuth 2.0 protected resource for
which it is intended, that protected resource might then present that same access token to a
different protected resource for which the access token is not intended, in an attempt to gain
access. If such situations are not caught, this can result in the attacker gaining access to resources
that it is not entitled to access.

For mitigations, see Sections 3.8 and 3.9.

[RFC6749]

2.8. Cross-JWT Confusion
As JWTs are being used by more different protocols in diverse application areas, it becomes
increasingly important to prevent cases of JWT tokens that have been issued for one purpose
being subverted and used for another. Note that this is a specific type of substitution attack. If the
JWT could be used in an application context in which it could be confused with other kinds of
JWTs, then mitigations be employed to prevent these substitution attacks.

For mitigations, see Sections 3.8, 3.9, 3.11, and 3.12.

MUST

2.9. Indirect Attacks on the Server
Various JWT claims are used by the recipient to perform lookup operations, such as database and
Lightweight Directory Access Protocol (LDAP) searches. Others include URLs that are similarly
looked up by the server. Any of these claims can be used by an attacker as vectors for injection
attacks or server-side request forgery (SSRF) attacks.

For mitigations, see Section 3.10.

3. Best Practices
The best practices listed below should be applied by practitioners to mitigate the threats listed in
the preceding section.

3.1. Perform Algorithm Verification
Libraries enable the caller to specify a supported set of algorithms and use any
other algorithms when performing cryptographic operations. The library ensure that the
"alg" or "enc" header specifies the same algorithm that is used for the cryptographic operation.
Moreover, each key be used with exactly one algorithm, and this be checked when
the cryptographic operation is performed.

MUST MUST NOT
MUST

MUST MUST

RFC 8725 JWT BCP February 2020

Sheffer, et al. Best Current Practice Page 6

3.2. Use Appropriate Algorithms
As says, "it is an application decision which algorithms may be used in a
given context. Even if a JWS can be successfully validated, unless the algorithm(s) used in the
JWS are acceptable to the application, it consider the JWS to be invalid."

Therefore, applications only allow the use of cryptographically current algorithms that
meet the security requirements of the application. This set will vary over time as new algorithms
are introduced and existing algorithms are deprecated due to discovered cryptographic
weaknesses. Applications therefore be designed to enable cryptographic agility.

That said, if a JWT is cryptographically protected end-to-end by a transport layer, such as TLS
using cryptographically current algorithms, there may be no need to apply another layer of
cryptographic protections to the JWT. In such cases, the use of the "none" algorithm can be
perfectly acceptable. The "none" algorithm should only be used when the JWT is
cryptographically protected by other means. JWTs using "none" are often used in application
contexts in which the content is optionally signed; then, the URL-safe claims representation and
processing can be the same in both the signed and unsigned cases. JWT libraries
generate JWTs using "none" unless explicitly requested to do so by the caller. Similarly, JWT
libraries consume JWTs using "none" unless explicitly requested by the caller.

Applications follow these algorithm-specific recommendations:

Avoid all RSA-PKCS1 v1.5 encryption algorithms (), preferring RSAES-
OAEP ().
Elliptic Curve Digital Signature Algorithm (ECDSA) signatures require a
unique random value for every message that is signed. If even just a few bits of the random
value are predictable across multiple messages, then the security of the signature scheme
may be compromised. In the worst case, the private key may be recoverable by an attacker.
To counter these attacks, JWT libraries implement ECDSA using the deterministic
approach defined in . This approach is completely compatible with existing ECDSA
verifiers and so can be implemented without new algorithm identifiers being required.

Section 5.2 of [RFC7515]

SHOULD

MUST

MUST

SHOULD NOT

SHOULD NOT

SHOULD

• [RFC8017], Section 7.2
[RFC8017], Section 7.1

• [ANSI-X962-2005]

SHOULD
[RFC6979]

3.3. Validate All Cryptographic Operations
All cryptographic operations used in the JWT be validated and the entire JWT be
rejected if any of them fail to validate. This is true not only of JWTs with a single set of Header
Parameters but also for Nested JWTs in which both outer and inner operations be
validated using the keys and algorithms supplied by the application.

MUST MUST

MUST

RFC 8725 JWT BCP February 2020

Sheffer, et al. Best Current Practice Page 7

https://www.rfc-editor.org/rfc/rfc7515#section-5.2
https://www.rfc-editor.org/rfc/rfc8017#section-7.2
https://www.rfc-editor.org/rfc/rfc8017#section-7.1

3.4. Validate Cryptographic Inputs
Some cryptographic operations, such as Elliptic Curve Diffie-Hellman key agreement ("ECDH-
ES"), take inputs that may contain invalid values. This includes points not on the specified elliptic
curve or other invalid points (e.g., , Section 7.1). The JWS/JWE library itself must validate
these inputs before using them, or it must use underlying cryptographic libraries that do so (or
both!).

Elliptic Curve Diffie-Hellman Ephemeral Static (ECDH-ES) ephemeral public key (epk) inputs
should be validated according to the recipient's chosen elliptic curve. For the NIST prime-order
curves P-256, P-384, and P-521, validation be performed according to Section 5.6.2.3.4 (ECC
Partial Public-Key Validation Routine) of "Recommendation for Pair-Wise Key-Establishment
Schemes Using Discrete Logarithm Cryptography" . If the "X25519" or "X448"

 algorithms are used, then the security considerations in apply.

[Valenta]

MUST

[nist-sp-800-56a-r3]
[RFC8037] [RFC8037]

3.5. Ensure Cryptographic Keys Have Sufficient Entropy
The Key Entropy and Random Values advice in and the Password
Considerations in be followed. In particular, human-memorizable
passwords be directly used as the key to a keyed-MAC algorithm such as "HS256".
Moreover, passwords should only be used to perform key encryption, rather than content
encryption, as described in . Note that even when used for key
encryption, password-based encryption is still subject to brute-force attacks.

Section 10.1 of [RFC7515]
Section 8.8 of [RFC7518] MUST

MUST NOT

Section 4.8 of [RFC7518]

3.6. Avoid Compression of Encryption Inputs
Compression of data be done before encryption, because such compressed data
often reveals information about the plaintext.

SHOULD NOT

3.7. Use UTF-8
, , and all specify that UTF-8 be used for encoding and decoding

JSON used in Header Parameters and JWT Claims Sets. This is also in line with the latest JSON
specification . Implementations and applications do this and not use or admit the
use of other Unicode encodings for these purposes.

[RFC7515] [RFC7516] [RFC7519]

[RFC8259] MUST

3.8. Validate Issuer and Subject
When a JWT contains an "iss" (issuer) claim, the application validate that the cryptographic
keys used for the cryptographic operations in the JWT belong to the issuer. If they do not, the
application reject the JWT.

MUST

MUST

RFC 8725 JWT BCP February 2020

Sheffer, et al. Best Current Practice Page 8

https://www.rfc-editor.org/rfc/rfc7515#section-10.1
https://www.rfc-editor.org/rfc/rfc7518#section-8.8
https://www.rfc-editor.org/rfc/rfc7518#section-4.8

The means of determining the keys owned by an issuer is application-specific. As one example,
OpenID Connect issuer values are "https" URLs that reference a JSON metadata
document that contains a "jwks_uri" value that is an "https" URL from which the issuer's keys are
retrieved as a JWK Set . This same mechanism is used by . Other applications
may use different means of binding keys to issuers.

Similarly, when the JWT contains a "sub" (subject) claim, the application validate that the
subject value corresponds to a valid subject and/or issuer-subject pair at the application. This
may include confirming that the issuer is trusted by the application. If the issuer, subject, or the
pair are invalid, the application reject the JWT.

[OpenID.Core]

[RFC7517] [RFC8414]

MUST

MUST

3.9. Use and Validate Audience
If the same issuer can issue JWTs that are intended for use by more than one relying party or
application, the JWT contain an "aud" (audience) claim that can be used to determine
whether the JWT is being used by an intended party or was substituted by an attacker at an
unintended party.

In such cases, the relying party or application validate the audience value, and if the
audience value is not present or not associated with the recipient, it reject the JWT.

MUST

MUST
MUST

3.10. Do Not Trust Received Claims
The "kid" (key ID) header is used by the relying application to perform key lookup. Applications
should ensure that this does not create SQL or LDAP injection vulnerabilities by validating and/or
sanitizing the received value.

Similarly, blindly following a "jku" (JWK set URL) or "x5u" (X.509 URL) header, which may
contain an arbitrary URL, could result in server-side request forgery (SSRF) attacks. Applications

 protect against such attacks, e.g., by matching the URL to a whitelist of allowed locations
and ensuring no cookies are sent in the GET request.
SHOULD

3.11. Use Explicit Typing
Sometimes, one kind of JWT can be confused for another. If a particular kind of JWT is subject to
such confusion, that JWT can include an explicit JWT type value, and the validation rules can
specify checking the type. This mechanism can prevent such confusion. Explicit JWT typing is
accomplished by using the "typ" Header Parameter. For instance, the specification
uses the "application/secevent+jwt" media type to perform explicit typing of Security Event
Tokens (SETs).

Per the definition of "typ" in , it is that the
"application/" prefix be omitted from the "typ" value. Therefore, for example, the "typ" value
used to explicitly include a type for a SET be "secevent+jwt". When explicit typing is
employed for a JWT, it is that a media type name of the format "application/
example+jwt" be used, where "example" is replaced by the identifier for the specific kind of JWT.

[RFC8417]

Section 4.1.9 of [RFC7515] RECOMMENDED

SHOULD
RECOMMENDED

RFC 8725 JWT BCP February 2020

Sheffer, et al. Best Current Practice Page 9

https://www.rfc-editor.org/rfc/rfc7515#section-4.1.9

When applying explicit typing to a Nested JWT, the "typ" Header Parameter containing the
explicit type value be present in the inner JWT of the Nested JWT (the JWT whose payload
is the JWT Claims Set). In some cases, the same "typ" Header Parameter value will be present in
the outer JWT as well, to explicitly type the entire Nested JWT.

Note that the use of explicit typing may not achieve disambiguation from existing kinds of JWTs,
as the validation rules for existing kinds of JWTs often do not use the "typ" Header Parameter
value. Explicit typing is for new uses of JWTs.

MUST

RECOMMENDED

3.12. Use Mutually Exclusive Validation Rules for Different Kinds of JWTs
Each application of JWTs defines a profile specifying the required and optional JWT claims and
the validation rules associated with them. If more than one kind of JWT can be issued by the
same issuer, the validation rules for those JWTs be written such that they are mutually
exclusive, rejecting JWTs of the wrong kind. To prevent substitution of JWTs from one context
into another, application developers may employ a number of strategies:

Use explicit typing for different kinds of JWTs. Then the distinct "typ" values can be used to
differentiate between the different kinds of JWTs.
Use different sets of required claims or different required claim values. Then the validation
rules for one kind of JWT will reject those with different claims or values.
Use different sets of required Header Parameters or different required Header Parameter
values. Then the validation rules for one kind of JWT will reject those with different Header
Parameters or values.
Use different keys for different kinds of JWTs. Then the keys used to validate one kind of JWT
will fail to validate other kinds of JWTs.
Use different "aud" values for different uses of JWTs from the same issuer. Then audience
validation will reject JWTs substituted into inappropriate contexts.
Use different issuers for different kinds of JWTs. Then the distinct "iss" values can be used to
segregate the different kinds of JWTs.

Given the broad diversity of JWT usage and applications, the best combination of types, required
claims, values, Header Parameters, key usages, and issuers to differentiate among different kinds
of JWTs will, in general, be application-specific. As discussed in Section 3.11, for new JWT
applications, the use of explicit typing is .

MUST

•

•

•

•

•

•

RECOMMENDED

4. Security Considerations
This entire document is about security considerations when implementing and deploying JSON
Web Tokens.

5. IANA Considerations
This document has no IANA actions.

RFC 8725 JWT BCP February 2020

Sheffer, et al. Best Current Practice Page 10

[nist-sp-800-56a-r3]

[RFC2119]

[RFC6979]

[RFC7515]

[RFC7516]

[RFC7518]

[RFC7519]

[RFC8017]

[RFC8037]

[RFC8174]

[RFC8259]

6. References

6.1. Normative References

,

, ,
, April 2018,

.

, , ,
, , March 1997,
.

,
, ,

, August 2013, .

, , ,
, May 2015, .

, , ,
, May 2015, .

, , , , May
2015, .

, , ,
, May 2015, .

,
, , ,

November 2016, .

,
, , ,

January 2017, .

, ,
, , , May 2017,

.

, ,
, , , December 2017,

.

6.2. Informative References

Barker, E., Chen, L., Roginsky, A., Vassilev, A., and R. Davis
"Recommendation for Pair-Wise Key-Establishment Schemes Using Discrete
Logarithm Cryptography" NIST Special Publication 800-56A Revision 3 DOI
10.6028/NIST.SP.800-56Ar3 <https://doi.org/10.6028/
NIST.SP.800-56Ar3>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Pornin, T. "Deterministic Usage of the Digital Signature Algorithm (DSA) and
Elliptic Curve Digital Signature Algorithm (ECDSA)" RFC 6979 DOI 10.17487/
RFC6979 <https://www.rfc-editor.org/info/rfc6979>

Jones, M., Bradley, J., and N. Sakimura "JSON Web Signature (JWS)" RFC 7515
DOI 10.17487/RFC7515 <https://www.rfc-editor.org/info/rfc7515>

Jones, M. and J. Hildebrand "JSON Web Encryption (JWE)" RFC 7516 DOI
10.17487/RFC7516 <https://www.rfc-editor.org/info/rfc7516>

Jones, M. "JSON Web Algorithms (JWA)" RFC 7518 DOI 10.17487/RFC7518
<https://www.rfc-editor.org/info/rfc7518>

Jones, M., Bradley, J., and N. Sakimura "JSON Web Token (JWT)" RFC 7519 DOI
10.17487/RFC7519 <https://www.rfc-editor.org/info/rfc7519>

Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A. Rusch "PKCS #1: RSA
Cryptography Specifications Version 2.2" RFC 8017 DOI 10.17487/RFC8017

<https://www.rfc-editor.org/info/rfc8017>

Liusvaara, I. "CFRG Elliptic Curve Diffie-Hellman (ECDH) and Signatures in JSON
Object Signing and Encryption (JOSE)" RFC 8037 DOI 10.17487/RFC8037

<https://www.rfc-editor.org/info/rfc8037>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Bray, T., Ed. "The JavaScript Object Notation (JSON) Data Interchange Format"
STD 90 RFC 8259 DOI 10.17487/RFC8259 <https://www.rfc-
editor.org/info/rfc8259>

RFC 8725 JWT BCP February 2020

Sheffer, et al. Best Current Practice Page 11

https://doi.org/10.6028/NIST.SP.800-56Ar3
https://doi.org/10.6028/NIST.SP.800-56Ar3
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc6979
https://www.rfc-editor.org/info/rfc7515
https://www.rfc-editor.org/info/rfc7516
https://www.rfc-editor.org/info/rfc7518
https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc8017
https://www.rfc-editor.org/info/rfc8037
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259

[Alawatugoda]

[ANSI-X962-2005]

[CVE-2015-9235]

[Kelsey]

[Langkemper]

[McLean]

[OpenID.Core]

[RFC6749]

[RFC7159]

[RFC7517]

[RFC8414]

[RFC8417]

[Sanso]

[Valenta]

,
,

, , July 2015,
.

,

, , November 2005.

, , , May 2018,
.

, ,
, , July 2002,

.

, , September 2016,
.

, , March 2015,
.

,
, November 2014,

.

, , ,
, October 2012, .

, ,
, , March 2014,
.

, , , , May 2015,
.

,
, , , June 2018,

.

, ,
, , July 2018,
.

, , March 2017,

.

,
, March 2018,

.

Alawatugoda, J., Stebila, D., and C. Boyd "Protecting Encrypted Cookies from
Compression Side-Channel Attacks" Financial Cryptography and Data Security,
pp. 86-106 DOI 10.1007/978-3-662-47854-7_6 <https://
doi.org/10.1007/978-3-662-47854-7_6>

American National Standards Institute "Public Key Cryptography for the
Financial Services Industry: the Elliptic Curve Digital Signature Algorithm
(ECDSA)" ANSI X9.62-2005

NIST "CVE-2015-9235 Detail" National Vulnerability Database
<https://nvd.nist.gov/vuln/detail/CVE-2015-9235>

Kelsey, J. "Compression and Information Leakage of Plaintext" Fast Software
Encryption, pp. 263-276 DOI 10.1007/3-540-45661-9_21 <https://
doi.org/10.1007/3-540-45661-9_21>

Langkemper, S. "Attacking JWT authentication" <https://
www.sjoerdlangkemper.nl/2016/09/28/attacking-jwt-authentication/>

McLean, T. "Critical vulnerabilities in JSON Web Token libraries"
<https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/>

Sakimura, N., Bradley, J., Jones, M., de Medeiros, B., and C. Mortimore "OpenID
Connect Core 1.0 incorporating errata set 1" <https://
openid.net/specs/openid-connect-core-1_0.html>

Hardt, D., Ed. "The OAuth 2.0 Authorization Framework" RFC 6749 DOI
10.17487/RFC6749 <https://www.rfc-editor.org/info/rfc6749>

Bray, T., Ed. "The JavaScript Object Notation (JSON) Data Interchange Format"
RFC 7159 DOI 10.17487/RFC7159 <https://www.rfc-editor.org/info/
rfc7159>

Jones, M. "JSON Web Key (JWK)" RFC 7517 DOI 10.17487/RFC7517
<https://www.rfc-editor.org/info/rfc7517>

Jones, M., Sakimura, N., and J. Bradley "OAuth 2.0 Authorization Server
Metadata" RFC 8414 DOI 10.17487/RFC8414 <https://www.rfc-
editor.org/info/rfc8414>

Hunt, P., Ed., Jones, M., Denniss, W., and M. Ansari "Security Event Token (SET)"
RFC 8417 DOI 10.17487/RFC8417 <https://www.rfc-editor.org/info/
rfc8417>

Sanso, A. "Critical Vulnerability Uncovered in JSON Encryption"
<https://blogs.adobe.com/security/2017/03/critical-vulnerability-uncovered-in-
json-encryption.html>

Valenta, L., Sullivan, N., Sanso, A., and N. Heninger "In search of CurveSwap:
Measuring elliptic curve implementations in the wild" <https://
ia.cr/2018/298>

RFC 8725 JWT BCP February 2020

Sheffer, et al. Best Current Practice Page 12

https://doi.org/10.1007/978-3-662-47854-7_6
https://doi.org/10.1007/978-3-662-47854-7_6
https://nvd.nist.gov/vuln/detail/CVE-2015-9235
https://doi.org/10.1007/3-540-45661-9_21
https://doi.org/10.1007/3-540-45661-9_21
https://www.sjoerdlangkemper.nl/2016/09/28/attacking-jwt-authentication/
https://www.sjoerdlangkemper.nl/2016/09/28/attacking-jwt-authentication/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc7159
https://www.rfc-editor.org/info/rfc7159
https://www.rfc-editor.org/info/rfc7517
https://www.rfc-editor.org/info/rfc8414
https://www.rfc-editor.org/info/rfc8414
https://www.rfc-editor.org/info/rfc8417
https://www.rfc-editor.org/info/rfc8417
https://blogs.adobe.com/security/2017/03/critical-vulnerability-uncovered-in-json-encryption.html
https://blogs.adobe.com/security/2017/03/critical-vulnerability-uncovered-in-json-encryption.html
https://ia.cr/2018/298
https://ia.cr/2018/298

Acknowledgements
Thanks to for bringing the "ECDH-ES" invalid point attack to the attention of JWE
and JWT implementers. published the RSA/HMAC confusion attack .
Thanks to for advocating the use of explicit typing. Thanks to for his
numerous comments, and to , , , ,

, , , , , ,
, and for their reviews.

Antonio Sanso
Tim McLean [McLean]

Nat Sakimura Neil Madden
Carsten Bormann Brian Campbell Brian Carpenter Alissa Cooper

Roman Danyliw Ben Kaduk Mirja Kühlewind Barry Leiba Eric Rescorla Adam Roach Martin
Vigoureux Éric Vyncke

Authors' Addresses
Yaron Sheffer
Intuit

 yaronf.ietf@gmail.com Email:

Dick Hardt
 dick.hardt@gmail.com Email:

Michael B. Jones
Microsoft

 mbj@microsoft.com Email:
 https://self-issued.info/ URI:

RFC 8725 JWT BCP February 2020

Sheffer, et al. Best Current Practice Page 13

mailto:yaronf.ietf@gmail.com
mailto:dick.hardt@gmail.com
mailto:mbj@microsoft.com
https://self-issued.info/

	RFC 8725
	JSON Web Token Best Current Practices
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Target Audience
	1.2. Conventions Used in this Document

	2. Threats and Vulnerabilities
	2.1. Weak Signatures and Insufficient Signature Validation
	2.2. Weak Symmetric Keys
	2.3. Incorrect Composition of Encryption and Signature
	2.4. Plaintext Leakage through Analysis of Ciphertext Length
	2.5. Insecure Use of Elliptic Curve Encryption
	2.6. Multiplicity of JSON Encodings
	2.7. Substitution Attacks
	2.8. Cross-JWT Confusion
	2.9. Indirect Attacks on the Server

	3. Best Practices
	3.1. Perform Algorithm Verification
	3.2. Use Appropriate Algorithms
	3.3. Validate All Cryptographic Operations
	3.4. Validate Cryptographic Inputs
	3.5. Ensure Cryptographic Keys Have Sufficient Entropy
	3.6. Avoid Compression of Encryption Inputs
	3.7. Use UTF-8
	3.8. Validate Issuer and Subject
	3.9. Use and Validate Audience
	3.10. Do Not Trust Received Claims
	3.11. Use Explicit Typing
	3.12. Use Mutually Exclusive Validation Rules for Different Kinds of JWTs

	4. Security Considerations
	5. IANA Considerations
	6. References
	6.1. Normative References
	6.2. Informative References

	Acknowledgements
	Authors' Addresses

 JSON Web Token Best Current Practices

 Intuit

 yaronf.ietf@gmail.com

 dick.hardt@gmail.com

 Microsoft

 mbj@microsoft.com
 https://self-issued.info/

 Security
 OAuth Working Group
 JSON Web Token
 JWT
 JSON Object Signing and Encryption
 JOSE
 JSON Web Signature
 JWS
 JSON Web Encryption
 JWE
 attacks
 Claims
 Security
 Cryptography

 JSON Web Tokens, also known as JWTs, are URL-safe JSON-based security
 tokens that contain a set of claims that can be signed and/or encrypted.
 JWTs are being widely used and deployed as a simple security token
 format in numerous protocols and applications, both in the area of
 digital identity and in other application areas. This Best Current
 Practices document updates RFC 7519 to provide actionable guidance
 leading to secure implementation and deployment of JWTs.

 Status of This Memo

 This memo documents an Internet Best Current Practice.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further information
 on BCPs is available in Section 2 of RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Simplified BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Simplified BSD License.

 Table of Contents

 . Introduction

 . Target Audience

 . Conventions Used in this Document

 . Threats and Vulnerabilities

 . Weak Signatures and Insufficient Signature Validation

 . Weak Symmetric Keys

 . Incorrect Composition of Encryption and Signature

 . Plaintext Leakage through Analysis of Ciphertext Length

 . Insecure Use of Elliptic Curve Encryption

 . Multiplicity of JSON Encodings

 . Substitution Attacks

 . Cross-JWT Confusion

 . Indirect Attacks on the Server

 . Best Practices

 . Perform Algorithm Verification

 . Use Appropriate Algorithms

 . Validate All Cryptographic Operations

 . Validate Cryptographic Inputs

 . Ensure Cryptographic Keys Have Sufficient Entropy

 . Avoid Compression of Encryption Inputs

 . Use UTF-8

 . Validate Issuer and Subject

 . Use and Validate Audience

 . Do Not Trust Received Claims

 . Use Explicit Typing

 . Use Mutually Exclusive Validation Rules for Different Kinds of JWTs

 . Security Considerations

 . IANA Considerations

 . References

 . Normative References

 . Informative References

 Acknowledgements

 Authors' Addresses

 Introduction
 JSON Web Tokens, also known as JWTs , are URL-safe JSON-based security tokens
that contain a set of claims that can be signed and/or encrypted.
The JWT specification has seen rapid adoption because it encapsulates
security-relevant information in one easy-to-protect location, and because
it is easy to implement using widely available tools.
One application area in which JWTs are commonly used is representing digital identity information,
such as OpenID Connect ID Tokens
and OAuth 2.0 access tokens and
 refresh tokens, the details of which are deployment-specific.
 Since the JWT specification was published, there have been several widely published
attacks on implementations and deployments.
Such attacks are the result of under-specified security mechanisms, as well as incomplete
implementations and incorrect usage by applications.
 The goal of this document is to facilitate secure implementation and deployment of JWTs.
Many of the recommendations in this document are about
implementation and use of the cryptographic mechanisms underlying JWTs that are defined by
JSON Web Signature (JWS) ,
JSON Web Encryption (JWE) , and
JSON Web Algorithms (JWA) .
Others are about use of the JWT claims themselves.
 These are intended to be minimum recommendations for the use of JWTs
in the vast majority of implementation
and deployment scenarios. Other specifications that reference this document can have
stricter requirements related to one or more aspects of the format, based on their
particular circumstances; when that is the case, implementers are advised to adhere
to those stricter requirements. Furthermore, this document provides a floor, not a ceiling,
so stronger options are always allowed (e.g., depending on differing evaluations of the
importance of cryptographic strength vs. computational load).
 Community knowledge about the strength of various algorithms and feasible attacks can
change quickly, and experience shows that a Best Current Practice (BCP) document about
security is a point-in-time statement. Readers are advised to seek out any errata or
updates that apply to this document.

 Target Audience
 The intended audiences of this document are:

 Implementers of JWT libraries (and the JWS and JWE libraries
	 used by those libraries),
 Implementers of code that uses such libraries (to the extent that some mechanisms may
not be provided by libraries, or until they are), and
 Developers of specifications that rely on JWTs, both inside and
	 outside the IETF.

 Conventions Used in this Document

 The key words " MUST", " MUST NOT",
 " REQUIRED", " SHALL", " SHALL NOT", " SHOULD", " SHOULD NOT",
 " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are
 to be interpreted as
 described in BCP 14
 when, and only when, they appear in all capitals, as shown here.

 Threats and Vulnerabilities
 This section lists some known and possible problems with JWT
 implementations and deployments.
Each problem description is followed by references to one or more mitigations to those problems.

 Weak Signatures and Insufficient Signature Validation
 Signed JSON Web Tokens carry an explicit indication of the signing algorithm,
in the form of the "alg" Header Parameter, to facilitate cryptographic agility.
This, in conjunction with design flaws in some libraries and applications,
	has led to several attacks:

 The algorithm can be changed to "none" by an attacker, and some libraries would trust
this value and "validate" the JWT without checking any signature.
 An "RS256" (RSA, 2048 bit) parameter value can be changed into
"HS256" (HMAC, SHA-256), and some libraries
would try to validate the signature using HMAC-SHA256 and using the RSA public key as the
HMAC shared secret (see and
).

 For mitigations, see Sections and .

 Weak Symmetric Keys
 In addition, some applications use a keyed Message Authentication
	Code (MAC) algorithm, such as
"HS256", to sign tokens but supply a weak symmetric key with
insufficient entropy (such as a human-memorable password). Such keys
are vulnerable to offline brute-force or dictionary attacks once an
attacker gets hold of such a token .
 For mitigations, see .

 Incorrect Composition of Encryption and Signature
 Some libraries that decrypt a JWE-encrypted JWT to obtain a JWS-signed object
do not always validate the internal signature.
 For mitigations, see .

 Plaintext Leakage through Analysis of Ciphertext Length
 Many encryption algorithms leak information about the length of the
	plaintext, with a varying amount of
leakage depending on the algorithm and mode of operation. This problem is exacerbated
when the plaintext is initially compressed, because the length of the
compressed plaintext and, thus,
the ciphertext
depends not only on the length of the original plaintext but also
on its content.
Compression attacks are particularly
powerful when there is attacker-controlled data in the same compression
space as secret data, which is the case for some attacks on HTTPS.
 See for general background
on compression and encryption and for a specific example of attacks on HTTP cookies.
 For mitigations, see .

 Insecure Use of Elliptic Curve Encryption
 Per , several Javascript
	Object Signing and Encryption (JOSE) libraries
	fail to validate their inputs correctly
when performing elliptic curve key agreement (the "ECDH-ES" algorithm).
An attacker that is able to send JWEs of its choosing that use invalid curve points and
observe the cleartext outputs resulting from decryption with the invalid curve points
can use this vulnerability to recover the recipient's private key.
 For mitigations, see .

 Multiplicity of JSON Encodings
 Previous versions of the JSON format, such as the obsoleted ,
allowed several different character
encodings: UTF-8, UTF-16, and UTF-32. This is not the case anymore, with the latest
standard only allowing UTF-8 except
for internal use within a "closed ecosystem".
This ambiguity, where older implementations and those used within closed environments may generate
non-standard encodings, may result in the JWT being
misinterpreted by its recipient. This, in turn, could be used by a malicious sender to bypass
the recipient's validation checks.
 For mitigations, see .

 Substitution Attacks
 There are attacks in which one recipient will be given a JWT that was intended for it
and will attempt to use it at a different recipient for which that JWT was not intended.
For instance, if an OAuth 2.0 access
token is legitimately presented to an
OAuth 2.0 protected resource for which it is intended, that protected resource might then present
that same access token to a different protected resource for which the access token is not intended,
in an attempt to gain access. If such situations are not caught, this can result in
the attacker gaining access to resources that it is not entitled to access.
 For mitigations, see Sections and .

 Cross-JWT Confusion
 As JWTs are being used by more different protocols in diverse
	application areas, it becomes increasingly
important to prevent cases of JWT tokens that have been issued for one purpose
being subverted and used for another.
Note that this is a specific type of substitution attack.
If the JWT could be used in an application context in which it could be
confused with other kinds of JWTs,
then mitigations MUST be employed to prevent these substitution attacks.
 For mitigations, see Sections , ,
 , and .

 Indirect Attacks on the Server
 Various JWT claims are used by the recipient to perform lookup operations,
such as database and Lightweight Directory Access Protocol (LDAP) searches.
Others include URLs that are similarly looked up by the server. Any of these claims can be used by
an attacker as vectors for injection attacks or server-side request forgery (SSRF) attacks.
 For mitigations, see .

 Best Practices
 The best practices listed below should be applied by practitioners
to mitigate the threats listed in the preceding section.

 Perform Algorithm Verification
 Libraries MUST enable the caller to specify a
	supported set of algorithms and
 MUST NOT use any other algorithms when performing cryptographic operations.
The library MUST ensure that the "alg" or "enc" header specifies the same algorithm
that is used for the cryptographic operation.
Moreover, each key MUST be used with exactly one algorithm,
and this MUST be checked when the cryptographic operation is performed.

 Use Appropriate Algorithms
 As says,
"it is an application decision which algorithms may
be used in a given context. Even if a JWS can be successfully
validated, unless the algorithm(s) used in the JWS are acceptable to
the application, it SHOULD consider the JWS to be invalid."
 Therefore, applications MUST only allow the use of
	cryptographically current algorithms
that meet the security requirements of the application.
This set will vary over time as new algorithms are introduced
and existing algorithms are deprecated due to discovered cryptographic weaknesses.
Applications MUST therefore be designed to enable cryptographic agility.
 That said, if a JWT is cryptographically protected end-to-end by a
	transport layer, such as TLS
using cryptographically current algorithms, there may be no need to apply another layer of
cryptographic protections to the JWT.
In such cases, the use of the "none" algorithm can be perfectly acceptable.
The "none" algorithm should only be used when the JWT is cryptographically protected by other means.
JWTs using "none" are often used in application contexts in which the content is optionally signed;
then, the URL-safe claims representation and processing can be the same in both
the signed and unsigned cases.
JWT libraries SHOULD NOT generate JWTs using "none" unless
explicitly requested to do so by the caller.
Similarly, JWT libraries SHOULD NOT consume JWTs using "none"
	unless explicitly requested by the caller.
 Applications SHOULD follow these algorithm-specific recommendations:

 Avoid all RSA-PKCS1 v1.5 encryption algorithms (), preferring
	 RSAES-OAEP
	 ().
 Elliptic Curve Digital Signature Algorithm (ECDSA) signatures require a unique random value for every message
	 that is signed.
If even just a few bits of the random value are predictable across multiple messages, then
the security of the signature scheme may be compromised. In the worst case,
the private key may be recoverable by an attacker. To counter these attacks,
JWT libraries SHOULD implement ECDSA using the deterministic
approach defined in .
This approach is completely compatible with existing ECDSA verifiers and so can be implemented
without new algorithm identifiers being required.

 Validate All Cryptographic Operations
 All cryptographic operations used in the JWT MUST be
	validated and the entire JWT MUST be rejected
if any of them fail to validate.
This is true not only of JWTs with a single set of Header Parameters
but also for Nested JWTs in which both outer and inner operations MUST be validated
using the keys and algorithms supplied by the application.

 Validate Cryptographic Inputs
 Some cryptographic operations, such as Elliptic Curve Diffie-Hellman key agreement
("ECDH-ES"), take inputs that may contain invalid values. This includes points not on
the specified elliptic curve
or other invalid points (e.g., , Section 7.1).
The JWS/JWE library itself must validate these inputs before using them,
or it must use underlying cryptographic libraries that do so (or both!).
 Elliptic Curve Diffie-Hellman Ephemeral Static (ECDH-ES) ephemeral
	public key (epk) inputs should be validated
	according to the recipient's
chosen elliptic curve. For the NIST prime-order curves P-256, P-384, and P-521,
validation MUST
be performed according to Section 5.6.2.3.4 (ECC Partial Public-Key Validation
Routine) of "Recommendation for Pair-Wise Key-Establishment Schemes Using Discrete Logarithm Cryptography" .
If the "X25519" or "X448" algorithms are used,
then the security considerations in apply.

 Ensure Cryptographic Keys Have Sufficient Entropy
 The Key Entropy and Random Values advice in and the
	Password Considerations in
 MUST be followed.
In particular, human-memorizable passwords MUST NOT be directly used
as the key to a keyed-MAC algorithm such as "HS256".
Moreover, passwords should only be used to perform key encryption, rather
than content encryption,
as described in .
Note that even when used for key encryption, password-based encryption is
	still subject to brute-force attacks.

 Avoid Compression of Encryption Inputs
 Compression of data SHOULD NOT be done before encryption, because
such compressed data often reveals information about the plaintext.

 Use UTF-8
 , , and all
	specify that UTF-8 be used for encoding and decoding JSON
used in Header Parameters and JWT Claims Sets. This is also in line with the
latest JSON specification .
Implementations and applications MUST do this and not use or admit the use of
other Unicode encodings for these purposes.

 Validate Issuer and Subject
 When a JWT contains an "iss" (issuer) claim, the application
	 MUST validate that the cryptographic keys
used for the cryptographic operations in the JWT belong to the issuer.
If they do not, the application MUST reject the JWT.
 The means of determining the keys owned by an issuer is application-specific.
As one example, OpenID Connect
issuer values are "https" URLs
that reference a JSON metadata document that contains a "jwks_uri" value that is
an "https" URL from which the issuer's keys are retrieved as a JWK Set .
This same mechanism is used by .
Other applications may use different means of binding keys to issuers.
 Similarly, when the JWT contains a "sub" (subject) claim, the
	application MUST validate that
the subject value corresponds to a valid subject and/or issuer-subject pair at the application.
This may include confirming that the issuer is trusted by the application.
If the issuer, subject, or the pair are invalid, the application
	 MUST reject the JWT.

 Use and Validate Audience
 If the same issuer can issue JWTs that are intended for use by more
	than one relying party or application,
the JWT MUST contain an "aud" (audience) claim that can be used
to determine whether the JWT
is being used by an intended party or was substituted by an attacker at an unintended party.
 In such cases, the relying party or application MUST
	validate the audience value,
and if the audience value is not present or not associated with the recipient,
it MUST reject the JWT.

 Do Not Trust Received Claims
 The "kid" (key ID) header is used by the relying application to
	perform key lookup. Applications
should ensure that this does not create SQL or LDAP injection vulnerabilities by validating
and/or sanitizing the received value.
 Similarly, blindly following a "jku" (JWK set URL) or "x5u" (X.509 URL) header,
which may contain an arbitrary URL,
could result in server-side request forgery (SSRF) attacks. Applications
 SHOULD protect against such
attacks, e.g., by matching the URL to a whitelist of allowed locations
and ensuring no cookies are sent in the GET request.

 Use Explicit Typing
 Sometimes, one kind of JWT can be confused for another. If a particular
kind of JWT is subject to such confusion, that JWT can include an explicit
JWT type value, and the validation rules can specify checking the type.
This mechanism can prevent such confusion.
Explicit JWT typing is accomplished by using the "typ" Header Parameter.
For instance, the specification uses
the "application/secevent+jwt" media type
to perform explicit typing of Security Event Tokens (SETs).
 Per the definition of "typ" in ,
it is RECOMMENDED that the "application/" prefix be omitted from the "typ" value.
Therefore, for example, the "typ" value used to explicitly include a type for a SET
 SHOULD be "secevent+jwt".
When explicit typing is employed for a JWT, it is RECOMMENDED
that a media type name of the format
"application/example+jwt" be used, where "example" is replaced by the
	identifier for the specific kind of JWT.
 When applying explicit typing to a Nested JWT, the "typ" Header
	Parameter containing the explicit type value
 MUST be present in the inner JWT of the Nested JWT (the JWT
whose payload is the JWT Claims Set).
In some cases, the same "typ" Header Parameter value will be present in the outer JWT as well,
to explicitly type the entire Nested JWT.
 Note that the use of explicit typing may not achieve disambiguation
	from existing kinds of JWTs,
as the validation rules for existing kinds of JWTs often do not use the "typ" Header Parameter value.
Explicit typing is RECOMMENDED for new uses of JWTs.

 Use Mutually Exclusive Validation Rules for Different Kinds of JWTs
 Each application of JWTs defines a profile specifying the required
	and optional JWT claims
and the validation rules associated with them.
If more than one kind of JWT can be issued by the same issuer,
the validation rules for those JWTs MUST be written such that
they are mutually exclusive,
rejecting JWTs of the wrong kind.
To prevent substitution of JWTs from one context into another,
application developers may employ a number of strategies:

 Use explicit typing for different kinds of JWTs.
Then the distinct "typ" values can be used to differentiate between the
	 different kinds of JWTs.
 Use different sets of required claims or different required claim values.
Then the validation rules for one kind of JWT will reject those with different
	 claims or values.
 Use different sets of required Header Parameters or different
	 required Header Parameter values.
Then the validation rules for one kind of JWT will reject those with different
	 Header Parameters or values.
 Use different keys for different kinds of JWTs.
Then the keys used to validate one kind of JWT will fail to validate other kinds of JWTs.
 Use different "aud" values for different uses of JWTs from the same issuer.
Then audience validation will reject JWTs substituted into inappropriate contexts.
 Use different issuers for different kinds of JWTs.
Then the distinct "iss" values can be used to segregate the different kinds of JWTs.

 Given the broad diversity of JWT usage and applications,
the best combination of types, required claims, values, Header Parameters, key usages, and issuers
to differentiate among different kinds of JWTs
will, in general, be application-specific.
As discussed in , for new JWT
	applications, the use of explicit typing is
	 RECOMMENDED.

 Security Considerations
 This entire document is about security considerations when
 implementing and deploying JSON Web Tokens.

 IANA Considerations
 This document has no IANA actions.

 References

 Normative References

 Recommendation for Pair-Wise Key-Establishment Schemes Using Discrete Logarithm Cryptography

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Deterministic Usage of the Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA)

 This document defines a deterministic digital signature generation procedure. Such signatures are compatible with standard Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA) digital signatures and can be processed with unmodified verifiers, which need not be aware of the procedure described therein. Deterministic signatures retain the cryptographic security features associated with digital signatures but can be more easily implemented in various environments, since they do not need access to a source of high-quality randomness.

 JSON Web Signature (JWS)

 JSON Web Signature (JWS) represents content secured with digital signatures or Message Authentication Codes (MACs) using JSON-based data structures. Cryptographic algorithms and identifiers for use with this specification are described in the separate JSON Web Algorithms (JWA) specification and an IANA registry defined by that specification. Related encryption capabilities are described in the separate JSON Web Encryption (JWE) specification.

 JSON Web Encryption (JWE)

 JSON Web Encryption (JWE) represents encrypted content using JSON-based data structures. Cryptographic algorithms and identifiers for use with this specification are described in the separate JSON Web Algorithms (JWA) specification and IANA registries defined by that specification. Related digital signature and Message Authentication Code (MAC) capabilities are described in the separate JSON Web Signature (JWS) specification.

 JSON Web Algorithms (JWA)

 This specification registers cryptographic algorithms and identifiers to be used with the JSON Web Signature (JWS), JSON Web Encryption (JWE), and JSON Web Key (JWK) specifications. It defines several IANA registries for these identifiers.

 JSON Web Token (JWT)

 JSON Web Token (JWT) is a compact, URL-safe means of representing claims to be transferred between two parties. The claims in a JWT are encoded as a JSON object that is used as the payload of a JSON Web Signature (JWS) structure or as the plaintext of a JSON Web Encryption (JWE) structure, enabling the claims to be digitally signed or integrity protected with a Message Authentication Code (MAC) and/or encrypted.

 PKCS #1: RSA Cryptography Specifications Version 2.2

 This document provides recommendations for the implementation of public-key cryptography based on the RSA algorithm, covering cryptographic primitives, encryption schemes, signature schemes with appendix, and ASN.1 syntax for representing keys and for identifying the schemes.
 This document represents a republication of PKCS #1 v2.2 from RSA Laboratories' Public-Key Cryptography Standards (PKCS) series. By publishing this RFC, change control is transferred to the IETF.
 This document also obsoletes RFC 3447.

 CFRG Elliptic Curve Diffie-Hellman (ECDH) and Signatures in JSON Object Signing and Encryption (JOSE)

 This document defines how to use the Diffie-Hellman algorithms "X25519" and "X448" as well as the signature algorithms "Ed25519" and "Ed448" from the IRTF CFRG elliptic curves work in JSON Object Signing and Encryption (JOSE).

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 The JavaScript Object Notation (JSON) Data Interchange Format

 JavaScript Object Notation (JSON) is a lightweight, text-based, language-independent data interchange format. It was derived from the ECMAScript Programming Language Standard. JSON defines a small set of formatting rules for the portable representation of structured data.
 This document removes inconsistencies with other specifications of JSON, repairs specification errors, and offers experience-based interoperability guidance.

 Informative References

 Protecting Encrypted Cookies from Compression Side-Channel Attacks

 Financial Cryptography and Data Security, pp. 86-106

 Public Key Cryptography for the Financial Services Industry: the Elliptic Curve Digital Signature Algorithm (ECDSA)

 American National Standards Institute

 CVE-2015-9235 Detail

 NIST

 National Vulnerability Database

 Compression and Information Leakage of Plaintext

 Fast Software Encryption, pp. 263-276

 Attacking JWT authentication

 Critical vulnerabilities in JSON Web Token libraries

 OpenID Connect Core 1.0 incorporating errata set 1

 The OAuth 2.0 Authorization Framework

 The OAuth 2.0 authorization framework enables a third-party application to obtain limited access to an HTTP service, either on behalf of a resource owner by orchestrating an approval interaction between the resource owner and the HTTP service, or by allowing the third-party application to obtain access on its own behalf. This specification replaces and obsoletes the OAuth 1.0 protocol described in RFC 5849. [STANDARDS-TRACK]

 The JavaScript Object Notation (JSON) Data Interchange Format

 JavaScript Object Notation (JSON) is a lightweight, text-based, language-independent data interchange format. It was derived from the ECMAScript Programming Language Standard. JSON defines a small set of formatting rules for the portable representation of structured data.
 This document removes inconsistencies with other specifications of JSON, repairs specification errors, and offers experience-based interoperability guidance.

 JSON Web Key (JWK)

 A JSON Web Key (JWK) is a JavaScript Object Notation (JSON) data structure that represents a cryptographic key. This specification also defines a JWK Set JSON data structure that represents a set of JWKs. Cryptographic algorithms and identifiers for use with this specification are described in the separate JSON Web Algorithms (JWA) specification and IANA registries established by that specification.

 OAuth 2.0 Authorization Server Metadata

 This specification defines a metadata format that an OAuth 2.0 client can use to obtain the information needed to interact with an OAuth 2.0 authorization server, including its endpoint locations and authorization server capabilities.

 Security Event Token (SET)

 This specification defines the Security Event Token (SET) data structure. A SET describes statements of fact from the perspective of an issuer about a subject. These statements of fact represent an event that occurred directly to or about a security subject, for example, a statement about the issuance or revocation of a token on behalf of a subject. This specification is intended to enable representing security- and identity-related events. A SET is a JSON Web Token (JWT), which can be optionally signed and/or encrypted. SETs can be distributed via protocols such as HTTP.

 Critical Vulnerability Uncovered in JSON Encryption

 In search of CurveSwap: Measuring elliptic curve implementations in the wild

 Acknowledgements
 Thanks to for bringing the
 "ECDH-ES" invalid point attack to the attention
of JWE and JWT implementers. published the
RSA/HMAC confusion attack .
Thanks to for advocating the use of
explicit typing. Thanks to for his
numerous comments, and to
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
and
for their reviews.

 Authors' Addresses

 Intuit

 yaronf.ietf@gmail.com

 dick.hardt@gmail.com

 Microsoft

 mbj@microsoft.com
 https://self-issued.info/

