Stream: Internet Engineering Task Force (IETF)

RFC: 8832

Category: Standards Track

Published: January 2021

ISSN: 2070-1721

Authors: R.Jesup S.Loreto M. Tixen

Mozilla Ericsson Miinster Univ. of Appl. Sciences

RFC 8832
WebRTC Data Channel Establishment Protocol

Abstract

The WebRTC framework specifies protocol support for direct interactive rich communication
using audio, video, and data between two peers' web browsers. This document specifies a simple
protocol for establishing symmetric data channels between the peers. It uses a two-way
handshake and allows sending of user data without waiting for the handshake to complete.

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at https://www.rfc-editor.org/info/rfc8832.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.

Jesup, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc8832
https://www.rfc-editor.org/info/rfc8832
https://trustee.ietf.org/license-info

RFC 8832 WebRTC Data Channel Establishment Protocol January 2021

Table of Contents

. Introduction
. Conventions
. Terminology

. Protocol Overview

U1 o W N

. Message Formats
5.1. DATA_CHANNEL_OPEN Message
5.2. DATA_CHANNEL_ACK Message

6. Procedures
7. Security Considerations
8. IANA Considerations
8.1. SCTP Payload Protocol Identifier
8.2. New Standalone Registry for DCEP
8.2.1. New Message Type Registry
8.2.2. New Channel Type Registry

9. References
9.1. Normative References

9.2. Informative References

Acknowledgements

Authors' Addresses

1. Introduction

The Data Channel Establishment Protocol (DCEP) is designed to provide, in the WebRTC data
channel context [RFC8831], a simple in-band method for opening symmetric data channels. As
discussed in [RFC8831], the protocol uses the Stream Control Transmission Protocol (SCTP)
[RFC4960] encapsulated in Datagram Transport Layer Security (DTLS) (described in [RFC8261]).
This allows DCEP to benefit from the already standardized transport and security features of
SCTP and DTLS. DTLS 1.0 is defined in [RFC4347]; the present latest version, DTLS 1.2, is defined
in [RFC6347]; and an upcoming version, DTLS 1.3, is defined in [TLS-DTLS13].

Jesup, et al. Standards Track Page 2

RFC 8832 WebRTC Data Channel Establishment Protocol January 2021

2. Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to
be interpreted as described in BCP?14 [RFC2119] [RFC8174] when, and only when, they appear in
all capitals, as shown here.

3. Terminology

This document uses the following terms:

Association: An SCTP association.

Stream: A unidirectional stream of an SCTP association. It is uniquely identified by an SCTP
stream identifier (0-65534). Note: The SCTP stream identifier 65535 is reserved due to SCTP
INIT and INIT-ACK chunks only allowing a maximum of 65535 streams to be negotiated
(0-65534).

Stream Identifier: The SCTP stream identifier uniquely identifying a stream.

Data Channel: Two streams with the same stream identifier, one in each direction, which are
managed together.

4. Protocol Overview

The Data Channel Establishment Protocol is a simple, low-overhead way to establish
bidirectional data channels over an SCTP association with a consistent set of properties.

The set of consistent properties includes:

e reliable or unreliable message transmission. In case of unreliable transmissions, the same
level of unreliability is used.

e in-order or out-of-order message delivery.
* the priority of the data channel.

* an optional label for the data channel.

* an optional protocol for the data channel.
* the streams.

This protocol uses a two-way handshake to open a data channel. The handshake pairs one
incoming and one outgoing stream, both having the same stream identifier, into a single
bidirectional data channel. The peer that initiates opening a data channel selects a stream
identifier for which the corresponding incoming and outgoing streams are unused and sends a
DATA_CHANNEL_OPEN message on the outgoing stream. The peer responds with a
DATA_CHANNEL_ACK message on its corresponding outgoing stream. Then the data channel is

Jesup, et al. Standards Track Page 3

RFC 8832 WebRTC Data Channel Establishment Protocol January 2021

open. DCEP messages are sent on the same stream as the user messages belonging to the data
channel. The demultiplexing is based on the SCTP Payload Protocol Identifier (PPID), since DCEP
uses a specific PPID.

Note: The opening side MAY send user messages before the DATA_CHANNEL_ACK is
received.

To avoid collisions where both sides try to open a data channel with the same stream identifiers,
each side MUST use streams with either even or odd stream identifiers when sending a
DATA_CHANNEL_OPEN message. When using SCTP over DTLS [RFC8261], the method used to
determine which side uses odd or even is based on the underlying DTLS connection role: the side
acting as the DTLS client MUST use streams with even stream identifiers; the side acting as the
DTLS server MUST use streams with odd stream identifiers.

Note: There is no attempt to ensure uniqueness for the label; if both sides open a
data channel labeled "x" at the same time, there will be two data channels labeled
"X" -- one on an even stream pair, one on an odd pair.

The purpose of the protocol field is to ease cross-application interoperation ("federation") by
identifying the user data being passed by means of an IANA-registered string from the
"WebSocket Subprotocol Name Registry" defined in [RFC6455]. The field may be useful for
homogeneous applications that may create more than one type of data channel. Note that there
is no attempt to ensure uniqueness for the protocol field.

5. Message Formats

Every DCEP message starts with a one-byte field called "Message Type" that indicates the type of
the message. The corresponding values are managed by IANA (see Section 8.2.1).

Jesup, et al. Standards Track Page 4

RFC 8832 WebRTC Data Channel Establishment Protocol January 2021

5.1. DATA_CHANNEL_OPEN Message

This message is initially sent using the data channel on the stream used for user messages.

0 1 2 3
012345678901234567890123456789201
+-+-t-F-F-F-t-F-F-F-F-F-F-F-F-F-F-+-F-F-F-+-F-F-F-+-F-F-F-+-+-+-+

| Message Type | Channel Type | Priority
t-t-t-t-t-t—t—t—t-t-t-t-t-t—F—F—t-t-t-t-t-t—F—F -ttt -F-F-+-+—+-+
| Reliability Parameter

i i S S e e S s ot SR S R R
| Label Length | Protocol Length |
+-+-t-F-F-F-t-F-F-F-F-F-F-F-F-F-F-+-F-F-F-+-F-F-F-+-F-F-F-+-+-+-+
\ /
| Label |
/ \
i i St S e e R e R R st ol SR S R R
\ /
| Protocol

/
+

\
s et e e e S s S e e S 3

Message Type: 1 byte (unsigned integer)
This field holds the IANA-defined message type for the DATA_CHANNEL_OPEN message. The
value of this field is 0x03, as specified in Section 8.2.1.

Channel Type: 1 byte (unsigned integer)
This field specifies the type of data channel to be opened. The values are managed by IANA
(see Section 8.2.2):

DATA_CHANNEL_RELIABLE (0x00): The data channel provides a reliable in-order
bidirectional communication.

DATA_CHANNEL_RELIABLE_UNORDERED (0x80): The data channel provides a reliable
unordered bidirectional communication.

DATA_CHANNEL_PARTIAL_RELIABLE_REXMIT (0x01): The data channel provides a partially
reliable in-order bidirectional communication. User messages will not be retransmitted
more times than specified in the Reliability Parameter.

DATA_CHANNEL_PARTIAL_RELIABLE_REXMIT UNORDERED (0x81): The data channel
provides a partially reliable unordered bidirectional communication. User messages will
not be retransmitted more times than specified in the Reliability Parameter.

DATA_CHANNEL_PARTIAL_RELIABLE_TIMED (0x02): The data channel provides a partially
reliable in-order bidirectional communication. User messages might not be transmitted or
retransmitted after a specified lifetime given in milliseconds in the Reliability Parameter.
This lifetime starts when providing the user message to the protocol stack.

Jesup, et al. Standards Track Page 5

RFC 8832 WebRTC Data Channel Establishment Protocol January 2021

DATA_CHANNEL_PARTIAL_RELIABLE_TIMED_UNORDERED (0x82): The data channel
provides a partially reliable unordered bidirectional communication. User messages might
not be transmitted or retransmitted after a specified lifetime given in milliseconds in the
Reliability Parameter. This lifetime starts when providing the user message to the protocol
stack.

Priority: 2 bytes (unsigned integer)
The priority of the data channel, as described in [RFC8831].

Reliability Parameter: 4 bytes (unsigned integer)
For reliable data channels, this field MUST be set to 0 on the sending side and MUST be ignored
on the receiving side. If a partially reliable data channel with a limited number of
retransmissions is used, this field specifies the number of retransmissions. If a partially
reliable data channel with a limited lifetime is used, this field specifies the maximum lifetime
in milliseconds. The following table summarizes this:

Channel Type Reliability Parameter
DATA_CHANNEL_RELIABLE Ignored
DATA_CHANNEL_RELIABLE_UNORDERED Ignored
DATA_CHANNEL_PARTIAL_RELIABLE _REXMIT Number of RTX
DATA_CHANNEL_PARTIAL_RELIABLE_REXMIT _UNORDERED Number of RTX
DATA_CHANNEL_PARTIAL_RELIABLE_TIMED Lifetime in ms
DATA_CHANNEL_PARTIAL_RELIABLE TIMED_UNORDERED Lifetime in ms
Table 1

Label Length: 2 bytes (unsigned integer)
The length of the label field in bytes.

Protocol Length: 2 bytes (unsigned integer)
The length of the protocol field in bytes.

Label: Variable Length (sequence of characters)
The name of the data channel as a UTF-8-encoded string, as specified in [RFC3629]. This may
be an empty string.

Protocol: Variable Length (sequence of characters)
If this is an empty string, the protocol is unspecified. If it is a non-empty string, it specifies a
protocol registered in the "WebSocket Subprotocol Name Registry" created in [RFC6455]. This
string is UTF-8 encoded, as specified in [RFC3629].

Jesup, et al. Standards Track Page 6

RFC 8832 WebRTC Data Channel Establishment Protocol January 2021

5.2. DATA_CHANNEL_ACK Message

This message is sent in response to a DATA_CHANNEL_OPEN_RESPONSE message. It is sent on
the stream used for user messages using the data channel. Reception of this message tells the
opener that the data channel setup handshake is complete.

0 1 2 3
012345678901 2345678901234567189201
et o e e e e R e e R ol Sl e e e e
| Message Type |
+-F-F+-+-+-+-+-+-+

Message Type: 1 byte (unsigned integer)
This field holds the IANA-defined message type for the DATA_CHANNEL_ACK message. The
value of this field is 0x02, as specified in Section 8.2.1.

6. Procedures

All DCEP messages MUST be sent using ordered delivery and reliable transmission. They MUST be
sent on the same outgoing stream as the user messages belonging to the corresponding data
channel. Multiplexing and demultiplexing is done by using the SCTP PPID. Therefore, a DCEP
message MUST be sent with the assigned PPID for the Data Channel Establishment Protocol (see
Section 8.1). Other messages MUST NOT be sent using this PPID.

The peer that initiates opening a data channel selects a stream identifier for which the
corresponding incoming and outgoing streams are unused. If the side is acting as the DTLS client,
it MUST choose an even stream identifier; if the side is acting as the DTLS server, it MUST choose
an odd one. The initiating peer fills in the parameters of the DATA_CHANNEL_OPEN message and
sends it on the chosen stream.

If a DATA_CHANNEL_OPEN message is received on an unused stream, the stream identifier
corresponds to the role of the peer, and all parameters in the DATA_CHANNEL_OPEN message
are valid, then a corresponding DATA_CHANNEL_ACK message is sent on the stream with the
same stream identifier as the one the DATA_CHANNEL_OPEN message was received on.

If the DATA_CHANNEL_OPEN message doesn't satisfy the conditions above, the receiver MUST
close the corresponding data channel using the procedure described in [RFC8831] and MUST NOT
send a DATA_CHANNEL_ACK message in response to the received message. This might occur if,
for example, a DATA_CHANNEL_OPEN message is received on an already used stream, there are
problems with parameters within the DATA_CHANNEL_OPEN message, the odd/even rule is
violated, or the DATA_CHANNEL_OPEN message itself is not well formed. Therefore, receiving an
SCTP stream-reset request for a stream on which no DATA_CHANNEL_ACK message has been
received indicates to the sender of the corresponding DATA_CHANNEL_OPEN message the failure
of the data channel setup procedure. After also successfully resetting the corresponding outgoing
stream, which concludes the data channel closing initiated by the peer, a new
DATA_CHANNEL_OPEN message can be sent on the stream.

Jesup, et al. Standards Track Page 7

RFC 8832 WebRTC Data Channel Establishment Protocol January 2021

After the DATA_CHANNEL_OPEN message has been sent, the sender of that message MAY start
sending messages containing user data without waiting for the reception of the corresponding
DATA_CHANNEL_ACK message. However, before the DATA_CHANNEL_ACK message or any other
message has been received on a data channel, all other messages containing user data and
belonging to this data channel MUST be sent ordered, no matter whether the data channel is
ordered or not. After the DATA_CHANNEL_ACK or any other message has been received on the
data channel, messages containing user data MUST be sent ordered on ordered data channels
and MUST be sent unordered on unordered data channels. Therefore, receiving a message
containing user data on an unused stream indicates an error. In that case, the corresponding
data channel MUST be closed, as described in [RFC8831].

7. Security Considerations

The DATA_CHANNEL_OPEN message contains two variable-length fields: the protocol and the
label. A receiver must be prepared to receive DATA_CHANNEL_OPEN messages where these
fields have the maximum length of 65535 bytes. Error cases such as using inconsistent lengths of
fields, using unknown parameter values, or violating the odd/even rule must also be handled by
closing the corresponding data channel. An end point must also be prepared for the peer to open
the maximum number of data channels.

This protocol does not provide privacy, integrity, or authentication. It needs to be used as part of
a protocol suite that contains all these things. Such a protocol suite is specified in [RFC8261].

For general considerations, see [RFEC8826] and [RFC8827].

8. IANA Considerations

IANA has updated the reference of an already existing SCTP PPID assignment (Section 8.1) and
created a new standalone registry with its own URL for DCEP (Section 8.2) containing two new
registration tables (Sections 8.2.1 and 8.2.2).

8.1. SCTP Payload Protocol Identifier

This document uses an SCTP Payload Protocol Identifier (PPID) previously registered as "WebRTC
Control". [RFC4960] created the "SCTP Payload Protocol Identifiers" registry, in which this
identifier was assigned. IANA has updated the PPID name from "WebRTC Control" to "WebRTC
DCEP" and has updated the reference to point to this document. The corresponding date has been
kept.

Therefore, this assignment now appears as follows:

Value SCTP PPID Reference Date
WebRTC DCEP 50 RFC 8832 2013-09-20
Table 2

Jesup, et al. Standards Track Page 8

RFC 8832 WebRTC Data Channel Establishment Protocol January 2021

8.2. New Standalone Registry for DCEP

IANA has created the "Data Channel Establishment Protocol (DCEP) Parameters" registry. It
contains the two tables provided in Sections 8.2.1 and 8.2.2.

8.2.1. New Message Type Registry

IANA has created the "Message Types" registry for DCEP to manage the one-byte "Message Type"
field in DCEP messages (see Section 5). This registration table is a subregistry of the registry
described in Section 8.2.

The assignment of new message types is done through an RFC Required action, as defined in
[RFC8126]. Documentation of new message types MUST contain the following information:

1. A name for the new message type.
2. A detailed procedural description of how each message type is used with within DCEP.

The following are the initial registrations:

Name Type Reference
Reserved 0x00 RFC 8832
Reserved 0x01 RFC 8832
DATA_CHANNEL_ACK 0x02 RFC 8832
DATA_CHANNEL_OPEN 0x03 RFC 8832
Unassigned 0x04-0xfe

Reserved Oxff RFC 8832

Table 3

Note that values 0x00 and 0x01 are reserved to avoid interoperability problems, since they have
been used in draft versions of the document. The value 0xff has been reserved for future
extensibility. The range of possible values is from 0x00 to Oxff.

8.2.2. New Channel Type Registry

IANA has created the "Channel Types" registry for DCEP to manage the one-byte "Channel Type"
field in DATA_CHANNEL_OPEN messages (see Section 5.1). This registration table is a subregistry
within the registry described in Section 8.2.

The assignment of new message types is done through an RFC Required action, as defined in
[RFC8126]. Documentation of new Channel Types MUST contain the following information:

1. A name for the new Channel Type.

Jesup, et al. Standards Track Page 9

RFC 8832 WebRTC Data Channel Establishment Protocol

January 2021

2. A detailed procedural description of the user message handling for data channels using this

new Channel Type.

If new Channel Types support ordered and unordered message delivery, the high-order bit MUST

be used to indicate whether or not the message delivery is unordered.

The following are the initial registrations:

Name

DATA_CHANNEL_RELIABLE
DATA_CHANNEL_RELIABLE_UNORDERED
DATA_CHANNEL_PARTIAL_RELIABLE_REXMIT
DATA_CHANNEL_PARTIAL_RELIABLE_REXMIT UNORDERED
DATA_CHANNEL_PARTIAL_RELIABLE_TIMED
DATA_CHANNEL_PARTIAL_RELIABLE_TIMED_UNORDERED
Reserved

Reserved

Unassigned

Table 4

Type

0x00
0x80
0x01
0x81
0x02
0x82
0x7f
Oxff

rest

Reference

RFC 8832

RFC 8832

RFC 8832

RFC 8832

RFC 8832

RFC 8832

RFC 8832

RFC 8832

Values 0x7f and 0xff have been reserved for future extensibility. The range of possible values is

from 0x00 to Oxff.

9. References

9.1. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14,
RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP
14, RFC 8174, DOI 10.17487/RFC8174, May 2017, <https://www.rfc-editor.org/info/

rfc8174>.

[RFC3629] Yergeau, F, "UTF-8, a transformation format of ISO 10646", STD 63, RFC 3629,

DOI 10.17487/RFC3629, November 2003, <https://www.rfc-editor.org/info/

rfc3629>.

Jesup, et al. Standards Track

Page 10

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc3629
https://www.rfc-editor.org/info/rfc3629

RFC 8832

[RFC4960]

[RFC8126]

[RFC8261]

[RFC8831]

WebRTC Data Channel Establishment Protocol January 2021

Stewart, R., Ed., "Stream Control Transmission Protocol", RFC 4960, DOI
10.17487/RFC4960, September 2007, <https://www.rfc-editor.org/info/rfc4960>.

Cotton, M., Leiba, B., and T. Narten, "Guidelines for Writing an IANA
Considerations Section in RFCs", BCP 26, RFC 8126, DOI 10.17487/RFC8126, June
2017, <https://www.rfc-editor.org/info/rfc8126>.

Tuexen, M., Stewart, R,, Jesup, R., and S. Loreto, "Datagram Transport Layer
Security (DTLS) Encapsulation of SCTP Packets", RFC 8261, DOI 10.17487/
RFC8261, November 2017, <https://www.rfc-editor.org/info/rfc8261>.

Jesup, R., Loreto, S., and M. Tixen, "WebRTC Data Channels", RFC 8831, DOI
10.17487/RFC8831, January 2021, <https://www.rfc-editor.org/info/rfc8831>.

9.2. Informative References

[RFC4347]

[RFC6347]

[RFC6455]

[RFC8826]

[RFC8827]

[TLS-DTLS13]

Rescorla, E. and N. Modadugu, "Datagram Transport Layer Security", RFC 4347,
DOI 10.17487/RFC4347, April 2006, <https://www.rfc-editor.org/info/rfc4347>.

Rescorla, E. and N. Modadugu, "Datagram Transport Layer Security Version 1.2",
RFC 6347, DOI 10.17487/RFC6347, January 2012, <https://www.rfc-editor.org/info/
rfc6347>.

Fette, I. and A. Melnikov, "The WebSocket Protocol", RFC 6455, DOI 10.17487/
RFC6455, December 2011, <https://www.rfc-editor.org/info/rfc6455>.

Rescorla, E., "Security Considerations for WebRTC", RFC 8826, DOI 10.17487/
RF(C8826, January 2021, <https://www.rfc-editor.org/info/rfc8826>.

Rescorla, E., "WebRTC Security Architecture”, RFC 8827, DOI 10.17487/RF(C8827,
January 2021, <https://www.rfc-editor.org/info/rfc8827>.

Rescorla, E., Tschofenig, H., and N. Modadugu, "The Datagram Transport Layer
Security (DTLS) Protocol Version 1.3", Work in Progress, Internet-Draft, draft-
ietf-tls-dtls13-39, 2 November 2020, <https://tools.ietf.org/html/draft-ietf-tls-
dtls13-39>.

Acknowledgements

The authors wish to thank Harald Alvestrand, Richard Barnes, Adam Bergkvist, Spencer
Dawkins, Barry Dingle, Stefan Hdkansson, Cullen Jennings, Paul Kyzivat, Doug Leonard, Alexey
Melnikov, Pete Resnick, Irene Rungeler, Randall Stewart, Peter Thatcher, Martin Thomson, Justin
Uberti, and many others for their invaluable comments.

Jesup, et al.

Standards Track Page 11

https://www.rfc-editor.org/info/rfc4960
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8261
https://www.rfc-editor.org/info/rfc8831
https://www.rfc-editor.org/info/rfc4347
https://www.rfc-editor.org/info/rfc6347
https://www.rfc-editor.org/info/rfc6347
https://www.rfc-editor.org/info/rfc6455
https://www.rfc-editor.org/info/rfc8826
https://www.rfc-editor.org/info/rfc8827
https://tools.ietf.org/html/draft-ietf-tls-dtls13-39
https://tools.ietf.org/html/draft-ietf-tls-dtls13-39

RFC 8832 WebRTC Data Channel Establishment Protocol January 2021

Authors' Addresses

Randell Jesup

Mozilla

United States of America
Email: randell-ietf@jesup.org

Salvatore Loreto

Ericsson

Hirsalantie 11

FI-02420 Jorvas

Finland

Email: salvatore.loreto@ericsson.com

Michael Tiixen

Miinster University of Applied Sciences
Stegerwaldstrasse 39

48565 Steinfurt

Germany

Email: tuexen@fh-muenster.de

Jesup, et al. Standards Track Page 12

mailto:randell-ietf@jesup.org
mailto:salvatore.loreto@ericsson.com
mailto:tuexen@fh-muenster.de

	RFC 8832
	WebRTC Data Channel Establishment Protocol
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions
	3. Terminology
	4. Protocol Overview
	5. Message Formats
	5.1. DATA_CHANNEL_OPEN Message
	5.2. DATA_CHANNEL_ACK Message

	6. Procedures
	7. Security Considerations
	8. IANA Considerations
	8.1. SCTP Payload Protocol Identifier
	8.2. New Standalone Registry for DCEP
	8.2.1. New Message Type Registry
	8.2.2. New Channel Type Registry

	9. References
	9.1. Normative References
	9.2. Informative References

	Acknowledgements
	Authors' Addresses

 WebRTC Data Channel Establishment Protocol

 Mozilla

 United States of America

 randell-ietf@jesup.org

 Ericsson

 Hirsalantie 11
 02420
 Jorvas
 Finland

 salvatore.loreto@ericsson.com

 Münster University of Applied Sciences

 Stegerwaldstrasse 39
 48565
 Steinfurt
 Germany

 tuexen@fh-muenster.de

 The WebRTC framework specifies protocol support for direct interactive
rich communication using audio, video, and data between two peers' web browsers.
This document specifies a simple protocol for establishing symmetric
data channels between the peers. It uses a two-way handshake and allows
sending of user data without waiting for the handshake to complete.

 Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further
 information on Internet Standards is available in Section 2 of
 RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Simplified BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Simplified BSD License.

 Table of Contents

 . Introduction

 . Conventions

 . Terminology

 . Protocol Overview

 . Message Formats

 . DATA_CHANNEL_OPEN Message

 . DATA_CHANNEL_ACK Message

 . Procedures

 . Security Considerations

 . IANA Considerations

 . SCTP Payload Protocol Identifier

 . New Standalone Registry for DCEP

 . New Message Type Registry

 . New Channel Type Registry

 . References

 . Normative References

 . Informative References

 Acknowledgements

 Authors' Addresses

 Introduction
 The Data Channel Establishment Protocol (DCEP) is designed to provide, in the
WebRTC data channel context ,
a simple in-band method for opening symmetric data channels.
As discussed in , the protocol uses
the Stream Control Transmission Protocol (SCTP)
encapsulated in Datagram Transport Layer Security (DTLS) (described in
). This allows DCEP to benefit from the
already standardized transport
and security features of SCTP and DTLS.
DTLS 1.0 is defined in ; the present
latest version, DTLS 1.2, is defined in ; and
an upcoming version, DTLS 1.3, is defined in .

 Conventions

 The key words " MUST", " MUST NOT", " REQUIRED", " SHALL", " SHALL NOT", " SHOULD", " SHOULD NOT", " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are to be interpreted as
 described in BCP?14
 when, and only when, they appear in all capitals, as shown here.

 Terminology
 This document uses the following terms:

 Association:
 An SCTP association.
 Stream:

A unidirectional stream of an SCTP association. It is uniquely identified
by an SCTP stream identifier (0-65534).
Note: The SCTP stream identifier 65535 is reserved due to SCTP INIT and
INIT-ACK chunks only allowing a maximum of 65535 streams to be
negotiated (0-65534).
 Stream Identifier:

The SCTP stream identifier uniquely identifying a stream.
 Data Channel:

Two streams with the same stream identifier, one in each direction,
which are managed together.

 Protocol Overview
 The Data Channel Establishment Protocol is a simple, low-overhead way
to establish bidirectional data channels over an SCTP association with a
consistent set of properties.
 The set of consistent properties includes:

 reliable or unreliable message transmission. In case of unreliable
 transmissions, the same level of unreliability is used.
 in-order or out-of-order message delivery.
 the priority of the data channel.
 an optional label for the data channel.
 an optional protocol for the data channel.
 the streams.

 This protocol uses a two-way handshake to open a data channel.
The handshake pairs one incoming and one outgoing stream, both having the
same stream identifier, into a single bidirectional data channel.
The peer that initiates opening a data channel selects a stream
identifier for which the corresponding incoming and outgoing streams
are unused and sends a DATA_CHANNEL_OPEN message on the outgoing stream.
The peer responds with a DATA_CHANNEL_ACK message on its corresponding
outgoing stream. Then the data channel is open.
DCEP messages are sent on the same stream as
the user messages belonging to the data channel.
The demultiplexing is based on the SCTP Payload Protocol Identifier (PPID),
since DCEP uses a specific PPID.

 Note: The opening side MAY send user messages before the DATA_CHANNEL_ACK
is received.

 To avoid collisions where both sides try to open a data channel with
the same stream identifiers, each side MUST use streams with either even or
odd stream identifiers when sending a DATA_CHANNEL_OPEN message.
When using SCTP over DTLS ,
the method used to determine which side uses odd or even is based on the
underlying DTLS connection role:
the side acting as the DTLS client MUST use streams with even
stream identifiers; the side acting as the DTLS server MUST use streams
with odd stream identifiers.

 Note: There is no attempt to ensure uniqueness for the label;
if both sides open a data channel labeled "x" at the same time, there will be
two data channels labeled "x" -- one on an even stream pair, one on an odd pair.

 The purpose of the protocol field is to ease cross-application interoperation ("federation")
by identifying the user data being passed by means of an IANA-registered string
from the "WebSocket Subprotocol Name Registry" defined in .
The field may be useful for homogeneous applications that may create more than one
type of data channel.
Note that there is no attempt to ensure uniqueness for the protocol
field.

 Message Formats
 Every DCEP message starts with a one-byte
field called "Message Type" that indicates the type of the message.
The corresponding values are managed by IANA
(see).

 DATA_CHANNEL_OPEN Message
 This message is initially sent using the data channel on the stream used
for user messages.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Message Type | Channel Type | Priority |
+-+
| Reliability Parameter |
+-+
| Label Length | Protocol Length |
+-+
\ /
| Label |
/ \
+-+
\ /
| Protocol |
/ \
+-+

 Message Type: 1 byte (unsigned integer)

This field holds the IANA-defined message type for the DATA_CHANNEL_OPEN
message. The value of this field is 0x03, as specified in
 .

 Channel Type: 1 byte (unsigned integer)

This field specifies the type of data channel to be opened. The
values are managed by IANA (see):

 DATA_CHANNEL_RELIABLE (0x00):

The data channel provides a reliable in-order bidirectional communication.
 DATA_CHANNEL_RELIABLE_UNORDERED (0x80):

The data channel provides a reliable unordered bidirectional communication.
 DATA_CHANNEL_PARTIAL_RELIABLE_REXMIT (0x01):

The data channel provides a partially reliable in-order bidirectional
communication. User messages will not be retransmitted more times
than specified in the Reliability Parameter.
 DATA_CHANNEL_PARTIAL_RELIABLE_REXMIT_UNORDERED (0x81):

The data channel provides a partially reliable unordered bidirectional
communication. User messages will not be retransmitted more times
than specified in the Reliability Parameter.
 DATA_CHANNEL_PARTIAL_RELIABLE_TIMED (0x02):

The data channel provides a partially reliable in-order bidirectional
communication. User messages might not be transmitted or
retransmitted after a specified lifetime given in milliseconds in the
Reliability Parameter. This lifetime starts when providing the user
message to the protocol stack.
 DATA_CHANNEL_PARTIAL_RELIABLE_TIMED_UNORDERED (0x82):

The data channel provides a partially reliable unordered bidirectional
communication. User messages might not be transmitted or
retransmitted after a specified lifetime given in milliseconds in the
Reliability Parameter. This lifetime starts when providing the user
message to the protocol stack.

 Priority: 2 bytes (unsigned integer)

The priority of the data channel, as described in
 .

 Reliability Parameter: 4 bytes (unsigned integer)

For reliable data channels, this field MUST be set to 0 on the sending side
and MUST be ignored on the receiving side.
If a partially reliable data channel with a limited number of retransmissions is
used, this field specifies the number of retransmissions. If a partially
reliable data channel with a limited lifetime is used, this field specifies
the maximum lifetime in milliseconds. The following table summarizes this:

 Channel Type
 Reliability Parameter

 DATA_CHANNEL_RELIABLE
 Ignored

 DATA_CHANNEL_RELIABLE_UNORDERED
 Ignored

 DATA_CHANNEL_PARTIAL_RELIABLE_REXMIT
 Number of RTX

 DATA_CHANNEL_PARTIAL_RELIABLE_REXMIT_UNORDERED
 Number of RTX

 DATA_CHANNEL_PARTIAL_RELIABLE_TIMED
 Lifetime in ms

 DATA_CHANNEL_PARTIAL_RELIABLE_TIMED_UNORDERED
 Lifetime in ms

 Label Length: 2 bytes (unsigned integer)

The length of the label field in bytes.

 Protocol Length: 2 bytes (unsigned integer)

The length of the protocol field in bytes.

 Label: Variable Length (sequence of characters)

The name of the data channel as a UTF-8-encoded string, as specified in
 . This may be an empty string.

 Protocol: Variable Length (sequence of characters)

If this is an empty string, the protocol is unspecified.
If it is a non-empty string, it specifies a protocol registered in the
"WebSocket Subprotocol Name Registry" created in
 . This string is UTF-8 encoded, as specified in
 .

 DATA_CHANNEL_ACK Message
 This message is sent in response to a
DATA_CHANNEL_OPEN_RESPONSE message. It is sent on the stream used for user
messages using the data channel.
Reception of this message tells the opener that the data channel setup
handshake is complete.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Message Type |
+-+-+-+-+-+-+-+-+

 Message Type: 1 byte (unsigned integer)

This field holds the IANA-defined message type for the DATA_CHANNEL_ACK
message. The value of this field is 0x02, as specified in
 .

 Procedures
 All DCEP messages MUST be sent using ordered delivery and reliable
transmission. They MUST be sent on the same outgoing stream as the user messages
belonging to the corresponding data channel.
Multiplexing and demultiplexing is done by using the SCTP PPID.
Therefore, a DCEP message MUST be sent with the
assigned PPID for the Data Channel Establishment Protocol
(see).
Other messages MUST NOT be sent using this PPID.
 The peer that initiates opening a data channel selects a stream identifier
for which the corresponding incoming and outgoing streams are unused.
If the side is acting as the DTLS client, it MUST choose an even stream identifier;
if the side is acting as the DTLS server, it MUST choose an odd one. The initiating peer
fills in the parameters of the DATA_CHANNEL_OPEN message and sends it on
the chosen stream.
 If a DATA_CHANNEL_OPEN message is received on an unused stream,
the stream identifier corresponds to the role of the peer, and
all parameters in the DATA_CHANNEL_OPEN message are valid,
then a corresponding DATA_CHANNEL_ACK message is sent on the stream with the
same stream identifier as the one the DATA_CHANNEL_OPEN message was
received on.
 If the DATA_CHANNEL_OPEN message doesn't satisfy the conditions above, the
receiver MUST close the corresponding data channel using the procedure
described in and MUST NOT send a DATA_CHANNEL_ACK
message in response to the received message. This might occur if, for example,
a DATA_CHANNEL_OPEN message is received on an already used stream, there are
problems with parameters within the DATA_CHANNEL_OPEN
message, the odd/even rule is violated, or the DATA_CHANNEL_OPEN message itself
is not well formed. Therefore, receiving an SCTP stream-reset request for a stream on which
no DATA_CHANNEL_ACK message has been received indicates to the sender of the
corresponding DATA_CHANNEL_OPEN message the failure of the data channel
setup procedure. After also successfully resetting the corresponding outgoing
stream, which concludes the data channel closing initiated by the peer,
a new DATA_CHANNEL_OPEN message can be sent on the stream.
 After the DATA_CHANNEL_OPEN message has been sent, the sender of that message
 MAY start sending messages containing user data without
waiting for the reception of the corresponding DATA_CHANNEL_ACK message.
However, before the DATA_CHANNEL_ACK message or any other message has been
received on a data channel, all other messages containing user data and
belonging to this data channel MUST be sent ordered, no matter
whether the data channel is ordered or not.
After the DATA_CHANNEL_ACK or any other message has been received on the
data channel, messages containing user data MUST be sent ordered on ordered
data channels and MUST be sent unordered on unordered data channels.
Therefore, receiving a message containing user data on an unused stream
indicates an error. In that case, the corresponding data channel MUST be closed, as described
in .

 Security Considerations
 The DATA_CHANNEL_OPEN message contains two variable-length fields:
the protocol and the label. A receiver must be prepared to receive
DATA_CHANNEL_OPEN messages where these fields have the maximum length of
65535 bytes. Error cases such as using inconsistent lengths of fields,
using unknown parameter values, or violating the odd/even rule must also be handled
by closing the corresponding data channel. An end point must also be prepared
for the peer to open the maximum number of data channels.
 This protocol does not provide privacy, integrity, or authentication.
It needs to be used as part of a protocol suite that contains all these things.
Such a protocol suite is specified in
 .
 For general considerations, see and
 .

 IANA Considerations
 IANA has updated the reference of an already existing SCTP PPID
assignment () and created a new
standalone registry with its own URL for DCEP () containing two new
registration tables (Sections
and).

 SCTP Payload Protocol Identifier
 This document uses an SCTP Payload Protocol
Identifier (PPID) previously registered as "WebRTC Control".

 created the
"SCTP Payload Protocol Identifiers" registry, in which this identifier was assigned.
IANA has updated the PPID name from "WebRTC Control" to "WebRTC DCEP" and has
updated the reference to point to this document. The corresponding date has been
kept.
 Therefore, this assignment now appears as follows:

 Value
 SCTP PPID
 Reference
 Date

 WebRTC DCEP
 50
 RFC 8832
 2013-09-20

 New Standalone Registry for DCEP
 IANA has created the "Data Channel Establishment Protocol (DCEP)
	Parameters" registry. It contains the two tables provided in Sections
	
and .

 New Message Type Registry
 IANA has created the "Message Types" registry for DCEP to manage
	 the one-byte "Message Type" field in DCEP messages (see). This registration table
	 is a subregistry of the registry described in .
 The assignment of new message types is done through an RFC Required action,
as defined in .
Documentation of new message types MUST contain the following information:

 A name for the new message type.
 A detailed procedural description of how each message type is used with
	 within DCEP.

 The following are the initial registrations:

 Name
 Type
 Reference

 Reserved
 0x00
 RFC 8832

 Reserved
 0x01
 RFC 8832

 DATA_CHANNEL_ACK
 0x02
 RFC 8832

 DATA_CHANNEL_OPEN
 0x03
 RFC 8832

 Unassigned
 0x04-0xfe

 Reserved
 0xff
 RFC 8832

 Note that values 0x00 and 0x01 are reserved to avoid
interoperability problems, since they have been used in draft versions
of the document.
The value 0xff has been reserved for future extensibility.
The range of possible values is from 0x00 to 0xff.

 New Channel Type Registry
 IANA has created the "Channel Types" registry
for DCEP to manage the one-byte
"Channel Type" field in DATA_CHANNEL_OPEN messages
(see).
This registration table is a subregistry within the registry described in
 .
 The assignment of new message types is done through an RFC Required action,
as defined in .
Documentation of new Channel Types MUST contain the following information:

 A name for the new Channel Type.
 A detailed procedural description of the user message handling for
data channels using this new Channel Type.

If new Channel Types support ordered and unordered message
delivery, the high-order bit MUST be used to indicate whether
or not the message delivery is unordered.
 The following are the initial registrations:

 Name
 Type
 Reference

 DATA_CHANNEL_RELIABLE
 0x00
 RFC 8832

 DATA_CHANNEL_RELIABLE_UNORDERED
 0x80
 RFC 8832

 DATA_CHANNEL_PARTIAL_RELIABLE_REXMIT
 0x01
 RFC 8832

 DATA_CHANNEL_PARTIAL_RELIABLE_REXMIT_UNORDERED
 0x81
 RFC 8832

 DATA_CHANNEL_PARTIAL_RELIABLE_TIMED
 0x02
 RFC 8832

 DATA_CHANNEL_PARTIAL_RELIABLE_TIMED_UNORDERED
 0x82
 RFC 8832

 Reserved
 0x7f
 RFC 8832

 Reserved
 0xff
 RFC 8832

 Unassigned
 rest

 Values 0x7f and 0xff have been reserved for future
extensibility.
The range of possible values is from 0x00 to 0xff.

 References

 Normative References

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 UTF-8, a transformation format of ISO 10646

 ISO/IEC 10646-1 defines a large character set called the Universal Character Set (UCS) which encompasses most of the world's writing systems. The originally proposed encodings of the UCS, however, were not compatible with many current applications and protocols, and this has led to the development of UTF-8, the object of this memo. UTF-8 has the characteristic of preserving the full US-ASCII range, providing compatibility with file systems, parsers and other software that rely on US-ASCII values but are transparent to other values. This memo obsoletes and replaces RFC 2279.

 Stream Control Transmission Protocol

 This document obsoletes RFC 2960 and RFC 3309. It describes the Stream Control Transmission Protocol (SCTP). SCTP is designed to transport Public Switched Telephone Network (PSTN) signaling messages over IP networks, but is capable of broader applications.
 SCTP is a reliable transport protocol operating on top of a connectionless packet network such as IP. It offers the following services to its users:
 -- acknowledged error-free non-duplicated transfer of user data,
 -- data fragmentation to conform to discovered path MTU size,
 -- sequenced delivery of user messages within multiple streams, with an option for order-of-arrival delivery of individual user messages,
 -- optional bundling of multiple user messages into a single SCTP packet, and
 -- network-level fault tolerance through supporting of multi-homing at either or both ends of an association.
 The design of SCTP includes appropriate congestion avoidance behavior and resistance to flooding and masquerade attacks. [STANDARDS-TRACK]

 Guidelines for Writing an IANA Considerations Section in RFCs

 Many protocols make use of points of extensibility that use constants to identify various protocol parameters. To ensure that the values in these fields do not have conflicting uses and to promote interoperability, their allocations are often coordinated by a central record keeper. For IETF protocols, that role is filled by the Internet Assigned Numbers Authority (IANA).
 To make assignments in a given registry prudently, guidance describing the conditions under which new values should be assigned, as well as when and how modifications to existing values can be made, is needed. This document defines a framework for the documentation of these guidelines by specification authors, in order to assure that the provided guidance for the IANA Considerations is clear and addresses the various issues that are likely in the operation of a registry.
 This is the third edition of this document; it obsoletes RFC 5226.

 Datagram Transport Layer Security (DTLS) Encapsulation of SCTP Packets

 The Stream Control Transmission Protocol (SCTP) is a transport protocol originally defined to run on top of the network protocols IPv4 or IPv6. This document specifies how SCTP can be used on top of the Datagram Transport Layer Security (DTLS) protocol. Using the encapsulation method described in this document, SCTP is unaware of the protocols being used below DTLS; hence, explicit IP addresses cannot be used in the SCTP control chunks. As a consequence, the SCTP associations carried over DTLS can only be single-homed.

 WebRTC Data Channels

 Informative References

 Datagram Transport Layer Security

 This document specifies Version 1.0 of the Datagram Transport Layer Security (DTLS) protocol. The DTLS protocol provides communications privacy for datagram protocols. The protocol allows client/server applications to communicate in a way that is designed to prevent eavesdropping, tampering, or message forgery. The DTLS protocol is based on the Transport Layer Security (TLS) protocol and provides equivalent security guarantees. Datagram semantics of the underlying transport are preserved by the DTLS protocol. [STANDARDS-TRACK]

 Datagram Transport Layer Security Version 1.2

 This document specifies version 1.2 of the Datagram Transport Layer Security (DTLS) protocol. The DTLS protocol provides communications privacy for datagram protocols. The protocol allows client/server applications to communicate in a way that is designed to prevent eavesdropping, tampering, or message forgery. The DTLS protocol is based on the Transport Layer Security (TLS) protocol and provides equivalent security guarantees. Datagram semantics of the underlying transport are preserved by the DTLS protocol. This document updates DTLS 1.0 to work with TLS version 1.2. [STANDARDS-TRACK]

 The WebSocket Protocol

 The WebSocket Protocol enables two-way communication between a client running untrusted code in a controlled environment to a remote host that has opted-in to communications from that code. The security model used for this is the origin-based security model commonly used by web browsers. The protocol consists of an opening handshake followed by basic message framing, layered over TCP. The goal of this technology is to provide a mechanism for browser-based applications that need two-way communication with servers that does not rely on opening multiple HTTP connections (e.g., using XMLHttpRequest or <iframe>s and long polling). [STANDARDS-TRACK]

 Security Considerations for WebRTC

 WebRTC Security Architecture

 The Datagram Transport Layer Security (DTLS) Protocol Version 1.3

 RTFM, Inc.

 Arm Limited

 Google, Inc.

 This document specifies Version 1.3 of the Datagram Transport Layer
 Security (DTLS) protocol. DTLS 1.3 allows client/server applications
 to communicate over the Internet in a way that is designed to prevent
 eavesdropping, tampering, and message forgery.

 The DTLS 1.3 protocol is intentionally based on the Transport Layer
 Security (TLS) 1.3 protocol and provides equivalent security
 guarantees with the exception of order protection/non-replayability.
 Datagram semantics of the underlying transport are preserved by the
 DTLS protocol.

 Work in Progress

 Acknowledgements
 The authors wish to thank
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
and many others for their invaluable comments.

 Authors' Addresses

 Mozilla

 United States of America

 randell-ietf@jesup.org

 Ericsson

 Hirsalantie 11
 02420
 Jorvas
 Finland

 salvatore.loreto@ericsson.com

 Münster University of Applied Sciences

 Stegerwaldstrasse 39
 48565
 Steinfurt
 Germany

 tuexen@fh-muenster.de

