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1. Introduction 
 over  requires that every JMAP API request be authenticated.

Depending on the type of authentication used by the JMAP client and the configuration of the
JMAP server, authentication could be an expensive operation both in time and resources. In such
circumstances, reauthenticating for every JMAP API request may harm performance.

The  binding for JMAP eliminates this performance hit by authenticating
just the WebSocket handshake request and having those credentials remain in effect for the
duration of the WebSocket connection. This binding supports JMAP API requests and responses,
with optional support for push notifications.

Furthermore, the WebSocket binding for JMAP can optionally  both JMAP
API requests and responses. Although compression of HTTP responses is ubiquitous,
compression of HTTP requests has very low, if any, deployment and therefore isn't a viable
option for JMAP API requests over HTTP.

2. Conventions Used in This Document 
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14   when, and only when, they appear in
all capitals, as shown here.

This document uses the terminology defined in the core JMAP specification .

JMAP [RFC8620] HTTP [RFC7235]

WebSocket [RFC6455]

compress [RFC7692]

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

[RFC8620]

3. Discovering Support for JMAP over WebSocket 
The JMAP capabilities object is returned as part of the standard JMAP Session object (see 

). Servers supporting this specification  add a property named
"urn:ietf:params:jmap:websocket" to the capabilities object. The value of this property is an
object that  contain the following information on server capabilities:

url: "String"

The wss-URI (see ) to use for initiating a JMAP-over-WebSocket
handshake (the "WebSocket URL endpoint" colloquially).

supportsPush: "Boolean"

This is true if the server supports push notifications over the WebSocket, as described in 
Section 4.3.5.

Section
2 of [RFC8620] MUST

MUST

• 

Section 3 of [RFC6455]

• 
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Example:

"urn:ietf:params:jmap:websocket": {
  "url": "wss://server.example.com/jmap/ws/",
  "supportsPush": true
}

4. JMAP Subprotocol 
The term WebSocket subprotocol refers to an application-level protocol layered on top of a
WebSocket connection. This document specifies the WebSocket JMAP subprotocol for carrying
JMAP API requests, responses, and optional push notifications through a WebSocket connection.
Binary data is handled per  (via a separate HTTP connection or stream) or
per a future extension to JMAP or this specification.

Section 6 of [RFC8620]

4.1. Authentication 
A JMAP WebSocket connection is authenticated by presenting a user's 

 that initiates the WebSocket handshake. See  for
recommendations regarding the selection of HTTP authentication schemes.

credentials in the HTTP
request [RFC7235] Section 8.2 of [RFC8620]

4.2. Handshake 
The JMAP WebSocket client and JMAP WebSocket server negotiate the use of the WebSocket
JMAP subprotocol during the WebSocket handshake, either via an HTTP/1.1 Upgrade request (see 

) or an HTTP/2 Extended CONNECT request (see ).
The WebSocket JMAP subprotocol is also intended to run over future bindings of HTTP (e.g.,
HTTP/3) provided that there is a defined mechanism for performing a WebSocket handshake
over that binding.

Regardless of the method used for the WebSocket handshake, the client  first perform a TLS
handshake on a JMAP  having the "wss://" scheme
(WebSocket over TLS) in accordance with the requirements of running the particular binding of
HTTP over TLS (see  and  for HTTP/1.1 and 

 for HTTP/2). If the TLS handshake fails, the client  close the connection.
Otherwise, the client  make an  on the encrypted
connection and  include the value "jmap" in the list of protocols for the "Sec-WebSocket-
Protocol" header field.

The reply from the server  also contain a corresponding "Sec-WebSocket-Protocol" header
field with a value of "jmap" in order for a JMAP subprotocol connection to be established.

Once the handshake has successfully completed, the WebSocket connection is established and
can be used for JMAP API requests, responses, and optional push notifications. Other message
types  be transmitted over this connection.

Section 4 of [RFC6455] Section 5 of [RFC8441]

MUST
WebSocket URL endpoint (Section 3)

[RFC2818] Section 4.1 of [RFC6455] Section 9.2 of
[RFC7540] MUST

MUST authenticated HTTP request [RFC7235]
MUST

MUST

MUST NOT
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The credentials used for authenticating the HTTP request to initiate the handshake remain in
effect for the duration of the WebSocket connection. If the authentication credentials for the user
expire, the server can either treat subsequent requests as if they are unauthenticated or close the
WebSocket connection. In the latter case, the server  send a Close frame with a status code of
1008 (Policy Violation), as defined in .

MAY
Section 7.4.1 of [RFC6455]

4.3. WebSocket Messages 
Data frame messages in the JMAP subprotocol  be text frames and contain UTF-8 encoded
data. The messages  be in the form of a single JMAP Request object (see 

), JMAP WebSocketPushEnable object (see Section 4.3.5.2), or JMAP
WebSocketPushDisable object (see Section 4.3.5.3) when sent from the client to the server, and
MUST be in the form of a single JMAP Response object, JSON Problem Details object, or JMAP
StateChange object (see Sections 3.4, 3.6.1, and 7.1 of , respectively) when sent from the
server to the client.

Note that fragmented WebSocket messages (split over multiple text frames)  be coalesced
prior to parsing them as JSON objects.

MUST
MUST Section 3.3 of

[RFC8620]

[RFC8620]

MUST

4.3.1. Handling Invalid Data 

If a client or server receives a binary frame, the endpoint can either ignore the frame or close the
WebSocket connection. In the latter case, the endpoint  send a Close frame with a status code
of 1003 (Unsupported Data), as defined in .

If a client receives a message that is not in the form of a JSON Problem Details object, a JMAP
Response object, or a JMAP StateChange object, the client can either ignore the message or close
the WebSocket connection. In the latter case, the endpoint  send a Close frame with a status
code of 1007 (Invalid frame payload data), as defined in .

A server  return an appropriate  for any request-
level errors (e.g., an invalid JMAP object, an unsupported capability or method call, or exceeding
a server request limit).

MAY
Section 7.4.1 of [RFC6455]

MAY
Section 7.4.1 of [RFC6455]

MUST JSON Problem Details object (Section 4.3.4)

4.3.2. JMAP Requests 

The specification extends the Request object with two additional arguments when used over a
WebSocket:

@type: "String"

This  be the string "Request".

id: "String" (optional)

A client-specified identifier for the request to be echoed back in the response to this request.

JMAP over WebSocket allows the server to process requests out of order. The client-specified
identifier is used as a mechanism for the client to correlate requests and responses.

• 

MUST

• 
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Additionally, the "maxConcurrentRequests" limit in the "capabilities" object (see 
) also applies to requests made on the WebSocket connection. When using the

WebSocket JMAP subprotocol over a binding of HTTP that allows multiplexing of requests (e.g.,
HTTP/2), this limit applies to the sum of requests made on both the JMAP API endpoint and the
WebSocket connection.

Section 2 of
[RFC8620]

4.3.3. JMAP Responses 

The specification extends the Response object with two additional arguments when used over a
WebSocket:

@type: "String"

This  be the string "Response".

requestId: "String" (optional;  be returned if an identifier is included in the request)

The client-specified identifier in the corresponding request.

• 

MUST

• MUST

4.3.4. JMAP Request-Level Errors 

The specification extends the Problem Details object for request-level errors (see 
) with two additional arguments when used over a WebSocket:

@type: "String"

This  be the string "RequestError".

requestId: "String" (optional;  be returned if given in the request)

The client-specified identifier in the corresponding request.

Section 3.6.1 of
[RFC8620]

• 

MUST

• MUST

4.3.5. JMAP Push Notifications 

JMAP-over-WebSocket servers that support push notifications on the WebSocket will advertise a
"supportsPush" property with a value of true in the "urn:ietf:params:jmap:websocket" server
capabilities object.

4.3.5.1. Notification Format 
All push notifications take the form of a standard StateChange object (see 

).

The specification extends the StateChange object with one additional argument when used over a
WebSocket:

pushState: "String" (optional)

A (preferably short) string that encodes the entire server state visible to the user (not just the
objects returned in this call).

Section 7.1 of
[RFC8620]

• 
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4.4. Examples 
The following examples show WebSocket JMAP opening handshakes, a JMAP Core/echo request
and response, and a subsequent closing handshake. The examples assume that the JMAP
WebSocket URL endpoint has been advertised in the JMAP Session object as having a path of "/
jmap/ws/" and that TLS negotiation has already succeeded. Note that folding of header fields is
for editorial purposes only.

The purpose of the "pushState" token is to allow a client to immediately get any changes that
occurred while it was disconnected (see Section 4.3.5.2). If the server does not support
"pushState" tokens, the client will have to issue a series of "/changes" requests (see 

) upon reconnection to update its state to match that of the server.
Section

5.2 of [RFC8620]

4.3.5.2. Enabling Notifications 
A client enables push notifications from the server for the current connection by sending a
WebSocketPushEnable object to the server. A WebSocketPushEnable object has the following
properties:

@type: "String"

This  be the string "WebSocketPushEnable".

dataTypes: "String[]|null"

A list of data type names (e.g., "Mailbox" or "Email") that the client is interested in. A
StateChange notification will only be sent if the data for one of these types changes. Other
types are omitted from the TypeState object. If null, changes will be pushed for all supported
data types.

pushState: "String" (optional)

The last "pushState" token that the client received from the server. Upon receipt of a
"pushState" token, the server  immediately send all changes since that state token.

• 

MUST

• 

• 

SHOULD

4.3.5.3. Disabling Notifications 
A client disables push notifications from the server for the current connection by sending a
WebSocketPushDisable object to the server. A WebSocketPushDisable object has the following
property:

@type: "String"

This  be the string "WebSocketPushDisable".

• 

MUST
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WebSocket JMAP connection via HTTP/1.1 with push notifications for mail  is enabled.
This example assumes that the client has cached pushState "aaa" from a previous connection.

[RFC8621]
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[[ From Client ]]                [[ From Server ]]

GET /jmap/ws/ HTTP/1.1
Host: server.example.com
Upgrade: websocket
Connection: Upgrade
Authorization: Basic Zm9vOmJhcg==
Sec-WebSocket-Key:
  dGhlIHNhbXBsZSBub25jZQ==
Sec-WebSocket-Protocol: jmap
Sec-WebSocket-Version: 13
Origin: https://www.example.com

                                 HTTP/1.1 101 Switching Protocols
                                 Upgrade: websocket
                                 Connection: Upgrade
                                 Sec-WebSocket-Accept:
                                   s3pPLMBiTxaQ9kYGzzhZRbK+xOo=
                                 Sec-WebSocket-Protocol: jmap

[WebSocket connection established]

WS_DATA
{
  "@type": "WebSocketPushEnable",
  "dataTypes": [ "Mailbox", "Email" ],
  "pushState": "aaa"
}

                                 WS_DATA
                                 {
                                   "@type": "StateChange",
                                   "changed": {
                                     "a456": {
                                       "Mailbox": "d35ecb040aab"
                                     }
                                   },
                                   "pushState": "bbb"
                                 }

WS_DATA
{
  "@type": "Request",
  "id": "R1",
  "using": [ "urn:ietf:params:jmap:core" ],
  "methodCalls": [
    [
      "Core/echo", {
        "hello": true,
        "high": 5
      },
      "b3ff"
    ]
  ]
}

                                 WS_DATA
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                                 {
                                   "@type": "Response",
                                   "requestId": "R1",
                                   "methodResponses": [
                                     [
                                       "Core/echo", {
                                         "hello": true,
                                         "high": 5
                                       },
                                       "b3ff"
                                     ]
                                   ]
                                 }

WS_DATA
The quick brown fox jumps
 over the lazy dog.

                                 WS_DATA
                                 {
                                   "@type": "RequestError",
                                   "requestId": null,
                                   "type":
                             "urn:ietf:params:jmap:error:notJSON",
                                   "status": 400,
                                   "detail":
                             "The request did not parse as I-JSON."
                                 }

[A new email is received]

                                 WS_DATA
                                 {
                                   "@type": "StateChange",
                                   "changed": {
                                     "a123": {
                                       "Email": "0af7a512ce70"
                                     }
                                   }
                                   "pushState": "ccc"
                                 }

WS_CLOSE

                                 WS_CLOSE

[WebSocket connection closed]
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WebSocket JMAP connection on an HTTP/2 stream that also negotiates :compression [RFC7692]

[[ From Client ]]                [[ From Server ]]

                                 SETTINGS
                                 SETTINGS_ENABLE_CONNECT_PROTOCOL = 1

HEADERS + END_HEADERS
:method = CONNECT
:protocol = websocket
:scheme = https
:path = /jmap/ws/
:authority = server.example.com
origin: https://example.com
authorization = Basic Zm9vOmJhcg==
sec-websocket-protocol = jmap
sec-websocket-version = 13
sec-websocket-extensions =
  permessage-deflate
origin = https://www.example.com

                                 HEADERS + END_HEADERS
                                 :status = 200
                                 sec-websocket-protocol = jmap
                                 sec-websocket-extensions =
                                   permessage-deflate

[WebSocket connection established]

DATA
WS_DATA
[compressed text]

                                 DATA
                                 WS_DATA
                                 [compressed text]

...

DATA + END_STREAM
WS_CLOSE

                                 DATA + END_STREAM
                                 WS_CLOSE

[WebSocket connection closed]
[HTTP/2 stream closed]

5. Security Considerations 
The security considerations for both WebSocket (see ) and JMAP (see 

) apply to the WebSocket JMAP subprotocol. Specific security
considerations are described below.

Section 10 of [RFC6455]
Section 8 of [RFC8620]
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            information on Internet Standards is available in Section 2 of 
            RFC 7841.
        
         
            Information about the current status of this document, any
            errata, and how to provide feedback on it may be obtained at
             .
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       Introduction
        JMAP
      over  HTTP requires that 
      every JMAP API request be authenticated.
      Depending on the type of authentication used by
      the JMAP client and the configuration of the JMAP server,
      authentication could be an expensive operation both in time and
      resources.  In such circumstances, reauthenticating for every
      JMAP API request may harm performance.
       The  WebSocket
      binding for JMAP eliminates this performance
      hit by authenticating just the WebSocket handshake request and
      having those credentials remain in effect for the duration of
      the WebSocket connection.  This binding supports JMAP API
      requests and responses, with optional support for push
      notifications.
       Furthermore, the WebSocket binding for JMAP can optionally
       compress both JMAP API
      requests and responses.
      Although compression of HTTP responses is ubiquitous,
      compression of HTTP requests has very low, if any, deployment
      and therefore isn't a viable option for JMAP API requests
      over HTTP.
    
     
       Conventions Used in This Document
       
    The key words " MUST", " MUST NOT",
    " REQUIRED", " SHALL", " SHALL NOT", " SHOULD", " SHOULD NOT",
    " RECOMMENDED", " NOT RECOMMENDED", 
    " MAY", and " OPTIONAL" in this document are
    to be interpreted as 
    described in BCP 14     
    when, and only when, they appear in all capitals, as shown here.
      
       This document uses the terminology defined in the core JMAP
	specification  .
    
     
       Discovering Support for JMAP over WebSocket
       The JMAP capabilities object is returned as part of the
      standard JMAP Session object (see
       ).
      Servers supporting this specification  MUST add a property named
      "urn:ietf:params:jmap:websocket" to the capabilities object.
      The value of this property is an object that  MUST contain the
      following information on server capabilities:

      
       
         
           url:  "String"
           The wss-URI (see  ) to use for initiating a JMAP-over-WebSocket 
	  handshake (the "WebSocket URL endpoint" colloquially).
        
         
           supportsPush:  "Boolean"
           This is true if the server supports push notifications over the
	  WebSocket, as described in  .
        
      
        Example:
       
"urn:ietf:params:jmap:websocket": {
  "url": "wss://server.example.com/jmap/ws/",
  "supportsPush": true
}

    
     
       JMAP Subprotocol
       The term WebSocket subprotocol refers to an application-level
      protocol layered on top of a WebSocket connection.  This
      document specifies the WebSocket JMAP subprotocol for carrying
      JMAP API requests, responses, and optional push notifications
      through a WebSocket connection.
      Binary data is handled per   (via a separate HTTP connection or stream)
      or per a future extension to JMAP or this specification.
       
         Authentication
         A JMAP WebSocket connection is authenticated by presenting
        a user's  credentials in the
        HTTP request that initiates the WebSocket handshake.
        See   for
        recommendations regarding the selection of HTTP authentication
        schemes.
      
       
         Handshake
         The JMAP WebSocket client and JMAP WebSocket server
        negotiate the use of the WebSocket JMAP subprotocol during
        the WebSocket handshake, either via an HTTP/1.1 Upgrade request
        (see  )
        or an HTTP/2 Extended CONNECT request (see
         ).
        The WebSocket JMAP subprotocol is also intended to run
        over future bindings of HTTP (e.g., HTTP/3) provided that there
        is a defined mechanism for performing a WebSocket handshake
        over that binding.
         Regardless of the method used for the WebSocket handshake,
        the client  MUST first perform a TLS handshake on a
        JMAP  WebSocket URL endpoint
        having the "wss://" scheme (WebSocket over TLS) in
        accordance with the requirements of running the particular
        binding of HTTP over TLS (see  
        and   for HTTP/1.1
        and   for HTTP/2).
        If the TLS handshake fails, the client  MUST close the
        connection. Otherwise, the client  MUST make an 
         authenticated HTTP request
        on the encrypted connection and  MUST include the value "jmap"
        in the list of protocols for the "Sec-WebSocket-Protocol"
        header field.
         The reply from the server  MUST also contain a
        corresponding "Sec-WebSocket-Protocol" header field with a
        value of "jmap" in order
        for a JMAP subprotocol connection to be established.
         Once the handshake has successfully completed, the
        WebSocket connection is established and can be used for JMAP
        API requests, responses, and optional push notifications.
        Other message types  MUST NOT be transmitted over this
        connection.
         The credentials used for authenticating the HTTP request
        to initiate the handshake remain in effect for the duration
        of the WebSocket connection.  If the authentication
        credentials for the user expire, the server can either treat
        subsequent requests as if they are unauthenticated or close
        the WebSocket connection.
        In the latter case, the server  MAY send a Close frame with a
        status code of 1008 (Policy Violation), as defined in
         .
      
       
         WebSocket Messages
         Data frame messages in the JMAP subprotocol  MUST be
        text frames and contain UTF-8 encoded data.  The messages  MUST
        be in the form of a single JMAP Request object (see
         ),
        JMAP WebSocketPushEnable object (see  ),
        or JMAP WebSocketPushDisable object (see  )
        when sent from
        the client to the server, and MUST be in the form of a single JMAP
        Response object, JSON Problem Details object, or JMAP StateChange
        object (see Sections  ,  , and   of  ,
	respectively) when sent from the server to the client.
         Note that fragmented WebSocket messages (split over
        multiple text frames)  MUST be coalesced prior to parsing them
        as JSON objects.
         
           Handling Invalid Data
           If a client or server receives a binary frame, the endpoint
          can either ignore the frame or close the WebSocket connection.
          In the latter case, the endpoint  MAY send a Close frame with a
          status code of 1003 (Unsupported Data), as defined in 
           .
           If a client receives a message that is not in the form of
          a JSON Problem Details object, a JMAP Response
          object, or a JMAP StateChange object, the client can either
          ignore the message or close the WebSocket connection.
          In the latter case, the endpoint  MAY send a Close frame with a
          status code of 1007 (Invalid frame payload data), as
          defined in  .
           A server  MUST return an appropriate
           JSON Problem Details object
          for any request-level errors
          (e.g., an invalid JMAP object, an unsupported capability or
          method call, or exceeding a server request limit).
        
         
           JMAP Requests
           The specification extends the Request object with two
          additional arguments when used over a WebSocket:
          
           
             
               @type:  "String"
               This  MUST be the string "Request".
            
             
               id:  "String" (optional)
               A client-specified identifier for the request to be echoed
	      back in the response to this request.
            
          
           JMAP over WebSocket allows the server to process requests
          out of order.  The client-specified identifier is used as a
          mechanism for the client to correlate requests and
          responses.
           Additionally, the "maxConcurrentRequests" limit in the
          "capabilities" object (see  ) also applies to requests made on 
          the WebSocket connection.  When using the WebSocket JMAP
          subprotocol over a binding of HTTP that allows multiplexing
          of requests (e.g., HTTP/2), this limit applies to the sum
          of requests made on both the JMAP API endpoint and the
          WebSocket connection.
        
         
           JMAP Responses
           The specification extends the Response object with two
          additional arguments when used over a WebSocket:

          
           
             
               @type:  "String"
               This  MUST be the string "Response".
            
             
               requestId:  "String" (optional;  MUST be
	      returned if an identifier is included in the request)
               The client-specified identifier in the corresponding
	      request.
            
          
        
         
           JMAP Request-Level Errors
           The specification extends the Problem Details object
          for request-level errors (see  ) with two additional arguments
	  when used over a WebSocket:
           
             
               @type:  "String"
               This  MUST be the string "RequestError".
            
             
               requestId:  "String" (optional;  MUST be
	      returned if given in the request)
               The client-specified identifier in the corresponding
	      request.
            
          
        
         
           JMAP Push Notifications
           JMAP-over-WebSocket servers that support push
          notifications on the WebSocket will advertise a
          "supportsPush" property with a value of true in
          the "urn:ietf:params:jmap:websocket" server capabilities
          object.
           
             Notification Format
             All push notifications take the form of a standard
            StateChange object (see  ).
             The specification extends the StateChange object with one
            additional argument when used over a WebSocket:
            
             
               
                 pushState:  "String" (optional)
                 A (preferably short) string that encodes the entire server
		state visible to the user (not just the objects returned in
		this call).
                 The purpose of the "pushState" token is to allow a client
		to immediately get any changes that occurred while it was
		disconnected (see  ). If the server does not support
		"pushState" tokens, the client will have to issue a series of
		"/changes" requests (see  ) upon reconnection to
		update its state to match that of the server.
              
            
          
           
             Enabling Notifications
             A client enables push notifications from the server for
            the current connection by
            sending a WebSocketPushEnable object to the server.  A
            WebSocketPushEnable object has the following properties:

            
             
               
                 @type:  "String"
                 This  MUST be the string
		"WebSocketPushEnable".
              
               
                 dataTypes:  "String[]|null"
                 A list of data type names (e.g., "Mailbox" or "Email") that
		the client is interested in. A StateChange notification will
		only be sent if the data for one of these types changes.
		Other types are omitted from the TypeState object.  If null,
		changes will be pushed for all supported data types.
              
               
                 pushState:  "String" (optional)
                 The last "pushState" token that the client received from
		the server. Upon receipt of a "pushState" token, the server
		 SHOULD immediately send all changes since that
		state token.
              
            
          
           
             Disabling Notifications
             A client disables push notifications from the server
            for the current connection by
            sending a WebSocketPushDisable object to the server.  A
            WebSocketPushDisable object has the following property:

            
             
               
                 @type:  "String"
                 This  MUST be the string "WebSocketPushDisable".
              
            
          
        
      
       
         Examples
         The following examples show WebSocket JMAP opening
        handshakes, a JMAP Core/echo request and response, and a
        subsequent closing handshake.
        The examples assume that the JMAP WebSocket URL endpoint has been
        advertised in the JMAP Session object as having a path of
        "/jmap/ws/" and that TLS negotiation has already succeeded. 
        Note that folding of header fields is for editorial purposes
        only.
         
            WebSocket JMAP connection via HTTP/1.1 with push
            notifications for mail  
	    is enabled. This example assumes that the client has cached
	    pushState "aaa" from a previous connection.
        
         
[[ From Client ]]                [[ From Server ]]

GET /jmap/ws/ HTTP/1.1
Host: server.example.com
Upgrade: websocket
Connection: Upgrade
Authorization: Basic Zm9vOmJhcg==
Sec-WebSocket-Key:
  dGhlIHNhbXBsZSBub25jZQ==
Sec-WebSocket-Protocol: jmap
Sec-WebSocket-Version: 13
Origin: https://www.example.com

                                 HTTP/1.1 101 Switching Protocols
                                 Upgrade: websocket
                                 Connection: Upgrade
                                 Sec-WebSocket-Accept:
                                   s3pPLMBiTxaQ9kYGzzhZRbK+xOo=
                                 Sec-WebSocket-Protocol: jmap

[WebSocket connection established]

WS_DATA
{
  "@type": "WebSocketPushEnable",
  "dataTypes": [ "Mailbox", "Email" ],
  "pushState": "aaa"
}

                                 WS_DATA
                                 {
                                   "@type": "StateChange",
                                   "changed": {
                                     "a456": {
                                       "Mailbox": "d35ecb040aab"
                                     }
                                   },
                                   "pushState": "bbb"
                                 }

WS_DATA
{
  "@type": "Request",
  "id": "R1",
  "using": [ "urn:ietf:params:jmap:core" ],
  "methodCalls": [
    [
      "Core/echo", {
        "hello": true,
        "high": 5
      },
      "b3ff"
    ]
  ]
}

                                 WS_DATA
                                 {
                                   "@type": "Response",
                                   "requestId": "R1",
                                   "methodResponses": [
                                     [
                                       "Core/echo", {
                                         "hello": true,
                                         "high": 5
                                       },
                                       "b3ff"
                                     ]
                                   ]
                                 }

WS_DATA
The quick brown fox jumps
 over the lazy dog.

                                 WS_DATA
                                 {
                                   "@type": "RequestError",
                                   "requestId": null,
                                   "type":
                             "urn:ietf:params:jmap:error:notJSON",
                                   "status": 400,
                                   "detail":
                             "The request did not parse as I-JSON."
                                 }

[A new email is received]

                                 WS_DATA
                                 {
                                   "@type": "StateChange",
                                   "changed": {
                                     "a123": {
                                       "Email": "0af7a512ce70"
                                     }
                                   }
                                   "pushState": "ccc"
                                 }

WS_CLOSE

                                 WS_CLOSE

[WebSocket connection closed]

         
            WebSocket JMAP connection on an HTTP/2 stream that also
            negotiates  compression:
        
         
[[ From Client ]]                [[ From Server ]]

                                 SETTINGS
                                 SETTINGS_ENABLE_CONNECT_PROTOCOL = 1

HEADERS + END_HEADERS
:method = CONNECT
:protocol = websocket
:scheme = https
:path = /jmap/ws/
:authority = server.example.com
origin: https://example.com
authorization = Basic Zm9vOmJhcg==
sec-websocket-protocol = jmap
sec-websocket-version = 13
sec-websocket-extensions =
  permessage-deflate
origin = https://www.example.com

                                 HEADERS + END_HEADERS
                                 :status = 200
                                 sec-websocket-protocol = jmap
                                 sec-websocket-extensions =
                                   permessage-deflate

[WebSocket connection established]

DATA
WS_DATA
[compressed text]

                                 DATA
                                 WS_DATA
                                 [compressed text]

...

DATA + END_STREAM
WS_CLOSE

                                 DATA + END_STREAM
                                 WS_CLOSE

[WebSocket connection closed]
[HTTP/2 stream closed]

      
    
     
       Security Considerations
       The security considerations for both WebSocket (see  ) and JMAP (see  ) apply to the
      WebSocket JMAP subprotocol. Specific security considerations are
      described below.
       
         Connection Confidentiality and Integrity
         To ensure the confidentiality and integrity of
        data sent and received via JMAP over WebSocket, the WebSocket
        connection  MUST use  TLS 1.2
        or later, following the recommendations in  BCP 195.
        Servers  SHOULD support  TLS 1.3 or
        later.
      
       
         Non-browser Clients
         JMAP over WebSocket can be used by clients both running
        inside and outside of a web browser.  As such, the security
        considerations in Sections   and   of  
	apply to those respective environments.
      
    
     
       IANA Considerations
       
         Registration of the WebSocket JMAP Subprotocol
         Per this specification, IANA has registered the following in the
	"WebSocket Subprotocol Name Registry" within the "WebSocket Protocol
	Registries".  

        
         
           Subprotocol Identifier:
           jmap
           Subprotocol Common Name:
           WebSocket Transport for JMAP (JSON Meta Application
	  Protocol)
           Subprotocol Definition:
           RFC 8887
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