
RFC 8887
A JSON Meta Application Protocol (JMAP)
Subprotocol for WebSocket

Abstract
This document defines a binding for the JSON Meta Application Protocol (JMAP) over a
WebSocket transport layer. The WebSocket binding for JMAP provides higher performance than
the current HTTP binding for JMAP.

Stream: Internet Engineering Task Force (IETF)
RFC: 8887
Category: Standards Track
Published: August 2020
ISSN: 2070-1721
Author: K. Murchison

Fastmail

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc8887

Copyright Notice
Copyright (c) 2020 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.

https://trustee.ietf.org/license-info

Murchison Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc8887
https://www.rfc-editor.org/info/rfc8887
https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

2. Conventions Used in This Document

3. Discovering Support for JMAP over WebSocket

4. JMAP Subprotocol

4.1. Authentication

4.2. Handshake

4.3. WebSocket Messages

4.3.1. Handling Invalid Data

4.3.2. JMAP Requests

4.3.3. JMAP Responses

4.3.4. JMAP Request-Level Errors

4.3.5. JMAP Push Notifications

4.4. Examples

5. Security Considerations

5.1. Connection Confidentiality and Integrity

5.2. Non-browser Clients

6. IANA Considerations

6.1. Registration of the WebSocket JMAP Subprotocol

7. References

7.1. Normative References

7.2. Informative References

Acknowledgments

Author's Address

RFC 8887 JMAP over WebSocket August 2020

Murchison Standards Track Page 2

1. Introduction
 over requires that every JMAP API request be authenticated.

Depending on the type of authentication used by the JMAP client and the configuration of the
JMAP server, authentication could be an expensive operation both in time and resources. In such
circumstances, reauthenticating for every JMAP API request may harm performance.

The binding for JMAP eliminates this performance hit by authenticating
just the WebSocket handshake request and having those credentials remain in effect for the
duration of the WebSocket connection. This binding supports JMAP API requests and responses,
with optional support for push notifications.

Furthermore, the WebSocket binding for JMAP can optionally both JMAP
API requests and responses. Although compression of HTTP responses is ubiquitous,
compression of HTTP requests has very low, if any, deployment and therefore isn't a viable
option for JMAP API requests over HTTP.

2. Conventions Used in This Document
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

This document uses the terminology defined in the core JMAP specification .

JMAP [RFC8620] HTTP [RFC7235]

WebSocket [RFC6455]

compress [RFC7692]

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

[RFC8620]

3. Discovering Support for JMAP over WebSocket
The JMAP capabilities object is returned as part of the standard JMAP Session object (see

). Servers supporting this specification add a property named
"urn:ietf:params:jmap:websocket" to the capabilities object. The value of this property is an
object that contain the following information on server capabilities:

url: "String"

The wss-URI (see) to use for initiating a JMAP-over-WebSocket
handshake (the "WebSocket URL endpoint" colloquially).

supportsPush: "Boolean"

This is true if the server supports push notifications over the WebSocket, as described in
Section 4.3.5.

Section
2 of [RFC8620] MUST

MUST

•

Section 3 of [RFC6455]

•

RFC 8887 JMAP over WebSocket August 2020

Murchison Standards Track Page 3

https://www.rfc-editor.org/rfc/rfc8620#section-2
https://www.rfc-editor.org/rfc/rfc8620#section-2
https://www.rfc-editor.org/rfc/rfc6455#section-3

Example:

"urn:ietf:params:jmap:websocket": {
 "url": "wss://server.example.com/jmap/ws/",
 "supportsPush": true
}

4. JMAP Subprotocol
The term WebSocket subprotocol refers to an application-level protocol layered on top of a
WebSocket connection. This document specifies the WebSocket JMAP subprotocol for carrying
JMAP API requests, responses, and optional push notifications through a WebSocket connection.
Binary data is handled per (via a separate HTTP connection or stream) or
per a future extension to JMAP or this specification.

Section 6 of [RFC8620]

4.1. Authentication
A JMAP WebSocket connection is authenticated by presenting a user's

 that initiates the WebSocket handshake. See for
recommendations regarding the selection of HTTP authentication schemes.

credentials in the HTTP
request [RFC7235] Section 8.2 of [RFC8620]

4.2. Handshake
The JMAP WebSocket client and JMAP WebSocket server negotiate the use of the WebSocket
JMAP subprotocol during the WebSocket handshake, either via an HTTP/1.1 Upgrade request (see

) or an HTTP/2 Extended CONNECT request (see).
The WebSocket JMAP subprotocol is also intended to run over future bindings of HTTP (e.g.,
HTTP/3) provided that there is a defined mechanism for performing a WebSocket handshake
over that binding.

Regardless of the method used for the WebSocket handshake, the client first perform a TLS
handshake on a JMAP having the "wss://" scheme
(WebSocket over TLS) in accordance with the requirements of running the particular binding of
HTTP over TLS (see and for HTTP/1.1 and

 for HTTP/2). If the TLS handshake fails, the client close the connection.
Otherwise, the client make an on the encrypted
connection and include the value "jmap" in the list of protocols for the "Sec-WebSocket-
Protocol" header field.

The reply from the server also contain a corresponding "Sec-WebSocket-Protocol" header
field with a value of "jmap" in order for a JMAP subprotocol connection to be established.

Once the handshake has successfully completed, the WebSocket connection is established and
can be used for JMAP API requests, responses, and optional push notifications. Other message
types be transmitted over this connection.

Section 4 of [RFC6455] Section 5 of [RFC8441]

MUST
WebSocket URL endpoint (Section 3)

[RFC2818] Section 4.1 of [RFC6455] Section 9.2 of
[RFC7540] MUST

MUST authenticated HTTP request [RFC7235]
MUST

MUST

MUST NOT

RFC 8887 JMAP over WebSocket August 2020

Murchison Standards Track Page 4

https://www.rfc-editor.org/rfc/rfc8620#section-6
https://www.rfc-editor.org/rfc/rfc8620#section-8.2
https://www.rfc-editor.org/rfc/rfc6455#section-4
https://www.rfc-editor.org/rfc/rfc8441#section-5
https://www.rfc-editor.org/rfc/rfc6455#section-4.1
https://www.rfc-editor.org/rfc/rfc7540#section-9.2

The credentials used for authenticating the HTTP request to initiate the handshake remain in
effect for the duration of the WebSocket connection. If the authentication credentials for the user
expire, the server can either treat subsequent requests as if they are unauthenticated or close the
WebSocket connection. In the latter case, the server send a Close frame with a status code of
1008 (Policy Violation), as defined in .

MAY
Section 7.4.1 of [RFC6455]

4.3. WebSocket Messages
Data frame messages in the JMAP subprotocol be text frames and contain UTF-8 encoded
data. The messages be in the form of a single JMAP Request object (see

), JMAP WebSocketPushEnable object (see Section 4.3.5.2), or JMAP
WebSocketPushDisable object (see Section 4.3.5.3) when sent from the client to the server, and
MUST be in the form of a single JMAP Response object, JSON Problem Details object, or JMAP
StateChange object (see Sections 3.4, 3.6.1, and 7.1 of , respectively) when sent from the
server to the client.

Note that fragmented WebSocket messages (split over multiple text frames) be coalesced
prior to parsing them as JSON objects.

MUST
MUST Section 3.3 of

[RFC8620]

[RFC8620]

MUST

4.3.1. Handling Invalid Data

If a client or server receives a binary frame, the endpoint can either ignore the frame or close the
WebSocket connection. In the latter case, the endpoint send a Close frame with a status code
of 1003 (Unsupported Data), as defined in .

If a client receives a message that is not in the form of a JSON Problem Details object, a JMAP
Response object, or a JMAP StateChange object, the client can either ignore the message or close
the WebSocket connection. In the latter case, the endpoint send a Close frame with a status
code of 1007 (Invalid frame payload data), as defined in .

A server return an appropriate for any request-
level errors (e.g., an invalid JMAP object, an unsupported capability or method call, or exceeding
a server request limit).

MAY
Section 7.4.1 of [RFC6455]

MAY
Section 7.4.1 of [RFC6455]

MUST JSON Problem Details object (Section 4.3.4)

4.3.2. JMAP Requests

The specification extends the Request object with two additional arguments when used over a
WebSocket:

@type: "String"

This be the string "Request".

id: "String" (optional)

A client-specified identifier for the request to be echoed back in the response to this request.

JMAP over WebSocket allows the server to process requests out of order. The client-specified
identifier is used as a mechanism for the client to correlate requests and responses.

•

MUST

•

RFC 8887 JMAP over WebSocket August 2020

Murchison Standards Track Page 5

https://www.rfc-editor.org/rfc/rfc6455#section-7.4.1
https://www.rfc-editor.org/rfc/rfc8620#section-3.3
https://www.rfc-editor.org/rfc/rfc8620#section-3.4
https://www.rfc-editor.org/rfc/rfc8620#section-3.6.1
https://www.rfc-editor.org/rfc/rfc8620#section-7.1
https://www.rfc-editor.org/rfc/rfc6455#section-7.4.1
https://www.rfc-editor.org/rfc/rfc6455#section-7.4.1

Additionally, the "maxConcurrentRequests" limit in the "capabilities" object (see
) also applies to requests made on the WebSocket connection. When using the

WebSocket JMAP subprotocol over a binding of HTTP that allows multiplexing of requests (e.g.,
HTTP/2), this limit applies to the sum of requests made on both the JMAP API endpoint and the
WebSocket connection.

Section 2 of
[RFC8620]

4.3.3. JMAP Responses

The specification extends the Response object with two additional arguments when used over a
WebSocket:

@type: "String"

This be the string "Response".

requestId: "String" (optional; be returned if an identifier is included in the request)

The client-specified identifier in the corresponding request.

•

MUST

• MUST

4.3.4. JMAP Request-Level Errors

The specification extends the Problem Details object for request-level errors (see
) with two additional arguments when used over a WebSocket:

@type: "String"

This be the string "RequestError".

requestId: "String" (optional; be returned if given in the request)

The client-specified identifier in the corresponding request.

Section 3.6.1 of
[RFC8620]

•

MUST

• MUST

4.3.5. JMAP Push Notifications

JMAP-over-WebSocket servers that support push notifications on the WebSocket will advertise a
"supportsPush" property with a value of true in the "urn:ietf:params:jmap:websocket" server
capabilities object.

4.3.5.1. Notification Format
All push notifications take the form of a standard StateChange object (see

).

The specification extends the StateChange object with one additional argument when used over a
WebSocket:

pushState: "String" (optional)

A (preferably short) string that encodes the entire server state visible to the user (not just the
objects returned in this call).

Section 7.1 of
[RFC8620]

•

RFC 8887 JMAP over WebSocket August 2020

Murchison Standards Track Page 6

https://www.rfc-editor.org/rfc/rfc8620#section-2
https://www.rfc-editor.org/rfc/rfc8620#section-3.6.1
https://www.rfc-editor.org/rfc/rfc8620#section-7.1

4.4. Examples
The following examples show WebSocket JMAP opening handshakes, a JMAP Core/echo request
and response, and a subsequent closing handshake. The examples assume that the JMAP
WebSocket URL endpoint has been advertised in the JMAP Session object as having a path of "/
jmap/ws/" and that TLS negotiation has already succeeded. Note that folding of header fields is
for editorial purposes only.

The purpose of the "pushState" token is to allow a client to immediately get any changes that
occurred while it was disconnected (see Section 4.3.5.2). If the server does not support
"pushState" tokens, the client will have to issue a series of "/changes" requests (see

) upon reconnection to update its state to match that of the server.
Section

5.2 of [RFC8620]

4.3.5.2. Enabling Notifications
A client enables push notifications from the server for the current connection by sending a
WebSocketPushEnable object to the server. A WebSocketPushEnable object has the following
properties:

@type: "String"

This be the string "WebSocketPushEnable".

dataTypes: "String[]|null"

A list of data type names (e.g., "Mailbox" or "Email") that the client is interested in. A
StateChange notification will only be sent if the data for one of these types changes. Other
types are omitted from the TypeState object. If null, changes will be pushed for all supported
data types.

pushState: "String" (optional)

The last "pushState" token that the client received from the server. Upon receipt of a
"pushState" token, the server immediately send all changes since that state token.

•

MUST

•

•

SHOULD

4.3.5.3. Disabling Notifications
A client disables push notifications from the server for the current connection by sending a
WebSocketPushDisable object to the server. A WebSocketPushDisable object has the following
property:

@type: "String"

This be the string "WebSocketPushDisable".

•

MUST

RFC 8887 JMAP over WebSocket August 2020

Murchison Standards Track Page 7

https://www.rfc-editor.org/rfc/rfc8620#section-5.2
https://www.rfc-editor.org/rfc/rfc8620#section-5.2

WebSocket JMAP connection via HTTP/1.1 with push notifications for mail is enabled.
This example assumes that the client has cached pushState "aaa" from a previous connection.

[RFC8621]

RFC 8887 JMAP over WebSocket August 2020

Murchison Standards Track Page 8

[[From Client]] [[From Server]]

GET /jmap/ws/ HTTP/1.1
Host: server.example.com
Upgrade: websocket
Connection: Upgrade
Authorization: Basic Zm9vOmJhcg==
Sec-WebSocket-Key:
 dGhlIHNhbXBsZSBub25jZQ==
Sec-WebSocket-Protocol: jmap
Sec-WebSocket-Version: 13
Origin: https://www.example.com

 HTTP/1.1 101 Switching Protocols
 Upgrade: websocket
 Connection: Upgrade
 Sec-WebSocket-Accept:
 s3pPLMBiTxaQ9kYGzzhZRbK+xOo=
 Sec-WebSocket-Protocol: jmap

[WebSocket connection established]

WS_DATA
{
 "@type": "WebSocketPushEnable",
 "dataTypes": ["Mailbox", "Email"],
 "pushState": "aaa"
}

 WS_DATA
 {
 "@type": "StateChange",
 "changed": {
 "a456": {
 "Mailbox": "d35ecb040aab"
 }
 },
 "pushState": "bbb"
 }

WS_DATA
{
 "@type": "Request",
 "id": "R1",
 "using": ["urn:ietf:params:jmap:core"],
 "methodCalls": [
 [
 "Core/echo", {
 "hello": true,
 "high": 5
 },
 "b3ff"
]
]
}

 WS_DATA

RFC 8887 JMAP over WebSocket August 2020

Murchison Standards Track Page 9

 {
 "@type": "Response",
 "requestId": "R1",
 "methodResponses": [
 [
 "Core/echo", {
 "hello": true,
 "high": 5
 },
 "b3ff"
]
]
 }

WS_DATA
The quick brown fox jumps
 over the lazy dog.

 WS_DATA
 {
 "@type": "RequestError",
 "requestId": null,
 "type":
 "urn:ietf:params:jmap:error:notJSON",
 "status": 400,
 "detail":
 "The request did not parse as I-JSON."
 }

[A new email is received]

 WS_DATA
 {
 "@type": "StateChange",
 "changed": {
 "a123": {
 "Email": "0af7a512ce70"
 }
 }
 "pushState": "ccc"
 }

WS_CLOSE

 WS_CLOSE

[WebSocket connection closed]

RFC 8887 JMAP over WebSocket August 2020

Murchison Standards Track Page 10

WebSocket JMAP connection on an HTTP/2 stream that also negotiates :compression [RFC7692]

[[From Client]] [[From Server]]

 SETTINGS
 SETTINGS_ENABLE_CONNECT_PROTOCOL = 1

HEADERS + END_HEADERS
:method = CONNECT
:protocol = websocket
:scheme = https
:path = /jmap/ws/
:authority = server.example.com
origin: https://example.com
authorization = Basic Zm9vOmJhcg==
sec-websocket-protocol = jmap
sec-websocket-version = 13
sec-websocket-extensions =
 permessage-deflate
origin = https://www.example.com

 HEADERS + END_HEADERS
 :status = 200
 sec-websocket-protocol = jmap
 sec-websocket-extensions =
 permessage-deflate

[WebSocket connection established]

DATA
WS_DATA
[compressed text]

 DATA
 WS_DATA
 [compressed text]

...

DATA + END_STREAM
WS_CLOSE

 DATA + END_STREAM
 WS_CLOSE

[WebSocket connection closed]
[HTTP/2 stream closed]

5. Security Considerations
The security considerations for both WebSocket (see) and JMAP (see

) apply to the WebSocket JMAP subprotocol. Specific security
considerations are described below.

Section 10 of [RFC6455]
Section 8 of [RFC8620]

RFC 8887 JMAP over WebSocket August 2020

Murchison Standards Track Page 11

https://www.rfc-editor.org/rfc/rfc6455#section-10
https://www.rfc-editor.org/rfc/rfc8620#section-8

[RFC2119]

[RFC2818]

[RFC5246]

[RFC6455]

[RFC7235]

7. References

7.1. Normative References

, , ,
, , March 1997,
.

, , , , May 2000,
.

,
, , , August 2008,

.

, , ,
, December 2011, .

,
, , , June 2014,

.

5.1. Connection Confidentiality and Integrity
To ensure the confidentiality and integrity of data sent and received via JMAP over WebSocket,
the WebSocket connection use or later, following the recommendations
in . Servers support or later.

5.2. Non-browser Clients
JMAP over WebSocket can be used by clients both running inside and outside of a web browser.
As such, the security considerations in Sections 10.2 and 10.1 of apply to those
respective environments.

MUST TLS 1.2 [RFC5246]
BCP 195 [RFC7525] SHOULD TLS 1.3 [RFC8446]

[RFC6455]

Subprotocol Identifier:

Subprotocol Common Name:

Subprotocol Definition:

6. IANA Considerations

6.1. Registration of the WebSocket JMAP Subprotocol
Per this specification, IANA has registered the following in the "WebSocket Subprotocol Name
Registry" within the "WebSocket Protocol Registries".

jmap

WebSocket Transport for JMAP (JSON Meta Application Protocol)

RFC 8887

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Rescorla, E. "HTTP Over TLS" RFC 2818 DOI 10.17487/RFC2818
<https://www.rfc-editor.org/info/rfc2818>

Dierks, T. and E. Rescorla "The Transport Layer Security (TLS) Protocol Version
1.2" RFC 5246 DOI 10.17487/RFC5246 <https://www.rfc-editor.org/
info/rfc5246>

Fette, I. and A. Melnikov "The WebSocket Protocol" RFC 6455 DOI 10.17487/
RFC6455 <https://www.rfc-editor.org/info/rfc6455>

Fielding, R., Ed. and J. Reschke, Ed. "Hypertext Transfer Protocol (HTTP/1.1):
Authentication" RFC 7235 DOI 10.17487/RFC7235 <https://www.rfc-
editor.org/info/rfc7235>

RFC 8887 JMAP over WebSocket August 2020

Murchison Standards Track Page 12

https://www.rfc-editor.org/rfc/rfc6455#section-10.2
https://www.rfc-editor.org/rfc/rfc6455#section-10.1
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2818
https://www.rfc-editor.org/info/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://www.rfc-editor.org/info/rfc6455
https://www.rfc-editor.org/info/rfc7235
https://www.rfc-editor.org/info/rfc7235

[RFC7525]

[RFC7540]

[RFC7692]

[RFC8174]

[RFC8441]

[RFC8446]

[RFC8620]

[RFC8621]

,
,

, , , May 2015,
.

,
, , , May 2015,

.

, , ,
, December 2015, .

, ,
, , , May 2017,

.

, , ,
, September 2018, .

, , ,
, August 2018, .

, ,
, , July 2019,

.

7.2. Informative References

,
, , , August 2019,

.

Acknowledgments
The author would like to thank the following individuals for contributing their ideas and support
for writing this specification: , , and .

Sheffer, Y., Holz, R., and P. Saint-Andre "Recommendations for Secure Use of
Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)"
BCP 195 RFC 7525 DOI 10.17487/RFC7525 <https://www.rfc-
editor.org/info/rfc7525>

Belshe, M., Peon, R., and M. Thomson, Ed. "Hypertext Transfer Protocol Version
2 (HTTP/2)" RFC 7540 DOI 10.17487/RFC7540 <https://www.rfc-
editor.org/info/rfc7540>

Yoshino, T. "Compression Extensions for WebSocket" RFC 7692 DOI 10.17487/
RFC7692 <https://www.rfc-editor.org/info/rfc7692>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

McManus, P. "Bootstrapping WebSockets with HTTP/2" RFC 8441 DOI 10.17487/
RFC8441 <https://www.rfc-editor.org/info/rfc8441>

Rescorla, E. "The Transport Layer Security (TLS) Protocol Version 1.3" RFC 8446
DOI 10.17487/RFC8446 <https://www.rfc-editor.org/info/rfc8446>

Jenkins, N. and C. Newman "The JSON Meta Application Protocol (JMAP)" RFC
8620 DOI 10.17487/RFC8620 <https://www.rfc-editor.org/info/
rfc8620>

Jenkins, N. and C. Newman "The JSON Meta Application Protocol (JMAP) for
Mail" RFC 8621 DOI 10.17487/RFC8621 <https://www.rfc-
editor.org/info/rfc8621>

Neil Jenkins Robert Mueller Chris Newman

Author's Address
Kenneth Murchison
Fastmail US LLC
1429 Walnut Street, Suite 1201

, Philadelphia PA 19102
United States of America

 murch@fastmailteam.com Email:
 http://www.fastmail.com/ URI:

RFC 8887 JMAP over WebSocket August 2020

Murchison Standards Track Page 13

https://www.rfc-editor.org/info/rfc7525
https://www.rfc-editor.org/info/rfc7525
https://www.rfc-editor.org/info/rfc7540
https://www.rfc-editor.org/info/rfc7540
https://www.rfc-editor.org/info/rfc7692
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8441
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8620
https://www.rfc-editor.org/info/rfc8620
https://www.rfc-editor.org/info/rfc8621
https://www.rfc-editor.org/info/rfc8621
mailto:murch@fastmailteam.com
http://www.fastmail.com/

	RFC 8887
	A JSON Meta Application Protocol (JMAP) Subprotocol for WebSocket
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions Used in This Document
	3. Discovering Support for JMAP over WebSocket
	4. JMAP Subprotocol
	4.1. Authentication
	4.2. Handshake
	4.3. WebSocket Messages
	4.3.1. Handling Invalid Data
	4.3.2. JMAP Requests
	4.3.3. JMAP Responses
	4.3.4. JMAP Request-Level Errors
	4.3.5. JMAP Push Notifications
	4.3.5.1. Notification Format
	4.3.5.2. Enabling Notifications
	4.3.5.3. Disabling Notifications

	4.4. Examples

	5. Security Considerations
	5.1. Connection Confidentiality and Integrity
	5.2. Non-browser Clients

	6. IANA Considerations
	6.1. Registration of the WebSocket JMAP Subprotocol

	7. References
	7.1. Normative References
	7.2. Informative References

	Acknowledgments
	Author's Address

 A JSON Meta Application Protocol (JMAP) Subprotocol for WebSocket

 Fastmail US LLC

 1429 Walnut Street, Suite 1201
 Philadelphia
 PA
 19102
 United States of America

 murch@fastmailteam.com
 http://www.fastmail.com/

 ART
 JMAP
 jmap
 websocket

 This document defines a binding for the JSON Meta Application
 Protocol (JMAP) over a WebSocket transport layer. The WebSocket
 binding for JMAP provides higher performance than the current
 HTTP binding for JMAP.

 Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further
 information on Internet Standards is available in Section 2 of
 RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Simplified BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Simplified BSD License.

 Table of Contents

 . Introduction

 . Conventions Used in This Document

 . Discovering Support for JMAP over WebSocket

 . JMAP Subprotocol

 . Authentication

 . Handshake

 . WebSocket Messages

 . Handling Invalid Data

 . JMAP Requests

 . JMAP Responses

 . JMAP Request-Level Errors

 . JMAP Push Notifications

 . Examples

 . Security Considerations

 . Connection Confidentiality and Integrity

 . Non-browser Clients

 . IANA Considerations

 . Registration of the WebSocket JMAP Subprotocol

 . References

 . Normative References

 . Informative References

 Acknowledgments

 Author's Address

 Introduction
 JMAP
 over HTTP requires that
 every JMAP API request be authenticated.
 Depending on the type of authentication used by
 the JMAP client and the configuration of the JMAP server,
 authentication could be an expensive operation both in time and
 resources. In such circumstances, reauthenticating for every
 JMAP API request may harm performance.
 The WebSocket
 binding for JMAP eliminates this performance
 hit by authenticating just the WebSocket handshake request and
 having those credentials remain in effect for the duration of
 the WebSocket connection. This binding supports JMAP API
 requests and responses, with optional support for push
 notifications.
 Furthermore, the WebSocket binding for JMAP can optionally
 compress both JMAP API
 requests and responses.
 Although compression of HTTP responses is ubiquitous,
 compression of HTTP requests has very low, if any, deployment
 and therefore isn't a viable option for JMAP API requests
 over HTTP.

 Conventions Used in This Document

 The key words " MUST", " MUST NOT",
 " REQUIRED", " SHALL", " SHALL NOT", " SHOULD", " SHOULD NOT",
 " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are
 to be interpreted as
 described in BCP 14
 when, and only when, they appear in all capitals, as shown here.

 This document uses the terminology defined in the core JMAP
	specification .

 Discovering Support for JMAP over WebSocket
 The JMAP capabilities object is returned as part of the
 standard JMAP Session object (see
).
 Servers supporting this specification MUST add a property named
 "urn:ietf:params:jmap:websocket" to the capabilities object.
 The value of this property is an object that MUST contain the
 following information on server capabilities:

 url: "String"
 The wss-URI (see) to use for initiating a JMAP-over-WebSocket
	 handshake (the "WebSocket URL endpoint" colloquially).

 supportsPush: "Boolean"
 This is true if the server supports push notifications over the
	 WebSocket, as described in .

 Example:

"urn:ietf:params:jmap:websocket": {
 "url": "wss://server.example.com/jmap/ws/",
 "supportsPush": true
}

 JMAP Subprotocol
 The term WebSocket subprotocol refers to an application-level
 protocol layered on top of a WebSocket connection. This
 document specifies the WebSocket JMAP subprotocol for carrying
 JMAP API requests, responses, and optional push notifications
 through a WebSocket connection.
 Binary data is handled per (via a separate HTTP connection or stream)
 or per a future extension to JMAP or this specification.

 Authentication
 A JMAP WebSocket connection is authenticated by presenting
 a user's credentials in the
 HTTP request that initiates the WebSocket handshake.
 See for
 recommendations regarding the selection of HTTP authentication
 schemes.

 Handshake
 The JMAP WebSocket client and JMAP WebSocket server
 negotiate the use of the WebSocket JMAP subprotocol during
 the WebSocket handshake, either via an HTTP/1.1 Upgrade request
 (see)
 or an HTTP/2 Extended CONNECT request (see
).
 The WebSocket JMAP subprotocol is also intended to run
 over future bindings of HTTP (e.g., HTTP/3) provided that there
 is a defined mechanism for performing a WebSocket handshake
 over that binding.
 Regardless of the method used for the WebSocket handshake,
 the client MUST first perform a TLS handshake on a
 JMAP WebSocket URL endpoint
 having the "wss://" scheme (WebSocket over TLS) in
 accordance with the requirements of running the particular
 binding of HTTP over TLS (see
 and for HTTP/1.1
 and for HTTP/2).
 If the TLS handshake fails, the client MUST close the
 connection. Otherwise, the client MUST make an
 authenticated HTTP request
 on the encrypted connection and MUST include the value "jmap"
 in the list of protocols for the "Sec-WebSocket-Protocol"
 header field.
 The reply from the server MUST also contain a
 corresponding "Sec-WebSocket-Protocol" header field with a
 value of "jmap" in order
 for a JMAP subprotocol connection to be established.
 Once the handshake has successfully completed, the
 WebSocket connection is established and can be used for JMAP
 API requests, responses, and optional push notifications.
 Other message types MUST NOT be transmitted over this
 connection.
 The credentials used for authenticating the HTTP request
 to initiate the handshake remain in effect for the duration
 of the WebSocket connection. If the authentication
 credentials for the user expire, the server can either treat
 subsequent requests as if they are unauthenticated or close
 the WebSocket connection.
 In the latter case, the server MAY send a Close frame with a
 status code of 1008 (Policy Violation), as defined in
 .

 WebSocket Messages
 Data frame messages in the JMAP subprotocol MUST be
 text frames and contain UTF-8 encoded data. The messages MUST
 be in the form of a single JMAP Request object (see
),
 JMAP WebSocketPushEnable object (see),
 or JMAP WebSocketPushDisable object (see)
 when sent from
 the client to the server, and MUST be in the form of a single JMAP
 Response object, JSON Problem Details object, or JMAP StateChange
 object (see Sections , , and of ,
	respectively) when sent from the server to the client.
 Note that fragmented WebSocket messages (split over
 multiple text frames) MUST be coalesced prior to parsing them
 as JSON objects.

 Handling Invalid Data
 If a client or server receives a binary frame, the endpoint
 can either ignore the frame or close the WebSocket connection.
 In the latter case, the endpoint MAY send a Close frame with a
 status code of 1003 (Unsupported Data), as defined in
 .
 If a client receives a message that is not in the form of
 a JSON Problem Details object, a JMAP Response
 object, or a JMAP StateChange object, the client can either
 ignore the message or close the WebSocket connection.
 In the latter case, the endpoint MAY send a Close frame with a
 status code of 1007 (Invalid frame payload data), as
 defined in .
 A server MUST return an appropriate
 JSON Problem Details object
 for any request-level errors
 (e.g., an invalid JMAP object, an unsupported capability or
 method call, or exceeding a server request limit).

 JMAP Requests
 The specification extends the Request object with two
 additional arguments when used over a WebSocket:

 @type: "String"
 This MUST be the string "Request".

 id: "String" (optional)
 A client-specified identifier for the request to be echoed
	 back in the response to this request.

 JMAP over WebSocket allows the server to process requests
 out of order. The client-specified identifier is used as a
 mechanism for the client to correlate requests and
 responses.
 Additionally, the "maxConcurrentRequests" limit in the
 "capabilities" object (see) also applies to requests made on
 the WebSocket connection. When using the WebSocket JMAP
 subprotocol over a binding of HTTP that allows multiplexing
 of requests (e.g., HTTP/2), this limit applies to the sum
 of requests made on both the JMAP API endpoint and the
 WebSocket connection.

 JMAP Responses
 The specification extends the Response object with two
 additional arguments when used over a WebSocket:

 @type: "String"
 This MUST be the string "Response".

 requestId: "String" (optional; MUST be
	 returned if an identifier is included in the request)
 The client-specified identifier in the corresponding
	 request.

 JMAP Request-Level Errors
 The specification extends the Problem Details object
 for request-level errors (see) with two additional arguments
	 when used over a WebSocket:

 @type: "String"
 This MUST be the string "RequestError".

 requestId: "String" (optional; MUST be
	 returned if given in the request)
 The client-specified identifier in the corresponding
	 request.

 JMAP Push Notifications
 JMAP-over-WebSocket servers that support push
 notifications on the WebSocket will advertise a
 "supportsPush" property with a value of true in
 the "urn:ietf:params:jmap:websocket" server capabilities
 object.

 Notification Format
 All push notifications take the form of a standard
 StateChange object (see).
 The specification extends the StateChange object with one
 additional argument when used over a WebSocket:

 pushState: "String" (optional)
 A (preferably short) string that encodes the entire server
		state visible to the user (not just the objects returned in
		this call).
 The purpose of the "pushState" token is to allow a client
		to immediately get any changes that occurred while it was
		disconnected (see). If the server does not support
		"pushState" tokens, the client will have to issue a series of
		"/changes" requests (see) upon reconnection to
		update its state to match that of the server.

 Enabling Notifications
 A client enables push notifications from the server for
 the current connection by
 sending a WebSocketPushEnable object to the server. A
 WebSocketPushEnable object has the following properties:

 @type: "String"
 This MUST be the string
		"WebSocketPushEnable".

 dataTypes: "String[]|null"
 A list of data type names (e.g., "Mailbox" or "Email") that
		the client is interested in. A StateChange notification will
		only be sent if the data for one of these types changes.
		Other types are omitted from the TypeState object. If null,
		changes will be pushed for all supported data types.

 pushState: "String" (optional)
 The last "pushState" token that the client received from
		the server. Upon receipt of a "pushState" token, the server
		 SHOULD immediately send all changes since that
		state token.

 Disabling Notifications
 A client disables push notifications from the server
 for the current connection by
 sending a WebSocketPushDisable object to the server. A
 WebSocketPushDisable object has the following property:

 @type: "String"
 This MUST be the string "WebSocketPushDisable".

 Examples
 The following examples show WebSocket JMAP opening
 handshakes, a JMAP Core/echo request and response, and a
 subsequent closing handshake.
 The examples assume that the JMAP WebSocket URL endpoint has been
 advertised in the JMAP Session object as having a path of
 "/jmap/ws/" and that TLS negotiation has already succeeded.
 Note that folding of header fields is for editorial purposes
 only.

 WebSocket JMAP connection via HTTP/1.1 with push
 notifications for mail
	 is enabled. This example assumes that the client has cached
	 pushState "aaa" from a previous connection.

[[From Client]] [[From Server]]

GET /jmap/ws/ HTTP/1.1
Host: server.example.com
Upgrade: websocket
Connection: Upgrade
Authorization: Basic Zm9vOmJhcg==
Sec-WebSocket-Key:
 dGhlIHNhbXBsZSBub25jZQ==
Sec-WebSocket-Protocol: jmap
Sec-WebSocket-Version: 13
Origin: https://www.example.com

 HTTP/1.1 101 Switching Protocols
 Upgrade: websocket
 Connection: Upgrade
 Sec-WebSocket-Accept:
 s3pPLMBiTxaQ9kYGzzhZRbK+xOo=
 Sec-WebSocket-Protocol: jmap

[WebSocket connection established]

WS_DATA
{
 "@type": "WebSocketPushEnable",
 "dataTypes": ["Mailbox", "Email"],
 "pushState": "aaa"
}

 WS_DATA
 {
 "@type": "StateChange",
 "changed": {
 "a456": {
 "Mailbox": "d35ecb040aab"
 }
 },
 "pushState": "bbb"
 }

WS_DATA
{
 "@type": "Request",
 "id": "R1",
 "using": ["urn:ietf:params:jmap:core"],
 "methodCalls": [
 [
 "Core/echo", {
 "hello": true,
 "high": 5
 },
 "b3ff"
]
]
}

 WS_DATA
 {
 "@type": "Response",
 "requestId": "R1",
 "methodResponses": [
 [
 "Core/echo", {
 "hello": true,
 "high": 5
 },
 "b3ff"
]
]
 }

WS_DATA
The quick brown fox jumps
 over the lazy dog.

 WS_DATA
 {
 "@type": "RequestError",
 "requestId": null,
 "type":
 "urn:ietf:params:jmap:error:notJSON",
 "status": 400,
 "detail":
 "The request did not parse as I-JSON."
 }

[A new email is received]

 WS_DATA
 {
 "@type": "StateChange",
 "changed": {
 "a123": {
 "Email": "0af7a512ce70"
 }
 }
 "pushState": "ccc"
 }

WS_CLOSE

 WS_CLOSE

[WebSocket connection closed]

 WebSocket JMAP connection on an HTTP/2 stream that also
 negotiates compression:

[[From Client]] [[From Server]]

 SETTINGS
 SETTINGS_ENABLE_CONNECT_PROTOCOL = 1

HEADERS + END_HEADERS
:method = CONNECT
:protocol = websocket
:scheme = https
:path = /jmap/ws/
:authority = server.example.com
origin: https://example.com
authorization = Basic Zm9vOmJhcg==
sec-websocket-protocol = jmap
sec-websocket-version = 13
sec-websocket-extensions =
 permessage-deflate
origin = https://www.example.com

 HEADERS + END_HEADERS
 :status = 200
 sec-websocket-protocol = jmap
 sec-websocket-extensions =
 permessage-deflate

[WebSocket connection established]

DATA
WS_DATA
[compressed text]

 DATA
 WS_DATA
 [compressed text]

...

DATA + END_STREAM
WS_CLOSE

 DATA + END_STREAM
 WS_CLOSE

[WebSocket connection closed]
[HTTP/2 stream closed]

 Security Considerations
 The security considerations for both WebSocket (see) and JMAP (see) apply to the
 WebSocket JMAP subprotocol. Specific security considerations are
 described below.

 Connection Confidentiality and Integrity
 To ensure the confidentiality and integrity of
 data sent and received via JMAP over WebSocket, the WebSocket
 connection MUST use TLS 1.2
 or later, following the recommendations in BCP 195.
 Servers SHOULD support TLS 1.3 or
 later.

 Non-browser Clients
 JMAP over WebSocket can be used by clients both running
 inside and outside of a web browser. As such, the security
 considerations in Sections and of
	apply to those respective environments.

 IANA Considerations

 Registration of the WebSocket JMAP Subprotocol
 Per this specification, IANA has registered the following in the
	"WebSocket Subprotocol Name Registry" within the "WebSocket Protocol
	Registries".

 Subprotocol Identifier:
 jmap
 Subprotocol Common Name:
 WebSocket Transport for JMAP (JSON Meta Application
	 Protocol)
 Subprotocol Definition:
 RFC 8887

 References

 Normative References

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 HTTP Over TLS

 This memo describes how to use Transport Layer Security (TLS) to secure Hypertext Transfer Protocol (HTTP) connections over the Internet. This memo provides information for the Internet community.

 The Transport Layer Security (TLS) Protocol Version 1.2

 This document specifies Version 1.2 of the Transport Layer Security (TLS) protocol. The TLS protocol provides communications security over the Internet. The protocol allows client/server applications to communicate in a way that is designed to prevent eavesdropping, tampering, or message forgery. [STANDARDS-TRACK]

 The WebSocket Protocol

 The WebSocket Protocol enables two-way communication between a client running untrusted code in a controlled environment to a remote host that has opted-in to communications from that code. The security model used for this is the origin-based security model commonly used by web browsers. The protocol consists of an opening handshake followed by basic message framing, layered over TCP. The goal of this technology is to provide a mechanism for browser-based applications that need two-way communication with servers that does not rely on opening multiple HTTP connections (e.g., using XMLHttpRequest or <iframe>s and long polling). [STANDARDS-TRACK]

 Hypertext Transfer Protocol (HTTP/1.1): Authentication

 The Hypertext Transfer Protocol (HTTP) is a stateless application- level protocol for distributed, collaborative, hypermedia information systems. This document defines the HTTP Authentication framework.

 Recommendations for Secure Use of Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)

 Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS) are widely used to protect data exchanged over application protocols such as HTTP, SMTP, IMAP, POP, SIP, and XMPP. Over the last few years, several serious attacks on TLS have emerged, including attacks on its most commonly used cipher suites and their modes of operation. This document provides recommendations for improving the security of deployed services that use TLS and DTLS. The recommendations are applicable to the majority of use cases.

 Hypertext Transfer Protocol Version 2 (HTTP/2)

 This specification describes an optimized expression of the semantics of the Hypertext Transfer Protocol (HTTP), referred to as HTTP version 2 (HTTP/2). HTTP/2 enables a more efficient use of network resources and a reduced perception of latency by introducing header field compression and allowing multiple concurrent exchanges on the same connection. It also introduces unsolicited push of representations from servers to clients.
 This specification is an alternative to, but does not obsolete, the HTTP/1.1 message syntax. HTTP's existing semantics remain unchanged.

 Compression Extensions for WebSocket

 This document defines a framework for creating WebSocket extensions that add compression functionality to the WebSocket Protocol. An extension based on this framework compresses the payload data portion of WebSocket data messages on a per-message basis using parameters negotiated during the opening handshake. This framework provides a general method for applying a compression algorithm to the contents of WebSocket messages. Each compression algorithm has to be defined in a document defining the extension by specifying the parameter negotiation and the payload transformation algorithm in detail. This document also specifies one specific compression extension using the DEFLATE algorithm.

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 Bootstrapping WebSockets with HTTP/2

 This document defines a mechanism for running the WebSocket Protocol (RFC 6455) over a single stream of an HTTP/2 connection.

 The Transport Layer Security (TLS) Protocol Version 1.3

 This document specifies version 1.3 of the Transport Layer Security (TLS) protocol. TLS allows client/server applications to communicate over the Internet in a way that is designed to prevent eavesdropping, tampering, and message forgery.
 This document updates RFCs 5705 and 6066, and obsoletes RFCs 5077, 5246, and 6961. This document also specifies new requirements for TLS 1.2 implementations.

 The JSON Meta Application Protocol (JMAP)

 This document specifies a protocol for clients to efficiently query, fetch, and modify JSON-based data objects, with support for push notification of changes and fast resynchronisation and for out-of- band binary data upload/download.

 Informative References

 The JSON Meta Application Protocol (JMAP) for Mail

 This document specifies a data model for synchronising email data with a server using the JSON Meta Application Protocol (JMAP). Clients can use this to efficiently search, access, organise, and send messages, and to get push notifications for fast resynchronisation when new messages are delivered or a change is made in another client.

 Acknowledgments
 The author would like to thank the following individuals for
 contributing their ideas and support for writing this
 specification: , , and .

 Author's Address

 Fastmail US LLC

 1429 Walnut Street, Suite 1201
 Philadelphia
 PA
 19102
 United States of America

 murch@fastmailteam.com
 http://www.fastmail.com/

