
RFC 9033
6TiSCH Minimal Scheduling Function (MSF)

Abstract
This specification defines the "IPv6 over the TSCH mode of IEEE 802.15.4" (6TiSCH) Minimal
Scheduling Function (MSF). This Scheduling Function describes both the behavior of a node
when joining the network and how the communication schedule is managed in a distributed
fashion. MSF is built upon the 6TiSCH Operation Sublayer Protocol (6P) and the minimal security
framework for 6TiSCH.

Stream: Internet Engineering Task Force (IETF)
RFC: 9033
Category: Standards Track
Published: May 2021
ISSN: 2070-1721
Authors:

T. Chang, Ed.
Inria

M. Vučinić
Inria

X. Vilajosana
Universitat Oberta de Catalunya

S. Duquennoy
RISE SICS

D. Dujovne
Universidad Diego Portales

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9033

Copyright Notice
Copyright (c) 2021 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions

https://trustee.ietf.org/license-info

Chang, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9033
https://www.rfc-editor.org/info/rfc9033
https://trustee.ietf.org/license-info

with respect to this document. Code Components extracted from this document must include
Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.

Table of Contents
1. Introduction

1.1. Requirements Language

1.2. Related Documents

2. Interface to the Minimal 6TiSCH Configuration

3. Autonomous Cells

4. Node Behavior at Boot

4.1. Start State

4.2. Step 1 - Choosing Frequency

4.3. Step 2 - Receiving EBs

4.4. Step 3 - Setting up Autonomous Cells for the Join Process

4.5. Step 4 - Acquiring a RPL Rank

4.6. Step 5 - Setting up First Tx Negotiated Cells

4.7. Step 6 - Sending EBs and DIOs

4.8. End State

5. Rules for Adding and Deleting Cells

5.1. Adapting to Traffic

5.2. Switching Parent

5.3. Handling Schedule Collisions

6. 6P SIGNAL Command

7. Scheduling Function Identifier

8. Rules for CellList

9. 6P Timeout Value

10. Rule for Ordering Cells

11. Meaning of the Metadata Field

12. 6P Error Handling

13. Schedule Inconsistency Handling

RFC 9033 6TiSCH MSF May 2021

Chang, et al. Standards Track Page 2

14. MSF Constants

15. MSF Statistics

16. Security Considerations

17. IANA Considerations

17.1. MSF Scheduling Function Identifiers

18. References

18.1. Normative References

18.2. Informative References

Appendix A. Example Implementation of the SAX Hash Function

Contributors

Authors' Addresses

1. Introduction
The 6TiSCH Minimal Scheduling Function (MSF), defined in this specification, is a 6TiSCH
Scheduling Function (SF). The role of an SF is entirely defined in . This specification
complements by providing the rules of when to add and delete cells in the
communication schedule. This specification satisfies all the requirements for an SF listed in

.

MSF builds on top of the following specifications: "Minimal IPv6 over the TSCH Mode of IEEE
802.15.4e (6TiSCH) Configuration" , "6TiSCH Operation Sublayer (6top) Protocol (6P)"

, and "Constrained Join Protocol (CoJP) for 6TiSCH" .

MSF defines both the behavior of a node when joining the network, and how the communication
schedule is managed in a distributed fashion. When a node running MSF boots up, it joins the
network by following the six steps described in Section 4. The end state of the join process is that
the node is synchronized to the network, has mutually authenticated with the network, has
identified a routing parent, and has scheduled one negotiated Tx cell (defined in Section 5.1) to/
from its routing parent. After the join process, the node can continuously add, delete, and
relocate cells as described in Section 5. It does so for three reasons: to match the link-layer
resources to the traffic, to handle changing parent, and to handle a schedule collision.

MSF works closely with the IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL),
specifically the routing parent defined in . This specification only describes how MSF
works with the routing parent; this parent is referred to as the "selected parent". The activity of
MSF towards the single routing parent is called a "MSF session". Though the performance of MSF

[RFC8480]
[RFC8480]

Section 4.2 of [RFC8480]

[RFC8180]
[RFC8480] [RFC9031]

[RFC6550]

RFC 9033 6TiSCH MSF May 2021

Chang, et al. Standards Track Page 3

https://www.rfc-editor.org/rfc/rfc8480#section-4.2

is evaluated only when the "selected parent" represents the node's preferred parent, there
should be no restrictions to use multiple MSF sessions, one per parent. The distribution of traffic
over multiple parents is a routing decision that is out of scope for MSF.

MSF is designed to operate in a wide range of application domains. It is optimized for
applications with regular upstream traffic, from the nodes to the Destination-Oriented Directed
Acyclic Graph (DODAG) root .

This specification follows the recommended structure of an SF specification, given in
, with the following adaptations:

We have reordered some sections, in particular to have the section on the node behavior at
boot (Section 4) appear early in this specification.
We added sections on the interface to the minimal 6TiSCH configuration (Section 2), the use
of the SIGNAL command (Section 6), the MSF constants (Section 14), and the MSF statistics
(Section 15).

1.1. Requirements Language
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

1.2. Related Documents
This specification uses messages and variables defined in IEEE Std 802.15.4-2015 . It
is expected that those resources will remain in the future versions of IEEE Std 802.15.4; in which
case, this specification also applies to those future versions. In the remainder of the document,
we use to refer to IEEE Std 802.15.4-2015 as well as future versions of IEEE Std
802.15.4 that remain compatible.

[RFC6550]

Appendix A
of [RFC8480]

•

•

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

[IEEE802154]

[IEEE802154]

2. Interface to the Minimal 6TiSCH Configuration
In a Time-Slotted Channel Hopping (TSCH) network, time is sliced up into time slots. The time
slots are grouped as one or multiple slotframes that repeat over time. The TSCH schedule
instructs a node what to do at each time slot, such as transmit, receive, or sleep . For
time slots for transmitting or receiving, a channel is assigned to the time slot. The tuple (slot,
channel) is indicated as a cell of the TSCH schedule. MSF is one of the policies defining how to
manage the TSCH schedule.

A node implementing MSF implement the minimal 6TiSCH configuration ,
which defines the "minimal cell", a single shared cell providing minimal connectivity between
the nodes in the network. The MSF implementation provided in this specification is based on the
implementation of the minimal 6TiSCH configuration. However, an implementor implement
MSF based on other specifications as long as the specification defines a way to advertise the
Enhanced Beacons (EBs) and DODAG Information Objects (DIOs) among the network.

[RFC7554]

SHOULD [RFC8180]

MAY

RFC 9033 6TiSCH MSF May 2021

Chang, et al. Standards Track Page 4

https://www.rfc-editor.org/rfc/rfc8480#appendix-A

MSF uses the minimal cell for broadcast frames such as Enhanced Beacons (EBs)
and broadcast DODAG Information Objects (DIOs) . Cells scheduled by MSF are meant
to be used only for unicast frames.

To ensure there is enough bandwidth available on the minimal cell, a node implementing MSF
 enforce some rules for limiting the traffic of broadcast frames. For example, the overall

broadcast traffic among the node and its neighbors exceed one-third of the
bandwidth of minimal cell. One of the algorithms that fulfills this requirement is the Trickle
timer defined in , which is applied to DIO messages . However, any such
algorithm of limiting the broadcast traffic to meet those rules is implementation-specific and is
out of the scope of MSF.

Three slotframes are used in MSF. MSF schedules autonomous cells at Slotframe 1 (Section 3) and
6P negotiated cells at Slotframe 2 (Section 5), while Slotframe 0 is used for the bootstrap traffic as
defined in the minimal 6TiSCH configuration. The same slotframe length for Slotframe 0, 1, and 2
is . Thus it is possible to avoid the scheduling collision between the autonomous
cells and 6P negotiated cells (Section 3). The default slotframe length (SLOTFRAME_LENGTH) is

 for Slotframe 0, 1, and 2, although any value can be advertised in the EBs.

[IEEE802154]
[RFC6550]

SHOULD
SHOULD NOT

[RFC6206] [RFC6550]

RECOMMENDED

RECOMMENDED

Autonomous Rx Cell (AutoRxCell):

Autonomous Tx Cell (AutoTxCell):

3. Autonomous Cells
MSF nodes initialize Slotframe 1 with a set of default cells for unicast communication with their
neighbors. These cells are called "autonomous cells", because they are maintained autonomously
by each node without negotiation through 6P. Cells scheduled by 6P Transaction are called
"negotiated cells", which are reserved on Slotframe 2. How to schedule negotiated cells is detailed
in Section 5. There are two types of autonomous cells:

One cell at a [slotOffset,channelOffset] computed as a hash of
the 64-bit Extended Unique Identifier (EUI-64) of the node itself (detailed next). Its cell options
bits are assigned as TX=0, RX=1, SHARED=0.

One cell at a [slotOffset,channelOffset] computed as a hash of
the Layer 2 EUI-64 destination address in the unicast frame to be transmitted (detailed in
Section 4.4). Its cell options bits are assigned as TX=1, RX=0, SHARED=1.

To compute a [slotOffset,channelOffset] from an EUI-64 address, nodes use the hash
function SAX as defined in Section 2 of with consistent input parameters, for
example, those defined in Appendix A. The coordinates are computed to distribute the cells
across all channel offsets, and all but the first slot offset of Slotframe 1. The first time offset is
skipped to avoid colliding with the minimal cell in Slotframe 0. The slot coordinates derived from
a given EUI-64 address are computed as follows:

slotOffset(MAC) = 1 + hash(EUI64, length(Slotframe_1) - 1)

channelOffset(MAC) = hash(EUI64, NUM_CH_OFFSET)

MUST
[SAX-DASFAA]

RFC 9033 6TiSCH MSF May 2021

Chang, et al. Standards Track Page 5

The second input parameter defines the maximum return value of the hash function. Other
optional parameters defined in SAX determine the performance of SAX hash function. Those
parameters could be broadcast in an EB frame or preconfigured. For interoperability purposes,
Appendix A provides the reference values of those parameters.

AutoTxCell is not permanently installed in the schedule but is added or deleted on demand when
there is a frame to be sent. Throughout the network lifetime, nodes maintain the autonomous
cells as follows:

Add an AutoTxCell to the Layer 2 destination address, which is indicated in a frame when
there is no 6P negotiated Tx cell in the schedule for that frame to transmit.
Remove an AutoTxCell when:

there is no frame to transmit on that cell, or
there is at least one 6P negotiated Tx cell in the schedule for the frames to transmit.

The AutoRxCell always remain scheduled after synchronization. 6P CLEAR erase
any autonomous cells.

Because of hash collisions, there will be cases that the AutoTxCell and AutoRxCell are scheduled
at the same slot offset and/or channel offset. In such cases, AutoTxCell always take precedence
over AutoRxCell. Notice AutoTxCell is a shared type cell that applies a back-off mechanism. When
the AutoTxCell and AutoRxCell collide, AutoTxCell takes precedence if there is a packet to
transmit. When in a back-off period, AutoRxCell is used. In the case of conflict with a negotiated
cell, autonomous cells take precedence over negotiated cells, which is stated in .
However, when the Slotframe 0, 1, and 2 use the same length value, it is possible for a negotiated
cell to avoid the collision with AutoRxCell. Hence, the same slotframe length for Slotframe 0, 1,
and 2 is .

•

•
◦

◦

MUST MUST NOT

[IEEE802154]

RECOMMENDED

4. Node Behavior at Boot
This section details the behavior the node follow from the moment it is switched on
until it has successfully joined the network. Alternative behaviors may be involved, for example,
when alternative security solutions are used for the network. Section 4.1 details the start state;
Section 4.8 details the end state. The other sections detail the six steps of the joining process. We
use the term "pledge" and "joined node", as defined in .

SHOULD

[RFC9031]

4.1. Start State
A node implementing MSF implement the Constrained Join Protocol (CoJP) for 6TiSCH

. As a corollary, this means that a pledge, before being switched on, may be
preconfigured with the Pre-Shared Key (PSK) for joining, as well as any other configuration
detailed in . This is not necessary if the node implements a security solution that is not
based on PSKs, such as .

SHOULD
[RFC9031]

[RFC9031]
[ZEROTOUCH-JOIN]

RFC 9033 6TiSCH MSF May 2021

Chang, et al. Standards Track Page 6

4.2. Step 1 - Choosing Frequency
When switched on, the pledge randomly chooses a frequency from the channels through which
the network cycles and starts listening for EBs on that frequency.

4.3. Step 2 - Receiving EBs
Upon receiving the first EB, the pledge continues listening for additional EBs to learn:

the number of neighbors N in its vicinity, and
which neighbor to choose as a Join Proxy (JP) for the joining process.

After having received the first EB, a node keep listening for at most MAX_EB_DELAY seconds
or until it has received EBs from NUM_NEIGHBOURS_TO_WAIT distinct neighbors. This behavior
is defined in .

During this step, the pledge only gets synchronized when it has received enough EB from the
network it wishes to join. How to decide whether an EB originates from a node from the network
it wishes to join is implementation-specific, but involve filtering EBs by the PANID field it
contains, the presence and contents of the Information Element (IE) defined in , or the
key used to authenticate it.

The decision of which neighbor to use as a JP is implementation-specific and is discussed in
.

1.
2.

MAY

[RFC8180]

MAY
[RFC9032]

[RFC9031]

4.4. Step 3 - Setting up Autonomous Cells for the Join Process
After having selected a JP, a node generates a Join Request and installs an AutoTxCell to the JP.
The Join Request is then sent by the pledge to its selected JP over the AutoTxCell. The AutoTxCell
is removed by the pledge when the Join Request is sent out. The JP receives the Join Request
through its AutoRxCell. Then it forwards the Join Request to the Join Registrar/Coordinator (JRC),
possibly over multiple hops, over the 6P negotiated Tx cells. Similarly, the JRC sends the Join
Response to the JP, possibly over multiple hops, over AutoTxCells or the 6P negotiated Tx cells.
When the JP receives the Join Response from the JRC, it installs an AutoTxCell to the pledge and
sends that Join Response to the pledge over AutoTxCell. The AutoTxCell is removed by the JP
when the Join Response is sent out. The pledge receives the Join Response from its AutoRxCell,
thereby learns the keying material used in the network, as well as other configuration settings,
and becomes a "joined node".

When 6LoWPAN Neighbor Discovery (ND) is implemented, the unicast packets used by
ND are sent on the AutoTxCell. The specific process how the ND works during the join process is
detailed in .

[RFC8505]

[RFC9030]

4.5. Step 4 - Acquiring a RPL Rank
Per , the joined node receives DIOs, computes its own Rank, and selects a routing
parent.

[RFC6550]

RFC 9033 6TiSCH MSF May 2021

Chang, et al. Standards Track Page 7

CellOptions:

NumCells:

CellList:

4.6. Step 5 - Setting up First Tx Negotiated Cells
Once it has selected a routing parent, the joined node generate a 6P ADD Request and
install an AutoTxCell to that parent. The 6P ADD Request is sent out through the AutoTxCell,
containing the following fields:

Set to TX=1, RX=0, SHARED=0.

Set to 1.

At least 5 cells, chosen according to Section 8.

The joined node removes the AutoTxCell to the selected parent when the 6P Request is sent out.
That parent receives the 6P ADD Request from its AutoRxCell. Then it generates a 6P ADD
Response and installs an AutoTxCell to the joined node. When the parent sends out the 6P ADD
Response, it remove that AutoTxCell. The joined node receives the 6P ADD Response from
its AutoRxCell and completes the 6P Transaction. In the case that the 6P ADD transaction failed,
the node issue another 6P ADD Request and repeat until the Tx cell is installed to the
parent.

MUST

MUST

MUST

4.7. Step 6 - Sending EBs and DIOs
The node starts sending EBs and DIOs on the minimal cell, while following the transmit rules for
broadcast frames from Section 2.

4.8. End State
At the end state of the joining process, a new node:

is synchronized to the network,
is using the link-layer keying material it learned through the secure joining process,
has selected one neighbor as its routing parent,
has one AutoRxCell,
has one negotiated Tx cell to the selected parent,
starts to send DIOs, potentially serving as a router for other nodes' traffic, and
starts to send EBs, potentially serving as a JP for new pledges.

•
•
•
•
•
•
•

5. Rules for Adding and Deleting Cells
Once a node has joined the 6TiSCH network, it adds/deletes/relocates cells with the selected
parent for three reasons:

to match the link-layer resources to the traffic between the node and the selected parent
(Section 5.1),
to handle switching the parent (Section 5.2), or

•

•

RFC 9033 6TiSCH MSF May 2021

Chang, et al. Standards Track Page 8

to handle a schedule collision (Section 5.3).

These cells are called "negotiated cells" as they are scheduled through 6P and negotiated with the
node's parent. Without specific declaration, all cells mentioned in this section are negotiated
cells, and they are installed at Slotframe 2.

•

NumCellsElapsed:

NumCellsUsed:

5.1. Adapting to Traffic
A node implementing MSF implement the behavior described in this section.

The goal of MSF is to manage the communication schedule in the 6TiSCH schedule in a
distributed manner. For a node, this translates into monitoring the current usage of the cells it
has to one of its neighbors, in most cases to the selected parent.

If the node determines that the number of link-layer frames it is attempting to exchange with
the selected parent per unit of time is larger than the capacity offered by the TSCH
negotiated cells it has scheduled with it, the node issues a 6P ADD command to that parent to
add cells to the TSCH schedule.
If the traffic is lower than the capacity, the node issues a 6P DELETE command to that parent
to delete cells from the TSCH schedule.

The node maintain two separate pairs of the following counters for the selected parent:
one for the negotiated Tx cells to that parent and one for the negotiated Rx cells to that parent.

Counts the number of negotiated cells that have elapsed since the counter
was initialized. This counter is initialized at 0. When the current cell is declared as a
negotiated cell to the selected parent, NumCellsElapsed is incremented by exactly 1,
regardless of whether the cell is used to transmit or receive a frame.

Counts the number of negotiated cells that have been used. This counter is
initialized at 0. NumCellsUsed is incremented by exactly 1 when, during a negotiated cell to
the selected parent, either of the following happens:

The node sends a frame to the parent. The counter increments regardless of whether a
link-layer acknowledgment was received or not.
The node receives a valid frame from the parent. The counter increments only when a
valid frame per is received by the node from its parent.

The cell option of cells listed in CellList in a 6P Request frame be either (Tx=1, Rx=0) only
or (Tx=0, Rx=1) only. Both NumCellsElapsed and NumCellsUsed counters can be used for both
types of negotiated cells.

As there is no negotiated Rx cell installed at initial time, the AutoRxCell is taken into account as
well for downstream traffic adaptation. In this case:

NumCellsElapsed is incremented by exactly 1 when the current cell is AutoRxCell.

MUST

•

•

MUST

•

•
[IEEE802154]

SHOULD

•

RFC 9033 6TiSCH MSF May 2021

Chang, et al. Standards Track Page 9

NumCellsUsed is incremented by exactly 1 when the node receives a frame from the selected
parent on AutoRxCell.

Implementors choose to create the same counters for each neighbor and add them as
additional statistics in the neighbor table.

The counters are used as follows:

Both NumCellsElapsed and NumCellsUsed are initialized to 0 when the node boots.

The value of MAX_NUM_CELLS is chosen according to the traffic type of the network. Generally
speaking, the larger the value MAX_NUM_CELLS is, the more accurately the cell usage is
calculated. By using a larger value of MAX_NUM_CELLS, the 6P traffic overhead could be reduced
as well. Meanwhile, the latency won't increase much by using a larger value of MAX_NUM_CELLS
for periodic traffic type. For bursty traffic, a larger value of MAX_NUM_CELLS indeed introduces
higher latency. The latency caused by slight changes of traffic load can be alleviated by the
additional scheduled cells. In this sense, MSF is a Scheduling Function that trades latency with
energy by scheduling more cells than needed. Setting MAX_NUM_CELLS to a value at least four
times the recent maximum number of cells used in a slotframe is . For example, a
two packets/slotframe traffic load results in an average of four cells scheduled (two cells are
used), using at least the value of double the number of scheduled cells (which is eight) as
MAX_NUM_CELLS gives a good resolution on the cell usage calculation.

In the case that a node has booted or has disappeared from the network, the cell reserved at the
selected parent may be kept in the schedule forever. A cleanup mechanism be provided to
resolve this issue. The cleanup mechanism is implementation-specific. The goal is to confirm that
those negotiated cells are not used anymore by the associated neighbors and remove them from
the schedule.

•

MAY

1.
2. When the value of NumCellsElapsed reaches MAX_NUM_CELLS:

If NumCellsUsed is greater than LIM_NUMCELLSUSED_HIGH, trigger 6P to add a single cell
to the selected parent.
If NumCellsUsed is less than LIM_NUMCELLSUSED_LOW, trigger 6P to remove a single cell
to the selected parent.
Reset both NumCellsElapsed and NumCellsUsed to 0 and restart #2.

◦

◦

◦

RECOMMENDED

MUST

5.2. Switching Parent
A node implementing MSF implement the behavior described in this section.

As part of its normal operation, RPL can have a node switch parent. The procedure for switching
from the old parent to the new parent is the following:

The node counts the number of negotiated cells it has per slotframe to the old parent.
The node triggers one or more 6P ADD commands to schedule the same number of
negotiated cells with same cell options to the new parent.
When that successfully completes, the node issues a 6P CLEAR command to its old parent.

SHOULD

1.
2.

3.

RFC 9033 6TiSCH MSF May 2021

Chang, et al. Standards Track Page 10

The type of negotiated cell that should be installed first depends on which traffic has the higher
priority, upstream or downstream, which is application-specific and out of scope of MSF.

NumTx:

NumTxAck:

5.3. Handling Schedule Collisions
A node implementing MSF implement the behavior described in this section. Other
algorithms for handling schedule collisions can be an alternative to the algorithm proposed in
this section.

Since scheduling is entirely distributed, there is a nonzero probability that two pairs of nearby
neighbor nodes schedule a negotiated cell at the same [slotOffset,channelOffset] location in the
TSCH schedule. In that case, data exchanged by the two pairs may collide on that cell. We call this
case a "schedule collision".

The node maintain the following counters for each negotiated Tx cell to the selected
parent:

Counts the number of transmission attempts on that cell. Each time the node attempts
to transmit a frame on that cell, NumTx is incremented by exactly 1.

Counts the number of successful transmission attempts on that cell. Each time the
node receives an acknowledgment for a transmission attempt, NumTxAck is incremented by
exactly 1.

Since both NumTx and NumTxAck are initialized to 0, we necessarily have NumTxAck less than
or equal to NumTx. We call Packet Delivery Ratio (PDR) the ratio NumTxAck/NumTx and
represent it as a percentage. A cell with a PDR equal to 50% means that half of the frames
transmitted are not acknowledged.

Each time the node switches parent (or during the join process when the node selects a parent
for the first time), both NumTx and NumTxAck be reset to 0. They increment over time, as
the schedule is executed, and the node sends frames to that parent. When NumTx reaches
MAX_NUMTX, both NumTx and NumTxAck be divided by 2. MAX_NUMTX needs to be a
power of two to avoid division error. For example, when MAX_NUMTX is set to 256, and
NumTx=255 and NumTxAck=127, the counters become NumTx=128 and NumTxAck=64 if one
frame is sent to the parent with an acknowledgment received. This operation does not change
the value of the PDR but allows the counters to keep incrementing. The value of MAX_NUMTX is
implementation-specific.

The key for detecting a schedule collision is that, if a node has several cells to the selected parent,
all cells should exhibit the same PDR. A cell that exhibits a PDR significantly lower than the
others indicates that there are collisions on that cell.

Every HOUSEKEEPINGCOLLISION_PERIOD, the node executes the following steps:

It computes, for each negotiated Tx cell with the parent (not for the autonomous cell), that
cell's PDR.

SHOULD

MUST

MUST

MUST

1.

RFC 9033 6TiSCH MSF May 2021

Chang, et al. Standards Track Page 11

Any cell that hasn't yet had NumTx divided by 2 since it was last reset is skipped in steps 3
and 4. This avoids triggering cell relocation when the values of NumTx and NumTxAck are
not statistically significant yet.
It identifies the cell with the highest PDR.
For any other cell, it compares its PDR against that of the cell with the highest PDR. If the
subtraction difference between the PDR of the cell and the highest PDR is larger than
RELOCATE_PDRTHRES, it triggers the relocation of that cell using a 6P RELOCATE command.

The RELOCATION for negotiated Rx cells is not supported by MSF.

2.

3.
4.

6. 6P SIGNAL Command
The 6P SIGNAL command is not used by MSF.

7. Scheduling Function Identifier
The Scheduling Function Identifier (SFID) of MSF is 0. How the value of 0 was chosen is described
in Section 17.

8. Rules for CellList
MSF uses two-step 6P Transactions exclusively. 6P Transactions are only initiated by a node
towards its parent. As a result, the cells to put in the CellList of a 6P ADD command, and in the
candidate CellList of a RELOCATE command, are chosen by the node initiating the 6P
Transaction. In both cases, the same rules apply:

The CellList is to have five or more cells.
Each cell in the CellList have a different slotOffset value.
For each cell in the CellList, the node have any scheduled cell on the same
slotOffset.
The slotOffset value of any cell in the CellList be the same as the slotOffset of the
minimal cell (slotOffset=0).
The slotOffset of a cell in the CellList be randomly and uniformly chosen among all
the slotOffset values that satisfy the restrictions above.
The channelOffset of a cell in the CellList be randomly and uniformly chosen from
[0..numFrequencies], where numFrequencies represents the number of frequencies a node
can communicate on.

As a consequence of random cell selection, there is a nonzero chance that nodes in the vicinity
have installed cells with same slotOffset and channelOffset. An implementer implement a
strategy to monitor the candidate cells before adding them in CellList to avoid collision. For
example, a node maintain a candidate cell pool for the CellList. The candidate cells in the
pool are preconfigured as Rx cells to promiscuously listen to detect transmissions on those cells.
If transmissions that rely on are observed on one cell over multiple iterations of

• RECOMMENDED
• MUST
• MUST NOT

• MUST NOT

• SHOULD

• SHOULD

MAY

MAY

[IEEE802154]

RFC 9033 6TiSCH MSF May 2021

Chang, et al. Standards Track Page 12

the schedule, that cell is probably used by a TSCH neighbor. It is moved out from the pool, and a
new cell is selected as a candidate cell. The cells in CellList are picked from the candidate pool
directly when required.

9. 6P Timeout Value
The timeout value is calculated for the worst case that a 6P response is received, which means
the 6P response is sent out successfully at the very latest retransmission. And for each
retransmission, it backs off with largest value. Hence the 6P timeout value is calculated as
((2MAXBE) - 1) * MAXRETRIES * SLOTFRAME_LENGTH, where:

MAXBE, defined in , is the maximum backoff exponent used.
MAXRETRIES, defined in , is the maximum retransmission times.
SLOTFRAME_LENGTH represents the length of slotframe.

• [IEEE802154]
• [IEEE802154]
•

10. Rule for Ordering Cells
Cells are ordered by slotOffset first, channelOffset second.

The following sequence is correctly ordered (each element represents the
[slotOffset,channelOffset] of a cell in the schedule):

[1,3],[1,4],[2,0],[5,3],[6,0],[6,3],[7,9]

11. Meaning of the Metadata Field
The Metadata field is not used by MSF.

12. 6P Error Handling
 lists the 6P return codes. Table 1 lists the same error codes and the

behavior a node implementing MSF follow.
Section 6.2.4 of [RFC8480]

SHOULD

Code Behavior

RC_SUCCESS nothing

RC_EOL nothing

RC_ERR quarantine

RC_RESET quarantine

RC_ERR_VERSION quarantine

RECOMMENDED

RFC 9033 6TiSCH MSF May 2021

Chang, et al. Standards Track Page 13

https://www.rfc-editor.org/rfc/rfc8480#section-6.2.4

nothing:

clear:

quarantine:

waitretry:

The meaning of each behavior from Table 1 is:

Indicates that this return code is not an error. No error handling behavior is triggered.

Abort the 6P Transaction. Issue a 6P CLEAR command to that neighbor (this command
may fail at the link layer). Remove all cells scheduled with that neighbor from the local
schedule.

Same behavior as for "clear". In addition, remove the node from the neighbor and
routing tables. Place the node's identifier in a quarantine list for QUARANTINE_DURATION.
When in quarantine, drop all frames received from that node.

Abort the 6P Transaction. Wait for a duration randomly and uniformly chosen from
[WAIT_DURATION_MIN,WAIT_DURATION_MAX]. Retry the same transaction.

Code Behavior

RC_ERR_SFID quarantine

RC_ERR_SEQNUM clear

RC_ERR_CELLLIST clear

RC_ERR_BUSY waitretry

RC_ERR_LOCKED waitretry

Table 1: Recommended Behavior for Each 6P Error
Code

RECOMMENDED

13. Schedule Inconsistency Handling
The behavior when schedule inconsistency is detected is explained in Table 1, for 6P return code
RC_ERR_SEQNUM.

14. MSF Constants
Table 2 lists MSF constants and their values.RECOMMENDED

Name value

SLOTFRAME_LENGTH 101 slots

NUM_CH_OFFSET 16

MAX_NUM_CELLS 100

LIM_NUMCELLSUSED_HIGH 75

RECOMMENDED

RFC 9033 6TiSCH MSF May 2021

Chang, et al. Standards Track Page 14

Name value

LIM_NUMCELLSUSED_LOW 25

MAX_NUMTX 256

HOUSEKEEPINGCOLLISION_PERIOD 1 min

RELOCATE_PDRTHRES 50 %

QUARANTINE_DURATION 5 min

WAIT_DURATION_MIN 30 s

WAIT_DURATION_MAX 60 s

Table 2: MSF Constants and Their Values

RECOMMENDED

RECOMMENDED

15. MSF Statistics
Table 3 lists MSF statistics and their widths.RECOMMENDED

Name width

NumCellsElapsed 1 byte

NumCellsUsed 1 byte

NumTx 1 byte

NumTxAck 1 byte

Table 3: MSF Statistics and Their
 Widths

RECOMMENDED

RECOMMENDED

16. Security Considerations
MSF defines a series of "rules" for the node to follow. It triggers several actions that are carried
out by the protocols defined in the following specifications: "Minimal IPv6 over the TSCH Mode of
IEEE 802.15.4e (6TiSCH) Configuration" , "6TiSCH Operation Sublayer (6top) Protocol
(6P)" , and "Constrained Join Protocol (CoJP) for 6TiSCH" . Confidentiality and
authentication of MSF control and data traffic are provided by these specifications whose
security considerations continue to apply to MSF. In particular, MSF does not define a new
protocol or packet format.

MSF uses autonomous cells for initial bootstrap and the transport of join traffic. Autonomous
cells are computed as a hash of nodes' EUI-64 addresses. This makes the coordinates of
autonomous cell an easy target for an attacker, as EUI-64 addresses are visible on the wire and

[RFC8180]
[RFC8480] [RFC9031]

RFC 9033 6TiSCH MSF May 2021

Chang, et al. Standards Track Page 15

are not encrypted by the link-layer security mechanism. With the coordinates of autonomous
cells available, the attacker can launch a selective jamming attack against any node's AutoRxCell.
If the attacker targets a node acting as a JP, it can prevent pledges from using that JP to join the
network. The pledge detects such a situation through the absence of a link-layer
acknowledgment for its Join Request. As it is expected that each pledge will have more than one
JP available to join the network, one available countermeasure for the pledge is to
pseudorandomly select a new JP when the link to the previous JP appears bad. Such a strategy
alleviates the issue of the attacker randomly jamming to disturb the network but does not help in
the case the attacker is targeting a particular pledge. In that case, the attacker can jam the
AutoRxCell of the pledge in order to prevent it from receiving the join response. This situation
should be detected through the absence of a particular node from the network and handled by
the network administrator through out-of-band means.

MSF adapts to traffic containing packets from the IP layer. It is possible that the IP packet has a
nonzero DSCP (Differentiated Services Code Point) value in its IPv6 header. The
decision how to handle that packet belongs to the upper layer and is out of scope of MSF. As long
as the decision is made to hand over to MAC layer to transmit, MSF will take that packet into
account when adapting to traffic.

Note that nonzero DSCP values may imply that the traffic originated at unauthenticated pledges
(see). The implementation at the IPv6 layer rate limit this join traffic before it
is passed to the 6top sublayer where MSF can observe it. If there is no rate limit for join traffic,
intermediate nodes in the 6TiSCH network may be prone to a resource exhaustion attack, with
the attacker injecting unauthenticated traffic from the network edge. The assumption is that the
rate-limiting function is aware of the available bandwidth in the 6top Layer 3 bundle(s) towards
a next hop, not directly from MSF, but from an interaction with the 6top sublayer that ultimately
manages the bundles under MSF's guidance. How this rate limit is implemented is out of scope of
MSF.

[RFC2474]

[RFC9031] SHOULD

17. IANA Considerations

17.1. MSF Scheduling Function Identifiers
This document adds the following number to the "6P Scheduling Function Identifiers"
subregistry, part of the "IPv6 Over the TSCH Mode of IEEE 802.15.4 (6TiSCH)" registry, as defined
by :

The SFID was chosen from the range 0-127, which has the registration procedure of IETF Review
or IESG Approval .

[RFC8480]

SFID Name Reference

0 Minimal Scheduling Function (MSF) RFC 9033

Table 4: New SFID in the "6P Scheduling Function Identifiers"
Subregistry

[RFC8126]

RFC 9033 6TiSCH MSF May 2021

Chang, et al. Standards Track Page 16

[IEEE802154]

[RFC2119]

[RFC2474]

[RFC6550]

[RFC8126]

[RFC8174]

[RFC8180]

[RFC8480]

[RFC9030]

[RFC9031]

[RFC9032]

18. References

18.1. Normative References

, ,
, , April 2016,

.

, , ,
, , March 1997,
.

, , , and ,
, ,

, December 1998, .

, , , , , , ,
, , and ,

, , , March 2012,
.

, , and ,
, , , , June

2017, .

, ,
, , , May 2017,

.

, , and ,
, , ,

, May 2017, .

, , and ,
, , , November 2018,

.

,
, , , May

2021, .

, , , and ,
, , , May 2021,

.

 and ,
, , , May 2021,

.

IEEE "IEEE Standard for Low-Rate Wireless Networks" IEEE Standard
802.15.4-2015 DOI 10.1109/IEEESTD.2016.7460875 <https://
ieeexplore.ieee.org/document/7460875>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Nichols, K. Blake, S. Baker, F. D. Black "Definition of the Differentiated
Services Field (DS Field) in the IPv4 and IPv6 Headers" RFC 2474 DOI 10.17487/
RFC2474 <https://www.rfc-editor.org/info/rfc2474>

Winter, T., Ed. Thubert, P., Ed. Brandt, A. Hui, J. Kelsey, R. Levis, P. Pister, K.
Struik, R. Vasseur, JP. R. Alexander "RPL: IPv6 Routing Protocol for Low-
Power and Lossy Networks" RFC 6550 DOI 10.17487/RFC6550
<https://www.rfc-editor.org/info/rfc6550>

Cotton, M. Leiba, B. T. Narten "Guidelines for Writing an IANA
Considerations Section in RFCs" BCP 26 RFC 8126 DOI 10.17487/RFC8126

<https://www.rfc-editor.org/info/rfc8126>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Vilajosana, X., Ed. Pister, K. T. Watteyne "Minimal IPv6 over the TSCH
Mode of IEEE 802.15.4e (6TiSCH) Configuration" BCP 210 RFC 8180 DOI
10.17487/RFC8180 <https://www.rfc-editor.org/info/rfc8180>

Wang, Q., Ed. Vilajosana, X. T. Watteyne "6TiSCH Operation Sublayer (6top)
Protocol (6P)" RFC 8480 DOI 10.17487/RFC8480 <https://
www.rfc-editor.org/info/rfc8480>

Thubert, P., Ed. "An Architecture for IPv6 over the Time-Slotted Channel
Hopping Mode of IEEE 802.15.4 (6TiSCH)" RFC 9030 DOI 10.17487/RFC9030

<https://www.rfc-editor.org/info/rfc9030>

Vučinić, M., Ed. Simon, J. Pister, K. M. Richardson "Constrained Join
Protocol (CoJP) for 6TiSCH" RFC 9031 DOI 10.17487/RFC9031 <https://
www.rfc-editor.org/info/rfc9031>

Dujovne, D., Ed. M. Richardson "Encapsulation of 6TiSCH Join and
Enrollment Information Elements" RFC 9032 DOI 10.17487/RFC9032
<https://www.rfc-editor.org/info/rfc9032>

RFC 9033 6TiSCH MSF May 2021

Chang, et al. Standards Track Page 17

https://ieeexplore.ieee.org/document/7460875
https://ieeexplore.ieee.org/document/7460875
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2474
https://www.rfc-editor.org/info/rfc6550
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8180
https://www.rfc-editor.org/info/rfc8480
https://www.rfc-editor.org/info/rfc8480
https://www.rfc-editor.org/info/rfc9030
https://www.rfc-editor.org/info/rfc9031
https://www.rfc-editor.org/info/rfc9031
https://www.rfc-editor.org/info/rfc9032

[SAX-DASFAA]

[RFC6206]

[RFC7554]

[RFC8505]

[ZEROTOUCH-JOIN]

 and ,
, , , 1997,

.

18.2. Informative References

, , , , and , ,
, , March 2011,

.

, , and ,
,

, , May 2015,
.

, , , and ,

, , , November
2018, .

, ,
, , 8 July

2019, .

Ramakrishna, M.V. J. Zobel "Performance in Practice of String Hashing
Functions" DASFAA DOI 10.1142/9789812819536_0023 <https://
doi.org/10.1142/9789812819536_0023>

Levis, P. Clausen, T. Hui, J. Gnawali, O. J. Ko "The Trickle Algorithm" RFC
6206 DOI 10.17487/RFC6206 <https://www.rfc-editor.org/info/
rfc6206>

Watteyne, T., Ed. Palattella, M. L. Grieco "Using IEEE 802.15.4e Time-Slotted
Channel Hopping (TSCH) in the Internet of Things (IoT): Problem Statement"
RFC 7554 DOI 10.17487/RFC7554 <https://www.rfc-editor.org/info/
rfc7554>

Thubert, P., Ed. Nordmark, E. Chakrabarti, S. C. Perkins "Registration
Extensions for IPv6 over Low-Power Wireless Personal Area Network
(6LoWPAN) Neighbor Discovery" RFC 8505 DOI 10.17487/RFC8505

<https://www.rfc-editor.org/info/rfc8505>

Richardson, M. "6tisch Zero-Touch Secure Join protocol" Work in
Progress Internet-Draft, draft-ietf-6tisch-dtsecurity-zerotouch-join-04

<https://tools.ietf.org/html/draft-ietf-6tisch-dtsecurity-zerotouch-join-04>

Appendix A. Example Implementation of the SAX Hash
Function
To support interoperability, this section provides an example implementation of the SAX hash
function . The input parameters of the function are:

T, which is the hashing table length.
c, which is the characters of string s, to be hashed.

In MSF, the T is replaced by the length of slotframe 1. String s is replaced by the node EUI-64
address. The characters of the string, c0 through c7, are the eight bytes of the EUI-64 address.

The SAX hash function requires shift operation, which is defined as follow:

L_shift(v,b), which refers to the left shift of variable v by b bits
R_shift(v,b), which refers to the right shift of variable v by b bits

The steps to calculate the hash value of SAX hash function are:

[SAX-DASFAA]

•
•

•
•

1. Initialize variable h, which is the intermediate hash value, to h0 and variable i, which is the
index of the bytes of the EUI-64 address, to 0.

2. Sum the value of L_shift(h,l_bit), R_shift(h,r_bit), and ci.
3. Calculate the result of the exclusive OR between the sum value in Step 2 and h.

RFC 9033 6TiSCH MSF May 2021

Chang, et al. Standards Track Page 18

https://doi.org/10.1142/9789812819536_0023
https://doi.org/10.1142/9789812819536_0023
https://www.rfc-editor.org/info/rfc6206
https://www.rfc-editor.org/info/rfc6206
https://www.rfc-editor.org/info/rfc7554
https://www.rfc-editor.org/info/rfc7554
https://www.rfc-editor.org/info/rfc8505
https://tools.ietf.org/html/draft-ietf-6tisch-dtsecurity-zerotouch-join-04

The value of variable h is the hash value of the SAX hash function.

The values of h0, l_bit, and r_bit in Step 1 and Step 2 are configured as:

h0 = 0

l_bit = 0

r_bit = 1

The appropriate values of l_bit and r_bit could vary depending on the set of nodes' EUI-64
address. How to find those values is out of the scope of this specification.

4. Modulo the result of Step 3 by T.
5. Assign the result of Step 4 to h.
6. Increase i by 1.
7. Repeat Step 2 to Step 6 until i reaches to 8.

Contributors
Beshr Al Nahas
Chalmers University

 beshr@chalmers.se Email:

Olaf Landsiedel
Chalmers University

 olafl@chalmers.se Email:

Yasuyuki Tanaka
Toshiba

 yatch1.tanaka@toshiba.co.jp Email:

Authors' Addresses
Tengfei Chang ()������
Inria
2 rue Simone Iff

 75012 Paris
France

 tengfei.chang@gmail.com Email:

RFC 9033 6TiSCH MSF May 2021

Chang, et al. Standards Track Page 19

mailto:beshr@chalmers.se
mailto:olafl@chalmers.se
mailto:yatch1.tanaka@toshiba.co.jp
mailto:tengfei.chang@gmail.com

Mališa Vučinić
Inria
2 rue Simone Iff

 75012 Paris
France

 malisa.vucinic@inria.fr Email:

Xavier Vilajosana
Universitat Oberta de Catalunya
156 Rambla Poblenou

 08018 Barcelona Catalonia
Spain

 xvilajosana@uoc.edu Email:

Simon Duquennoy
RISE SICS
Isafjordsgatan 22
SE- 164 29 Kista
Sweden

 simon.duquennoy@gmail.com Email:

Diego Dujovne
Universidad Diego Portales
Escuela de Informática y Telecomunicaciones
Av. Ejército 441
Santiago
Región Metropolitana
Chile

 +56 (2) 676-8121 Phone:
 diego.dujovne@mail.udp.cl Email:

RFC 9033 6TiSCH MSF May 2021

Chang, et al. Standards Track Page 20

mailto:malisa.vucinic@inria.fr
mailto:xvilajosana@uoc.edu
mailto:simon.duquennoy@gmail.com
tel:+56%20(2)%20676-8121
mailto:diego.dujovne@mail.udp.cl

	RFC 9033
	6TiSCH Minimal Scheduling Function (MSF)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Language
	1.2. Related Documents

	2. Interface to the Minimal 6TiSCH Configuration
	3. Autonomous Cells
	4. Node Behavior at Boot
	4.1. Start State
	4.2. Step 1 - Choosing Frequency
	4.3. Step 2 - Receiving EBs
	4.4. Step 3 - Setting up Autonomous Cells for the Join Process
	4.5. Step 4 - Acquiring a RPL Rank
	4.6. Step 5 - Setting up First Tx Negotiated Cells
	4.7. Step 6 - Sending EBs and DIOs
	4.8. End State

	5. Rules for Adding and Deleting Cells
	5.1. Adapting to Traffic
	5.2. Switching Parent
	5.3. Handling Schedule Collisions

	6. 6P SIGNAL Command
	7. Scheduling Function Identifier
	8. Rules for CellList
	9. 6P Timeout Value
	10. Rule for Ordering Cells
	11. Meaning of the Metadata Field
	12. 6P Error Handling
	13. Schedule Inconsistency Handling
	14. MSF Constants
	15. MSF Statistics
	16. Security Considerations
	17. IANA Considerations
	17.1. MSF Scheduling Function Identifiers

	18. References
	18.1. Normative References
	18.2. Informative References

	Appendix A. Example Implementation of the SAX Hash Function
	Contributors
	Authors' Addresses

 6TiSCH Minimal Scheduling Function (MSF)

 Inria

 2 rue Simone Iff
 Paris
 75012
 France

 tengfei.chang@gmail.com

 Inria

 2 rue Simone Iff
 Paris
 75012
 France

 malisa.vucinic@inria.fr

 Universitat Oberta de Catalunya

 156 Rambla Poblenou
 Barcelona
 Catalonia
 08018
 Spain

 xvilajosana@uoc.edu

 RISE SICS

 Isafjordsgatan 22
 Kista
 164 29
 Sweden

 simon.duquennoy@gmail.com

 Universidad Diego Portales

 Escuela de Informática y Telecomunicaciones
 Av. Ejército 441
 Santiago
 Región Metropolitana
 Chile

 +56 (2) 676-8121
 diego.dujovne@mail.udp.cl

 Internet Area
 6TiSCH
 TSCH
 communication schedule
 6P

 This specification defines the "IPv6 over the TSCH mode of IEEE 802.15.4" (6TiSCH) Minimal Scheduling Function (MSF).
 This Scheduling Function describes both
 the behavior of a node when joining the network and
 how the communication schedule is managed in a distributed fashion.
 MSF is built upon
 the 6TiSCH Operation Sublayer Protocol (6P) and
 the minimal security framework for 6TiSCH.

 Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further
 information on Internet Standards is available in Section 2 of
 RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Simplified BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Simplified BSD License.

 Table of Contents

 . Introduction

 . Requirements Language

 . Related Documents

 . Interface to the Minimal 6TiSCH Configuration

 . Autonomous Cells

 . Node Behavior at Boot

 . Start State

 . Step 1 - Choosing Frequency

 . Step 2 - Receiving EBs

 . Step 3 - Setting up Autonomous Cells for the Join Process

 . Step 4 - Acquiring a RPL Rank

 . Step 5 - Setting up First Tx Negotiated Cells

 . Step 6 - Sending EBs and DIOs

 . End State

 . Rules for Adding and Deleting Cells

 . Adapting to Traffic

 . Switching Parent

 . Handling Schedule Collisions

 . 6P SIGNAL Command

 . Scheduling Function Identifier

 . Rules for CellList

 . 6P Timeout Value

 . Rule for Ordering Cells

 . Meaning of the Metadata Field

 . 6P Error Handling

 . Schedule Inconsistency Handling

 . MSF Constants

 . MSF Statistics

 . Security Considerations

 . IANA Considerations

 . MSF Scheduling Function Identifiers

 . References

 . Normative References

 . Informative References

 . Example Implementation of the SAX Hash Function

 Contributors

 Authors' Addresses

 Introduction

 The 6TiSCH Minimal Scheduling Function (MSF), defined in this specification, is a 6TiSCH Scheduling Function (SF).
 The role of an SF is entirely defined in .
 This specification complements by providing the rules of when to add and delete cells in the communication schedule.
 This specification satisfies all the requirements for an SF listed in .

 MSF builds on top of the following specifications:
 " " ,
 " " , and
 " " .

 MSF defines both
 the behavior of a node when joining the network, and
 how the communication schedule is managed in a distributed fashion.
 When a node running MSF boots up, it joins the network by following the six steps described in .
 The end state of the join process is that the node
 is synchronized to the network,
 has mutually authenticated with the network,
 has identified a routing parent,
 and has scheduled one negotiated Tx cell (defined in) to/from its routing parent.
 After the join process, the node can continuously add, delete, and relocate cells as described in .

 It does so for three reasons:
 to match the link-layer resources to the traffic,
 to handle changing parent, and
 to handle a schedule collision.

 MSF works closely with the IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL), specifically the routing parent defined in .
 This specification only describes how MSF works with the routing parent; this parent is referred to as the "selected parent".
 The activity of MSF towards the single routing parent is called a "MSF session".
 Though the performance of MSF is evaluated only when the "selected parent" represents the node's preferred parent, there should be no restrictions to use multiple MSF sessions, one per parent.
 The distribution of traffic over multiple parents is a routing decision that is out of scope for MSF.

 MSF is designed to operate in a wide range of application domains.
 It is optimized for applications with regular upstream traffic, from the nodes to the Destination-Oriented Directed Acyclic Graph (DODAG) root .

 This specification follows the recommended structure of an SF specification, given in , with the following adaptations:

 We have reordered some sections, in particular to have the section on the node behavior at boot () appear early in this specification.

 We added sections on
 the interface to the minimal 6TiSCH configuration (),
 the use of the SIGNAL command (),
 the MSF constants (), and
 the MSF statistics ().

 Requirements Language

 The key words " MUST", " MUST NOT", " REQUIRED", " SHALL", " SHALL NOT", " SHOULD", " SHOULD NOT", " RECOMMENDED", " NOT RECOMMENDED", " MAY", and " OPTIONAL" in this document are to be interpreted as described in BCP 14 when, and only when, they appear in all capitals, as shown here.

 Related Documents
 This specification uses messages and variables defined in
 IEEE Std 802.15.4-2015 . It is expected that
 those resources will remain in the future versions of IEEE Std 802.15.4;
 in which case, this specification also applies to those future versions.
 In the remainder of the document, we use to refer to
 IEEE Std 802.15.4-2015 as well as future versions of IEEE Std 802.15.4
 that remain compatible.

 Interface to the Minimal 6TiSCH Configuration

 In a Time-Slotted Channel Hopping (TSCH) network, time is sliced up into time slots.
 The time slots are grouped as one or multiple slotframes that repeat over time.
 The TSCH schedule instructs a node what to do at each time slot, such as transmit, receive, or sleep .
 For time slots for transmitting or receiving, a channel is assigned to the time slot.
 The tuple (slot, channel) is indicated as a cell of the TSCH schedule.
 MSF is one of the policies defining how to manage the TSCH schedule.

 A node implementing MSF SHOULD implement the minimal 6TiSCH configuration , which defines the "minimal cell", a single shared cell providing minimal connectivity between the nodes in the network.
 The MSF implementation provided in this specification is based on the implementation of the minimal 6TiSCH configuration.
 However, an implementor MAY implement MSF based on other specifications as long as the specification defines a way to advertise the Enhanced Beacons (EBs) and DODAG Information Objects (DIOs) among the network.

 MSF uses the minimal cell for broadcast frames such as Enhanced Beacons (EBs) and broadcast DODAG Information Objects (DIOs) .
 Cells scheduled by MSF are meant to be used only for unicast frames.

 To ensure there is enough bandwidth available on the minimal cell, a node implementing MSF SHOULD enforce some rules for limiting the traffic of broadcast frames.
 For example, the overall broadcast traffic among the node and its neighbors SHOULD NOT exceed one-third of the bandwidth of minimal cell.
 One of the algorithms that fulfills this requirement is the Trickle timer defined in , which is applied to DIO messages .
 However, any such algorithm of limiting the broadcast traffic to meet those rules is implementation-specific and is out of the scope of MSF.

 Three slotframes are used in MSF.
 MSF schedules autonomous cells at Slotframe 1 () and 6P negotiated cells at Slotframe 2 (), while Slotframe 0 is used for the bootstrap traffic as defined in the minimal 6TiSCH configuration.
 The same slotframe length for Slotframe 0, 1, and 2 is RECOMMENDED.
 Thus it is possible to avoid the scheduling collision between the autonomous cells and 6P negotiated cells ().
 The default slotframe length (SLOTFRAME_LENGTH) is RECOMMENDED for Slotframe 0, 1, and 2, although any value can be advertised in the EBs.

 Autonomous Cells

 MSF nodes initialize Slotframe 1 with a set of default cells for unicast communication with their neighbors.
 These cells are called "autonomous cells", because they are maintained autonomously by each node without negotiation through 6P.
 Cells scheduled by 6P Transaction are called "negotiated cells", which are reserved on Slotframe 2.
 How to schedule negotiated cells is detailed in .
 There are two types of autonomous cells:

 Autonomous Rx Cell (AutoRxCell):
 One cell at a [slotOffset,channelOffset] computed as a hash of the 64-bit Extended Unique Identifier (EUI-64) of the node itself (detailed next).
 Its cell options bits are assigned as TX=0, RX=1, SHARED=0.

 Autonomous Tx Cell (AutoTxCell):
 One cell at a [slotOffset,channelOffset] computed as a hash of the Layer 2 EUI-64 destination address in the unicast frame to be transmitted (detailed in).
 Its cell options bits are assigned as TX=1, RX=0, SHARED=1.

 To compute a [slotOffset,channelOffset] from an EUI-64 address, nodes MUST use the hash function SAX as defined in Section 2 of with consistent input parameters, for example, those defined in .
 The coordinates are computed to distribute the cells across all channel offsets, and all but the first slot offset of Slotframe 1.
 The first time offset is skipped to avoid colliding with the minimal cell in Slotframe 0.
 The slot coordinates derived from a given EUI-64 address are computed as follows:

 slotOffset(MAC) = 1 + hash(EUI64, length(Slotframe_1) - 1)
 channelOffset(MAC) = hash(EUI64, NUM_CH_OFFSET)

 The second input parameter defines the maximum return value of the hash function.
 Other optional parameters defined in SAX determine the performance of SAX hash function.
 Those parameters could be broadcast in an EB frame or preconfigured.
 For interoperability purposes, provides the reference values of those parameters.

 AutoTxCell is not permanently installed in the schedule but is added or deleted on demand when there is a frame to be sent.
 Throughout the network lifetime, nodes maintain the autonomous cells as follows:

 Add an AutoTxCell to the Layer 2 destination address, which is indicated in a frame when there is no 6P negotiated Tx cell in the schedule for that frame to transmit.

 Remove an AutoTxCell when:

 there is no frame to transmit on that cell, or
 there is at least one 6P negotiated Tx cell in the schedule for the frames to transmit.

 The AutoRxCell MUST always remain scheduled after synchronization.
 6P CLEAR MUST NOT erase any autonomous cells.

 Because of hash collisions, there will be cases that the AutoTxCell and AutoRxCell are scheduled at the same slot offset and/or channel offset.
 In such cases, AutoTxCell always take precedence over AutoRxCell.
 Notice AutoTxCell is a shared type cell that applies a back-off mechanism.
 When the AutoTxCell and AutoRxCell collide, AutoTxCell takes precedence if there is a packet to transmit.
 When in a back-off period, AutoRxCell is used.
 In the case of conflict with a negotiated cell, autonomous cells take precedence over negotiated cells, which is stated in .
 However, when the Slotframe 0, 1, and 2 use the same length value, it is possible for a negotiated cell to avoid the collision with AutoRxCell.
 Hence, the same slotframe length for Slotframe 0, 1, and 2 is RECOMMENDED.

 Node Behavior at Boot

 This section details the behavior the node SHOULD follow from the moment it is switched on until it has successfully joined the network.
 Alternative behaviors may be involved, for example, when alternative security solutions are used for the network.
 details the start state;
 details the end state.
 The other sections detail the six steps of the joining process.
 We use the term "pledge" and "joined node", as defined in .

 Start State

 A node implementing MSF SHOULD implement the Constrained Join Protocol (CoJP) for 6TiSCH .
 As a corollary, this means that a pledge, before being switched on, may be preconfigured with the Pre-Shared Key (PSK) for joining, as well as any other configuration detailed in .
 This is not necessary if the node implements a security solution that is not based on PSKs, such as .

 Step 1 - Choosing Frequency

 When switched on, the pledge randomly chooses a frequency from the channels through which the network cycles and starts listening for EBs on that frequency.

 Step 2 - Receiving EBs

 Upon receiving the first EB, the pledge continues listening for additional EBs to learn:

 the number of neighbors N in its vicinity, and
 which neighbor to choose as a Join Proxy (JP) for the joining process.

 After having received the first EB, a node MAY keep listening for at most MAX_EB_DELAY seconds or until it has received EBs from NUM_NEIGHBOURS_TO_WAIT distinct neighbors.
 This behavior is defined in .

 During this step, the pledge only gets synchronized when it has received enough EB from the network it wishes to join.
 How to decide whether an EB originates from a node from the network it wishes to join is implementation-specific, but MAY involve filtering EBs by
 the PANID field it contains,
 the presence and contents of the Information Element (IE) defined in , or
 the key used to authenticate it.

 The decision of which neighbor to use as a JP is implementation-specific and is discussed in .

 Step 3 - Setting up Autonomous Cells for the Join Process

 After having selected a JP, a node generates a Join Request and installs an AutoTxCell to the JP.
 The Join Request is then sent by the pledge to its selected JP over the AutoTxCell.
 The AutoTxCell is removed by the pledge when the Join Request is sent out.
 The JP receives the Join Request through its AutoRxCell.
 Then it forwards the Join Request to the Join Registrar/Coordinator (JRC), possibly over multiple hops, over the 6P negotiated Tx cells.
 Similarly, the JRC sends the Join Response to the JP, possibly over multiple hops, over AutoTxCells or the 6P negotiated Tx cells.
 When the JP receives the Join Response from the JRC, it installs an AutoTxCell to the pledge and sends that Join Response to the pledge over AutoTxCell.
 The AutoTxCell is removed by the JP when the Join Response is sent out.
 The pledge receives the Join Response from its AutoRxCell, thereby learns the keying material used in the network, as well as other configuration settings, and becomes a "joined node".

 When 6LoWPAN Neighbor Discovery (ND) is implemented, the unicast packets used by ND are sent on the AutoTxCell.
 The specific process how the ND works during the join process is detailed in .

 Step 4 - Acquiring a RPL Rank

 Per , the joined node
 receives DIOs,
 computes its own Rank, and
 selects a routing parent.

 Step 5 - Setting up First Tx Negotiated Cells

 Once it has selected a routing parent, the joined node MUST generate a 6P ADD Request and install an AutoTxCell to that parent.
 The 6P ADD Request is sent out through the AutoTxCell, containing the following fields:

 CellOptions:
 Set to TX=1, RX=0, SHARED=0.
 NumCells:
 Set to 1.
 CellList:
 At least 5 cells, chosen according to .

 The joined node removes the AutoTxCell to the selected parent when the 6P Request is sent out.
 That parent receives the 6P ADD Request from its AutoRxCell.
 Then it generates a 6P ADD Response and installs an AutoTxCell to the joined node.
 When the parent sends out the 6P ADD Response, it MUST remove that AutoTxCell.
 The joined node receives the 6P ADD Response from its AutoRxCell and completes the 6P Transaction.
 In the case that the 6P ADD transaction failed, the node MUST issue another 6P ADD Request and repeat until the Tx cell is installed to the parent.

 Step 6 - Sending EBs and DIOs

 The node starts sending EBs and DIOs on the minimal cell, while following the transmit rules for broadcast frames from .

 End State

 At the end state of the joining process, a new node:

 is synchronized to the network,
 is using the link-layer keying material it learned through the secure joining process,
 has selected one neighbor as its routing parent,
 has one AutoRxCell,
 has one negotiated Tx cell to the selected parent,
 starts to send DIOs, potentially serving as a router for other nodes' traffic, and
 starts to send EBs, potentially serving as a JP for new pledges.

 Rules for Adding and Deleting Cells

 Once a node has joined the 6TiSCH network, it adds/deletes/relocates cells with the selected parent for three reasons:

 to match the link-layer resources to the traffic between the node and the selected parent (),
 to handle switching the parent (), or
 to handle a schedule collision ().

 These cells are called "negotiated cells" as they are scheduled through 6P and negotiated with the node's parent.
 Without specific declaration, all cells mentioned in this section are negotiated cells, and they are installed at Slotframe 2.

 Adapting to Traffic

 A node implementing MSF MUST implement the behavior described in this section.

 The goal of MSF is to manage the communication schedule in the 6TiSCH schedule in a distributed manner.
 For a node, this translates into monitoring the current usage of the cells it has to one of its neighbors, in most cases to the selected parent.

 If the node determines that the number of link-layer frames it is attempting to exchange with the selected parent per unit of time is larger than the capacity offered by the TSCH negotiated cells it has scheduled with it, the node issues a 6P ADD command to that parent to add cells to the TSCH schedule.

 If the traffic is lower than the capacity, the node issues a 6P DELETE command to that parent to delete cells from the TSCH schedule.

 The node MUST maintain two separate pairs of the following counters for the selected parent:
 one for the negotiated Tx cells to that parent and
 one for the negotiated Rx cells to that parent.

 NumCellsElapsed:

 Counts the number of negotiated cells that have elapsed since the counter was initialized.
 This counter is initialized at 0.
 When the current cell is declared as a negotiated cell to the selected parent, NumCellsElapsed is incremented by exactly 1, regardless of whether the cell is used to transmit or receive a frame.

 NumCellsUsed:

 Counts the number of negotiated cells that have been used.
 This counter is initialized at 0.
 NumCellsUsed is incremented by exactly 1 when, during a negotiated cell to the selected parent, either of the following happens:

 The node sends a frame to the parent.
 The counter increments regardless of whether a link-layer acknowledgment was received or not.

 The node receives a valid frame from the parent.
 The counter increments only when a valid frame per is received by the node from its parent.

 The cell option of cells listed in CellList in a 6P Request frame SHOULD be either (Tx=1, Rx=0) only or (Tx=0, Rx=1) only.
 Both NumCellsElapsed and NumCellsUsed counters can be used for both types of negotiated cells.

 As there is no negotiated Rx cell installed at initial time, the AutoRxCell is taken into account as well for downstream traffic adaptation.
 In this case:

 NumCellsElapsed is incremented by exactly 1 when the current cell is AutoRxCell.

 NumCellsUsed is incremented by exactly 1 when the node receives a frame from the selected parent on AutoRxCell.

 Implementors MAY choose to create the same counters for each neighbor and add them as additional statistics in the neighbor table.

 The counters are used as follows:

 Both NumCellsElapsed and NumCellsUsed are initialized to 0 when the node boots.

 When the value of NumCellsElapsed reaches MAX_NUM_CELLS:

 If NumCellsUsed is greater than LIM_NUMCELLSUSED_HIGH, trigger 6P to add a single cell to the selected parent.
 If NumCellsUsed is less than LIM_NUMCELLSUSED_LOW, trigger 6P to remove a single cell to the selected parent.
 Reset both NumCellsElapsed and NumCellsUsed to 0 and restart #2.

 The value of MAX_NUM_CELLS is chosen according to the traffic type of the network.
 Generally speaking, the larger the value MAX_NUM_CELLS is, the more accurately the cell usage is calculated.
 By using a larger value of MAX_NUM_CELLS, the 6P traffic overhead could be reduced as well.
 Meanwhile, the latency won't increase much by using a larger value of MAX_NUM_CELLS for periodic traffic type.
 For bursty traffic, a larger value of MAX_NUM_CELLS indeed introduces higher latency.
 The latency caused by slight changes of traffic load can be alleviated by the additional scheduled cells.
 In this sense, MSF is a Scheduling Function that trades latency with energy by scheduling more cells than needed.
 Setting MAX_NUM_CELLS to a value at least four times the recent maximum number of cells used in a slotframe is RECOMMENDED.
 For example, a two packets/slotframe traffic load results in an average of four cells scheduled (two cells are used), using at least the value of double the number of scheduled cells (which is eight) as MAX_NUM_CELLS gives a good resolution on the cell usage calculation.

 In the case that a node has booted or has disappeared from the network, the cell reserved at the selected parent may be kept in the schedule forever.
 A cleanup mechanism MUST be provided to resolve this issue.
 The cleanup mechanism is implementation-specific.
 The goal is to confirm that those negotiated cells are not used anymore by the associated neighbors and remove them from the schedule.

 Switching Parent

 A node implementing MSF SHOULD implement the behavior described in this section.

 As part of its normal operation, RPL can have a node switch parent.
 The procedure for switching from the old parent to the new parent is the following:

 The node counts the number of negotiated cells it has per slotframe to the old parent.
 The node triggers one or more 6P ADD commands to schedule the same number of negotiated cells with same cell options to the new parent.
 When that successfully completes, the node issues a 6P CLEAR command to its old parent.

 The type of negotiated cell that should be installed first depends on which traffic has the higher priority, upstream or downstream, which is application-specific and out of scope of MSF.

 Handling Schedule Collisions

 A node implementing MSF SHOULD implement the behavior described in this section.
 Other algorithms for handling schedule collisions can be an alternative to the algorithm proposed in this section.

 Since scheduling is entirely distributed, there is a nonzero probability that two pairs of nearby neighbor nodes schedule a negotiated cell at the same [slotOffset,channelOffset] location in the TSCH schedule.
 In that case, data exchanged by the two pairs may collide on that cell.
 We call this case a "schedule collision".

 The node MUST maintain the following counters for each negotiated Tx cell to the selected parent:

 NumTx:

 Counts the number of transmission attempts on that cell.
 Each time the node attempts to transmit a frame on that cell, NumTx is incremented by exactly 1.

 NumTxAck:

 Counts the number of successful transmission attempts on that cell.
 Each time the node receives an acknowledgment for a transmission attempt, NumTxAck is incremented by exactly 1.

 Since both NumTx and NumTxAck are initialized to 0, we necessarily have NumTxAck less than or equal to NumTx.
 We call Packet Delivery Ratio (PDR) the ratio NumTxAck/NumTx and represent it as a percentage.
 A cell with a PDR equal to 50% means that half of the frames transmitted are not acknowledged.

 Each time the node switches parent (or during the join process when the node selects a parent for the first time), both NumTx and NumTxAck MUST be reset to 0.
 They increment over time, as the schedule is executed, and the node sends frames to that parent.
 When NumTx reaches MAX_NUMTX, both NumTx and NumTxAck MUST be divided by 2.
 MAX_NUMTX needs to be a power of two to avoid division error.
 For example, when MAX_NUMTX is set to 256, and NumTx=255 and NumTxAck=127, the counters become NumTx=128 and NumTxAck=64 if one frame is sent to the parent with an acknowledgment received.
 This operation does not change the value of the PDR but allows the counters to keep incrementing.
 The value of MAX_NUMTX is implementation-specific.

 The key for detecting a schedule collision is that, if a node has several cells to the selected parent, all cells should exhibit the same PDR.
 A cell that exhibits a PDR significantly lower than the others indicates that there are collisions on that cell.

 Every HOUSEKEEPINGCOLLISION_PERIOD, the node executes the following steps:

 It computes, for each negotiated Tx cell with the parent (not for the autonomous cell), that cell's PDR.

 Any cell that hasn't yet had NumTx divided by 2 since it was last reset is skipped in steps 3 and 4.
 This avoids triggering cell relocation when the values of NumTx and NumTxAck are not statistically significant yet.

 It identifies the cell with the highest PDR.

 For any other cell, it compares its PDR against that of the cell with the highest PDR.
 If the subtraction difference between the PDR of the cell and the highest PDR is larger than RELOCATE_PDRTHRES, it triggers the relocation of that cell using a 6P RELOCATE command.

 The RELOCATION for negotiated Rx cells is not supported by MSF.

 6P SIGNAL Command

 The 6P SIGNAL command is not used by MSF.

 Scheduling Function Identifier

 The Scheduling Function Identifier (SFID) of MSF is 0.
 How the value of 0 was chosen is described in .

 Rules for CellList

 MSF uses two-step 6P Transactions exclusively.
 6P Transactions are only initiated by a node towards its parent.
 As a result, the cells to put in the CellList of a 6P ADD command, and in the candidate CellList of a RELOCATE command, are chosen by the node initiating the 6P Transaction.
 In both cases, the same rules apply:

 The CellList is RECOMMENDED to have five or more cells.
 Each cell in the CellList MUST have a different slotOffset value.
 For each cell in the CellList, the node MUST NOT have any scheduled cell on the same slotOffset.
 The slotOffset value of any cell in the CellList MUST NOT be the same as the slotOffset of the minimal cell (slotOffset=0).
 The slotOffset of a cell in the CellList SHOULD be randomly and uniformly chosen among all the slotOffset values that satisfy the restrictions above.
 The channelOffset of a cell in the CellList SHOULD be randomly and uniformly chosen from [0..numFrequencies], where numFrequencies represents the number of frequencies a node can communicate on.

 As a consequence of random cell selection, there is a nonzero chance that nodes in the vicinity have installed cells with same slotOffset and channelOffset.
 An implementer MAY implement a strategy to monitor the candidate cells before adding them in CellList to avoid collision.
 For example, a node MAY maintain a candidate cell pool for the CellList.
 The candidate cells in the pool are preconfigured as Rx cells to promiscuously listen to detect transmissions on those cells.
 If transmissions that rely on are observed on one cell over multiple iterations of the schedule, that cell is probably used by a TSCH neighbor.
 It is moved out from the pool, and a new cell is selected as a candidate cell.
 The cells in CellList are picked from the candidate pool directly when required.

 6P Timeout Value

 The timeout value is calculated for the worst case that a 6P response is received, which means the 6P response is sent out successfully at the very latest retransmission.
 And for each retransmission, it backs off with largest value.
 Hence the 6P timeout value is calculated as ((2 MAXBE) - 1) * MAXRETRIES * SLOTFRAME_LENGTH, where:

 MAXBE, defined in , is the maximum backoff exponent used.
 MAXRETRIES, defined in , is the maximum retransmission times.
 SLOTFRAME_LENGTH represents the length of slotframe.

 Rule for Ordering Cells

 Cells are ordered by slotOffset first, channelOffset second.

 The following sequence is correctly ordered (each element represents the [slotOffset,channelOffset] of a cell in the schedule):

 [1,3],[1,4],[2,0],[5,3],[6,0],[6,3],[7,9]

 Meaning of the Metadata Field

 The Metadata field is not used by MSF.

 6P Error Handling

 lists the 6P return codes.
 lists the same error codes and the behavior a node implementing MSF SHOULD follow.

 Recommended Behavior for Each 6P Error Code

 Code

 RECOMMENDED Behavior

 RC_SUCCESS
		
 nothing

 RC_EOL
		
 nothing

 RC_ERR
		
 quarantine

 RC_RESET
		
 quarantine

 RC_ERR_VERSION
 quarantine

 RC_ERR_SFID
 quarantine

 RC_ERR_SEQNUM
 clear

 RC_ERR_CELLLIST
 clear

 RC_ERR_BUSY
 waitretry

 RC_ERR_LOCKED
 waitretry

 The meaning of each behavior from is:

 nothing:

 Indicates that this return code is not an error.
 No error handling behavior is triggered.

 clear:

 Abort the 6P Transaction.
 Issue a 6P CLEAR command to that neighbor (this command may fail at the link layer).
 Remove all cells scheduled with that neighbor from the local schedule.

 quarantine:

 Same behavior as for "clear".
 In addition, remove the node from the neighbor and routing tables.
 Place the node's identifier in a quarantine list for QUARANTINE_DURATION.
 When in quarantine, drop all frames received from that node.

 waitretry:

 Abort the 6P Transaction.
 Wait for a duration randomly and uniformly chosen from [WAIT_DURATION_MIN,WAIT_DURATION_MAX].
 Retry the same transaction.

 Schedule Inconsistency Handling

 The behavior when schedule inconsistency is detected is explained in , for 6P return code RC_ERR_SEQNUM.

 MSF Constants

 lists MSF constants and their RECOMMENDED values.

 MSF Constants and Their RECOMMENDED Values

 Name

 RECOMMENDED value

 SLOTFRAME_LENGTH
 101 slots

 NUM_CH_OFFSET
 16

 MAX_NUM_CELLS
 100

 LIM_NUMCELLSUSED_HIGH
 75

 LIM_NUMCELLSUSED_LOW
 25

 MAX_NUMTX
 256

 HOUSEKEEPINGCOLLISION_PERIOD
 1 min

 RELOCATE_PDRTHRES
 50 %

 QUARANTINE_DURATION
 5 min

 WAIT_DURATION_MIN
 30 s

 WAIT_DURATION_MAX
 60 s

 MSF Statistics

 lists MSF statistics and their RECOMMENDED widths.

 MSF Statistics and Their RECOMMENDED Widths

 Name

 RECOMMENDED width

 NumCellsElapsed
 1 byte

 NumCellsUsed
 1 byte

 NumTx
 1 byte

 NumTxAck
 1 byte

 Security Considerations

 MSF defines a series of "rules" for the node to follow.
 It triggers several actions that are carried out by the protocols defined in the following specifications:
 " " ,
 " " , and
 " " .
 Confidentiality and authentication of MSF control and data traffic are provided by these specifications whose security considerations continue to apply to MSF.
 In particular, MSF does not define a new protocol or packet format.

 MSF uses autonomous cells for initial bootstrap and the transport of join traffic.
 Autonomous cells are computed as a hash of nodes' EUI-64 addresses.
 This makes the coordinates of autonomous cell an easy target for an attacker, as EUI-64 addresses are visible on the wire and are not encrypted by the link-layer security mechanism.
 With the coordinates of autonomous cells available, the attacker can launch a selective jamming attack against any node's AutoRxCell.
 If the attacker targets a node acting as a JP, it can prevent pledges from using that JP to join the network.
 The pledge detects such a situation through the absence of a link-layer acknowledgment for its Join Request.
 As it is expected that each pledge will have more than one JP available to join the network, one available countermeasure for the pledge is to pseudorandomly select a new JP when the link to the previous JP appears bad.
 Such a strategy alleviates the issue of the attacker randomly jamming to disturb the network but does not help in the case the attacker is targeting a particular pledge.
 In that case, the attacker can jam the AutoRxCell of the pledge in order to prevent it from receiving the join response.
 This situation should be detected through the absence of a particular node from the network and handled by the network administrator through out-of-band means.

 MSF adapts to traffic containing packets from the IP layer.
 It is possible that the IP packet has a nonzero DSCP (Differentiated Services Code Point) value in its IPv6 header.
 The decision how to handle that packet belongs to the upper layer and is out of scope of MSF.
 As long as the decision is made to hand over to MAC layer to transmit, MSF will take that packet into account when adapting to traffic.

 Note that nonzero DSCP values may imply that the traffic originated at unauthenticated pledges (see).
 The implementation at the IPv6 layer SHOULD rate limit this join traffic before it is passed to the 6top sublayer where MSF can observe it.
 If there is no rate limit for join traffic, intermediate nodes in the 6TiSCH network may be prone to a resource exhaustion attack, with the attacker injecting unauthenticated traffic from the network edge.
 The assumption is that the rate-limiting function is aware of the available bandwidth in the 6top Layer 3 bundle(s) towards a next hop, not directly from MSF, but from an interaction with the 6top sublayer that ultimately manages the bundles under MSF's guidance.
 How this rate limit is implemented is out of scope of MSF.

 IANA Considerations

 MSF Scheduling Function Identifiers

 This document adds the following number to the
 "6P Scheduling Function Identifiers" subregistry,
 part of the "IPv6 Over the TSCH Mode of IEEE 802.15.4 (6TiSCH)" registry,
 as defined by :

 New SFID in the "6P Scheduling Function Identifiers" Subregistry

 SFID
 Name
 Reference

 0
 Minimal Scheduling Function (MSF)
 RFC 9033

 The SFID was chosen from the range 0-127, which has the registration procedure of IETF Review or IESG Approval .

 References

 Normative References

 IEEE Standard for Low-Rate Wireless Networks

 IEEE

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers

 This document defines the IP header field, called the DS (for differentiated services) field. [STANDARDS-TRACK]

 RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks

 Low-Power and Lossy Networks (LLNs) are a class of network in which both the routers and their interconnect are constrained. LLN routers typically operate with constraints on processing power, memory, and energy (battery power). Their interconnects are characterized by high loss rates, low data rates, and instability. LLNs are comprised of anything from a few dozen to thousands of routers. Supported traffic flows include point-to-point (between devices inside the LLN), point-to-multipoint (from a central control point to a subset of devices inside the LLN), and multipoint-to-point (from devices inside the LLN towards a central control point). This document specifies the IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL), which provides a mechanism whereby multipoint-to-point traffic from devices inside the LLN towards a central control point as well as point-to-multipoint traffic from the central control point to the devices inside the LLN are supported. Support for point-to-point traffic is also available. [STANDARDS-TRACK]

 Guidelines for Writing an IANA Considerations Section in RFCs

 Many protocols make use of points of extensibility that use constants to identify various protocol parameters. To ensure that the values in these fields do not have conflicting uses and to promote interoperability, their allocations are often coordinated by a central record keeper. For IETF protocols, that role is filled by the Internet Assigned Numbers Authority (IANA).
 To make assignments in a given registry prudently, guidance describing the conditions under which new values should be assigned, as well as when and how modifications to existing values can be made, is needed. This document defines a framework for the documentation of these guidelines by specification authors, in order to assure that the provided guidance for the IANA Considerations is clear and addresses the various issues that are likely in the operation of a registry.
 This is the third edition of this document; it obsoletes RFC 5226.

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 Minimal IPv6 over the TSCH Mode of IEEE 802.15.4e (6TiSCH) Configuration

 This document describes a minimal mode of operation for an IPv6 over the TSCH mode of IEEE 802.15.4e (6TiSCH) network. This minimal mode of operation specifies the baseline set of protocols that need to be supported and the recommended configurations and modes of operation sufficient to enable a 6TiSCH functional network. 6TiSCH provides IPv6 connectivity over a Time-Slotted Channel Hopping (TSCH) mesh composed of IEEE Std 802.15.4 TSCH links. This minimal mode uses a collection of protocols with the respective configurations, including the IPv6 Low-Power Wireless Personal Area Network (6LoWPAN) framework, enabling interoperable IPv6 connectivity over IEEE Std 802.15.4 TSCH. This minimal configuration provides the necessary bandwidth for network and security bootstrapping and defines the proper link between the IETF protocols that interface to IEEE Std 802.15.4 TSCH. This minimal mode of operation should be implemented by all 6TiSCH-compliant devices.

 6TiSCH Operation Sublayer (6top) Protocol (6P)

 This document defines the "IPv6 over the TSCH mode of IEEE 802.15.4e" (6TiSCH) Operation Sublayer (6top) Protocol (6P), which enables distributed scheduling in 6TiSCH networks. 6P allows neighbor nodes to add/delete Time-Slotted Channel Hopping (TSCH) cells to/on one another. 6P is part of the 6TiSCH Operation Sublayer (6top), the layer just above the IEEE Std 802.15.4 TSCH Medium Access Control layer. 6top is composed of one or more Scheduling Functions (SFs) and the 6top Protocol defined in this document. A 6top SF decides when to add/delete cells, and it triggers 6P Transactions. The definition of SFs is out of scope for this document; however, this document provides the requirements for an SF.

 An Architecture for IPv6 over the Time-Slotted Channel Hopping Mode of IEEE 802.15.4 (6TiSCH)

 Constrained Join Protocol (CoJP) for 6TiSCH

 Encapsulation of 6TiSCH Join and Enrollment Information Elements

 Performance in Practice of String Hashing Functions

 DASFAA

 Informative References

 The Trickle Algorithm

 The Trickle algorithm allows nodes in a lossy shared medium (e.g., low-power and lossy networks) to exchange information in a highly robust, energy efficient, simple, and scalable manner. Dynamically adjusting transmission windows allows Trickle to spread new information on the scale of link-layer transmission times while sending only a few messages per hour when information does not change. A simple suppression mechanism and transmission point selection allow Trickle's communication rate to scale logarithmically with density. This document describes the Trickle algorithm and considerations in its use. [STANDARDS-TRACK]

 Using IEEE 802.15.4e Time-Slotted Channel Hopping (TSCH) in the Internet of Things (IoT): Problem Statement

 This document describes the environment, problem statement, and goals for using the Time-Slotted Channel Hopping (TSCH) Medium Access Control (MAC) protocol of IEEE 802.14.4e in the context of Low-Power and Lossy Networks (LLNs). The set of goals enumerated in this document form an initial set only.

 Registration Extensions for IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN) Neighbor Discovery

 This specification updates RFC 6775 -- the Low-Power Wireless Personal Area Network (6LoWPAN) Neighbor Discovery specification -- to clarify the role of the protocol as a registration technique and simplify the registration operation in 6LoWPAN routers, as well as to provide enhancements to the registration capabilities and mobility detection for different network topologies, including the Routing Registrars performing routing for host routes and/or proxy Neighbor Discovery in a low-power network.

 6tisch Zero-Touch Secure Join protocol

 Sandelman Software Works

 This document describes a Zero-touch Secure Join (ZSJ) mechanism to
 enroll a new device (the "pledge") into a IEEE802.15.4 TSCH network
 using the 6tisch signaling mechanisms. The resulting device will
 obtain a domain specific credential that can be used with either
 802.15.9 per-host pair keying protocols, or to obtain the network-
 wide key from a coordinator. The mechanism describe here is an
 augmentation to the one-touch mechanism described in
 [I-D.ietf-6tisch-minimal-security], and is a profile of the
 constrained voucher mechanism [I-D.ietf-anima-constrained-voucher].

 Work in Progress

 Example Implementation of the SAX Hash Function

 To support interoperability, this section provides an example implementation of the SAX hash function .
 The input parameters of the function are:

 T, which is the hashing table length.
 c, which is the characters of string s, to be hashed.

 In MSF, the T is replaced by the length of slotframe 1.
 String s is replaced by the node EUI-64 address. The characters of the string, c0 through c7, are the eight bytes of the EUI-64 address.

 The SAX hash function requires shift operation, which is defined as follow:

 L_shift(v,b), which refers to the left shift of variable v by b bits
 R_shift(v,b), which refers to the right shift of variable v by b bits

 The steps to calculate the hash value of SAX hash function are:

 Initialize variable h, which is the intermediate hash value, to h0 and variable i, which is the index of the bytes of the EUI-64 address, to 0.
 Sum the value of L_shift(h,l_bit), R_shift(h,r_bit), and ci.
 Calculate the result of the exclusive OR between the sum value in Step 2 and h.
 Modulo the result of Step 3 by T.
 Assign the result of Step 4 to h.
 Increase i by 1.
 Repeat Step 2 to Step 6 until i reaches to 8.

 The value of variable h is the hash value of the SAX hash function.

 The values of h0, l_bit, and r_bit in Step 1 and Step 2 are configured as:

 h0 = 0
 l_bit = 0
 r_bit = 1

 The appropriate values of l_bit and r_bit could vary depending on the set of nodes' EUI-64 address.
 How to find those values is out of the scope of this specification.

 Contributors

 Chalmers University

 beshr@chalmers.se

 Chalmers University

 olafl@chalmers.se

 Toshiba

 yatch1.tanaka@toshiba.co.jp

 Authors' Addresses

 Inria

 2 rue Simone Iff
 Paris
 75012
 France

 tengfei.chang@gmail.com

 Inria

 2 rue Simone Iff
 Paris
 75012
 France

 malisa.vucinic@inria.fr

 Universitat Oberta de Catalunya

 156 Rambla Poblenou
 Barcelona
 Catalonia
 08018
 Spain

 xvilajosana@uoc.edu

 RISE SICS

 Isafjordsgatan 22
 Kista
 164 29
 Sweden

 simon.duquennoy@gmail.com

 Universidad Diego Portales

 Escuela de Informática y Telecomunicaciones
 Av. Ejército 441
 Santiago
 Región Metropolitana
 Chile

 +56 (2) 676-8121
 diego.dujovne@mail.udp.cl

