
RFC 9053

CBOR Object Signing and Encryption (COSE): Initial

Algorithms

Abstract

Concise Binary Object Representation (CBOR) is a data format designed for small code size and

small message size. There is a need to be able to define basic security services for this data

format. This document defines a set of algorithms that can be used with the CBOR Object Signing

and Encryption (COSE) protocol (RFC 9052).

This document, along with RFC 9052, obsoletes RFC 8152.

Stream:

RFC:

Obsoletes:

Category:

Published:

ISSN:

Author:

Internet Engineering Task Force (IETF)

9053

8152

Informational

August 2022

2070-1721

 J. Schaad

August Cellars

Status of This Memo

This document is not an Internet Standards Track specification; it is published for informational

purposes.

This document is a product of the Internet Engineering Task Force (IETF). It represents the

consensus of the IETF community. It has received public review and has been approved for

publication by the Internet Engineering Steering Group (IESG). Not all documents approved by

the IESG are candidates for any level of Internet Standard; see Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback

on it may be obtained at .https://www.rfc-editor.org/info/rfc9053

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights

reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF

Documents () in effect on the date of publication of this

document. Please review these documents carefully, as they describe your rights and restrictions

https://trustee.ietf.org/license-info

Schaad Informational Page 1

https://www.rfc-editor.org/rfc/rfc9053
https://www.rfc-editor.org/rfc/rfc8152
https://www.rfc-editor.org/info/rfc9053
https://trustee.ietf.org/license-info

with respect to this document. Code Components extracted from this document must include

Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are

provided without warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Requirements Terminology

1.2. Changes from RFC 8152

1.3. Document Terminology

1.4. CDDL Grammar for CBOR Data Structures

1.5. Examples

2. Signature Algorithms

2.1. ECDSA

2.1.1. Security Considerations for ECDSA

2.2. Edwards-Curve Digital Signature Algorithm (EdDSA)

2.2.1. Security Considerations for EdDSA

3. Message Authentication Code (MAC) Algorithms

3.1. Hash-Based Message Authentication Codes (HMACs)

3.1.1. Security Considerations for HMAC

3.2. AES Message Authentication Code (AES-CBC-MAC)

3.2.1. Security Considerations for AES-CBC-MAC

4. Content Encryption Algorithms

4.1. AES-GCM

4.1.1. Security Considerations for AES-GCM

4.2. AES-CCM

4.2.1. Security Considerations for AES-CCM

4.3. ChaCha20 and Poly1305

4.3.1. Security Considerations for ChaCha20/Poly1305

5. Key Derivation Functions (KDFs)

5.1. HMAC-Based Extract-and-Expand Key Derivation Function (HKDF)

RFC 9053 COSE Algorithms August 2022

Schaad Informational Page 2

5.2. Context Information Structure

6. Content Key Distribution Methods

6.1. Direct Encryption

6.1.1. Direct Key

6.1.2. Direct Key with KDF

6.2. Key Wrap

6.2.1. AES Key Wrap

6.3. Direct Key Agreement

6.3.1. Direct ECDH

6.4. Key Agreement with Key Wrap

6.4.1. ECDH with Key Wrap

7. Key Object Parameters

7.1. Elliptic Curve Keys

7.1.1. Double Coordinate Curves

7.2. Octet Key Pair

7.3. Symmetric Keys

8. COSE Capabilities

8.1. Assignments for Existing Algorithms

8.2. Assignments for Existing Key Types

8.3. Examples

9. CBOR Encoding Restrictions

10. IANA Considerations

10.1. Changes to the "COSE Key Types" Registry

10.2. Changes to the "COSE Algorithms" Registry

10.3. Changes to the "COSE Key Type Parameters" Registry

10.4. Expert Review Instructions

11. Security Considerations

12. References

12.1. Normative References

RFC 9053 COSE Algorithms August 2022

Schaad Informational Page 3

12.2. Informative References

Acknowledgments

Author's Address

Byte:

Constrained Application Protocol (CoAP):

1. Introduction

There has been an increased focus on small, constrained devices that make up the Internet of

Things (IoT). One of the standards that has come out of this process is "Concise Binary Object

Representation (CBOR)" . CBOR extended the data model of JavaScript Object Notation

(JSON) by allowing for binary data, among other changes. CBOR has been adopted by

several of the IETF working groups dealing with the IoT world as their method of encoding data

structures. CBOR was designed specifically to be small in terms of both messages transported and

implementation size and to have a schema-free decoder. A need exists to provide message

security services for IoT, and using CBOR as the message-encoding format makes sense.

The core COSE specification consists of two documents. contains the serialization

structures and the procedures for using the different cryptographic algorithms. This document

provides an initial set of algorithms for use with those structures.

1.2. Changes from RFC 8152

Extracted the sections dealing with specific algorithms and placed them into this document.

The sections dealing with structure and general processing rules are placed in .

Made text clarifications and changes in terminology.

Removed all of the details relating to countersignatures and placed them in .

1.3. Document Terminology

In this document, we use the following terminology:

A synonym for octet.

A specialized web transfer protocol for use in

constrained systems. It is defined in .

[STD94]

[STD90]

[RFC9052]

1.1. Requirements Terminology

The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to

be interpreted as described in BCP 14 when, and only when, they appear in

all capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD

NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

•

[RFC9052]

•

• [COUNTERSIGN]

[RFC7252]

RFC 9053 COSE Algorithms August 2022

Schaad Informational Page 4

Authenticated Encryption (AE) algorithms :

AEAD algorithms :

Encryption algorithms that provide an

authentication check of the contents along with the encryption service. An example of an AE

algorithm used in COSE is AES Key Wrap . These algorithms are used for key

encryption, but Authenticated Encryption with Associated Data (AEAD) algorithms would be

preferred.

Encryption algorithms that provide the same authentication

service of the content as AE algorithms do, and also allow associated data that is not part of

the encrypted body to be included in the authentication service. An example of an AEAD

algorithm used in COSE is AES-GCM . These algorithms are used for content

encryption and can be used for key encryption as well.

The term "byte string" is used for sequences of bytes, while the term "text string" is used for

sequences of characters.

The tables for algorithms contain the following columns:

A name for the algorithm for use in documents.

The value used on the wire for the algorithm. One place this is used is the algorithm header

parameter of a message.

A short description so that the algorithm can be easily identified when scanning the IANA

registry.

Additional columns may be present in a table depending on the algorithms.

1.4. CDDL Grammar for CBOR Data Structures

When COSE was originally written, the Concise Data Definition Language (CDDL) had

not yet been published in an RFC, so it could not be used as the data description language to

normatively describe the CBOR data structures employed by COSE. For that reason, the CBOR

data objects defined here are described in prose. Additional (non-normative) descriptions of the

COSE data objects are provided in a subset of CDDL, described in .

[RFC5116]

[RFC3394]

[RFC5116]

[RFC5116]

•

•

•

[RFC8610]

[RFC9052]

1.5. Examples

A GitHub project has been created at that contains a set of testing examples.

Each example is found in a JSON file that contains the inputs used to create the example, some of

the intermediate values that can be used for debugging, and the output of the example. The

results are encoded using both hexadecimal and CBOR diagnostic notation format.

Some of the examples are designed to be failure-testing cases; these are clearly marked as such in

the JSON file.

[GitHub-Examples]

2. Signature Algorithms

 contains a generic description of signature algorithms. This document

defines signature algorithm identifiers for two signature algorithms.

Section 8.1 of [RFC9052]

RFC 9053 COSE Algorithms August 2022

Schaad Informational Page 5

https://www.rfc-editor.org/rfc/rfc9052#section-8.1

2.1. ECDSA

The Elliptic Curve Digital Signature Algorithm (ECDSA) defines a signature algorithm using

Elliptic Curve Cryptography (ECC). Implementations use a deterministic version of

ECDSA such as the one defined in . The use of a deterministic signature algorithm

allows systems to avoid relying on random number generators in order to avoid generating the

same value of "k" (the per-message random value). Biased generation of the value "k" can be

attacked, and collisions of this value lead to leaked keys. It additionally allows performing

deterministic tests for the signature algorithm. The use of deterministic ECDSA does not lessen

the need to have good random number generation when creating the private key.

The ECDSA signature algorithm is parameterized with a hash function (h). In the event that the

length of the hash function output is greater than the group of the key, the leftmost bytes of the

hash output are used.

The algorithms defined in this document can be found in Table 1.

This document defines ECDSA as working only with the curves P-256, P-384, and P-521. This

document requires that the curves be encoded using the "EC2" (two coordinate elliptic curve) key

type. Implementations need to check that the key type and curve are correct when creating and

verifying a signature. Future documents may define it to work with other curves and key types in

the future.

In order to promote interoperability, it is suggested that SHA-256 be used only with curve P-256,

SHA-384 be used only with curve P-384, and SHA-512 be used only with curve P-521. This is

aligned with the recommendation in .

The signature algorithm results in a pair of integers (R, S). These integers will be the same length

as the length of the key used for the signature process. The signature is encoded by converting

the integers into byte strings of the same length as the key size. The length is rounded up to the

nearest byte and is left padded with zero bits to get to the correct length. The two integers are

then concatenated together to form a byte string that is the resulting signature.

Using the function defined in , the signature is:

Signature = I2OSP(R, n) | I2OSP(S, n)

where n = ceiling(key_length / 8)

[DSS]

SHOULD

[RFC6979]

Name Value Hash Description

ES256 -7 SHA-256 ECDSA w/ SHA-256

ES384 -35 SHA-384 ECDSA w/ SHA-384

ES512 -36 SHA-512 ECDSA w/ SHA-512

Table 1: ECDSA Algorithm Values

Section 4 of [RFC5480]

[RFC8017]

RFC 9053 COSE Algorithms August 2022

Schaad Informational Page 6

https://www.rfc-editor.org/rfc/rfc5480#section-4

2.2. Edwards-Curve Digital Signature Algorithm (EdDSA)

 describes the elliptic curve signature scheme Edwards-curve Digital Signature

Algorithm (EdDSA). In that document, the signature algorithm is instantiated using parameters

for the edwards25519 and edwards448 curves. The document additionally describes two variants

of the EdDSA algorithm: Pure EdDSA, where no hash function is applied to the content before

signing, and HashEdDSA, where a hash function is applied to the content before signing and the

result of that hash function is signed. For EdDSA, the content to be signed (either the message or

the prehash value) is processed twice inside of the signature algorithm. For use with COSE, only

the pure EdDSA version is used. This is because it is not expected that extremely large contents

are going to be needed and, based on the arrangement of the message structure, the entire

message is going to need to be held in memory in order to create or verify a signature. Therefore,

When using a COSE key for this algorithm, the following checks are made:

The "kty" field be present, and it be "EC2".

If the "alg" field is present, it match the ECDSA signature algorithm being used.

If the "key_ops" field is present, it include "sign" when creating an ECDSA signature.

If the "key_ops" field is present, it include "verify" when verifying an ECDSA signature.

2.1.1. Security Considerations for ECDSA

The security strength of the signature is no greater than the minimum of the security strength

associated with the bit length of the key and the security strength of the hash function.

Note: Use of a deterministic signature technique is a good idea even when good random number

generation exists. Doing so both reduces the possibility of having the same value of "k" in two

signature operations and allows for reproducible signature values, which helps testing. There

have been recent attacks involving faulting the device in order to extract the key. This can be

addressed by combining both randomness and determinism .

There are two substitution attacks that can theoretically be mounted against the ECDSA signature

algorithm.

Changing the curve used to validate the signature: If one changes the curve used to validate

the signature, then potentially one could have two messages with the same signature, each

computed under a different curve. The only requirements on the new curve are that its

order be the same as the old one and that it be acceptable to the client. An example would be

to change from using the curve secp256r1 (aka P-256) to using secp256k1. (Both are 256-bit

curves.) We currently do not have any way to deal with this version of the attack except to

restrict the overall set of curves that can be used.

Changing the hash function used to validate the signature: If one either has two different

hash functions of the same length or can truncate a hash function, then one could potentially

find collisions between the hash functions rather than within a single hash function. For

example, truncating SHA-512 to 256 bits might collide with a SHA-256 bit hash value. As the

hash algorithm is part of the signature algorithm identifier, this attack is mitigated by

including a signature algorithm identifier in the protected-header bucket.

• MUST MUST

• MUST

• MUST

• MUST

[CFRG-DET-SIGS]

•

•

[RFC8032]

RFC 9053 COSE Algorithms August 2022

Schaad Informational Page 7

3. Message Authentication Code (MAC) Algorithms

 contains a generic description of MAC algorithms. This section defines

the conventions for two MAC algorithms.

3.1. Hash-Based Message Authentication Codes (HMACs)

HMAC was designed to deal with length extension attacks. The HMAC

algorithm was also designed to allow new hash functions to be directly plugged in without

changes to the hash function. The HMAC design process has been shown to be solid; although the

security of hash functions such as MD5 has decreased over time, the security of HMAC combined

with MD5 has not yet been shown to be compromised .

there does not appear to be a need to be able to do block updates of the hash, followed by

eliminating the message from memory. Applications can provide the same features by defining

the content of the message as a hash value and transporting the COSE object (with the hash

value) and the content as separate items.

The algorithm defined in this document can be found in Table 2. A single signature algorithm is

defined, which can be used for multiple curves.

 describes the method of encoding the signature value.

When using a COSE key for this algorithm, the following checks are made:

The "kty" field be present, and it be "OKP" (Octet Key Pair).

The "crv" field be present, and it be a curve defined for this signature algorithm.

If the "alg" field is present, it match "EdDSA".

If the "key_ops" field is present, it include "sign" when creating an EdDSA signature.

If the "key_ops" field is present, it include "verify" when verifying an EdDSA signature.

2.2.1. Security Considerations for EdDSA

Public values are computed differently in EdDSA and Elliptic Curve Diffie-Hellman (ECDH); for

this reason, the public key from one should not be used with the other algorithm.

If batch signature verification is performed, a well-seeded cryptographic random number

generator is (). Signing and nonbatch signature verification

are deterministic operations and do not need random numbers of any kind.

Name Value Description

EdDSA -8 EdDSA

Table 2: EdDSA Algorithm Value

[RFC8032]

• MUST MUST

• MUST MUST

• MUST

• MUST

• MUST

REQUIRED Section 8.2 of [RFC8032]

Section 8.2 of [RFC9052]

[RFC2104] [RFC4231]

[RFC6151]

RFC 9053 COSE Algorithms August 2022

Schaad Informational Page 8

https://www.rfc-editor.org/rfc/rfc8032#section-8.2
https://www.rfc-editor.org/rfc/rfc9052#section-8.2

The HMAC algorithm is parameterized by an inner and outer padding, a hash function (h), and

an authentication tag value length. For this specification, the inner and outer padding are fixed

to the values set in . The length of the authentication tag corresponds to the difficulty of

producing a forgery. For use in constrained environments, we define one HMAC algorithm that is

truncated. There are currently no known issues with truncation; however, the security strength

of the message tag is correspondingly reduced in strength. When truncating, the leftmost tag-

length bits are kept and transmitted.

The algorithms defined in this document can be found in Table 3.

Some recipient algorithms transport the key, while others derive a key from secret data. For

those algorithms that transport the key (such as AES Key Wrap), the size of the HMAC key

 be the same size as the output of the underlying hash function. For those algorithms that

derive the key (such as ECDH), the derived key be the same size as the output of the

underlying hash function.

When using a COSE key for this algorithm, the following checks are made:

The "kty" field be present, and it be "Symmetric".

If the "alg" field is present, it match the HMAC algorithm being used.

If the "key_ops" field is present, it include "MAC create" when creating an HMAC

authentication tag.

If the "key_ops" field is present, it include "MAC verify" when verifying an HMAC

authentication tag.

Implementations creating and validating MAC values validate that the key type, key length,

and algorithm are correct and appropriate for the entities involved.

3.1.1. Security Considerations for HMAC

HMAC has proved to be resistant to attack even when used with weakened hash algorithms. The

current best known attack is to brute force the key. This means that key size is going to be

directly related to the security of an HMAC operation.

[RFC2104]

Name Value Hash Tag Length Description

HMAC 256/64 4 SHA-256 64 HMAC w/ SHA-256 truncated to 64 bits

HMAC 256/256 5 SHA-256 256 HMAC w/ SHA-256

HMAC 384/384 6 SHA-384 384 HMAC w/ SHA-384

HMAC 512/512 7 SHA-512 512 HMAC w/ SHA-512

Table 3: HMAC Algorithm Values

SHOULD

MUST

• MUST MUST

• MUST

• MUST

• MUST

MUST

RFC 9053 COSE Algorithms August 2022

Schaad Informational Page 9

3.2. AES Message Authentication Code (AES-CBC-MAC)

AES-CBC-MAC is the instantiation of the CBC-MAC construction (defined in) using AES as

the block cipher. For brevity, we also use "AES-MAC" to refer to AES-CBC-MAC. (Note that this is

not the same algorithm as AES Cipher-Based Message Authentication Code (AES-CMAC)

.)

AES-CBC-MAC is parameterized by the key length, the authentication tag length, and the

Initialization Vector (IV) used. For all of these algorithms, the IV is fixed to all zeros. We provide

an array of algorithms for various key and tag lengths. The algorithms defined in this document

are found in Table 4.

Keys may be obtained from either a key structure or a recipient structure. Implementations

creating and validating MAC values validate that the key type, key length, and algorithm

are correct and appropriate for the entities involved.

When using a COSE key for this algorithm, the following checks are made:

The "kty" field be present, and it be "Symmetric".

If the "alg" field is present, it match the AES-MAC algorithm being used.

If the "key_ops" field is present, it include "MAC create" when creating an AES-MAC

authentication tag.

If the "key_ops" field is present, it include "MAC verify" when verifying an AES-MAC

authentication tag.

3.2.1. Security Considerations for AES-CBC-MAC

A number of attacks exist against Cipher Block Chaining Message Authentication Code (CBC-MAC)

that need to be considered.

A single key must only be used for messages of a fixed or known length. If this is not the case,

an attacker will be able to generate a message with a valid tag given two message and tag

pairs. This can be addressed by using different keys for messages of different lengths. The

current structure mitigates this problem, as a specific encoding structure that includes

lengths is built and signed. (CMAC also addresses this issue.)

[MAC]

[RFC4493]

Name Value Key Length Tag Length Description

AES-MAC 128/64 14 128 64 AES-MAC 128-bit key, 64-bit tag

AES-MAC 256/64 15 256 64 AES-MAC 256-bit key, 64-bit tag

AES-MAC 128/128 25 128 128 AES-MAC 128-bit key, 128-bit tag

AES-MAC 256/128 26 256 128 AES-MAC 256-bit key, 128-bit tag

Table 4: AES-MAC Algorithm Values

MUST

• MUST MUST

• MUST

• MUST

• MUST

•

RFC 9053 COSE Algorithms August 2022

Schaad Informational Page 10

In Cipher Block Chaining (CBC) mode, if the same key is used for both encryption and

authentication operations, an attacker can produce messages with a valid authentication

code.

If the IV can be modified, then messages can be forged. This is addressed by fixing the IV to

all zeros.

4. Content Encryption Algorithms

 contains a generic description of content encryption algorithms. This

document defines the identifier and usages for three content encryption algorithms.

4.1. AES-GCM

The Galois/Counter Mode (GCM) mode is a generic AEAD block cipher mode defined in

. The GCM mode is combined with the AES block encryption algorithm to define an AEAD

cipher.

The GCM mode is parameterized by the size of the authentication tag and the size of the nonce.

This document fixes the size of the nonce at 96 bits. The size of the authentication tag is limited to

a small set of values. For this document, however, the size of the authentication tag is fixed at 128

bits.

The set of algorithms defined in this document is in Table 5.

Keys may be obtained from either a key structure or a recipient structure. Implementations that

are encrypting or decrypting validate that the key type, key length, and algorithm are

correct and appropriate for the entities involved.

When using a COSE key for this algorithm, the following checks are made:

The "kty" field be present, and it be "Symmetric".

If the "alg" field is present, it match the AES-GCM algorithm being used.

If the "key_ops" field is present, it include "encrypt" or "wrap key" when encrypting.

If the "key_ops" field is present, it include "decrypt" or "unwrap key" when decrypting.

•

•

Section 8.3 of [RFC9052]

[AES-

GCM]

Name Value Description

A128GCM 1 AES-GCM mode w/ 128-bit key, 128-bit tag

A192GCM 2 AES-GCM mode w/ 192-bit key, 128-bit tag

A256GCM 3 AES-GCM mode w/ 256-bit key, 128-bit tag

Table 5: Algorithm Values for AES-GCM

MUST

• MUST MUST

• MUST

• MUST

• MUST

RFC 9053 COSE Algorithms August 2022

Schaad Informational Page 11

https://www.rfc-editor.org/rfc/rfc9052#section-8.3

4.1.1. Security Considerations for AES-GCM

When using AES-GCM, the following restrictions be enforced:

The key and nonce pair be unique for every message encrypted.

The total number of messages encrypted for a single key exceed 232 .

An explicit check is required only in environments where it is expected that this limit might

be exceeded.

 contains an analysis on the use of AES-CGM for its environment. Based on that

recommendation, one should restrict the number of messages encrypted to 224.5.

A more recent analysis in indicates that the number of failed decryptions needs to

be taken into account as part of determining when a key rollover is to be done. Following the

recommendation in DTLS (), the number of failed message

decryptions should be limited to 236.

Consideration was given to supporting smaller tag values; the constrained community would

desire tag sizes in the 64-bit range. Such use drastically changes both the maximum message size

(generally not an issue) and the number of times that a key can be used. Given that Counter with

CBC-MAC (CCM) is the usual mode for constrained environments, restricted modes are not

supported.

4.2. AES-CCM

CCM is a generic authentication encryption block cipher mode defined in . The CCM

mode is combined with the AES block encryption algorithm to define an AEAD cipher that is

commonly used in constrained devices.

The CCM mode has two parameter choices. The first choice is M, the size of the authentication

field. The choice of the value for M involves a trade-off between message growth (from the tag)

and the probability that an attacker can undetectably modify a message. The second choice is L,

the size of the length field. This value requires a trade-off between the maximum message size

and the size of the nonce.

It is unfortunate that the specification for CCM specified L and M as a count of bytes rather than a

count of bits. This leads to possible misunderstandings where AES-CCM-8 is frequently used to

refer to a version of CCM mode where the size of the authentication is 64 bits and not 8 bits. In

most cryptographic algorithm specifications, these values have traditionally been specified as bit

counts rather than byte counts. This document will follow the convention of using bit counts so

that it is easier to compare the different algorithms presented in this document.

We define a matrix of algorithms in this document over the values of L and M. Constrained

devices are usually operating in situations where they use short messages and want to avoid

doing recipient-specific cryptographic operations. This favors smaller values of both L and M.

Less-constrained devices will want to be able to use larger messages and are more willing to

generate new keys for every operation. This favors larger values of L and M.

MUST

• MUST

• MUST NOT [SP800-38D]

• [RFC8446]

• [ROBUST]

Section 4.5.3 of [RFC9147]

[RFC3610]

RFC 9053 COSE Algorithms August 2022

Schaad Informational Page 12

https://www.rfc-editor.org/rfc/rfc9147#section-4.5.3

16 bits (2):

64 bits (8):

64 bits (8):

128 bits (16):

The following values are used for L:

This limits messages to 216 bytes (64 KiB) in length. This is sufficiently long for

messages in the constrained world. The nonce length is 13 bytes allowing for 2104 possible

values of the nonce without repeating.

This limits messages to 264 bytes in length. The nonce length is 7 bytes, allowing for

256 possible values of the nonce without repeating.

The following values are used for M:

This produces a 64-bit authentication tag. This implies that there is a 1 in 264 chance

that a modified message will authenticate.

This produces a 128-bit authentication tag. This implies that there is a 1 in 2128

chance that a modified message will authenticate.

Name Value L M Key

Length

Description

AES-

CCM-16-64-128

10 16 64 128 AES-CCM mode 128-bit key, 64-bit tag,

13-byte nonce

AES-

CCM-16-64-256

11 16 64 256 AES-CCM mode 256-bit key, 64-bit tag,

13-byte nonce

AES-

CCM-64-64-128

12 64 64 128 AES-CCM mode 128-bit key, 64-bit tag,

7-byte nonce

AES-

CCM-64-64-256

13 64 64 256 AES-CCM mode 256-bit key, 64-bit tag,

7-byte nonce

AES-

CCM-16-128-128

30 16 128 128 AES-CCM mode 128-bit key, 128-bit

tag, 13-byte nonce

AES-

CCM-16-128-256

31 16 128 256 AES-CCM mode 256-bit key, 128-bit

tag, 13-byte nonce

AES-

CCM-64-128-128

32 64 128 128 AES-CCM mode 128-bit key, 128-bit

tag, 7-byte nonce

AES-

CCM-64-128-256

33 64 128 256 AES-CCM mode 256-bit key, 128-bit

tag, 7-byte nonce

Table 6: Algorithm Values for AES-CCM

RFC 9053 COSE Algorithms August 2022

Schaad Informational Page 13

Keys may be obtained from either a key structure or a recipient structure. Implementations that

are encrypting or decrypting validate that the key type, key length, and algorithm are

correct and appropriate for the entities involved.

When using a COSE key for this algorithm, the following checks are made:

The "kty" field be present, and it be "Symmetric".

If the "alg" field is present, it match the AES-CCM algorithm being used.

If the "key_ops" field is present, it include "encrypt" or "wrap key" when encrypting.

If the "key_ops" field is present, it include "decrypt" or "unwrap key" when decrypting.

4.2.1. Security Considerations for AES-CCM

When using AES-CCM, the following restrictions be enforced:

The key and nonce pair be unique for every message encrypted. Note that the value of

L influences the number of unique nonces.

The total number of times the AES block cipher is used exceed 261 operations. This

limit is the sum of times the block cipher is used in computing the MAC value and

performing stream encryption operations. An explicit check is required only in

environments where it is expected that this limit might be exceeded.

 contains an analysis on the use of AES-CCM for its environment. Based on that

recommendation, one should restrict the number of messages encrypted to 223.

In addition to the number of messages successfully decrypted, the number of failed

decryptions needs to be tracked as well. Following the recommendation in DTLS (

), the number of failed message decryptions should be limited to 223.5. If

one is using the 64-bit tag, then the limits are significantly smaller if one wants to keep the

same integrity limits. A protocol recommending this needs to analyze what level of integrity

is acceptable for the smaller tag size. It may be that, to keep the desired level of integrity, one

needs to rekey as often as every 27 messages.

 additionally calls out one other consideration of note. It is possible to do a

precomputation attack against the algorithm in cases where portions of the plaintext are highly

predictable. This reduces the security of the key size by half. Ways to deal with this attack include

adding a random portion to the nonce value and/or increasing the key size used. Using a portion

of the nonce for a random value will decrease the number of messages that a single key can be

used for. Increasing the key size may require more resources in the constrained device. See

Sections 5 and 10 of for more information.

4.3. ChaCha20 and Poly1305

ChaCha20 and Poly1305 combined together is an AEAD mode that is defined in . This is

an algorithm defined using a cipher that is not AES and thus would not suffer from any future

weaknesses found in AES. These cryptographic functions are designed to be fast in software-only

implementations.

MUST

• MUST MUST

• MUST

• MUST

• MUST

MUST

• MUST

• MUST NOT

• [RFC9147]

•

Section

4.5.3 of [RFC9147]

[RFC3610]

[RFC3610]

[RFC8439]

RFC 9053 COSE Algorithms August 2022

Schaad Informational Page 14

https://www.rfc-editor.org/rfc/rfc9147#section-4.5.3
https://www.rfc-editor.org/rfc/rfc9147#section-4.5.3
https://www.rfc-editor.org/rfc/rfc3610#section-5
https://www.rfc-editor.org/rfc/rfc3610#section-10

The ChaCha20/Poly1305 AEAD construction defined in has no parameterization. It

takes as inputs a 256-bit key and a 96-bit nonce, as well as the plaintext and additional data, and

produces the ciphertext as an output. We define one algorithm identifier for this algorithm in

Table 7.

Keys may be obtained from either a key structure or a recipient structure. Implementations that

are encrypting or decrypting validate that the key type, key length, and algorithm are

correct and appropriate for the entities involved.

When using a COSE key for this algorithm, the following checks are made:

The "kty" field be present, and it be "Symmetric".

If the "alg" field is present, it match the ChaCha20/Poly1305 algorithm being used.

If the "key_ops" field is present, it include "encrypt" or "wrap key" when encrypting.

If the "key_ops" field is present, it include "decrypt" or "unwrap key" when decrypting.

4.3.1. Security Considerations for ChaCha20/Poly1305

The key and nonce values be a unique pair for every invocation of the algorithm. Nonce

counters are considered to be an acceptable way of ensuring that they are unique.

A more recent analysis in indicates that the number of failed decryptions needs to be

taken into account as part of determining when a key rollover is to be done. Following the

recommendation in DTLS (), the number of failed message decryptions

should be limited to 236.

 notes that the (64-bit) record sequence number would wrap before the safety limit is

reached for ChaCha20/Poly1305. COSE implementations should not send more than 264 messages

encrypted using a single ChaCha20/Poly1305 key.

5. Key Derivation Functions (KDFs)

 contains a generic description of key derivation functions. This

document defines a single context structure and a single KDF. These elements are used for all of

the recipient algorithms defined in this document that require a KDF process. These algorithms

are defined in Sections 6.1.2, 6.3.1, and 6.4.1.

[RFC8439]

Name Value Description

ChaCha20/Poly1305 24 ChaCha20/Poly1305 w/ 256-bit key, 128-bit tag

Table 7: Algorithm Value for ChaCha20/Poly1305

MUST

• MUST MUST

• MUST

• MUST

• MUST

MUST

[ROBUST]

Section 4.5.3 of [RFC9147]

[RFC8446]

Section 8.4 of [RFC9052]

5.1. HMAC-Based Extract-and-Expand Key Derivation Function (HKDF)

The HKDF key derivation algorithm is defined in and .

The HKDF algorithm takes these inputs:

[RFC5869] [HKDF]

RFC 9053 COSE Algorithms August 2022

Schaad Informational Page 15

https://www.rfc-editor.org/rfc/rfc9147#section-4.5.3
https://www.rfc-editor.org/rfc/rfc9052#section-8.4

secret:

salt:

length:

context information:

PRF:

A shared value that is secret. Secrets may be either previously shared or derived from

operations like a Diffie-Hellman (DH) key agreement.

An optional value that is used to change the generation process. The salt value can be

either public or private. If the salt is public and carried in the message, then the "salt"

algorithm header parameter defined in Table 9 is used. While suggests that the

length of the salt be the same as the length of the underlying hash value, any positive salt

length will improve the security, as different key values will be generated. This parameter is

protected by being included in the key computation and does not need to be separately

authenticated. The salt value does not need to be unique for every message sent.

The number of bytes of output that need to be generated.

Information that describes the context in which the resulting value will be

used. Making this information specific to the context in which the material is going to be used

ensures that the resulting material will always be tied to that usage. The context structure

defined in Section 5.2 is used by the KDFs in this document.

The underlying pseudorandom function to be used in the HKDF algorithm. The PRF is

encoded into the HKDF algorithm selection.

HKDF is defined to use HMAC as the underlying PRF. However, it is possible to use other

functions in the same construct to provide a different KDF that is more appropriate in the

constrained world. Specifically, one can use AES-CBC-MAC as the PRF for the expand step, but not

for the extract step. When using a good random shared secret of the correct length, the extract

step can be skipped. For the AES algorithm versions, the extract step is always skipped.

The extract step cannot be skipped if the secret is not uniformly random -- for example, if it is the

result of an ECDH key agreement step. This implies that the AES HKDF version cannot be used

with ECDH. If the extract step is skipped, the "salt" value is not used as part of the HKDF

functionality.

The algorithms defined in this document are found in Table 8.

[RFC5869]

Name PRF Description

HKDF SHA-256 HMAC with SHA-256 HKDF using HMAC SHA-256 as the PRF

HKDF SHA-512 HMAC with SHA-512 HKDF using HMAC SHA-512 as the PRF

HKDF AES-MAC-128 AES-CBC-MAC-128 HKDF using AES-MAC as the PRF w/ 128-bit key

HKDF AES-MAC-256 AES-CBC-MAC-256 HKDF using AES-MAC as the PRF w/ 256-bit key

Table 8: HKDF Algorithms

RFC 9053 COSE Algorithms August 2022

Schaad Informational Page 16

Name Label Type Algorithm Description

salt -20 bstr direct+HKDF-SHA-256, direct+HKDF-SHA-512,

direct+HKDF-AES-128, direct+HKDF-AES-256,

ECDH-ES+HKDF-256, ECDH-ES+HKDF-512, ECDH-

SS+HKDF-256, ECDH-SS+HKDF-512, ECDH-

ES+A128KW, ECDH-ES+A192KW, ECDH-

ES+A256KW, ECDH-SS+A128KW, ECDH-SS+A192KW,

ECDH-SS+A256KW

Random

salt

Table 9: HKDF Algorithm Parameters

5.2. Context Information Structure

The context information structure is used to ensure that the derived keying material is "bound"

to the context of the transaction. The context information structure used here is based on that

defined in . By using CBOR for the encoding of the context information structure, we

automatically get the same type and length separation of fields that is obtained by the use of ASN.

1. This means that there is no need to encode the lengths for the base elements, as it is done by

the encoding used in JSON Object Signing and Encryption (JOSE) ().

The context information structure refers to PartyU and PartyV as the two parties that are doing

the key derivation. Unless the application protocol defines differently, we assign PartyU to the

entity that is creating the message and PartyV to the entity that is receiving the message. By

defining this association, different keys will be derived for each direction, as the context

information is different in each direction.

The context structure is built from information that is known to both entities. This information

can be obtained from a variety of sources:

Fields can be defined by the application. This is commonly used to assign fixed names to

parties, but it can be used for other items such as nonces.

Fields can be defined by usage of the output. Examples of this are the algorithm and key size

that are being generated.

Fields can be defined by parameters from the message. We define a set of header parameters

in Table 10 that can be used to carry the values associated with the context structure.

Examples of this are identities and nonce values. These header parameters are designed to

be placed in the unprotected bucket of the recipient structure; they do not need to be in the

protected bucket, since they are already included in the cryptographic computation by virtue

of being included in the context structure.

[SP800-56A]

Section 4.6.2 of [RFC7518]

•

•

•

RFC 9053 COSE Algorithms August 2022

Schaad Informational Page 17

https://www.rfc-editor.org/rfc/rfc7518#section-4.6.2

Name Label Type Algorithm Description

PartyU

identity

-21 bstr direct+HKDF-SHA-256, direct+HKDF-SHA-512,

direct+HKDF-AES-128, direct+HKDF-AES-256,

ECDH-ES+HKDF-256, ECDH-ES+HKDF-512,

ECDH-SS+HKDF-256, ECDH-SS+HKDF-512,

ECDH-ES+A128KW, ECDH-ES+A192KW, ECDH-

ES+A256KW, ECDH-SS+A128KW, ECDH-

SS+A192KW, ECDH-SS+A256KW

PartyU

identity

information

PartyU

nonce

-22 bstr /

int

direct+HKDF-SHA-256, direct+HKDF-SHA-512,

direct+HKDF-AES-128, direct+HKDF-AES-256,

ECDH-ES+HKDF-256, ECDH-ES+HKDF-512,

ECDH-SS+HKDF-256, ECDH-SS+HKDF-512,

ECDH-ES+A128KW, ECDH-ES+A192KW, ECDH-

ES+A256KW, ECDH-SS+A128KW, ECDH-

SS+A192KW, ECDH-SS+A256KW

PartyU

provided

nonce

PartyU

other

-23 bstr direct+HKDF-SHA-256, direct+HKDF-SHA-512,

direct+HKDF-AES-128, direct+HKDF-AES-256,

ECDH-ES+HKDF-256, ECDH-ES+HKDF-512,

ECDH-SS+HKDF-256, ECDH-SS+HKDF-512,

ECDH-ES+A128KW, ECDH-ES+A192KW, ECDH-

ES+A256KW, ECDH-SS+A128KW, ECDH-

SS+A192KW, ECDH-SS+A256KW

PartyU other

provided

information

PartyV

identity

-24 bstr direct+HKDF-SHA-256, direct+HKDF-SHA-512,

direct+HKDF-AES-128, direct+HKDF-AES-256,

ECDH-ES+HKDF-256, ECDH-ES+HKDF-512,

ECDH-SS+HKDF-256, ECDH-SS+HKDF-512,

ECDH-ES+A128KW, ECDH-ES+A192KW, ECDH-

ES+A256KW, ECDH-SS+A128KW, ECDH-

SS+A192KW, ECDH-SS+A256KW

PartyV

identity

information

PartyV

nonce

-25 bstr /

int

direct+HKDF-SHA-256, direct+HKDF-SHA-512,

direct+HKDF-AES-128, direct+HKDF-AES-256,

ECDH-ES+HKDF-256, ECDH-ES+HKDF-512,

ECDH-SS+HKDF-256, ECDH-SS+HKDF-512,

ECDH-ES+A128KW, ECDH-ES+A192KW, ECDH-

ES+A256KW, ECDH-SS+A128KW, ECDH-

SS+A192KW, ECDH-SS+A256KW

PartyV

provided

nonce

RFC 9053 COSE Algorithms August 2022

Schaad Informational Page 18

AlgorithmID:

PartyUInfo:

identity:

nonce:

We define a CBOR object to hold the context information. This object is referred to as

COSE_KDF_Context. The object is based on a CBOR array type. The fields in the array are:

This field indicates the algorithm for which the key material will be used. This

normally is either a key wrap algorithm identifier or a content encryption algorithm

identifier. The values are from the "COSE Algorithms" registry. This field is required to be

present. The field exists in the context information so that a different key is generated for

each algorithm even if all of the other context information is the same. In practice, this means

if algorithm A is broken and thus finding the key is relatively easy, the key derived for

algorithm B will not be the same as the key derived for algorithm A.

This field holds information about PartyU. The PartyUInfo is encoded as a CBOR

array. The elements of PartyUInfo are encoded in the order presented below. The elements of

the PartyUInfo array are:

This contains the identity information for PartyU. The identities can be assigned in

one of two manners. First, a protocol can assign identities based on roles. For example, the

roles of "client" and "server" may be assigned to different entities in the protocol. Each

entity would then use the correct label for the data it sends or receives. The second way for

a protocol to assign identities is to use a name based on a naming system (i.e., DNS or X.509

names).

We define an algorithm parameter, "PartyU identity", that can be used to carry identity

information in the message. However, identity information is often known as part of the

protocol and can thus be inferred rather than made explicit. If identity information is

carried in the message, applications have a way of validating the supplied identity

information. The identity information does not need to be specified and is set to nil in that

case.

This contains a nonce value. The nonce can be either implicit from the protocol or

carried as a value in the unprotected header bucket.

We define an algorithm parameter, "PartyU nonce", that can be used to carry this value in

the message; however, the nonce value could be determined by the application and its

value obtained in a different manner.

Name Label Type Algorithm Description

PartyV

other

-26 bstr direct+HKDF-SHA-256, direct+HKDF-SHA-512,

direct+HKDF-AES-128, direct+HKDF-AES-256,

ECDH-ES+HKDF-256, ECDH-ES+HKDF-512,

ECDH-SS+HKDF-256, ECDH-SS+HKDF-512,

ECDH-ES+A128KW, ECDH-ES+A192KW, ECDH-

ES+A256KW, ECDH-SS+A128KW, ECDH-

SS+A192KW, ECDH-SS+A256KW

PartyV other

provided

information

Table 10: Context Algorithm Parameters

SHOULD

RFC 9053 COSE Algorithms August 2022

Schaad Informational Page 19

other:

PartyVInfo:

SuppPubInfo:

keyDataLength:

protected:

other:

SuppPrivInfo:

This option does not need to be specified; if not needed, it is set to nil.

This contains other information that is defined by the protocol. This option does not

need to be specified; if not needed, it is set to nil.

This field holds information about PartyV. The content of the structure is the same

as for the PartyUInfo but for PartyV.

This field contains public information that is mutually known to both parties,

and is encoded as a CBOR array.

This is set to the number of bits of the desired output value. This practice

means if algorithm A can use two different key lengths, the key derived for the longer key

size will not contain the key for the shorter key size as a prefix.

This field contains the protected parameter field. If there are no elements in the

"protected" field, then use a zero-length bstr.

This field is for free-form data defined by the application. For example, an application

could define two different byte strings to be placed here to generate different keys for a

data stream versus a control stream. This field is optional and will only be present if the

application defines a structure for this information. Applications that define this

use CBOR to encode the data so that types and lengths are correctly included.

This field contains private information that is mutually known private

information. An example of this information would be a pre-existing shared secret. (This

could, for example, be used in combination with an ECDH key agreement to provide a

secondary proof of identity.) The field is optional and will only be present if the application

defines a structure for this information. Applications that define this use CBOR to

encode the data so that types and lengths are correctly included.

The following CDDL fragment corresponds to the text above.

SHOULD

SHOULD

PartyInfo = (

 identity : bstr / nil,

 nonce : bstr / int / nil,

 other : bstr / nil

)

COSE_KDF_Context = [

 AlgorithmID : int / tstr,

 PartyUInfo : [PartyInfo],

 PartyVInfo : [PartyInfo],

 SuppPubInfo : [

 keyDataLength : uint,

 protected : empty_or_serialized_map,

 ? other : bstr

],

 ? SuppPrivInfo : bstr

]

RFC 9053 COSE Algorithms August 2022

Schaad Informational Page 20

6. Content Key Distribution Methods

 contains a generic description of content key distribution methods. This

document defines the identifiers and usage for a number of content key distribution methods.

6.1. Direct Encryption

A direct encryption algorithm is defined in . Information about how to

fill in the COSE_Recipient structure is detailed there.

6.1.1. Direct Key

This recipient algorithm is the simplest; the identified key is directly used as the key for the next

layer down in the message. There are no algorithm parameters defined for this algorithm. The

algorithm identifier value is assigned in Table 11.

When this algorithm is used, the "protected" field be zero length. The key type be

"Symmetric".

6.1.1.1. Security Considerations for Direct Key

This recipient algorithm has several potential problems that need to be considered:

These keys need to have some method of being regularly updated over time. All of the

content encryption algorithms specified in this document have limits on how many times a

key can be used without significant loss of security.

These keys need to be dedicated to a single algorithm. There have been a number of attacks

developed over time when a single key is used for multiple different algorithms. One

example of this is the use of a single key for both the CBC encryption mode and the CBC-MAC

authentication mode.

Breaking one message means all messages are broken. If an adversary succeeds in

determining the key for a single message, then the key for all messages is also determined.

Section 8.5 of [RFC9052]

Section 8.5.1 of [RFC9052]

MUST MUST

Name Value Description

direct -6 Direct use of content encryption key (CEK)

Table 11: Direct Key

•

•

•

6.1.2. Direct Key with KDF

These recipient algorithms take a common shared secret between the two parties and apply the

HKDF function (Section 5.1), using the context structure defined in Section 5.2 to transform the

shared secret into the CEK. The "protected" field can be of nonzero length. Either the "salt"

parameter for HKDF (Table 9) or the "PartyU nonce" parameter for the context structure (Table

RFC 9053 COSE Algorithms August 2022

Schaad Informational Page 21

https://www.rfc-editor.org/rfc/rfc9052#section-8.5
https://www.rfc-editor.org/rfc/rfc9052#section-8.5.1

10) be present (both can be present if desired). The value in the "salt"/"nonce" parameter

can be generated either randomly or deterministically. The requirement is that it be a unique

value for the shared secret in question.

If the salt/nonce value is generated randomly, then it is suggested that the length of the random

value be the same length as the output of the hash function underlying HKDF. While there is no

way to guarantee that it will be unique, there is a high probability that it will be unique. If the

salt/nonce value is generated deterministically, it can be guaranteed to be unique, and thus there

is no length requirement.

A new IV must be used for each message if the same key is used. The IV can be modified in a

predictable manner, a random manner, or an unpredictable manner (e.g., encrypting a counter).

The IV used for a key can also be generated using the same HKDF functionality used to generate

the key. If HKDF is used for generating the IV, the algorithm identifier is set to 34 ("IV-

GENERATION").

The set of algorithms defined in this document can be found in Table 12.

When using a COSE key for this algorithm, the following checks are made:

The "kty" field be present, and it be "Symmetric".

If the "alg" field is present, it match the algorithm being used.

If the "key_ops" field is present, it include "derive key" or "derive bits".

6.1.2.1. Security Considerations for Direct Key with KDF

The shared secret needs to have some method of being regularly updated over time. The shared

secret forms the basis of trust. Although not used directly, it should still be subject to scheduled

rotation.

MUST

Name Value KDF Description

direct+HKDF-

SHA-256

-10 HKDF SHA-256 Shared secret w/ HKDF and SHA-256

direct+HKDF-

SHA-512

-11 HKDF SHA-512 Shared secret w/ HKDF and SHA-512

direct+HKDF-AES-128 -12 HKDF AES-

MAC-128

Shared secret w/ AES-MAC 128-bit

key

direct+HKDF-AES-256 -13 HKDF AES-

MAC-256

Shared secret w/ AES-MAC 256-bit

key

Table 12: Direct Key with KDF

• MUST MUST

• MUST

• MUST

RFC 9053 COSE Algorithms August 2022

Schaad Informational Page 22

6.3. Direct Key Agreement

Direct Key Agreement is defined in . Information about how to fill in

the COSE_Recipient structure is detailed there.

These methods do not provide for perfect forward secrecy, as the same shared secret is used for

all of the keys generated; however, if the key for any single message is discovered, only the

message or series of messages using that derived key are compromised. A new key derivation

step will generate a new key that requires the same amount of work to get the key.

6.2. Key Wrap

Key wrap is defined in . Information about how to fill in the

COSE_Recipient structure is detailed there.

6.2.1. AES Key Wrap

The AES Key Wrap algorithm is defined in . This algorithm uses an AES key to wrap a

value that is a multiple of 64 bits. As such, it can be used to wrap a key for any of the content

encryption algorithms defined in this document. The algorithm requires a single fixed

parameter, the initial value. This is fixed to the value specified in .

There are no public key parameters that vary on a per-invocation basis. The protected header

bucket be empty.

Keys may be obtained from either a key structure or a recipient structure. Implementations that

are encrypting or decrypting validate that the key type, key length, and algorithm are

correct and appropriate for the entities involved.

When using a COSE key for this algorithm, the following checks are made:

The "kty" field be present, and it be "Symmetric".

If the "alg" field is present, it match the AES Key Wrap algorithm being used.

If the "key_ops" field is present, it include "encrypt" or "wrap key" when encrypting.

If the "key_ops" field is present, it include "decrypt" or "unwrap key" when decrypting.

6.2.1.1. Security Considerations for AES Key Wrap

The shared secret needs to have some method of being regularly updated over time. The shared

secret is the basis of trust.

Section 8.5.2 of [RFC9052]

[RFC3394]

Section 2.2.3.1 of [RFC3394]

MUST

MUST

• MUST MUST

• MUST

• MUST

• MUST

Name Value Key Size Description

A128KW -3 128 AES Key Wrap w/ 128-bit key

A192KW -4 192 AES Key Wrap w/ 192-bit key

A256KW -5 256 AES Key Wrap w/ 256-bit key

Table 13: AES Key Wrap Algorithm Values

Section 8.5.4 of [RFC9052]

RFC 9053 COSE Algorithms August 2022

Schaad Informational Page 23

https://www.rfc-editor.org/rfc/rfc9052#section-8.5.2
https://www.rfc-editor.org/rfc/rfc3394#section-2.2.3.1
https://www.rfc-editor.org/rfc/rfc9052#section-8.5.4

Curve Type/Curve:

Computed Secret to Shared Secret:

Ephemeral-Static or Static-Static:

Key Derivation Algorithm:

6.3.1. Direct ECDH

The mathematics for ECDH can be found in . In this document, the algorithm is

extended to be used with the two curves defined in .

ECDH is parameterized by the following:

The curve selected controls not only the size of the shared secret, but the

mathematics for computing the shared secret. The curve selected also controls how a point in

the curve is represented and what happens for the identity points on the curve. In this

specification, we allow for a number of different curves to be used. A set of curves is defined

in Table 18.

The math used to obtain the computed secret is based on the curve selected and not on the

ECDH algorithm. For this reason, a new algorithm does not need to be defined for each of the

curves.

Once the computed secret is known, the resulting value

needs to be converted to a byte string to run the KDF. The x-coordinate is used for all of the

curves defined in this document. For curves X25519 and X448, the resulting value is used

directly, as it is a byte string of a known length. For the P-256, P-384, and P-521 curves, the x-

coordinate is run through the Integer-to-Octet-String primitive (I2OSP) function defined in

, using the same computation for n as is defined in Section 2.1.

The key agreement process may be done using either a static

or an ephemeral key for the sender's side. When using ephemeral keys, the sender

generate a new ephemeral key for every key agreement operation. The ephemeral key is

placed in the "ephemeral key" parameter and be present for all algorithm identifiers

that use ephemeral keys. When using static keys, the sender either generate a new

random value or create a unique value for use as a KDF input. For the KDFs used, this means

that either the "salt" parameter for HKDF (Table 9) or the "PartyU nonce" parameter for the

context structure (Table 10) be present (both can be present if desired). The value in the

parameter be unique for the pair of keys being used. It is acceptable to use a global

counter that is incremented for every Static-Static operation and use the resulting value. Care

must be taken that the counter is saved to permanent storage in a way that avoids reuse of

that counter value. When using static keys, the static key should be identified to the recipient.

The static key can be identified by providing either the key ("static key") or a key identifier for

the static key ("static key id"). Both of these header parameters are defined in Table 15.

The result of an ECDH key agreement process does not provide a

uniformly random secret. As such, it needs to be run through a KDF in order to produce a

usable key. Processing the secret through a KDF also allows for the introduction of context

material: how the key is going to be used and one-time material for Static-Static key

agreement. All of the algorithms defined in this document use one of the HKDF algorithms

defined in Section 5.1 with the context structure defined in Section 5.2.

[RFC6090]

[RFC7748]

[RFC8017]

MUST

MUST

MUST

MUST

MUST

RFC 9053 COSE Algorithms August 2022

Schaad Informational Page 24

Key Wrap Algorithm: No key wrap algorithm is used. This is represented in Table 14 as "none".

The key size for the context structure is the content layer encryption algorithm size.

COSE does not have an Ephemeral-Ephemeral version defined. The reason for this is that COSE is

not an online protocol by itself and thus does not have a method of establishing ephemeral

secrets on both sides. The expectation is that a protocol would establish the secrets for both sides,

and then they would be used as Static-Static for the purposes of COSE, or that the protocol would

generate a shared secret and a direct encryption would be used.

The set of direct ECDH algorithms defined in this document is found in Table 14.

Name Value KDF Ephemeral-

Static

Key

Wrap

Description

ECDH-ES +

HKDF-256

-25 HKDF --

SHA-256

yes none ECDH ES w/ HKDF --

generate key directly

ECDH-ES +

HKDF-512

-26 HKDF --

SHA-512

yes none ECDH ES w/ HKDF --

generate key directly

ECDH-SS +

HKDF-256

-27 HKDF --

SHA-256

no none ECDH SS w/ HKDF --

generate key directly

ECDH-SS +

HKDF-512

-28 HKDF --

SHA-512

no none ECDH SS w/ HKDF --

generate key directly

Table 14: ECDH Algorithm Values

Name Label Type Algorithm Description

ephemeral

key

-1 COSE_Key ECDH-ES+HKDF-256, ECDH-

ES+HKDF-512, ECDH-ES+A128KW,

ECDH-ES+A192KW, ECDH-

ES+A256KW

Ephemeral public

key for the sender

static key -2 COSE_Key ECDH-SS+HKDF-256, ECDH-

SS+HKDF-512, ECDH-SS+A128KW,

ECDH-SS+A192KW, ECDH-

SS+A256KW

Static public key

for the sender

static key

id

-3 bstr ECDH-SS+HKDF-256, ECDH-

SS+HKDF-512, ECDH-SS+A128KW,

ECDH-SS+A192KW, ECDH-

SS+A256KW

Static public key

identifier for the

sender

Table 15: ECDH Algorithm Parameters

RFC 9053 COSE Algorithms August 2022

Schaad Informational Page 25

6.4. Key Agreement with Key Wrap

Key Agreement with Key Wrap is defined in . Information about how to

fill in the COSE_Recipient structure is detailed there.

This document defines these algorithms to be used with the curves P-256, P-384, P-521, X25519,

and X448. Implementations verify that the key type and curve are correct. Different curves

are restricted to different key types. Implementations verify that the curve and algorithm

are appropriate for the entities involved.

When using a COSE key for this algorithm, the following checks are made:

The "kty" field be present, and it be "EC2" or "OKP".

If the "alg" field is present, it match the key agreement algorithm being used.

If the "key_ops" field is present, it include "derive key" or "derive bits" for the private

key.

If the "key_ops" field is present, it be empty for the public key.

6.3.1.1. Security Considerations for ECDH

There is a method of checking that points provided from external entities are valid. For the "EC2"

key format, this can be done by checking that the x and y values form a point on the curve. For

the "OKP" format, there is no simple way to perform point validation.

Consideration was given to requiring that the public keys of both entities be provided as part of

the key derivation process (as recommended in). This was not done,

because COSE is used in a store-and-forward format rather than in online key exchange. In order

for this to be a problem, either the receiver public key has to be chosen maliciously or the sender

has to be malicious. In either case, all security evaporates anyway.

A proof of possession of the private key associated with the public key is recommended when a

key is moved from untrusted to trusted (either by the end user or by the entity that is responsible

for making trust statements on keys).

MUST

MUST

• MUST MUST

• MUST

• MUST

• MUST

Section 6.1 of [RFC7748]

Section 8.5.5 of [RFC9052]

Key Wrap Algorithm:

6.4.1. ECDH with Key Wrap

These algorithms are defined in Table 16.

ECDH with Key Agreement is parameterized by the same header parameters as for ECDH; see

Section 6.3.1, with the following modifications:

Any of the key wrap algorithms defined in Section 6.2 are supported. The

size of the key used for the key wrap algorithm is fed into the KDF. The set of identifiers is

found in Table 16.

RFC 9053 COSE Algorithms August 2022

Schaad Informational Page 26

https://www.rfc-editor.org/rfc/rfc7748#section-6.1
https://www.rfc-editor.org/rfc/rfc9052#section-8.5.5

When using a COSE key for this algorithm, the following checks are made:

The "kty" field be present, and it be "EC2" or "OKP".

If the "alg" field is present, it match the key agreement algorithm being used.

If the "key_ops" field is present, it include "derive key" or "derive bits" for the private

key.

If the "key_ops" field is present, it be empty for the public key.

Name Value KDF Ephemeral-

Static

Key

Wrap

Description

ECDH-ES +

A128KW

-29 HKDF --

SHA-256

yes A128KW ECDH ES w/ HKDF and

AES Key Wrap w/ 128-bit

key

ECDH-ES +

A192KW

-30 HKDF --

SHA-256

yes A192KW ECDH ES w/ HKDF and

AES Key Wrap w/ 192-bit

key

ECDH-ES +

A256KW

-31 HKDF --

SHA-256

yes A256KW ECDH ES w/ HKDF and

AES Key Wrap w/ 256-bit

key

ECDH-SS +

A128KW

-32 HKDF --

SHA-256

no A128KW ECDH SS w/ HKDF and

AES Key Wrap w/ 128-bit

key

ECDH-SS +

A192KW

-33 HKDF --

SHA-256

no A192KW ECDH SS w/ HKDF and

AES Key Wrap w/ 192-bit

key

ECDH-SS +

A256KW

-34 HKDF --

SHA-256

no A256KW ECDH SS w/ HKDF and

AES Key Wrap w/ 256-bit

key

Table 16: ECDH Algorithm Values with Key Wrap

• MUST MUST

• MUST

• MUST

• MUST

7. Key Object Parameters

The COSE_Key object defines a way to hold a single key object. It is still required that the

members of individual key types be defined. This section of the document is where we define an

initial set of members for specific key types.

For each of the key types, we define both public and private members. The public members are

what is transmitted to others for their usage. Private members allow individuals to archive keys.

However, there are some circumstances in which private keys may be distributed to entities in a

RFC 9053 COSE Algorithms August 2022

Schaad Informational Page 27

protocol. Examples include: entities that have poor random number generation, centralized key

creation for multicast-type operations, and protocols in which a shared secret is used as a bearer

token for authorization purposes.

Key types are identified by the "kty" member of the COSE_Key object. In this document, we define

four values for the member:

7.1. Elliptic Curve Keys

Two different key structures are defined for elliptic curve keys. One version uses both an x-

coordinate and a y-coordinate, potentially with point compression ("EC2"). This is the

conventional elliptic curve (EC) point representation that is used in . The other version

uses only the x-coordinate, as the y-coordinate is either to be recomputed or not needed for the

key agreement operation ("OKP").

Applications check that the curve and the key type are consistent and reject a key if they

are not.

Name Value Description

OKP 1 Octet Key Pair

EC2 2 Elliptic Curve Keys w/ x- and y-coordinate pair

Symmetric 4 Symmetric Keys

Reserved 0 This value is reserved

Table 17: Key Type Values

[RFC5480]

MUST

Name Value Key Type Description

P-256 1 EC2 NIST P-256, also known as secp256r1

P-384 2 EC2 NIST P-384, also known as secp384r1

P-521 3 EC2 NIST P-521, also known as secp521r1

X25519 4 OKP X25519 for use w/ ECDH only

X448 5 OKP X448 for use w/ ECDH only

Ed25519 6 OKP Ed25519 for use w/ EdDSA only

Ed448 7 OKP Ed448 for use w/ EdDSA only

Table 18: Elliptic Curves

RFC 9053 COSE Algorithms August 2022

Schaad Informational Page 28

crv:

x:

y:

d:

7.1.1. Double Coordinate Curves

Generally, protocols transmit elliptic-curve points as either the x-coordinate and y-coordinate or

the x-coordinate and a sign bit for the y-coordinate. The latter encoding has not been

recommended by the IETF due to potential IPR issues. However, for operations in constrained

environments, the ability to shrink a message by not sending the y-coordinate is potentially

useful.

For EC keys with both coordinates, the "kty" member is set to 2 (EC2). The key parameters defined

in this section are summarized in Table 19. The members that are defined for this key type are:

This contains an identifier of the curve to be used with the key. The curves defined in this

document for this key type can be found in Table 18. Other curves may be registered in the

future, and private curves can be used as well.

This contains the x-coordinate for the EC point. The integer is converted to a byte string as

defined in . Leading-zero octets be preserved.

This contains either the sign bit or the value of the y-coordinate for the EC point. When

encoding the value y, the integer is converted to a byte string (as defined in) and

encoded as a CBOR bstr. Leading-zero octets be preserved. Compressed point

encoding is also supported. Compute the sign bit as laid out in the Elliptic-Curve-Point-to-

Octet-String Conversion function of . If the sign bit is zero, then encode y as a CBOR

false value; otherwise, encode y as a CBOR true value. The encoding of the infinity point is

not supported.

This contains the private key.

For public keys, it is that "crv", "x", and "y" be present in the structure. For private

keys, it is that "crv" and "d" be present in the structure. For private keys, it is

 that "x" and "y" also be present, but they can be recomputed from the required

elements, and omitting them saves on space.

[SEC1] MUST

[SEC1]

MUST

[SEC1]

REQUIRED

REQUIRED

RECOMMENDED

Key

Type

Name Label CBOR

Type

Description

2 crv -1 int / tstr EC identifier -- Taken from the "COSE Elliptic

Curves" registry

2 x -2 bstr x-coordinate

2 y -3 bstr / bool y-coordinate

2 d -4 bstr Private key

Table 19: EC Key Parameters

RFC 9053 COSE Algorithms August 2022

Schaad Informational Page 29

crv:

x:

d:

k:

7.2. Octet Key Pair

A new key type is defined for Octet Key Pairs (OKPs). Do not assume that keys using this type are

elliptic curves. This key type could be used for other curve types (for example, mathematics

based on hyper-elliptic surfaces).

The key parameters defined in this section are summarized in Table 20. The members that are

defined for this key type are:

This contains an identifier of the curve to be used with the key. The curves defined in this

document for this key type can be found in Table 18. Other curves may be registered in the

future, and private curves can be used as well.

This contains the public key. The byte string contains the public key as defined by the

algorithm. (For X25519, internally it is a little-endian integer.)

This contains the private key.

For public keys, it is that "crv" and "x" be present in the structure. For private keys, it

is that "crv" and "d" be present in the structure. For private keys, it is

that "x" also be present, but it can be recomputed from the required elements, and omitting it

saves on space.

7.3. Symmetric Keys

Occasionally, it is required that a symmetric key be transported between entities. This key

structure allows for that to happen.

For symmetric keys, the "kty" member is set to 4 ("Symmetric"). The member that is defined for

this key type is:

This contains the value of the key.

REQUIRED

REQUIRED RECOMMENDED

Name Key

Type

Label Type Description

crv 1 -1 int /

tstr

EC identifier -- Taken from the "COSE Elliptic Curves"

registry

x 1 -2 bstr Public Key

d 1 -4 bstr Private key

Table 20: Octet Key Pair Parameters

RFC 9053 COSE Algorithms August 2022

Schaad Informational Page 30

This key structure does not have a form that contains only public members. As it is expected that

this key structure is going to be transmitted, care must be taken that it is never transmitted

accidentally or insecurely. For symmetric keys, it is that "k" be present in the

structure.

REQUIRED

Name Key Type Label Type Description

k 4 -1 bstr Key Value

Table 21: Symmetric Key Parameters

8. COSE Capabilities

The capabilities of an algorithm or key type need to be specified in some situations. This has a

counterpart in the S/MIME specifications, where SMIMECapabilities is defined in

. This document defines the same concept for COSE.

The algorithm identifier is not included in the capabilities data, as it should be encoded

elsewhere in the message. The key type identifier is included in the capabilities data, as it is not

expected to be encoded elsewhere.

Two different types of capabilities are defined: capabilities for algorithms and capabilities for

key type. Once defined by registration with IANA, the list of capabilities for an algorithm or key

type is immutable. If it is later found that a new capability is needed for a key type or algorithm,

it will require that a new code point be assigned to deal with that. As a general rule, the

capabilities are going to map to algorithm-specific header parameters or key parameters, but

they do not need to do so. An example of this is the HSS-LMS key type capabilities defined below,

where the hash algorithm used is included.

The capability structure is an array of values; the values included in the structure are dependent

on a specific algorithm or key type. For algorithm capabilities, the first element should always be

a key type value if applicable, but the items that are specific to a key (for example, a curve)

should not be included in the algorithm capabilities. This means that if one wishes to enumerate

all of the capabilities for a device that implements ECDH, it requires that all of the combinations

of algorithms and key pairs be specified. The last example of Section 8.3 provides a case where

this is done by allowing for a cross product to be specified between an array of algorithm

capabilities and key type capabilities (see the ECDH-ES+A25KW element). For a key, the first

element should be the key type value. While this means that the key type value will be duplicated

if both an algorithm and key capability are used, the key type is needed in order to understand

the rest of the values.

8.1. Assignments for Existing Algorithms

For the current set of algorithms in the registry other than IV-GENERATION (those in this

document as well as those in , , and), the capabilities list is an

array with one element, the key type (from the "COSE Key Types" Registry). It is expected that

future registered algorithms could have zero, one, or multiple elements.

Section 2.5.2 of

[RFC8551]

[RFC8230] [RFC8778] [RFC9021]

RFC 9053 COSE Algorithms August 2022

Schaad Informational Page 31

https://www.rfc-editor.org/rfc/rfc8551#section-2.5.2

8.2. Assignments for Existing Key Types

There are a number of pre-existing key types; the following deals with creating the capability

definition for those structures:

OKP, EC2: The list of capabilities is:

The key type value. (1 for OKP or 2 for EC2.)

One curve for that key type from the "COSE Elliptic Curves" registry.

RSA: The list of capabilities is:

The key type value (3).

Symmetric: The list of capabilities is:

The key type value (4).

HSS-LMS: The list of capabilities is:

The key type value (5).

Algorithm identifier for the underlying hash function from the "COSE Algorithms" registry.

WalnutDSA: The list of capabilities is:

The key type value (6).

The N value (group and matrix size) for the key, a uint.

The q value (finite field order) for the key, a uint.

•

◦

◦

•

◦

•

◦

•

◦

◦

•

◦

◦

◦

8.3. Examples

Capabilities can be used in a key derivation process to make sure that both sides are using the

same parameters. The three examples below show different ways that one might utilize

parameters in specifying an application protocol:

Only an algorithm capability: This is useful if the protocol wants to require a specific

algorithm, such as ES256, but it is agnostic about which curve is being used. This requires

that the algorithm identifier be specified in the protocol. See the first example.

Only a key type capability: This is useful if the protocol wants to require a specific key type

and curve, such as P-256, but will accept any algorithm using that curve (e.g., both ECDSA

and ECDH). See the second example.

Both algorithm and key type capabilities: This is used if the protocol needs to nail down all of

the options surrounding an algorithm -- e.g., EdDSA with the curve Ed25519. As with the first

example, the algorithm identifier needs to be specified in the protocol. See the third example,

which just concatenates the two capabilities together.

•

•

•

RFC 9053 COSE Algorithms August 2022

Schaad Informational Page 32

The capabilities can also be used by an entity to advertise what it is capable of doing. The

decoded example below is one of many encodings that could be used for that purpose. Each

array element includes three fields: the algorithm identifier, one or more algorithm capabilities,

and one or more key type capabilities.

Examining the above:

The first element indicates that the entity supports EdDSA with curves Ed25519 and Ed448.

Algorithm ES256

0x8102 / [2 \ EC2 \] /

Key type EC2 with P-256 curve:

0x820201 / [2 \ EC2 \, 1 \ P-256 \] /

ECDH-ES + A256KW with an X25519 curve:

0x8101820104 / [1 \ OKP \],[1 \ OKP \, 4 \ X25519 \] /

[

 [-8 / EdDSA /,

 [1 / OKP key type /],

 [

 [1 / OKP /, 6 / Ed25519 /],

 [1 /OKP/, 7 /Ed448 /]

]

],

 [-7 / ECDSA with SHA-256/,

 [2 /EC2 key type/],

 [

 [2 /EC2/, 1 /P-256/],

 [2 /EC2/, 3 /P-521/]

]

],

 [-31 / ECDH-ES+A256KW/,

 [

 [2 /EC2/],

 [1 /OKP/]

],

 [

 [2 /EC2/, 1 /P-256/],

 [1 /OKP/, 4 / X25519/]

]

],

 [1 / A128GCM /,

 [4 / Symmetric /],

 [4 / Symmetric /]

]

]

•

RFC 9053 COSE Algorithms August 2022

Schaad Informational Page 33

The second element indicates that the entity supports ECDSA with SHA-256 with curves P-256

and P-521.

The third element indicates that the entity supports Ephemeral-Static ECDH using AES256

key wrap. The entity can support the P-256 curve with an EC2 key type and the X25519 curve

with an OKP key type.

The last element indicates that the entity supports AES-GCM of 128 bits for content

encryption.

The entity does not advertise that it supports any MAC algorithms.

•

•

•

9. CBOR Encoding Restrictions

This document limits the restrictions it imposes on how the CBOR Encoder needs to work. The

new encoding restrictions are aligned with the Core Deterministic Encoding Requirements

specified in . It has been narrowed down to the following

restrictions:

The restriction applies to the encoding of the COSE_KDF_Context.

Encoding be done using definite lengths, and the length of the (encoded) argument

 be the minimum possible length. This means that the integer 1 is encoded as "0x01"

and not "0x1801".

Applications generate messages with the same label used twice as a key in a single

map. Applications parse and process messages with the same label used twice as a

key in a single map. Applications can enforce the parse-and-process requirement by using

parsers that will fail the parse step or by using parsers that will pass all keys to the

application, and the application can perform the check for duplicate keys.

Section 4.2.1 of RFC 8949 [STD94]

•

• MUST

MUST

• MUST NOT

MUST NOT

10. IANA Considerations

IANA has updated all COSE registries except for "COSE Header Parameters" and "COSE Key

Common Parameters" to point to this document instead of .

10.1. Changes to the "COSE Key Types" Registry

IANA has added a new column in the "COSE Key Types" registry. The new column is labeled

"Capabilities" and has been populated according to the entries in Table 22.

[RFC8152]

Value Name Capabilities

1 OKP [kty(1), crv]

2 EC2 [kty(2), crv]

3 RSA [kty(3)]

RFC 9053 COSE Algorithms August 2022

Schaad Informational Page 34

https://www.rfc-editor.org/rfc/rfc8949#section-4.2.1

10.2. Changes to the "COSE Algorithms" Registry

IANA has added a new column in the "COSE Algorithms" registry. The new column is labeled

"Capabilities" and has been populated with "[kty]" for all current, nonprovisional registrations.

IANA has updated the Reference column in the "COSE Algorithms" registry to include this

document as a reference for all rows where it was not already present.

IANA has added a new row to the "COSE Algorithms" registry.

Name Value Description Reference Recommended

IV-

GENERATION

34 For doing IV generation for

symmetric algorithms.

RFC 9053 No

Table 23: New entry in the COSE Algorithms registry

The Capabilities column for this registration is to be empty.

10.3. Changes to the "COSE Key Type Parameters" Registry

IANA has modified the description to "Public Key" for the line with "Key Type" of 1 and the

"Name" of "x". See Table 20, which has been modified with this change.

Value Name Capabilities

4 Symmetric [kty(4)]

5 HSS-LMS [kty(5), hash algorithm]

6 WalnutDSA [kty(6), N value, q value]

Table 22: Key Type Capabilities

10.4. Expert Review Instructions

All of the IANA registries established by are, at least in part, defined as Expert Review

. This section gives some general guidelines for what the experts should be looking for,

but they are being designated as experts for a reason, so they should be given substantial

latitude.

Expert reviewers should take the following into consideration:

Point squatting should be discouraged. Reviewers are encouraged to get sufficient

information for registration requests to ensure that the usage is not going to duplicate an

existing registration and that the code point is likely to be used in deployments. The ranges

tagged as private use are intended for testing purposes and closed environments; code points

in other ranges should not be assigned for testing.

[RFC8152]

[RFC8126]

•

RFC 9053 COSE Algorithms August 2022

Schaad Informational Page 35

Standards Track or BCP RFCs are required to register a code point in the Standards Action

range. Specifications should exist for Specification Required ranges, but early assignment

before an RFC is available is considered to be permissible. Specifications are needed for the

first-come, first-served range if the points are expected to be used outside of closed

environments in an interoperable way. When specifications are not provided, the

description provided needs to have sufficient information to identify what the point is being

used for.

Experts should take into account the expected usage of fields when approving code point

assignment. The fact that the Standards Action range is only available to Standards Track

documents does not mean that a Standards Track document cannot have points assigned

outside of that range. The length of the encoded value should be weighed against how many

code points of that length are left and the size of device it will be used on.

When algorithms are registered, vanity registrations should be discouraged. One way to do

this is to require registrations to provide additional documentation on security analysis of

the algorithm. Another thing that should be considered is requesting an opinion on the

algorithm from the Crypto Forum Research Group (CFRG). Algorithms are expected to meet

the security requirements of the community and the requirements of the message structures

in order to be suitable for registration.

•

•

•

11. Security Considerations

There are a number of security considerations that need to be taken into account by

implementers of this specification. The security considerations that are specific to an individual

algorithm are placed next to the description of the algorithm. While some considerations have

been highlighted here, additional considerations may be found in the documents listed in the

references.

Implementations need to protect the private key material for all individuals. Some cases in this

document need to be highlighted with regard to this issue.

Use of the same key for two different algorithms can leak information about the key. It is

therefore recommended that keys be restricted to a single algorithm.

Use of "direct" as a recipient algorithm combined with a second recipient algorithm exposes

the direct key to the second recipient; forbids combining "direct"

recipient algorithms with other modes.

Several of the algorithms in this document have limits on the number of times that a key can

be used without leaking information about the key.

The use of ECDH and direct plus KDF (with no key wrap) will not directly lead to the private key

being leaked; the one-way function of the KDF will prevent that. There is, however, a different

issue that needs to be addressed. Having two recipients requires that the CEK be shared between

two recipients. The second recipient therefore has a CEK that was derived from material that can

be used for the weak proof of origin. The second recipient could create a message using the same

CEK and send it to the first recipient; the first recipient would, for either Static-Static ECDH or

•

•

Section 8.5 of [RFC9052]

•

RFC 9053 COSE Algorithms August 2022

Schaad Informational Page 36

https://www.rfc-editor.org/rfc/rfc9052#section-8.5

direct plus KDF, make an assumption that the CEK could be used for proof of origin, even though

it is from the wrong entity. If the key wrap step is added, then no proof of origin is implied and

this is not an issue.

Although it has been mentioned before, it bears repeating that the use of a single key for multiple

algorithms has been demonstrated in some cases to leak information about a key, providing the

opportunity for attackers to forge integrity tags or gain information about encrypted content.

Binding a key to a single algorithm prevents these problems. Key creators and key consumers are

strongly encouraged to not only create new keys for each different algorithm, but to include that

selection of algorithm in any distribution of key material and strictly enforce the matching of

algorithms in the key structure to algorithms in the message structure. In addition to checking

that algorithms are correct, the key form needs to be checked as well. Do not use an "EC2" key

where an "OKP" key is expected.

Before using a key for transmission, or before acting on information received, a trust decision on

a key needs to be made. Is the data or action something that the entity associated with the key

has a right to see or a right to request? A number of factors are associated with this trust

decision. Some highlighted here are:

What are the permissions associated with the key owner?

Is the cryptographic algorithm acceptable in the current context?

Have the restrictions associated with the key, such as algorithm or freshness, been checked,

and are they correct?

Is the request something that is reasonable, given the current state of the application?

Have any security considerations that are part of the message been enforced (as specified by

the application or "crit" header parameter)?

There are a large number of algorithms presented in this document that use nonce values. For all

of the nonces defined in this document, there is some type of restriction on the nonce being a

unique value for either a key or some other conditions. In all of these cases, there is no known

requirement on the nonce being both unique and unpredictable; under these circumstances, it's

reasonable to use a counter for creation of the nonce. In cases where one wants the pattern of

the nonce to be unpredictable as well as unique, one can use a key created for that purpose and

encrypt the counter to produce the nonce value.

One area that has been getting exposure is traffic analysis of encrypted messages based on the

length of the message. This specification does not provide a uniform method for providing

padding as part of the message structure. An observer can distinguish between two different

messages (for example, "YES" and "NO") based on the length for all of the content encryption

algorithms that are defined in this document. This means that it is up to the applications to

document how content padding is to be done in order to prevent or discourage such analysis.

(For example, the text strings could be defined as "YES" and "NO ".)

The analysis done in is based on the number of records that are sent. This should map

well to the number of messages sent when using COSE, so that analysis should hold here as well,

under the assumption that the COSE messages are roughly the same size as DTLS records. It

•

•

•

•

•

[RFC9147]

RFC 9053 COSE Algorithms August 2022

Schaad Informational Page 37

[AES-GCM]

[DSS]

[MAC]

[RFC2104]

[RFC2119]

[RFC3394]

[RFC3610]

[RFC5869]

[RFC6090]

[RFC6979]

12. References

12.1. Normative References

,

, ,

, November 2007,

.

,

, , , July 2013,

.

, , and ,

, , 1996, .

, , and ,

, , , February 1997,

.

, , ,

, , March 1997,

.

 and ,

, , , September 2002,

.

, , and , ,

, , September 2003,

.

 and ,

, , , May 2010,

.

, , and ,

, , , February 2011,

.

,

, ,

, August 2013, .

needs to be noted that the limits are based on the number of messages, but QUIC and DTLS are

always pairwise-based endpoints. In contrast, uses COSE in a group

communication scenario. Under these circumstances, it may be that no one single entity will see

all of the messages that are encrypted, and therefore no single entity can trigger the rekey

operation.

[OSCORE-GROUPCOMM]

Dworkin, M. "Recommendation for Block Cipher Modes of Operation: Galois/

Counter Mode (GCM) and GMAC" NIST Special Publication 800-38D DOI

10.6028/NIST.SP.800-38D <https://csrc.nist.gov/publications/

nistpubs/800-38D/SP-800-38D.pdf>

National Institute of Standards and Technology "Digital Signature Standard

(DSS)" FIPS PUB 186-4 DOI 10.6028/NIST.FIPS.186-4 <https://

nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf>

Menezes, A. van Oorschot, P. S. Vanstone "Handbook of Applied

Cryptography" CRC Press, Boca Raton <https://cacr.uwaterloo.ca/hac/>

Krawczyk, H. Bellare, M. R. Canetti "HMAC: Keyed-Hashing for Message

Authentication" RFC 2104 DOI 10.17487/RFC2104 <https://

www.rfc-editor.org/info/rfc2104>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14

RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/

rfc2119>

Schaad, J. R. Housley "Advanced Encryption Standard (AES) Key Wrap

Algorithm" RFC 3394 DOI 10.17487/RFC3394 <https://www.rfc-

editor.org/info/rfc3394>

Whiting, D. Housley, R. N. Ferguson "Counter with CBC-MAC (CCM)" RFC

3610 DOI 10.17487/RFC3610 <https://www.rfc-editor.org/info/

rfc3610>

Krawczyk, H. P. Eronen "HMAC-based Extract-and-Expand Key Derivation

Function (HKDF)" RFC 5869 DOI 10.17487/RFC5869 <https://www.rfc-

editor.org/info/rfc5869>

McGrew, D. Igoe, K. M. Salter "Fundamental Elliptic Curve Cryptography

Algorithms" RFC 6090 DOI 10.17487/RFC6090 <https://www.rfc-

editor.org/info/rfc6090>

Pornin, T. "Deterministic Usage of the Digital Signature Algorithm (DSA) and

Elliptic Curve Digital Signature Algorithm (ECDSA)" RFC 6979 DOI 10.17487/

RFC6979 <https://www.rfc-editor.org/info/rfc6979>

RFC 9053 COSE Algorithms August 2022

Schaad Informational Page 38

https://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
https://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://cacr.uwaterloo.ca/hac/
https://www.rfc-editor.org/info/rfc2104
https://www.rfc-editor.org/info/rfc2104
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3394
https://www.rfc-editor.org/info/rfc3394
https://www.rfc-editor.org/info/rfc3610
https://www.rfc-editor.org/info/rfc3610
https://www.rfc-editor.org/info/rfc5869
https://www.rfc-editor.org/info/rfc5869
https://www.rfc-editor.org/info/rfc6090
https://www.rfc-editor.org/info/rfc6090
https://www.rfc-editor.org/info/rfc6979

[RFC7748]

[RFC8017]

[RFC8032]

[RFC8174]

[RFC8439]

[RFC9052]

[SEC1]

[STD94]

[CFRG-DET-SIGS]

[COUNTERSIGN]

[GitHub-Examples]

[HKDF]

[OSCORE-GROUPCOMM]

, , and , , ,

, January 2016, .

, , , and ,

, , ,

November 2016, .

 and ,

, , , January 2017,

.

, ,

, , , May 2017,

.

 and , , ,

, June 2018, .

,

, , , , August 2022,

.

, ,

, May 2009, .

 and , ,

, , December 2020, .

12.2. Informative References

, , and ,

, ,

, 15 February 2022,

.

 and ,

, ,

, 22 August 2022,

.

, , 3 June 2020,

.

,

, 2010, .

, , , , and ,

, ,

, 7 March 2022,

.

Langley, A. Hamburg, M. S. Turner "Elliptic Curves for Security" RFC 7748

DOI 10.17487/RFC7748 <https://www.rfc-editor.org/info/rfc7748>

Moriarty, K., Ed. Kaliski, B. Jonsson, J. A. Rusch "PKCS #1: RSA

Cryptography Specifications Version 2.2" RFC 8017 DOI 10.17487/RFC8017

<https://www.rfc-editor.org/info/rfc8017>

Josefsson, S. I. Liusvaara "Edwards-Curve Digital Signature Algorithm

(EdDSA)" RFC 8032 DOI 10.17487/RFC8032 <https://www.rfc-

editor.org/info/rfc8032>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP

14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/

rfc8174>

Nir, Y. A. Langley "ChaCha20 and Poly1305 for IETF Protocols" RFC 8439

DOI 10.17487/RFC8439 <https://www.rfc-editor.org/info/rfc8439>

Schaad, J. "CBOR Object Signing and Encryption (COSE): Structures and

Process" STD 96 RFC 9052 DOI 10.17487/RFC9052 <https://

www.rfc-editor.org/info/rfc9052>

Certicom Research "SEC 1: Elliptic Curve Cryptography" Standards for Efficient

Cryptography <https://www.secg.org/sec1-v2.pdf>

Bormann, C. P. Hoffman "Concise Binary Object Representation (CBOR)"

STD 94 RFC 8949 <https://www.rfc-editor.org/info/std94>

Mattsson, J. P. Thormarker, E. S. Ruohomaa "Deterministic ECDSA and

EdDSA Signatures with Additional Randomness" Work in Progress Internet-

Draft, draft-mattsson-cfrg-det-sigs-with-noise-04 <https://

datatracker.ietf.org/doc/html/draft-mattsson-cfrg-det-sigs-with-noise-04>

Schaad, J. R. Housley "CBOR Object Signing and Encryption (COSE):

Countersignatures" Work in Progress Internet-Draft, draft-ietf-cose-

countersign-08 <https://datatracker.ietf.org/doc/html/draft-ietf-

cose-countersign-08>

"GitHub Examples of COSE" commit 3221310 <https://

github.com/cose-wg/Examples>

Krawczyk, H. "Cryptographic Extraction and Key Derivation: The HKDF

Scheme" <https://eprint.iacr.org/2010/264.pdf>

Tiloca, M. Selander, G. Palombini, F. Mattsson, J. P. J. Park

"Group OSCORE - Secure Group Communication for CoAP" Work in Progress

Internet-Draft, draft-ietf-core-oscore-groupcomm-14 <https://

datatracker.ietf.org/doc/html/draft-ietf-core-oscore-groupcomm-14>

RFC 9053 COSE Algorithms August 2022

Schaad Informational Page 39

https://www.rfc-editor.org/info/rfc7748
https://www.rfc-editor.org/info/rfc8017
https://www.rfc-editor.org/info/rfc8032
https://www.rfc-editor.org/info/rfc8032
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8439
https://www.rfc-editor.org/info/rfc9052
https://www.rfc-editor.org/info/rfc9052
https://www.secg.org/sec1-v2.pdf
https://www.rfc-editor.org/info/std94
https://datatracker.ietf.org/doc/html/draft-mattsson-cfrg-det-sigs-with-noise-04
https://datatracker.ietf.org/doc/html/draft-mattsson-cfrg-det-sigs-with-noise-04
https://datatracker.ietf.org/doc/html/draft-ietf-cose-countersign-08
https://datatracker.ietf.org/doc/html/draft-ietf-cose-countersign-08
https://github.com/cose-wg/Examples
https://github.com/cose-wg/Examples
https://eprint.iacr.org/2010/264.pdf
https://datatracker.ietf.org/doc/html/draft-ietf-core-oscore-groupcomm-14
https://datatracker.ietf.org/doc/html/draft-ietf-core-oscore-groupcomm-14

[RFC4231]

[RFC4493]

[RFC5116]

[RFC5480]

[RFC6151]

[RFC7252]

[RFC7518]

[RFC8126]

[RFC8152]

[RFC8230]

[RFC8446]

[RFC8551]

[RFC8610]

,

, , ,

December 2005, .

, , , and , ,

, , June 2006,

.

, ,

, , January 2008,

.

, , , , and ,

, , ,

March 2009, .

 and ,

, , , March

2011, .

, , and ,

, , , June 2014,

.

, , , , May

2015, .

, , and ,

, , , , June

2017, .

, , ,

, July 2017, .

,

, , , September 2017,

.

, , ,

, August 2018, .

, , and ,

, ,

, April 2019, .

, , and ,

, ,

, June 2019, .

Nystrom, M. "Identifiers and Test Vectors for HMAC-SHA-224, HMAC-SHA-256,

HMAC-SHA-384, and HMAC-SHA-512" RFC 4231 DOI 10.17487/RFC4231

<https://www.rfc-editor.org/info/rfc4231>

Song, JH. Poovendran, R. Lee, J. T. Iwata "The AES-CMAC Algorithm" RFC

4493 DOI 10.17487/RFC4493 <https://www.rfc-editor.org/info/

rfc4493>

McGrew, D. "An Interface and Algorithms for Authenticated Encryption" RFC

5116 DOI 10.17487/RFC5116 <https://www.rfc-editor.org/info/

rfc5116>

Turner, S. Brown, D. Yiu, K. Housley, R. T. Polk "Elliptic Curve

Cryptography Subject Public Key Information" RFC 5480 DOI 10.17487/RFC5480

<https://www.rfc-editor.org/info/rfc5480>

Turner, S. L. Chen "Updated Security Considerations for the MD5 Message-

Digest and the HMAC-MD5 Algorithms" RFC 6151 DOI 10.17487/RFC6151

<https://www.rfc-editor.org/info/rfc6151>

Shelby, Z. Hartke, K. C. Bormann "The Constrained Application Protocol

(CoAP)" RFC 7252 DOI 10.17487/RFC7252 <https://www.rfc-

editor.org/info/rfc7252>

Jones, M. "JSON Web Algorithms (JWA)" RFC 7518 DOI 10.17487/RFC7518

<https://www.rfc-editor.org/info/rfc7518>

Cotton, M. Leiba, B. T. Narten "Guidelines for Writing an IANA

Considerations Section in RFCs" BCP 26 RFC 8126 DOI 10.17487/RFC8126

<https://www.rfc-editor.org/info/rfc8126>

Schaad, J. "CBOR Object Signing and Encryption (COSE)" RFC 8152 DOI

10.17487/RFC8152 <https://www.rfc-editor.org/info/rfc8152>

Jones, M. "Using RSA Algorithms with CBOR Object Signing and Encryption

(COSE) Messages" RFC 8230 DOI 10.17487/RFC8230 <https://

www.rfc-editor.org/info/rfc8230>

Rescorla, E. "The Transport Layer Security (TLS) Protocol Version 1.3" RFC 8446

DOI 10.17487/RFC8446 <https://www.rfc-editor.org/info/rfc8446>

Schaad, J. Ramsdell, B. S. Turner "Secure/Multipurpose Internet Mail

Extensions (S/MIME) Version 4.0 Message Specification" RFC 8551 DOI 10.17487/

RFC8551 <https://www.rfc-editor.org/info/rfc8551>

Birkholz, H. Vigano, C. C. Bormann "Concise Data Definition Language

(CDDL): A Notational Convention to Express Concise Binary Object

Representation (CBOR) and JSON Data Structures" RFC 8610 DOI 10.17487/

RFC8610 <https://www.rfc-editor.org/info/rfc8610>

RFC 9053 COSE Algorithms August 2022

Schaad Informational Page 40

https://www.rfc-editor.org/info/rfc4231
https://www.rfc-editor.org/info/rfc4493
https://www.rfc-editor.org/info/rfc4493
https://www.rfc-editor.org/info/rfc5116
https://www.rfc-editor.org/info/rfc5116
https://www.rfc-editor.org/info/rfc5480
https://www.rfc-editor.org/info/rfc6151
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7518
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8152
https://www.rfc-editor.org/info/rfc8230
https://www.rfc-editor.org/info/rfc8230
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8551
https://www.rfc-editor.org/info/rfc8610

[RFC8778]

[RFC9021]

[RFC9147]

[ROBUST]

[SP800-38D]

[SP800-56A]

[STD90]

,

, , , April

2020, .

,

, , , May 2021,

.

, , and ,

, , , April

2022, .

, , and ,

, February 2020,

.

,

, , November

2007,

.

, , , , and ,

,

, ,

April 2018,

.

, ,

, , December 2017, .

Acknowledgments

This document is a product of the COSE Working Group of the IETF.

The following individuals are to blame for getting me started on this project in the first place:

, , and .

The initial draft version of the specification was based to some degree on the outputs of the JOSE

and S/MIME Working Groups.

The following individuals provided input into the final form of the document: ,

, , , , ,

, and .

Housley, R. "Use of the HSS/LMS Hash-Based Signature Algorithm with CBOR

Object Signing and Encryption (COSE)" RFC 8778 DOI 10.17487/RFC8778

<https://www.rfc-editor.org/info/rfc8778>

Atkins, D. "Use of the Walnut Digital Signature Algorithm with CBOR Object

Signing and Encryption (COSE)" RFC 9021 DOI 10.17487/RFC9021

<https://www.rfc-editor.org/info/rfc9021>

Rescorla, E. Tschofenig, H. N. Modadugu "The Datagram Transport Layer

Security (DTLS) Protocol Version 1.3" RFC 9147 DOI 10.17487/RFC9147

<https://www.rfc-editor.org/info/rfc9147>

Fischlin, M. Günther, F. C. Janson "Robust Channels: Handling Unreliable

Networks in the Record Layers of QUIC and DTLS" <https://

eprint.iacr.org/2020/718.pdf>

Dworkin, M. "Recommendation for Block Cipher Modes of Operation: Galois/

Counter Mode (GCM) and GMAC" NIST Special Publication 800-38D

<https://nvlpubs.nist.gov/nistpubs/Legacy/SP/

nistspecialpublication800-38d.pdf>

Barker, E. Chen, L. Roginsky, A. Vassilev, A. R. Davis "Recommendation for

Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography"

NIST Special Publication 800-56A, Revision 3 DOI 10.6028/NIST.SP.800-56Ar3

<https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.

800-56Ar2.pdf>

Bray, T., Ed. "The JavaScript Object Notation (JSON) Data Interchange Format"

STD 90 RFC 8259 <https://www.rfc-editor.org/info/std90>

Richard Barnes Matt Miller Martin Thomson

Carsten Bormann

John Bradley Brian Campbell Michael B. Jones Ilari Liusvaara Francesca Palombini Ludwig

Seitz Göran Selander

Author's Address

Jim Schaad

August Cellars

RFC 9053 COSE Algorithms August 2022

Schaad Informational Page 41

https://www.rfc-editor.org/info/rfc8778
https://www.rfc-editor.org/info/rfc9021
https://www.rfc-editor.org/info/rfc9147
https://eprint.iacr.org/2020/718.pdf
https://eprint.iacr.org/2020/718.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf
https://www.rfc-editor.org/info/std90

	RFC 9053
	CBOR Object Signing and Encryption (COSE): Initial Algorithms
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Terminology
	1.2. Changes from RFC 8152
	1.3. Document Terminology
	1.4. CDDL Grammar for CBOR Data Structures
	1.5. Examples

	2. Signature Algorithms
	2.1. ECDSA
	2.1.1. Security Considerations for ECDSA

	2.2. Edwards-Curve Digital Signature Algorithm (EdDSA)
	2.2.1. Security Considerations for EdDSA

	3. Message Authentication Code (MAC) Algorithms
	3.1. Hash-Based Message Authentication Codes (HMACs)
	3.1.1. Security Considerations for HMAC

	3.2. AES Message Authentication Code (AES-CBC-MAC)
	3.2.1. Security Considerations for AES-CBC-MAC

	4. Content Encryption Algorithms
	4.1. AES-GCM
	4.1.1. Security Considerations for AES-GCM

	4.2. AES-CCM
	4.2.1. Security Considerations for AES-CCM

	4.3. ChaCha20 and Poly1305
	4.3.1. Security Considerations for ChaCha20/Poly1305

	5. Key Derivation Functions (KDFs)
	5.1. HMAC-Based Extract-and-Expand Key Derivation Function (HKDF)
	5.2. Context Information Structure

	6. Content Key Distribution Methods
	6.1. Direct Encryption
	6.1.1. Direct Key
	6.1.1.1. Security Considerations for Direct Key

	6.1.2. Direct Key with KDF
	6.1.2.1. Security Considerations for Direct Key with KDF

	6.2. Key Wrap
	6.2.1. AES Key Wrap
	6.2.1.1. Security Considerations for AES Key Wrap

	6.3. Direct Key Agreement
	6.3.1. Direct ECDH
	6.3.1.1. Security Considerations for ECDH

	6.4. Key Agreement with Key Wrap
	6.4.1. ECDH with Key Wrap

	7. Key Object Parameters
	7.1. Elliptic Curve Keys
	7.1.1. Double Coordinate Curves

	7.2. Octet Key Pair
	7.3. Symmetric Keys

	8. COSE Capabilities
	8.1. Assignments for Existing Algorithms
	8.2. Assignments for Existing Key Types
	8.3. Examples

	9. CBOR Encoding Restrictions
	10. IANA Considerations
	10.1. Changes to the "COSE Key Types" Registry
	10.2. Changes to the "COSE Algorithms" Registry
	10.3. Changes to the "COSE Key Type Parameters" Registry
	10.4. Expert Review Instructions

	11. Security Considerations
	12. References
	12.1. Normative References
	12.2. Informative References

	Acknowledgments
	Author's Address

 CBOR Object Signing and Encryption (COSE): Initial Algorithms

 August Cellars

 Security
 COSE Working Group
 Object Security
 COSE
 Constrained Devices
 AES
 AES-GCM
 AES-CCM
 ECDSA
 EdDSA
 ECC
 HSS-LMS
 AES-KW
 ECDH
 HMAC
 CMAC
 Cryptography

 Concise Binary Object Representation (CBOR) is a data format designed for small code size and small message size.
 There is a need to be able to define basic security services for this data format.
 This document defines a set of algorithms that can be used with the
	CBOR Object Signing and Encryption (COSE) protocol (RFC 9052).

 This document, along with RFC 9052, obsoletes RFC 8152.

 Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are candidates for any level of Internet
 Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Revised BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Revised BSD License.

 Table of Contents

 . Introduction

 . Requirements Terminology

 . Changes from RFC 8152

 . Document Terminology

 . CDDL Grammar for CBOR Data Structures

 . Examples

 . Signature Algorithms

 . ECDSA

 . Security Considerations for ECDSA

 . Edwards-Curve Digital Signature Algorithm (EdDSA)

 . Security Considerations for EdDSA

 . Message Authentication Code (MAC) Algorithms

 . Hash-Based Message Authentication Codes (HMACs)

 . Security Considerations for HMAC

 . AES Message Authentication Code (AES-CBC-MAC)

 . Security Considerations for AES-CBC-MAC

 . Content Encryption Algorithms

 . AES-GCM

 . Security Considerations for AES-GCM

 . AES-CCM

 . Security Considerations for AES-CCM

 . ChaCha20 and Poly1305

 . Security Considerations for ChaCha20/Poly1305

 . Key Derivation Functions (KDFs)

 . HMAC-Based Extract-and-Expand Key Derivation Function (HKDF)

 . Context Information Structure

 . Content Key Distribution Methods

 . Direct Encryption

 . Direct Key

 . Direct Key with KDF

 . Key Wrap

 . AES Key Wrap

 . Direct Key Agreement

 . Direct ECDH

 . Key Agreement with Key Wrap

 . ECDH with Key Wrap

 . Key Object Parameters

 . Elliptic Curve Keys

 . Double Coordinate Curves

 . Octet Key Pair

 . Symmetric Keys

 . COSE Capabilities

 . Assignments for Existing Algorithms

 . Assignments for Existing Key Types

 . Examples

 . CBOR Encoding Restrictions

 . IANA Considerations

 . Changes to the "COSE Key Types" Registry

 . Changes to the "COSE Algorithms" Registry

 . Changes to the "COSE Key Type Parameters" Registry

 . Expert Review Instructions

 . Security Considerations

 . References

 . Normative References

 . Informative References

 Acknowledgments

 Author's Address

 Introduction

 There has been an increased focus on small, constrained devices that make up the Internet of Things (IoT).
 One of the standards that has come out of this process is "Concise
	Binary Object Representation (CBOR)" .
 CBOR extended the data model of JavaScript Object Notation (JSON)
	 by allowing for binary data, among other
	changes.
 CBOR has been adopted by several of the IETF working groups dealing
	with the IoT world as their method of encoding data structures.
 CBOR was designed specifically to be small in terms of both messages
	transported and implementation size and to have a schema-free decoder.
 A need exists to provide message security services for IoT, and using
	CBOR as the message-encoding format makes sense.

 The core COSE specification consists of two documents.
 contains the serialization structures and the procedures for using the different cryptographic algorithms.
 This document provides an initial set of algorithms for use with those structures.

 Requirements Terminology

 The key words " MUST", " MUST NOT", " REQUIRED", " SHALL", " SHALL NOT", " SHOULD", " SHOULD NOT", " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are to be interpreted as
 described in BCP 14 when, and only when, they
 appear in all capitals, as shown here.

 Changes from RFC 8152

 Extracted the sections dealing with specific algorithms and placed
	 them into this document.
 The sections dealing with structure and general processing rules
	 are placed in .

 Made text clarifications and changes in terminology.
 Removed all of the details relating to countersignatures and placed them in .

 Document Terminology
 In this document, we use the following terminology:

 Byte:
 A synonym for octet.
 Constrained Application Protocol (CoAP):
 A specialized
	web transfer protocol for use in constrained systems. It is defined
	in .
 Authenticated Encryption (AE) algorithms :

 Encryption algorithms that provide an
	authentication check of the contents along with the encryption service.
 An example of an AE algorithm used in COSE is AES Key Wrap .
 These algorithms are used for key encryption, but
	 Authenticated Encryption with Associated Data (AEAD)
	 algorithms would be preferred.

 AEAD algorithms :
 Encryption algorithms that provide the same authentication service of
	the content as AE algorithms do, and also allow
	associated data that is not part of the encrypted body to be included
	in the authentication service. An example of an AEAD
	algorithm used in COSE is AES-GCM . These
	algorithms are used for content encryption and can be used for key
	encryption as well.

 The term "byte string" is used for sequences of bytes, while the term "text string" is used for sequences of characters.

 The tables for algorithms contain the following columns:

 A name for the algorithm for use in documents.

 The value used on the wire for the algorithm.
 One place this is used is the algorithm header parameter of a message.

 A short description so that the algorithm can be easily identified when scanning the IANA registry.

 Additional columns may be present in a table depending on the
	 algorithms.

 CDDL Grammar for CBOR Data Structures

 When COSE was originally written, the Concise Data Definition
 Language (CDDL) had not yet been published
 in an RFC, so it could not be used as the data description
 language to normatively describe the CBOR data structures employed
 by COSE.
 For that reason, the CBOR data objects defined here are described
 in prose.
 Additional (non-normative) descriptions of the
 COSE data objects are provided in a subset of CDDL, described in
 .

 Examples

 A GitHub project has been created at that contains a set of testing examples.
 Each example is found in a JSON file that contains the inputs used to create the example, some of the intermediate values that can be used for debugging, and the output of the example.
 The results are encoded using both hexadecimal and
	 CBOR diagnostic notation format.

 Some of the examples are designed to be failure-testing cases; these
	 are clearly marked as such in the JSON file.

 Signature Algorithms

 contains a generic description of signature algorithms.
 This document defines signature algorithm identifiers for two signature algorithms.

 ECDSA
 The Elliptic Curve Digital Signature Algorithm (ECDSA) defines a signature algorithm using Elliptic Curve Cryptography (ECC).
	Implementations SHOULD use a deterministic version of
	ECDSA such as the one defined in . The use of
	a deterministic signature algorithm allows systems to avoid relying on
	random number generators in order to avoid generating the same value
	of "k" (the per-message random value). Biased generation of the value
	"k" can be attacked, and collisions of this value lead to leaked
	keys. It additionally allows performing deterministic tests for the
	signature algorithm. The use of deterministic ECDSA does not lessen
	the need to have good random number generation when creating the
	private key.
 The ECDSA signature algorithm is parameterized with a hash function
	(h). In the event that the length of the hash function output is
	greater than the group of the key, the leftmost bytes of the hash
	output are used.
 The algorithms defined in this document can be found in .

 ECDSA Algorithm Values

 Name
 Value
 Hash
 Description

 ES256
 -7
 SHA-256
 ECDSA w/ SHA-256

 ES384
 -35
 SHA-384
 ECDSA w/ SHA-384

 ES512
 -36
 SHA-512
 ECDSA w/ SHA-512

 This document defines ECDSA as working only with the curves P-256,
	P-384, and P-521. This document requires that the curves be encoded
	using the "EC2" (two coordinate elliptic curve) key type.
	Implementations need to check that the key type and curve are correct
	when creating and verifying a signature. Future documents may define
	it to work with other curves and key types in the future.
 In order to promote interoperability, it is suggested that SHA-256 be used only with curve P-256, SHA-384 be used only with curve P-384, and SHA-512 be used only with curve P-521. This is aligned with the recommendation in .

 The signature algorithm results in a pair of integers (R, S).
 These integers will be the same length as the length of the key used for the signature process.
 The signature is encoded by converting the integers into byte strings of the same length as the key size.
 The length is rounded up to the nearest byte and is left padded with zero bits to get to the correct length.
 The two integers are then concatenated together to form a byte string that is the resulting signature.

 Using the function defined in , the signature is:

 Signature = I2OSP(R, n) | I2OSP(S, n)

 where n = ceiling(key_length / 8)

 When using a COSE key for this algorithm, the following checks are made:

 The "kty" field MUST be present, and it MUST be "EC2".
 If the "alg" field is present, it MUST match the ECDSA signature algorithm being used.
 If the "key_ops" field is present, it MUST include "sign" when creating an ECDSA signature.
 If the "key_ops" field is present, it MUST include "verify" when verifying an ECDSA signature.

 Security Considerations for ECDSA
 The security strength of the signature is no greater than the minimum of the security strength associated with the bit length of the key and the security strength of the hash function.

 Note: Use of a deterministic signature technique is a good idea
	 even when good random number generation exists.
 Doing so both reduces the possibility of having the same value of
	 "k" in two signature operations and allows for reproducible
	 signature values, which helps testing.
 There have been recent attacks involving faulting the device in
	 order to extract the key.
 This can be addressed by combining both randomness and determinism
	 .

 There are two substitution attacks that can theoretically be mounted against the ECDSA signature algorithm.

 Changing the curve used to validate the signature: If one
	 changes the curve used to validate the signature, then potentially
	 one could have two messages with the same signature, each computed
	 under a different curve. The only requirements on the new curve are
	 that its order be the same as the old one and that it be acceptable to
	 the client. An example would be to change from using the curve
	 secp256r1 (aka P-256) to using secp256k1. (Both are 256-bit
	 curves.) We currently do not have any way to deal with this
	 version of the attack except to restrict the overall set of curves
	 that can be used.
 Changing the hash function used to validate the signature: If
	 one either has two different hash functions of the same length or
	 can truncate a hash function, then one could potentially find
	 collisions between the hash functions rather than within a single
	 hash function. For example, truncating SHA-512 to 256 bits might
	 collide with a SHA-256 bit hash value. As the hash algorithm is
	 part of the signature algorithm identifier, this attack is
	 mitigated by including a signature algorithm identifier in the
	 protected-header bucket.

 Edwards-Curve Digital Signature Algorithm (EdDSA)
 describes the elliptic curve signature
	scheme Edwards-curve Digital Signature Algorithm (EdDSA). In that
	document, the signature algorithm is instantiated using parameters for
	the edwards25519 and edwards448 curves. The document additionally
	describes two variants of the EdDSA algorithm: Pure EdDSA, where no
	hash function is applied to the content before signing, and HashEdDSA,
	where a hash function is applied to the content before signing and the
	result of that hash function is signed. For EdDSA, the content to be
	signed (either the message or the prehash value) is processed twice
	inside of the signature algorithm. For use with COSE, only the pure
	EdDSA version is used. This is because it is not expected that
	extremely large contents are going to be needed and, based on the
	arrangement of the message structure, the entire message is going to
	need to be held in memory in order to create or verify a signature.
	Therefore, there does not appear to be a need to be able to do
	block updates of the hash, followed by eliminating the message from
	memory. Applications can provide the same features by defining the
	content of the message as a hash value and transporting the COSE
	object (with the hash value) and the content as separate items.
 The algorithm defined in this document can be found in . A single signature algorithm is defined, which can be used for multiple curves.

 EdDSA Algorithm Value

 Name
 Value
 Description

 EdDSA
 -8
 EdDSA

 describes the method of encoding the signature value.
 When using a COSE key for this algorithm, the following checks are made:

 The "kty" field MUST be present, and it MUST be "OKP" (Octet Key Pair).
 The "crv" field MUST be present, and it MUST be a curve defined for this signature algorithm.
 If the "alg" field is present, it MUST match "EdDSA".
 If the "key_ops" field is present, it MUST include "sign" when creating an EdDSA signature.
 If the "key_ops" field is present, it MUST include "verify" when verifying an EdDSA signature.

 Security Considerations for EdDSA
 Public values are computed differently in EdDSA and Elliptic Curve
	 Diffie-Hellman (ECDH); for this reason, the public key from one should not be
	 used with the other algorithm.
 If batch signature verification is performed, a well-seeded
	 cryptographic random number generator is REQUIRED
	 (). Signing and nonbatch
	 signature verification are deterministic operations and do not need
	 random numbers of any kind.

 Message Authentication Code (MAC) Algorithms

	 contains a generic description
	of MAC algorithms.
 This section defines the conventions for two MAC algorithms.

 Hash-Based Message Authentication Codes (HMACs)
 HMAC was designed
	to deal with length extension attacks. The HMAC algorithm was also designed to allow new hash functions to be
 directly plugged in without changes to the hash function. The HMAC design process has
	been shown to be solid; although the security of hash functions such
	as MD5 has decreased over time, the security of HMAC combined with MD5
	has not yet been shown to be compromised .

 The HMAC algorithm is parameterized by an inner and outer padding,
	a hash function (h), and an authentication tag value length. For this
	specification, the inner and outer padding are fixed to the values set
	in . The length of the authentication tag
	corresponds to the difficulty of producing a forgery. For use in
	constrained environments, we define one HMAC algorithm that is
	truncated. There are currently no known issues with truncation;
	however, the security strength of the message tag is correspondingly
	reduced in strength. When truncating, the leftmost tag-length bits
	are kept and transmitted.
 The algorithms defined in this document can be found in .

 HMAC Algorithm Values

 Name
 Value
 Hash
 Tag Length
 Description

 HMAC 256/64
 4
 SHA-256
 64
 HMAC w/ SHA-256 truncated to 64 bits

 HMAC 256/256
 5
 SHA-256
 256
 HMAC w/ SHA-256

 HMAC 384/384
 6
 SHA-384
 384
 HMAC w/ SHA-384

 HMAC 512/512
 7
 SHA-512
 512
 HMAC w/ SHA-512

 Some recipient algorithms transport the key, while others derive a key from secret data. For those algorithms that transport the key (such as AES Key Wrap), the size of the HMAC key SHOULD be the same size as the output of the underlying hash function. For those algorithms that derive the key (such as ECDH), the derived key MUST be the same size as the output of the underlying hash function.
 When using a COSE key for this algorithm, the following checks are made:

 The "kty" field MUST be present, and it MUST be "Symmetric".
 If the "alg" field is present, it MUST match the HMAC algorithm being used.
 If the "key_ops" field is present, it MUST include "MAC create" when creating an HMAC authentication tag.
 If the "key_ops" field is present, it MUST include "MAC verify" when verifying an HMAC authentication tag.

 Implementations creating and validating MAC values MUST validate that the key type, key length, and algorithm are correct and appropriate for the entities involved.

 Security Considerations for HMAC
 HMAC has proved to be resistant to attack even when used with weakened hash algorithms. The current best known attack is to brute force the key. This means that key size is going to be directly related to the security of an HMAC operation.

 AES Message Authentication Code (AES-CBC-MAC)
 AES-CBC-MAC is the instantiation of the CBC-MAC construction (defined in) using AES as the block cipher. For brevity, we also use "AES-MAC"
to refer to AES-CBC-MAC. (Note that this is
	not the same algorithm as AES Cipher-Based Message Authentication Code
	(AES-CMAC) .)
 AES-CBC-MAC is parameterized by the key length, the
	authentication tag length, and the Initialization Vector (IV) used.
	For all of these algorithms, the IV is fixed to all zeros. We provide
	an array of algorithms for various key and tag lengths. The
	algorithms defined in this document are found in .

 AES-MAC Algorithm Values

 Name
 Value
 Key Length
 Tag Length
 Description

 AES-MAC 128/64
 14
 128
 64
 AES-MAC 128-bit key, 64-bit tag

 AES-MAC 256/64
 15
 256
 64
 AES-MAC 256-bit key, 64-bit tag

 AES-MAC 128/128
 25
 128
 128
 AES-MAC 128-bit key, 128-bit tag

 AES-MAC 256/128
 26
 256
 128
 AES-MAC 256-bit key, 128-bit tag

 Keys may be obtained from either a key structure or a
	recipient structure. Implementations creating and validating MAC
	values MUST validate that the key type, key length, and
	algorithm are correct and appropriate for the entities involved.
 When using a COSE key for this algorithm, the following checks are made:

 The "kty" field MUST be present, and it MUST be "Symmetric".
 If the "alg" field is present, it MUST match the AES-MAC algorithm being used.
 If the "key_ops" field is present, it MUST include "MAC create" when creating an AES-MAC authentication tag.
 If the "key_ops" field is present, it MUST include "MAC verify" when verifying an AES-MAC authentication tag.

 Security Considerations for AES-CBC-MAC
 A number of attacks exist against Cipher Block Chaining Message Authentication Code (CBC-MAC) that need to be considered.

 A single key must only be used for messages of a fixed or
	 known length. If this is not the case, an attacker will be able
	 to generate a message with a valid tag given two
	 message and tag pairs. This can be addressed by using different
	 keys for
	 messages of different lengths. The current structure mitigates
	 this problem, as a specific encoding structure that includes
	 lengths is built and signed. (CMAC also addresses this issue.)
	
 In Cipher Block Chaining (CBC) mode, if the same key is used
	 for both encryption and authentication operations, an attacker can
	 produce messages with a valid authentication code.
 If the IV can be modified, then messages can be forged. This is addressed by fixing the IV to all zeros.

 Content Encryption Algorithms

 contains a generic description
	of content encryption algorithms.
 This document defines the identifier and usages for three
	content encryption algorithms.

 AES-GCM
 The Galois/Counter Mode (GCM) mode is a generic AEAD block cipher
	mode defined in . The GCM mode is combined
	with the AES block encryption algorithm to define an AEAD cipher.

 The GCM mode is parameterized by the size of the authentication tag
	and the size of the nonce. This document fixes the size of the nonce
	at 96 bits. The size of the authentication tag is limited to a small
	set of values. For this document, however, the size of the
	authentication tag is fixed at 128 bits.
 The set of algorithms defined in this document is in .

 Algorithm Values for AES-GCM

 Name
 Value
 Description

 A128GCM
 1
 AES-GCM mode w/ 128-bit key, 128-bit tag

 A192GCM
 2
 AES-GCM mode w/ 192-bit key, 128-bit tag

 A256GCM
 3
 AES-GCM mode w/ 256-bit key, 128-bit tag

 Keys may be obtained from either a key structure or a recipient
	structure. Implementations that are encrypting or decrypting
	 MUST validate that the key type, key length, and
	algorithm are correct and appropriate for the entities involved.
 When using a COSE key for this algorithm, the following checks are made:

 The "kty" field MUST be present, and it MUST be "Symmetric".
 If the "alg" field is present, it MUST match the AES-GCM algorithm being used.
 If the "key_ops" field is present, it MUST include "encrypt" or "wrap key" when encrypting.
 If the "key_ops" field is present, it MUST include "decrypt" or "unwrap key" when decrypting.

 Security Considerations for AES-GCM
 When using AES-GCM, the following restrictions MUST be enforced:

 The key and nonce pair MUST be unique for every
	 message encrypted.
 The total number of messages encrypted for a single key
	 MUST NOT exceed 2 32 .
	 An explicit check is required only in environments where it is expected that this limit might be exceeded.

 contains an analysis on the
	 use of AES-CGM for its environment.
 Based on that recommendation, one should restrict the number of
	 messages encrypted to 2 24.5.

 A more recent analysis in indicates that
	 the number of failed decryptions needs to be taken into account
	 as part of determining when a key rollover is to be done.
 Following the recommendation in DTLS (), the number of
 failed message decryptions should be limited to 2 36.

 Consideration was given to supporting smaller tag values; the
	 constrained community would desire tag sizes in the 64-bit
	 range. Such use drastically changes both the maximum message size
	 (generally not an issue) and the number of times that a key can be
	 used. Given that Counter with CBC-MAC (CCM) is the usual mode for
	 constrained environments, restricted modes are not supported.

 AES-CCM
 CCM is a generic authentication encryption block cipher mode
	defined in . The CCM mode is combined with
	the AES block encryption algorithm to define an AEAD cipher that is
commonly used in constrained devices.
 The CCM mode has two parameter choices. The first choice is M, the
	size of the authentication field. The choice of the value for M
	involves a trade-off between message growth (from the tag) and the
	probability that an attacker can undetectably modify a message. The
	second choice is L, the size of the length field. This value requires
	a trade-off between the maximum message size and the size of the
	nonce.
 It is unfortunate that the specification for CCM specified L and M as a count of bytes rather than a count of bits. This leads to possible misunderstandings where AES-CCM-8 is frequently used to refer to a version of CCM mode where the size of the authentication is 64 bits and not 8 bits. In most cryptographic algorithm specifications, these values have traditionally been specified as bit counts rather than byte counts. This document will follow the convention of using bit counts so that it is easier to compare the different algorithms presented in this document.
 We define a matrix of algorithms in this document over the values of L and M. Constrained devices are usually operating in situations where they use short messages and want to avoid doing recipient-specific cryptographic operations. This favors smaller values of both L and M. Less-constrained devices will want to be able to use larger messages and are more willing to generate new keys for every operation. This favors larger values of L and M.
 The following values are used for L:

 16 bits (2):
 This limits messages to 2 16 bytes (64 KiB) in length.
	 This is sufficiently long for messages in the constrained world.
	 The nonce length is 13 bytes allowing for 2 104 possible values of
	 the nonce without repeating.
 64 bits (8):
 This limits messages to 2 64 bytes in length. The
	 nonce length is 7 bytes, allowing for 2 56 possible values of the nonce without repeating.

 The following values are used for M:

 64 bits (8):
 This produces a 64-bit authentication tag. This implies that
	 there is a 1 in 2 64 chance that a modified message will
	 authenticate.
 128 bits (16):
 This produces a 128-bit authentication tag. This implies that
	 there is a 1 in 2 128 chance that a modified message will
	 authenticate.

 Algorithm Values for AES-CCM

 Name
 Value
 L
 M
 Key Length
 Description

 AES-CCM-16-64-128
 10
 16
 64
 128
 AES-CCM mode 128-bit key, 64-bit tag, 13-byte nonce

 AES-CCM-16-64-256
 11
 16
 64
 256
 AES-CCM mode 256-bit key, 64-bit tag, 13-byte nonce

 AES-CCM-64-64-128
 12
 64
 64
 128
 AES-CCM mode 128-bit key, 64-bit tag, 7-byte nonce

 AES-CCM-64-64-256
 13
 64
 64
 256
 AES-CCM mode 256-bit key, 64-bit tag, 7-byte nonce

 AES-CCM-16-128-128
 30
 16
 128
 128
 AES-CCM mode 128-bit key, 128-bit tag, 13-byte nonce

 AES-CCM-16-128-256
 31
 16
 128
 256
 AES-CCM mode 256-bit key, 128-bit tag, 13-byte nonce

 AES-CCM-64-128-128
 32
 64
 128
 128
 AES-CCM mode 128-bit key, 128-bit tag, 7-byte nonce

 AES-CCM-64-128-256
 33
 64
 128
 256
 AES-CCM mode 256-bit key, 128-bit tag, 7-byte nonce

 Keys may be obtained from either a key structure or a recipient
	structure. Implementations that are encrypting or decrypting
	 MUST validate that the key type, key length, and
	algorithm are correct and appropriate for the entities involved.
 When using a COSE key for this algorithm, the following checks are made:

 The "kty" field MUST be present, and it MUST be "Symmetric".
 If the "alg" field is present, it MUST match the AES-CCM algorithm being used.
 If the "key_ops" field is present, it MUST include "encrypt" or "wrap key" when encrypting.
 If the "key_ops" field is present, it MUST include "decrypt" or "unwrap key" when decrypting.

 Security Considerations for AES-CCM
 When using AES-CCM, the following restrictions MUST be enforced:

 The key and nonce pair MUST be unique for every message encrypted. Note that the value of L influences the number of unique nonces.
 The total number of times the AES block cipher is used
	 MUST NOT exceed 2 61 operations. This
	 limit is the sum of times the block cipher is used in
	 computing the MAC value and performing stream encryption
	 operations. An explicit check is required only in environments
	 where it is expected that this limit might be exceeded.

 contains an analysis on the
	 use of AES-CCM for its environment.
 Based on that recommendation, one should restrict the number of
	 messages encrypted to 2 23.

 In addition to the number of messages successfully decrypted, the number of failed decryptions needs to be tracked as well.
 Following the recommendation in DTLS (),
the number of failed message decryptions should be limited to 2 23.5.
 If one is using the 64-bit tag, then the limits are significantly smaller if one wants to keep the same integrity limits.
 A protocol recommending this needs to analyze what level of integrity is acceptable for the smaller tag size.
 It may be that, to keep the desired level of integrity, one needs to rekey as often as every 2 7 messages.

 additionally calls out one other
	 consideration of note. It is possible to do a precomputation
	 attack against the algorithm in cases where portions of the
	 plaintext are highly predictable. This reduces the security of the
	 key size by half. Ways to deal with this attack include adding a
	 random portion to the nonce value and/or increasing the key size
	 used. Using a portion of the nonce for a random value will decrease
	 the number of messages that a single key can be used for.
	 Increasing the key size may require more resources in the
	 constrained device. See Sections and of for more
	 information.

 ChaCha20 and Poly1305
 ChaCha20 and Poly1305 combined together is an AEAD mode that is defined in . This is an algorithm defined using a cipher that is not AES and thus would not suffer from any future weaknesses found in AES. These cryptographic functions are designed to be fast in software-only implementations.
 The ChaCha20/Poly1305 AEAD construction defined in has no parameterization. It takes as inputs a
	256-bit key and a 96-bit nonce, as well as the plaintext and
	additional data, and produces the ciphertext as an output. We define
	one algorithm identifier for this algorithm in .

 Algorithm Value for ChaCha20/Poly1305

 Name
 Value
 Description

 ChaCha20/Poly1305
 24
 ChaCha20/Poly1305 w/ 256-bit key, 128-bit tag

 Keys may be obtained from either a key structure or a recipient
	structure. Implementations that are encrypting or decrypting
	 MUST validate that the key type, key length, and
	algorithm are correct and appropriate for the entities involved.
 When using a COSE key for this algorithm, the following checks are made:

 The "kty" field MUST be present, and it MUST be "Symmetric".
 If the "alg" field is present, it MUST match the ChaCha20/Poly1305 algorithm being used.
 If the "key_ops" field is present, it MUST include "encrypt" or "wrap key" when encrypting.
 If the "key_ops" field is present, it MUST include "decrypt" or "unwrap key" when decrypting.

 Security Considerations for ChaCha20/Poly1305
 The key and nonce values MUST be a unique pair for every invocation of the algorithm. Nonce counters are considered to be an acceptable way of ensuring that they are unique.
 A more recent analysis in indicates that
	 the number of failed decryptions needs to be taken into account as
	 part of determining when a key rollover is to be done. Following the
	 recommendation in DTLS (), the number of failed message decryptions
	 should be limited to 2 36.

 notes that the (64-bit) record sequence
number would wrap before the safety limit is reached for ChaCha20/Poly1305.
COSE implementations should not send more than 2 64 messages
encrypted using a single ChaCha20/Poly1305 key.

 Key Derivation Functions (KDFs)

 contains a generic description
	of key derivation functions.
 This document defines a single context structure and a single KDF.
 These elements are used for all of the recipient algorithms defined in
	this document that require a KDF process.
 These algorithms are defined in Sections , , and .

 HMAC-Based Extract-and-Expand Key Derivation Function (HKDF)
 The HKDF key derivation algorithm is defined in and .
 The HKDF algorithm takes these inputs:

 secret:
 A shared value that is secret. Secrets may be
	 either previously shared or derived from operations like a
	 Diffie-Hellman (DH) key agreement.
 salt:
 An optional value that is used to change the
	 generation process. The salt value can be either public or private.
	 If the salt is public and carried in the message, then the "salt"
	 algorithm header parameter defined in is used. While
	 suggests that the length of the salt be the same as the length of
	 the underlying hash value, any positive salt length will improve the
	 security, as different key values will be generated. This parameter
	 is protected by being included in the key computation and does not
	 need to be separately authenticated. The salt value does not need
	 to be unique for every message sent.
 length:
 The number of bytes of output that need to be generated.
 context information:
 Information that describes the
	 context in which the resulting value will be used. Making this
	 information specific to the context in which the material is going
	 to be used ensures that the resulting material will always be tied
	 to that usage. The context structure defined in is used by the KDFs in this document.
 PRF:
 The underlying pseudorandom function to be used in
	 the HKDF algorithm. The PRF is encoded into the HKDF algorithm
	 selection.

 HKDF is defined to use HMAC as the underlying PRF. However, it is
	possible to use other functions in the same construct to provide a
	different KDF that is more appropriate in the constrained world.
	Specifically, one can use AES-CBC-MAC as the PRF for the expand step,
	but not for the extract step. When using a good random shared secret
	of the correct length, the extract step can be skipped. For the AES
	algorithm versions, the extract step is always skipped.
 The extract step cannot be skipped if the secret is not uniformly
	random -- for example, if it is the result of an ECDH key agreement
	step. This implies that the AES HKDF version cannot be used with
	ECDH. If the extract step is skipped, the "salt" value is not used as
	part of the HKDF functionality.
 The algorithms defined in this document are found in .

 HKDF Algorithms

 Name
 PRF
 Description

 HKDF SHA-256
 HMAC with SHA-256
 HKDF using HMAC SHA-256 as the PRF

 HKDF SHA-512
 HMAC with SHA-512
 HKDF using HMAC SHA-512 as the PRF

 HKDF AES-MAC-128
 AES-CBC-MAC-128
 HKDF using AES-MAC as the PRF w/ 128-bit key

 HKDF AES-MAC-256
 AES-CBC-MAC-256
 HKDF using AES-MAC as the PRF w/ 256-bit key

 HKDF Algorithm Parameters

 Name
 Label
 Type
 Algorithm
 Description

 salt
 -20
 bstr
 direct+HKDF-SHA-256, direct+HKDF-SHA-512, direct+HKDF-AES-128, direct+HKDF-AES-256, ECDH-ES+HKDF-256, ECDH-ES+HKDF-512, ECDH-SS+HKDF-256, ECDH-SS+HKDF-512, ECDH-ES+A128KW, ECDH-ES+A192KW, ECDH-ES+A256KW, ECDH-SS+A128KW, ECDH-SS+A192KW, ECDH-SS+A256KW
 Random salt

 Context Information Structure
 The context information structure is used to ensure that the
	derived keying material is "bound" to the context of the transaction.
	The context information structure used here is based on that defined
	in . By using CBOR for the encoding of the
	context information structure, we automatically get the same type and
	length separation of fields that is obtained by the use of ASN.1.
	This means that there is no need to encode the lengths for the base
	elements, as it is done by the encoding used in JSON Object Signing
	and Encryption (JOSE) ().
 The context information structure refers to PartyU and PartyV as
	the two parties that are doing the key derivation. Unless the
	application protocol defines differently, we assign PartyU to the
	entity that is creating the message and PartyV to the entity that is
	receiving the message. By defining this association, different keys
	will be derived for each direction, as the context information is
	different in each direction.
 The context structure is built from information that is known to both entities. This information can be obtained from a variety of sources:

 Fields can be defined by the application. This is commonly used to assign fixed names to parties, but it can be used for other items such as nonces.
 Fields can be defined by usage of the output. Examples of this are the algorithm and key size that are being generated.
 Fields can be defined by parameters from the message. We define
	 a set of header parameters in that can be used to carry the
	 values associated with the context structure. Examples of this are
	 identities and nonce values. These header parameters are designed
	 to be placed in the unprotected bucket of the recipient structure;
	 they do not need to be in the protected bucket, since they are already
	 included in the cryptographic computation by virtue of being
	 included in the context structure.

 Context Algorithm Parameters

 Name
 Label
 Type
 Algorithm
 Description

 PartyU identity
 -21
 bstr
 direct+HKDF-SHA-256, direct+HKDF-SHA-512, direct+HKDF-AES-128, direct+HKDF-AES-256, ECDH-ES+HKDF-256, ECDH-ES+HKDF-512, ECDH-SS+HKDF-256, ECDH-SS+HKDF-512, ECDH-ES+A128KW, ECDH-ES+A192KW, ECDH-ES+A256KW, ECDH-SS+A128KW, ECDH-SS+A192KW, ECDH-SS+A256KW
 PartyU identity information

 PartyU nonce
 -22
 bstr / int
 direct+HKDF-SHA-256, direct+HKDF-SHA-512, direct+HKDF-AES-128, direct+HKDF-AES-256, ECDH-ES+HKDF-256, ECDH-ES+HKDF-512, ECDH-SS+HKDF-256, ECDH-SS+HKDF-512, ECDH-ES+A128KW, ECDH-ES+A192KW, ECDH-ES+A256KW, ECDH-SS+A128KW, ECDH-SS+A192KW, ECDH-SS+A256KW
 PartyU provided nonce

 PartyU other
 -23
 bstr
 direct+HKDF-SHA-256, direct+HKDF-SHA-512, direct+HKDF-AES-128, direct+HKDF-AES-256, ECDH-ES+HKDF-256, ECDH-ES+HKDF-512, ECDH-SS+HKDF-256, ECDH-SS+HKDF-512, ECDH-ES+A128KW, ECDH-ES+A192KW, ECDH-ES+A256KW, ECDH-SS+A128KW, ECDH-SS+A192KW, ECDH-SS+A256KW
 PartyU other provided information

 PartyV identity
 -24
 bstr
 direct+HKDF-SHA-256, direct+HKDF-SHA-512, direct+HKDF-AES-128, direct+HKDF-AES-256, ECDH-ES+HKDF-256, ECDH-ES+HKDF-512, ECDH-SS+HKDF-256, ECDH-SS+HKDF-512, ECDH-ES+A128KW, ECDH-ES+A192KW, ECDH-ES+A256KW, ECDH-SS+A128KW, ECDH-SS+A192KW, ECDH-SS+A256KW
 PartyV identity information

 PartyV nonce
 -25
 bstr / int
 direct+HKDF-SHA-256, direct+HKDF-SHA-512, direct+HKDF-AES-128, direct+HKDF-AES-256, ECDH-ES+HKDF-256, ECDH-ES+HKDF-512, ECDH-SS+HKDF-256, ECDH-SS+HKDF-512, ECDH-ES+A128KW, ECDH-ES+A192KW, ECDH-ES+A256KW, ECDH-SS+A128KW, ECDH-SS+A192KW, ECDH-SS+A256KW
 PartyV provided nonce

 PartyV other
 -26
 bstr
 direct+HKDF-SHA-256, direct+HKDF-SHA-512, direct+HKDF-AES-128, direct+HKDF-AES-256, ECDH-ES+HKDF-256, ECDH-ES+HKDF-512, ECDH-SS+HKDF-256, ECDH-SS+HKDF-512, ECDH-ES+A128KW, ECDH-ES+A192KW, ECDH-ES+A256KW, ECDH-SS+A128KW, ECDH-SS+A192KW, ECDH-SS+A256KW
 PartyV other provided information

 We define a CBOR object to hold the context information. This object is referred to as COSE_KDF_Context. The object is based on a CBOR array type. The fields in the array are:

 AlgorithmID:

 This field indicates the algorithm for which the key material will be used.
 This normally is either a key wrap algorithm identifier or a
	 content encryption algorithm identifier.
 The values are from the "COSE Algorithms" registry.
 This field is required to be present.
 The field exists in the context information so that a different key is generated for each algorithm even if all of the other context information is the same.
 In practice, this means if algorithm A is broken and thus finding the key is relatively easy, the key derived for algorithm B will not be the same as the key derived for algorithm A.

 PartyUInfo:

 This field holds information about PartyU. The PartyUInfo is
	 encoded as a CBOR array. The elements of PartyUInfo are encoded
	 in the order presented below. The elements of the PartyUInfo
	 array are:

 identity:

 This contains the identity information for PartyU. The
		identities can be assigned in one of two manners. First, a
		protocol can assign identities based on roles. For example,
		the roles of "client" and "server" may be assigned to
		different entities in the protocol. Each entity would then
		use the correct label for the data it sends or receives. The
		second way for a protocol to assign identities is to use a
		name based on a naming system (i.e., DNS or X.509 names).

 We define an algorithm parameter, "PartyU identity", that
		can be used to carry identity information in the message.
		However, identity information is often known as part of the
		protocol and can thus be inferred rather than made explicit.
		If identity information is carried in the message,
		applications SHOULD have a way of validating
		the supplied identity information. The identity information
		does not need to be specified and is set to nil in that case.

 nonce:

 This contains a nonce value. The nonce can be either
		implicit from the protocol or carried as a value in the
		unprotected header bucket.

 We define an algorithm parameter, "PartyU nonce", that can be used to carry this value in the message; however, the nonce value could be determined by the application and its
value obtained in a different manner.

 This option does not need to be specified; if not
		needed, it is set to nil.

 other:
 This contains other information that is defined by the protocol. This option does not need to be specified; if not needed, it is set to nil.

 PartyVInfo:
 This field holds information about PartyV. The content of the structure is the same as for the PartyUInfo but for PartyV.
 SuppPubInfo:

 This field contains public information that is mutually known to both parties, and is encoded as a CBOR array.

 keyDataLength:
 This is set to the number of bits of the desired output
	 value. This practice means if algorithm A can use two different
	 key lengths, the key derived for the longer key size will not
	 contain the key for the shorter key size as a prefix.
 protected:
 This field contains the protected parameter field. If there
	 are no elements in the "protected" field, then use a zero-length
	 bstr.
 other:
 This field is for free-form data defined by the application.
	 For example, an application could define two different
	 byte strings to be placed here to generate different keys for a
	 data stream versus a control stream. This field is optional and
	 will only be present if the application defines a structure for
	 this information. Applications that define this
	 SHOULD use CBOR to encode the data so that types
	 and lengths are correctly included.

 SuppPrivInfo:
 This field contains private information that is mutually known private information. An example of this information would be a pre-existing shared secret. (This could, for example, be used in combination with an ECDH key agreement to provide a secondary proof of identity.) The field is optional and will only be present if the application defines a structure for this information. Applications that define this SHOULD use CBOR to encode the data so that types and lengths are correctly included.

 The following CDDL fragment corresponds to the text above.

PartyInfo = (
 identity : bstr / nil,
 nonce : bstr / int / nil,
 other : bstr / nil
)

COSE_KDF_Context = [
 AlgorithmID : int / tstr,
 PartyUInfo : [PartyInfo],
 PartyVInfo : [PartyInfo],
 SuppPubInfo : [
 keyDataLength : uint,
 protected : empty_or_serialized_map,
 ? other : bstr
],
 ? SuppPrivInfo : bstr
]

 Content Key Distribution Methods

 contains a generic description of content key distribution methods.
 This document defines the identifiers and usage for a number of content key distribution methods.

 Direct Encryption

 A direct encryption algorithm is defined in .
 Information about how to fill in the COSE_Recipient structure is detailed there.

 Direct Key

 This recipient algorithm is the simplest; the identified key is directly used as the key for the next layer down in the message.
 There are no algorithm parameters defined for this algorithm.
 The algorithm identifier value is assigned in .

 When this algorithm is used, the "protected" field
	 MUST be zero length.
 The key type MUST be "Symmetric".

 Direct Key

 Name
 Value
 Description

 direct
 -6
 Direct use of content encryption key (CEK)

 Security Considerations for Direct Key
 This recipient algorithm has several potential problems that need to be considered:

 These keys need to have some method of being regularly updated over time. All of the content encryption algorithms specified in this document have limits on how many times a key can be used without significant loss of security.
 These keys need to be dedicated to a single algorithm. There have been a number of attacks developed over time when a single key is used for multiple different algorithms. One example of this is the use of a single key for both the CBC encryption mode and the CBC-MAC authentication mode.
 Breaking one message means all messages are broken. If an adversary succeeds in determining the key for a single message, then the key for all messages is also determined.

 Direct Key with KDF
 These recipient algorithms take a common shared secret between
	 the two parties and apply the HKDF function (), using the context structure defined in
	 to transform the shared secret into the
	 CEK. The "protected" field can be of nonzero length. Either
 the "salt" parameter for HKDF () or the "PartyU nonce" parameter
 for the context structure () MUST be
 present (both can be present if desired). The value in the
 "salt"/"nonce" parameter
	 can be generated either randomly or deterministically. The
	 requirement is that it be a unique value for the shared secret in
	 question.
 If the salt/nonce value is generated randomly, then it is suggested that the length of the random value be the same length as the output of the hash function underlying HKDF. While there is no way to guarantee that it will be unique, there is a high probability that it will be unique. If the salt/nonce value is generated deterministically, it can be guaranteed to be unique, and thus there is no length requirement.
 A new IV must be used for each message if the same key is used. The IV can be modified in a predictable manner, a random manner, or an unpredictable manner (e.g., encrypting a counter).
 The IV used for a key can also be generated using the same HKDF
	 functionality used to generate the key. If HKDF is used for
	 generating the IV, the algorithm identifier is set to 34
	 ("IV-GENERATION").
 The set of algorithms defined in this document can be found in .

 Direct Key with KDF

 Name
 Value
 KDF
 Description

 direct+HKDF-SHA-256
 -10
 HKDF SHA-256
 Shared secret w/ HKDF and SHA-256

 direct+HKDF-SHA-512
 -11
 HKDF SHA-512
 Shared secret w/ HKDF and SHA-512

 direct+HKDF-AES-128
 -12
 HKDF AES-MAC-128
 Shared secret w/ AES-MAC 128-bit key

 direct+HKDF-AES-256
 -13
 HKDF AES-MAC-256
 Shared secret w/ AES-MAC 256-bit key

 When using a COSE key for this algorithm, the following checks are made:

 The "kty" field MUST be present, and it MUST be "Symmetric".
 If the "alg" field is present, it MUST match the algorithm being used.
 If the "key_ops" field is present, it MUST include "derive key" or "derive bits".

 Security Considerations for Direct Key with KDF
 The shared secret needs to have some method of being regularly
	 updated over time. The shared secret forms the basis of trust.
	 Although not used directly, it should still be subject to
	 scheduled rotation.
 These methods do not provide for perfect forward secrecy, as
	 the same shared secret is used for all of the keys generated;
	 however, if the key for any single message is discovered, only the
	 message or series of messages using that derived key are
	 compromised. A new key derivation step will generate a new key that requires the same
	 amount of work to get the key.

 Key Wrap

 Key wrap is defined in .
 Information about how to fill in the COSE_Recipient structure is detailed there.

 AES Key Wrap
 The AES Key Wrap algorithm is defined in .
	This algorithm uses an AES key to wrap a value that is a multiple of
	64 bits. As such, it can be used to wrap a key for any of the
	content encryption algorithms defined in this document. The algorithm
	requires a single fixed parameter, the initial value. This is fixed
	to the value specified in . There are no public key parameters that vary on
	a per-invocation basis. The protected header bucket
	 MUST be empty.
 Keys may be obtained from either a key structure or a recipient
	structure. Implementations that are encrypting or decrypting
	 MUST validate that the key type, key length, and
	algorithm are correct and appropriate for the entities involved.
 When using a COSE key for this algorithm, the following checks are made:

 The "kty" field MUST be present, and it MUST be "Symmetric".
 If the "alg" field is present, it MUST match the AES Key Wrap algorithm being used.
 If the "key_ops" field is present, it MUST include "encrypt" or "wrap key" when encrypting.
 If the "key_ops" field is present, it MUST include "decrypt" or "unwrap key" when decrypting.

 AES Key Wrap Algorithm Values

 Name
 Value
 Key Size
 Description

 A128KW
 -3
 128
 AES Key Wrap w/ 128-bit key

 A192KW
 -4
 192
 AES Key Wrap w/ 192-bit key

 A256KW
 -5
 256
 AES Key Wrap w/ 256-bit key

 Security Considerations for AES Key Wrap
 The shared secret needs to have some method of being regularly updated over time. The shared secret is the basis of trust.

 Direct Key Agreement

 Direct Key Agreement is defined in .
 Information about how to fill in the COSE_Recipient structure is detailed there.

 Direct ECDH
 The mathematics for ECDH can be found in . In this document, the algorithm is extended to be used with the two curves defined in .
 ECDH is parameterized by the following:

 Curve Type/Curve:

 The curve selected controls not only the size of the shared secret, but the mathematics for computing the shared secret. The curve selected also controls how a point in the curve is represented and what happens for the identity points on the curve. In this specification, we allow for a number of different curves to be used. A set of curves is defined in .
 The math used to obtain the computed secret is based on the curve selected and not on the ECDH algorithm. For this reason, a new algorithm does not need to be defined for each of the curves.

 Computed Secret to Shared Secret:
 Once the computed
	 secret is known, the resulting value needs to be converted to a byte
	 string to run the KDF. The x-coordinate is used for all of the
	 curves defined in this document. For curves X25519 and X448, the
	 resulting value is used directly, as it is a byte string of a known
	 length. For the P-256, P-384, and P-521 curves, the x-coordinate is
	 run through the Integer-to-Octet-String primitive (I2OSP) function
	 defined in ,
	 using the same computation for n as is defined in .
 Ephemeral-Static or Static-Static:
 The key agreement
 process may be done using either a static or an ephemeral
 key for the sender's side. When using ephemeral keys, the
 sender MUST generate a new ephemeral key for
 every key agreement operation. The ephemeral key is placed
 in the "ephemeral key" parameter and MUST be
 present for all algorithm identifiers that use ephemeral
 keys. When using static keys, the sender
 MUST either generate a new random value or
 create a unique value for use as a KDF input. For the KDFs used, this means that either
 the "salt" parameter for HKDF () or the "PartyU nonce" parameter
 for the context structure () MUST be
 present (both can be present if desired). The value in the
 parameter MUST be unique for the pair of keys
 being used. It is acceptable to use a global counter that
 is incremented for every Static-Static operation and use the
 resulting value. Care must be taken that the counter is
 saved to permanent storage in a way that avoids reuse of that
 counter value. When using static keys, the static key should
 be identified to the recipient. The static key can be
 identified by providing either the key ("static key") or
 a key identifier for the static key ("static key
 id"). Both of these header parameters are defined in .

 Key Derivation Algorithm:
 The result of an ECDH
	 key agreement process does not provide a uniformly random secret.
	 As such, it needs to be run through a KDF in order to produce a usable
	 key. Processing the secret through a KDF also allows for the
	 introduction of context material: how the key is going to be used
	 and one-time material for Static-Static key agreement. All of the
	 algorithms defined in this document use one of the HKDF algorithms
	 defined in with the context structure
	 defined in .
 Key Wrap Algorithm:
 No key wrap algorithm is used.
	 This is represented in as
	 "none". The key size for the context structure is the
	 content layer encryption algorithm size.

 COSE does not have an Ephemeral-Ephemeral version defined.
 The reason for this is that COSE is not an online protocol by itself and thus does not have a method of establishing ephemeral secrets on both sides.
 The expectation is that a protocol would establish the secrets for both sides, and then they would be used as Static-Static for the purposes of COSE, or that the protocol would generate a shared secret and a direct encryption would be used.

 The set of direct ECDH algorithms defined in this document is found
	in .

 ECDH Algorithm Values

 Name
 Value
 KDF
 Ephemeral-Static
 Key Wrap
 Description

 ECDH-ES + HKDF-256
 -25
 HKDF -- SHA-256
 yes
 none
 ECDH ES w/ HKDF -- generate key directly

 ECDH-ES + HKDF-512
 -26
 HKDF -- SHA-512
 yes
 none
 ECDH ES w/ HKDF -- generate key directly

 ECDH-SS + HKDF-256
 -27
 HKDF -- SHA-256
 no
 none
 ECDH SS w/ HKDF -- generate key directly

 ECDH-SS + HKDF-512
 -28
 HKDF -- SHA-512
 no
 none
 ECDH SS w/ HKDF -- generate key directly

 ECDH Algorithm Parameters

 Name
 Label
 Type
 Algorithm
 Description

 ephemeral key
 -1
 COSE_Key
 ECDH-ES+HKDF-256, ECDH-ES+HKDF-512, ECDH-ES+A128KW, ECDH-ES+A192KW, ECDH-ES+A256KW
 Ephemeral public key for the sender

 static key
 -2
 COSE_Key
 ECDH-SS+HKDF-256, ECDH-SS+HKDF-512, ECDH-SS+A128KW, ECDH-SS+A192KW, ECDH-SS+A256KW
 Static public key for the sender

 static key id
 -3
 bstr
 ECDH-SS+HKDF-256, ECDH-SS+HKDF-512, ECDH-SS+A128KW, ECDH-SS+A192KW, ECDH-SS+A256KW
 Static public key identifier for the sender

 This document defines these algorithms to be used with the curves P-256, P-384, P-521, X25519, and X448. Implementations MUST verify that the key type and curve are correct. Different curves are restricted to different key types. Implementations MUST verify that the curve and algorithm are appropriate for the entities involved.
 When using a COSE key for this algorithm, the following checks are made:

 The "kty" field MUST be present, and it MUST be "EC2" or "OKP".
 If the "alg" field is present, it MUST match the
	 key agreement algorithm being used.
 If the "key_ops" field is present, it MUST include "derive key" or "derive bits" for the private key.
 If the "key_ops" field is present, it MUST be empty for the public key.

 Security Considerations for ECDH

 There is a method of checking that points provided from external entities are valid.
 For the "EC2" key format, this can be done by checking that the x and y values form a point on the curve.
 For the "OKP" format, there is no simple way to perform point validation.

 Consideration was given to requiring that the public keys of both
	 entities be provided as part of the key derivation process (as
	 recommended in). This was
	 not done, because COSE is used in a store-and-forward
	 format rather than in online key exchange.
 In order for this to be a problem, either the receiver public key has to be chosen maliciously or the sender has to be malicious.
 In either case, all security evaporates anyway.

 A proof of possession of the private key associated with the public key is recommended when a key is moved from untrusted to trusted (either by the end user or by the entity that is responsible for making trust statements on keys).

 Key Agreement with Key Wrap

 Key Agreement with Key Wrap is defined in .
 Information about how to fill in the COSE_Recipient structure is detailed there.

 ECDH with Key Wrap
 These algorithms are defined in .
 ECDH with Key Agreement is parameterized by the same header parameters as for ECDH; see , with the following modifications:

 Key Wrap Algorithm:
 Any of the key wrap algorithms
	 defined in are supported. The size
	 of the key used for the key wrap algorithm is fed into the KDF. The
	 set of identifiers is found in .

 ECDH Algorithm Values with Key Wrap

 Name
 Value
 KDF
 Ephemeral-Static
 Key Wrap
 Description

 ECDH-ES + A128KW
 -29
 HKDF -- SHA-256
 yes
 A128KW
 ECDH ES w/ HKDF and AES Key Wrap w/ 128-bit key

 ECDH-ES + A192KW
 -30
 HKDF -- SHA-256
 yes
 A192KW
 ECDH ES w/ HKDF and AES Key Wrap w/ 192-bit key

 ECDH-ES + A256KW
 -31
 HKDF -- SHA-256
 yes
 A256KW
 ECDH ES w/ HKDF and AES Key Wrap w/ 256-bit key

 ECDH-SS + A128KW
 -32
 HKDF -- SHA-256
 no
 A128KW
 ECDH SS w/ HKDF and AES Key Wrap w/ 128-bit key

 ECDH-SS + A192KW
 -33
 HKDF -- SHA-256
 no
 A192KW
 ECDH SS w/ HKDF and AES Key Wrap w/ 192-bit key

 ECDH-SS + A256KW
 -34
 HKDF -- SHA-256
 no
 A256KW
 ECDH SS w/ HKDF and AES Key Wrap w/ 256-bit key

 When using a COSE key for this algorithm, the following checks are made:

 The "kty" field MUST be present, and it MUST be "EC2" or "OKP".
 If the "alg" field is present, it MUST match the key agreement algorithm being used.
 If the "key_ops" field is present, it MUST include "derive key" or "derive bits" for the private key.
 If the "key_ops" field is present, it MUST be empty for the public key.

 Key Object Parameters
 The COSE_Key object defines a way to hold a single key object. It is still required that the members of individual key types be defined. This section of the document is where we define an initial set of members for specific key types.
 For each of the key types, we define both public and private members.
 The public members are what is transmitted to others for their usage.
 Private members allow individuals to archive keys. However,
 there are some circumstances in which private keys may be distributed to
 entities in a protocol. Examples include: entities that have poor
 random number generation, centralized key creation for multicast-type
 operations, and protocols in which a shared secret is used as a bearer
 token for authorization purposes.
 Key types are identified by the "kty" member of the COSE_Key object. In this document, we define four values for the member:

 Key Type Values

 Name
 Value
 Description

 OKP
 1
 Octet Key Pair

 EC2
 2
 Elliptic Curve Keys w/ x- and y-coordinate pair

 Symmetric
 4
 Symmetric Keys

 Reserved
 0
 This value is reserved

 Elliptic Curve Keys
 Two different key structures are defined for elliptic curve keys.
	One version uses both an x-coordinate and a y-coordinate, potentially
	with point compression ("EC2"). This is the conventional
	elliptic curve (EC) point
	representation that is used in . The other
	version uses only the x-coordinate, as the y-coordinate is either to
	be recomputed or not needed for the key agreement operation ("OKP").

 Applications MUST check that the curve and the key type are consistent and reject a key if they are not.

 Elliptic Curves

 Name
 Value
 Key Type
 Description

 P-256
 1
 EC2
 NIST P-256, also known as secp256r1

 P-384
 2
 EC2
 NIST P-384, also known as secp384r1

 P-521
 3
 EC2
 NIST P-521, also known as secp521r1

 X25519
 4
 OKP
 X25519 for use w/ ECDH only

 X448
 5
 OKP
 X448 for use w/ ECDH only

 Ed25519
 6
 OKP
 Ed25519 for use w/ EdDSA only

 Ed448
 7
 OKP
 Ed448 for use w/ EdDSA only

 Double Coordinate Curves
 Generally, protocols transmit elliptic-curve points as either the
	 x-coordinate and y-coordinate or the x-coordinate and a sign bit
	 for the y-coordinate. The latter encoding has not been recommended
	 by the IETF due to potential IPR
	 issues. However, for operations in constrained environments, the
	 ability to shrink a message by not sending the y-coordinate is
	 potentially useful.
 For EC keys with both coordinates, the "kty" member is set to 2 (EC2). The key parameters defined in this section are summarized in . The members that are defined for this key type are:

 crv:
 This contains an identifier of the curve to be used with the key. The curves defined in this document for this key type can be found in . Other curves may be registered in the future, and private curves can be used as well.
 x:
 This contains the x-coordinate for the EC point. The integer
	 is converted to a byte string as defined in .
	 Leading-zero octets MUST be preserved.

 y:
 This contains either the sign bit or the value of the y-coordinate for the EC point. When encoding the value y, the integer is converted to a byte string (as defined in) and encoded as a CBOR bstr. Leading-zero octets MUST be preserved. Compressed point encoding is also supported. Compute the sign bit as laid out in the Elliptic-Curve-Point-to-Octet-String Conversion function of . If the sign bit is zero, then encode y as a CBOR false value; otherwise, encode y as a CBOR true value. The encoding of the infinity point is not supported.
 d:
 This contains the private key.

 For public keys, it is REQUIRED that "crv", "x", and "y" be present in the structure. For private keys, it is REQUIRED that "crv" and "d" be present in the structure. For private keys, it is RECOMMENDED that "x" and "y" also be present, but they can be recomputed from the required elements, and omitting them saves on space.

 EC Key Parameters

 Key Type
 Name
 Label
 CBOR Type
 Description

 2
 crv
 -1
 int / tstr
 EC identifier -- Taken from the "COSE Elliptic Curves" registry

 2
 x
 -2
 bstr
 x-coordinate

 2
 y
 -3
 bstr / bool
 y-coordinate

 2
 d
 -4
 bstr
 Private key

 Octet Key Pair
 A new key type is defined for Octet Key Pairs (OKPs). Do not assume that keys using this type are elliptic curves. This key type could be used for other curve types (for example, mathematics based on hyper-elliptic surfaces).
 The key parameters defined in this section are summarized in . The members that are defined for this key type are:

 crv:
 This contains an identifier of the curve to be used with the key. The curves defined in this document for this key type can be found in . Other curves may be registered in the future, and private curves can be used as well.
 x:
 This contains the public key. The byte string contains the public key as defined by the algorithm. (For X25519, internally it is a little-endian integer.)
 d:
 This contains the private key.

 For public keys, it is REQUIRED that "crv" and "x" be present in the structure. For private keys, it is REQUIRED that "crv" and "d" be present in the structure. For private keys, it is RECOMMENDED that "x" also be present, but it can be recomputed from the required elements, and omitting it saves on space.

 Octet Key Pair Parameters

 Name
 Key Type
 Label
 Type
 Description

 crv
 1
 -1
 int / tstr
 EC identifier -- Taken from the "COSE Elliptic Curves" registry

 x
 1
 -2
 bstr
 Public Key

 d
 1
 -4
 bstr
 Private key

 Symmetric Keys
 Occasionally, it is required that a symmetric key be transported between entities. This key structure allows for that to happen.
 For symmetric keys, the "kty" member is set to 4 ("Symmetric"). The member that is defined for this key type is:

 k:
 This contains the value of the key.

 This key structure does not have a form that contains only public members. As it is expected that this key structure is going to be transmitted, care must be taken that it is never transmitted accidentally or insecurely. For symmetric keys, it is REQUIRED that "k" be present in the structure.

 Symmetric Key Parameters

 Name
 Key Type
 Label
 Type
 Description

 k
 4
 -1
 bstr
 Key Value

 COSE Capabilities

	
 The capabilities of an algorithm or key type need to be
 specified in some situations.
 This has a counterpart
 in the S/MIME specifications, where SMIMECapabilities is
 defined in . This document defines the same concept
 for COSE.

 The algorithm identifier is not included in the capabilities data, as
	it should be encoded elsewhere in the message. The key type identifier
	is included in the capabilities data, as it is not expected to be
	encoded elsewhere.

 Two different types of capabilities are defined: capabilities for algorithms and capabilities for key type.
 Once defined by registration with IANA, the list of capabilities for an algorithm or key type is immutable.
 If it is later found that a new capability is needed for a key type or algorithm, it will require that a new code point be assigned to deal with that.
 As a general rule, the capabilities are going to map to algorithm-specific header parameters or key parameters, but they do not need to do so.
 An example of this is the HSS-LMS key type capabilities defined below, where the hash algorithm used is included.

 The capability structure is an array of values; the values included in the structure are dependent on a specific algorithm or key type.
 For algorithm capabilities, the first element should always be a
	key type value if applicable, but the items that are specific to a key
	(for example, a curve) should not be included in the algorithm
	capabilities.
 This means that if one wishes to enumerate all of the capabilities for
	a device that implements ECDH, it requires that all of the
	combinations of algorithms and key pairs be specified.
 The last example of provides a case
	where this is done by allowing for a cross product to be specified
	between an array of algorithm capabilities and key type capabilities
	(see the ECDH-ES+A25KW element).
 For a key, the first element should be the key type value.
 While this means that the key type value will be duplicated if both an algorithm and key capability are used, the key type is needed in order to understand the rest of the values.

 Assignments for Existing Algorithms

 For the current set of algorithms in the registry other than IV-GENERATION (those in this document as well as those in , , and), the capabilities list is an array with one element, the key type (from the "COSE Key Types" Registry). It is expected that future registered algorithms could have zero, one, or multiple elements.

 Assignments for Existing Key Types

 There are a number of pre-existing key types; the following deals with creating the capability definition for those structures:

 OKP, EC2: The list of capabilities is:

 The key type value. (1 for OKP or 2 for EC2.)
 One curve for that key type from the "COSE Elliptic Curves" registry.

 RSA: The list of capabilities is:

 The key type value (3).

 Symmetric: The list of capabilities is:

 The key type value (4).

 HSS-LMS: The list of capabilities is:

 The key type value (5).
 Algorithm identifier for the underlying hash function from the "COSE
Algorithms" registry.

 WalnutDSA: The list of capabilities is:

 The key type value (6).
 The N value (group and matrix size) for the key, a uint.
 The q value (finite field order) for the key, a uint.

 Examples

 Capabilities can be used in a key derivation process to make sure
	 that both sides are using the same parameters.
 The three examples below show different ways that one might utilize parameters in specifying an application protocol:

 Only an algorithm capability: This is useful if the protocol wants to require a specific algorithm, such as ES256, but it is agnostic about which curve is being used.
 This requires that the algorithm identifier be specified in the protocol. See the first example.

 Only a key type capability: This is useful if the protocol wants
	 to require a specific key type and curve, such as
	 P-256, but will accept any algorithm using that curve (e.g., both
	 ECDSA and ECDH).
 See the second example.

 Both algorithm and key type capabilities: This is used if the
	 protocol needs to nail down all of the options surrounding an
	 algorithm -- e.g., EdDSA with the curve Ed25519.
 As with the first example, the algorithm identifier needs to be specified in the protocol. See the third example, which just concatenates the two capabilities together.

Algorithm ES256

0x8102 / [2 \ EC2 \] /

Key type EC2 with P-256 curve:

0x820201 / [2 \ EC2 \, 1 \ P-256 \] /

ECDH-ES + A256KW with an X25519 curve:

0x8101820104 / [1 \ OKP \],[1 \ OKP \, 4 \ X25519 \] /

 The capabilities can also be used by an entity to advertise what it is capable of doing.
 The decoded example below is one of many encodings that could be used for that purpose.
 Each array element includes three fields: the algorithm identifier, one or more algorithm capabilities, and one or more key type capabilities.

[
 [-8 / EdDSA /,
 [1 / OKP key type /],
 [
 [1 / OKP /, 6 / Ed25519 /],
 [1 /OKP/, 7 /Ed448 /]
]
],
 [-7 / ECDSA with SHA-256/,
 [2 /EC2 key type/],
 [
 [2 /EC2/, 1 /P-256/],
 [2 /EC2/, 3 /P-521/]
]
],
 [-31 / ECDH-ES+A256KW/,
 [
 [2 /EC2/],
 [1 /OKP/]
],
 [
 [2 /EC2/, 1 /P-256/],
 [1 /OKP/, 4 / X25519/]
]
],
 [1 / A128GCM /,
 [4 / Symmetric /],
 [4 / Symmetric /]
]
]

 Examining the above:

 The first element indicates that the entity supports EdDSA with curves Ed25519 and Ed448.
 The second element indicates that the entity supports ECDSA with SHA-256 with curves P-256 and P-521.

 The third element indicates that the entity supports Ephemeral-Static ECDH using AES256 key wrap.
 The entity can support the P-256 curve with an EC2 key type and the X25519 curve with an OKP key type.

 The last element indicates that the entity supports AES-GCM of 128 bits for content encryption.

 The entity does not advertise that it supports any MAC algorithms.

 CBOR Encoding Restrictions
 This document limits the restrictions it imposes on how the CBOR
 Encoder needs to work. The new encoding restrictions are aligned with
 the Core Deterministic Encoding Requirements specified in RFC 8949.
 It has been narrowed down to the following restrictions:

 The restriction applies to the encoding of the COSE_KDF_Context.

 Encoding MUST be done using definite lengths,
 and the length of the (encoded) argument MUST
 be the minimum possible length. This means that the integer
 1 is encoded as "0x01" and not "0x1801".

 Applications MUST NOT generate messages with the same label used twice as a key in a single map.
 Applications MUST NOT parse and process messages with
	 the same label used twice as a key in a single map.
 Applications can enforce the parse-and-process
 requirement by using parsers that will fail the parse step or by
 using parsers that will pass all keys to the application, and the
 application can perform the check for duplicate keys.

 IANA Considerations
 IANA has updated all COSE registries except for "COSE
 Header Parameters" and "COSE Key Common Parameters" to point to this document instead of .

 Changes to the "COSE Key Types" Registry

 IANA has added a new column in the "COSE Key Types" registry.
 The new column is labeled "Capabilities" and has been populated according to the entries in .

 Key Type Capabilities

 Value
 Name
 Capabilities

 1
 OKP
 [kty(1), crv]

 2
 EC2
 [kty(2), crv]

 3
 RSA
 [kty(3)]

 4
 Symmetric
 [kty(4)]

 5
 HSS-LMS
 [kty(5), hash algorithm]

 6
 WalnutDSA
 [kty(6), N value, q value]

 Changes to the "COSE Algorithms" Registry

 IANA has added a new column in the "COSE Algorithms" registry.
 The new column is labeled "Capabilities" and has been populated with "[kty]" for all current,
	 nonprovisional registrations.

 IANA has updated the Reference column in the "COSE Algorithms" registry to include this document as a reference for all rows where it was not already present.

 IANA has added a new row to the "COSE Algorithms" registry.

 New entry in the COSE Algorithms registry

 Name
 Value
 Description
 Reference
 Recommended

 IV-GENERATION
 34
 For doing IV generation for symmetric algorithms.
 RFC 9053
 No

 The Capabilities column for this registration is to be empty.

 Changes to the "COSE Key Type Parameters" Registry

 IANA has modified the description to "Public Key" for the
	 line with "Key Type" of 1 and the "Name" of "x".
 See , which has been modified with
	 this change.

 Expert Review Instructions

 All of the IANA registries established by are, at least in part, defined as Expert Review . This section gives some general guidelines for what the experts should be looking for, but they are being designated as experts for a reason, so they should be given substantial latitude.

 Expert reviewers should take the following into consideration:

 Point squatting should be discouraged. Reviewers are encouraged to get sufficient information for registration requests to ensure that the usage is not going to duplicate an existing registration and that the code point is likely to be used in deployments. The ranges tagged as private use are intended for testing purposes and closed environments; code points in other ranges should not be assigned for testing.
 Standards Track or BCP RFCs are required to register a code point in the Standards Action range.
Specifications should exist for Specification Required ranges,
but early assignment before an RFC is available is considered to be
permissible. Specifications are needed for the first-come, first-served range
if the points are expected to be used outside of closed environments in an
interoperable way. When specifications are not provided, the description
provided needs to have sufficient information to identify what the point is
being used for.
 Experts should take into account the expected usage of fields when
approving code point assignment.
The fact that the Standards Action range is only available to Standards Track documents does not mean that a Standards Track document cannot have points assigned outside of that range. The length of the encoded value should
be weighed against how many code points of that length are left and the size of
device it will be used on.
 When algorithms are registered, vanity registrations should be discouraged. One way to do this is to require registrations to provide additional documentation on security analysis of the algorithm. Another thing that should be considered is requesting an opinion on the algorithm from the Crypto Forum Research Group (CFRG). Algorithms are expected to meet the security requirements of the
community and the requirements of the message structures in order to be
suitable for registration.

 Security Considerations
 There are a number of security considerations that need to be taken into account by implementers of this specification. The security considerations that are specific to an individual algorithm are placed next to the description of the algorithm. While some considerations have been highlighted here, additional considerations may be found in the documents listed in the references.
 Implementations need to protect the private key material for all
 individuals. Some cases in this document need to be highlighted with
 regard to this issue.

 Use of the same key for two different algorithms can leak information about the key. It is therefore recommended that keys be restricted to a single algorithm.
 Use of "direct" as a recipient algorithm combined with a second recipient algorithm exposes the direct key to the second recipient; forbids combining "direct" recipient algorithms with other modes.
 Several of the algorithms in this document have limits on the number of times that a key can be used without leaking information about the key.

 The use of ECDH and direct plus KDF (with no key wrap) will not
 directly lead to the private key being leaked; the one-way function of
 the KDF will prevent that. There is, however, a different issue that
 needs to be addressed. Having two recipients requires that the CEK be
 shared between two recipients. The second recipient therefore has a CEK
 that was derived from material that can be used for the weak proof of
 origin. The second recipient could create a message using the same CEK
 and send it to the first recipient; the first recipient would, for
 either Static-Static ECDH or direct plus KDF, make an assumption that
 the CEK could be used for proof of origin, even though it is from the
 wrong entity. If the key wrap step is added, then no proof of origin is
 implied and this is not an issue.
 Although it has been mentioned before, it bears repeating that the use of a single key for
 multiple algorithms has been demonstrated in some cases to leak
 information about a key, providing the opportunity for attackers to forge
 integrity tags or gain information about encrypted content. Binding a
 key to a single algorithm prevents these problems. Key creators and key
 consumers are strongly encouraged to not only create new keys for each
 different algorithm, but to include that selection of algorithm in any
 distribution of key material and strictly enforce the matching of
 algorithms in the key structure to algorithms in the message structure.
 In addition to checking that algorithms are correct, the key form needs
 to be checked as well. Do not use an "EC2" key where an "OKP" key is
 expected.
 Before using a key for transmission, or before acting on information
 received, a trust decision on a key needs to be made. Is the data or
 action something that the entity associated with the key has a right to
 see or a right to request? A number of factors are associated with this
 trust decision. Some highlighted here are:

 What are the permissions associated with the key owner?
 Is the cryptographic algorithm acceptable in the current context?
 Have the restrictions associated with the key, such as algorithm
	or freshness, been checked, and are they correct?
 Is the request something that is reasonable, given the current state of the application?
 Have any security considerations that are part of the message been enforced (as specified by the application or "crit" header parameter)?

 There are a large number of algorithms presented in this
 document that use nonce values. For all of the nonces defined
 in this document, there is some type of restriction on the nonce
 being a unique value for either a key or some other
 conditions. In all of these cases, there is no known
 requirement on the nonce being both unique and unpredictable;
 under these circumstances, it's reasonable to use a counter for
 creation of the nonce. In cases where one wants the pattern of
 the nonce to be unpredictable as well as unique, one can use a
 key created for that purpose and encrypt the counter to produce
 the nonce value.
 One area that has been getting
 exposure is traffic analysis of encrypted messages based on the
 length of the message. This specification does not provide
 a uniform method for providing padding as part of the message
 structure. An observer can distinguish between two different
 messages (for example, "YES" and "NO") based on the length for
 all of the content encryption algorithms that are defined in
 this document. This means that it is up to the applications to
 document how content padding is to be done in order to prevent
 or discourage such analysis. (For example, the text strings
 could be defined as "YES" and "NO ".)
 The analysis done
 in is based on the number of records that
 are sent. This should map well to the number of messages sent
 when using COSE, so that analysis should hold here as well, under
 the assumption that the COSE messages are roughly the same size
 as DTLS records.
It needs to be noted that the limits are based on the number of messages,
 but QUIC and DTLS are always pairwise-based endpoints. In contrast, uses COSE in a group communication scenario. Under these circumstances, it may be that no one
 single entity will see all of the messages that are encrypted, and
 therefore no single entity can trigger the rekey operation.

 References

 Normative References

 Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC

 Digital Signature Standard (DSS)

 National Institute of Standards and Technology

 Handbook of Applied Cryptography

 CRC Press, Boca Raton

 HMAC: Keyed-Hashing for Message Authentication

 This document describes HMAC, a mechanism for message authentication using cryptographic hash functions. HMAC can be used with any iterative cryptographic hash function, e.g., MD5, SHA-1, in combination with a secret shared key. The cryptographic strength of HMAC depends on the properties of the underlying hash function. This memo provides information for the Internet community. This memo does not specify an Internet standard of any kind

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Advanced Encryption Standard (AES) Key Wrap Algorithm

 Counter with CBC-MAC (CCM)

 Counter with CBC-MAC (CCM) is a generic authenticated encryption block cipher mode. CCM is defined for use with 128-bit block ciphers, such as the Advanced Encryption Standard (AES).

 HMAC-based Extract-and-Expand Key Derivation Function (HKDF)

 This document specifies a simple Hashed Message Authentication Code (HMAC)-based key derivation function (HKDF), which can be used as a building block in various protocols and applications. The key derivation function (KDF) is intended to support a wide range of applications and requirements, and is conservative in its use of cryptographic hash functions. This document is not an Internet Standards Track specification; it is published for informational purposes.

 Fundamental Elliptic Curve Cryptography Algorithms

 This note describes the fundamental algorithms of Elliptic Curve Cryptography (ECC) as they were defined in some seminal references from 1994 and earlier. These descriptions may be useful for implementing the fundamental algorithms without using any of the specialized methods that were developed in following years. Only elliptic curves defined over fields of characteristic greater than three are in scope; these curves are those used in Suite B. This document is not an Internet Standards Track specification; it is published for informational purposes.

 Deterministic Usage of the Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA)

 This document defines a deterministic digital signature generation procedure. Such signatures are compatible with standard Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA) digital signatures and can be processed with unmodified verifiers, which need not be aware of the procedure described therein. Deterministic signatures retain the cryptographic security features associated with digital signatures but can be more easily implemented in various environments, since they do not need access to a source of high-quality randomness.

 Elliptic Curves for Security

 This memo specifies two elliptic curves over prime fields that offer a high level of practical security in cryptographic applications, including Transport Layer Security (TLS). These curves are intended to operate at the ~128-bit and ~224-bit security level, respectively, and are generated deterministically based on a list of required properties.

 PKCS #1: RSA Cryptography Specifications Version 2.2

 This document provides recommendations for the implementation of public-key cryptography based on the RSA algorithm, covering cryptographic primitives, encryption schemes, signature schemes with appendix, and ASN.1 syntax for representing keys and for identifying the schemes.
 This document represents a republication of PKCS #1 v2.2 from RSA Laboratories' Public-Key Cryptography Standards (PKCS) series. By publishing this RFC, change control is transferred to the IETF.
 This document also obsoletes RFC 3447.

 Edwards-Curve Digital Signature Algorithm (EdDSA)

 This document describes elliptic curve signature scheme Edwards-curve Digital Signature Algorithm (EdDSA). The algorithm is instantiated with recommended parameters for the edwards25519 and edwards448 curves. An example implementation and test vectors are provided.

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 ChaCha20 and Poly1305 for IETF Protocols

 This document defines the ChaCha20 stream cipher as well as the use of the Poly1305 authenticator, both as stand-alone algorithms and as a "combined mode", or Authenticated Encryption with Associated Data (AEAD) algorithm.
 RFC 7539, the predecessor of this document, was meant to serve as a stable reference and an implementation guide. It was a product of the Crypto Forum Research Group (CFRG). This document merges the errata filed against RFC 7539 and adds a little text to the Security Considerations section.

 CBOR Object Signing and Encryption (COSE): Structures and Process

 SEC 1: Elliptic Curve Cryptography

 Certicom Research

 Standards for Efficient Cryptography

 Concise Binary Object Representation (CBOR)

 Informative References

 Deterministic ECDSA and EdDSA Signatures with Additional Randomness

 Ericsson

 Ericsson

 Ericsson

 Deterministic elliptic-curve signatures such as deterministic ECDSA
 and EdDSA have gained popularity over randomized ECDSA as their
 security do not depend on a source of high-quality randomness.
 Recent research has however found that implementations of these
 signature algorithms may be vulnerable to certain side-channel and
 fault injection attacks due to their determinism. One countermeasure
 to such attacks is to re-add randomness to the otherwise
 deterministic calculation of the per-message secret number. This
 document updates RFC 6979 and RFC 8032 to recommend constructions
 with additional randomness for deployments where side-channel attacks
 and fault injection attacks are a concern. The updates are invisible
 to the validator of the signature and compatible with existing ECDSA
 and EdDSA validators.

 Work in Progress

 CBOR Object Signing and Encryption (COSE): Countersignatures

 August Cellars

 Vigil Security, LLC

 Concise Binary Object Representation (CBOR) is a data format designed
 for small code size and small message size. CBOR Object Signing and
 Encryption (COSE) defines a set of security services for CBOR. This
 document defines a countersignature algorithm along with the needed
 header parameters and CBOR tags for COSE. This document updates RFC
 INSERT the number assigned to [I-D.ietf-cose-rfc8152bis-struct].

 Work in Progress

 GitHub Examples of COSE

 commit 3221310

 Cryptographic Extraction and Key Derivation: The HKDF Scheme

 IBM T.J. Watson Research Center

 Group OSCORE - Secure Group Communication for CoAP

 RISE AB

 Ericsson AB

 Ericsson AB

 Ericsson AB

 Universitaet Duisburg-Essen

 This document defines Group Object Security for Constrained RESTful
 Environments (Group OSCORE), providing end-to-end security of CoAP
 messages exchanged between members of a group, e.g., sent over IP
 multicast. In particular, the described approach defines how OSCORE
 is used in a group communication setting to provide source
 authentication for CoAP group requests, sent by a client to multiple
 servers, and for protection of the corresponding CoAP responses.
 Group OSCORE also defines a pairwise mode where each member of the
 group can efficiently derive a symmetric pairwise key with any other
 member of the group for pairwise OSCORE communication.

 Work in Progress

 Identifiers and Test Vectors for HMAC-SHA-224, HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512

 This document provides test vectors for the HMAC-SHA-224, HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512 message authentication schemes. It also provides ASN.1 object identifiers and Uniform Resource Identifiers (URIs) to identify use of these schemes in protocols. The test vectors provided in this document may be used for conformance testing. [STANDARDS-TRACK]

 The AES-CMAC Algorithm

 The National Institute of Standards and Technology (NIST) has recently specified the Cipher-based Message Authentication Code (CMAC), which is equivalent to the One-Key CBC MAC1 (OMAC1) submitted by Iwata and Kurosawa. This memo specifies an authentication algorithm based on CMAC with the 128-bit Advanced Encryption Standard (AES). This new authentication algorithm is named AES-CMAC. The purpose of this document is to make the AES-CMAC algorithm conveniently available to the Internet Community. This memo provides information for the Internet community.

 An Interface and Algorithms for Authenticated Encryption

 This document defines algorithms for Authenticated Encryption with Associated Data (AEAD), and defines a uniform interface and a registry for such algorithms. The interface and registry can be used as an application-independent set of cryptoalgorithm suites. This approach provides advantages in efficiency and security, and promotes the reuse of crypto implementations. [STANDARDS-TRACK]

 Elliptic Curve Cryptography Subject Public Key Information

 This document specifies the syntax and semantics for the Subject Public Key Information field in certificates that support Elliptic Curve Cryptography. This document updates Sections 2.3.5 and 5, and the ASN.1 module of "Algorithms and Identifiers for the Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile", RFC 3279. [STANDARDS-TRACK]

 Updated Security Considerations for the MD5 Message-Digest and the HMAC-MD5 Algorithms

 This document updates the security considerations for the MD5 message digest algorithm. It also updates the security considerations for HMAC-MD5. This document is not an Internet Standards Track specification; it is published for informational purposes.

 The Constrained Application Protocol (CoAP)

 The Constrained Application Protocol (CoAP) is a specialized web transfer protocol for use with constrained nodes and constrained (e.g., low-power, lossy) networks. The nodes often have 8-bit microcontrollers with small amounts of ROM and RAM, while constrained networks such as IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs) often have high packet error rates and a typical throughput of 10s of kbit/s. The protocol is designed for machine- to-machine (M2M) applications such as smart energy and building automation.
 CoAP provides a request/response interaction model between application endpoints, supports built-in discovery of services and resources, and includes key concepts of the Web such as URIs and Internet media types. CoAP is designed to easily interface with HTTP for integration with the Web while meeting specialized requirements such as multicast support, very low overhead, and simplicity for constrained environments.

 JSON Web Algorithms (JWA)

 This specification registers cryptographic algorithms and identifiers to be used with the JSON Web Signature (JWS), JSON Web Encryption (JWE), and JSON Web Key (JWK) specifications. It defines several IANA registries for these identifiers.

 Guidelines for Writing an IANA Considerations Section in RFCs

 Many protocols make use of points of extensibility that use constants to identify various protocol parameters. To ensure that the values in these fields do not have conflicting uses and to promote interoperability, their allocations are often coordinated by a central record keeper. For IETF protocols, that role is filled by the Internet Assigned Numbers Authority (IANA).
 To make assignments in a given registry prudently, guidance describing the conditions under which new values should be assigned, as well as when and how modifications to existing values can be made, is needed. This document defines a framework for the documentation of these guidelines by specification authors, in order to assure that the provided guidance for the IANA Considerations is clear and addresses the various issues that are likely in the operation of a registry.
 This is the third edition of this document; it obsoletes RFC 5226.

 CBOR Object Signing and Encryption (COSE)

 Concise Binary Object Representation (CBOR) is a data format designed for small code size and small message size. There is a need for the ability to have basic security services defined for this data format. This document defines the CBOR Object Signing and Encryption (COSE) protocol. This specification describes how to create and process signatures, message authentication codes, and encryption using CBOR for serialization. This specification additionally describes how to represent cryptographic keys using CBOR.

 Using RSA Algorithms with CBOR Object Signing and Encryption (COSE) Messages

 The CBOR Object Signing and Encryption (COSE) specification defines cryptographic message encodings using Concise Binary Object Representation (CBOR). This specification defines algorithm encodings and representations enabling RSA algorithms to be used for COSE messages. Encodings are specified for the use of RSA Probabilistic Signature Scheme (RSASSA-PSS) signatures, RSA Encryption Scheme - Optimal Asymmetric Encryption Padding (RSAES-OAEP) encryption, and RSA keys.

 The Transport Layer Security (TLS) Protocol Version 1.3

 This document specifies version 1.3 of the Transport Layer Security (TLS) protocol. TLS allows client/server applications to communicate over the Internet in a way that is designed to prevent eavesdropping, tampering, and message forgery.
 This document updates RFCs 5705 and 6066, and obsoletes RFCs 5077, 5246, and 6961. This document also specifies new requirements for TLS 1.2 implementations.

 Secure/Multipurpose Internet Mail Extensions (S/MIME) Version 4.0 Message Specification

 This document defines Secure/Multipurpose Internet Mail Extensions (S/MIME) version 4.0. S/MIME provides a consistent way to send and receive secure MIME data. Digital signatures provide authentication, message integrity, and non-repudiation with proof of origin. Encryption provides data confidentiality. Compression can be used to reduce data size. This document obsoletes RFC 5751.

 Concise Data Definition Language (CDDL): A Notational Convention to Express Concise Binary Object Representation (CBOR) and JSON Data Structures

 This document proposes a notational convention to express Concise Binary Object Representation (CBOR) data structures (RFC 7049). Its main goal is to provide an easy and unambiguous way to express structures for protocol messages and data formats that use CBOR or JSON.

 Use of the HSS/LMS Hash-Based Signature Algorithm with CBOR Object Signing and Encryption (COSE)

 This document specifies the conventions for using the Hierarchical Signature System (HSS) / Leighton-Micali Signature (LMS) hash-based signature algorithm with the CBOR Object Signing and Encryption (COSE) syntax. The HSS/LMS algorithm is one form of hash-based digital signature; it is described in RFC 8554.

 Use of the Walnut Digital Signature Algorithm with CBOR Object Signing and Encryption (COSE)

 This document specifies the conventions for using the Walnut Digital Signature Algorithm (WalnutDSA) for digital signatures with the CBOR Object Signing and Encryption (COSE) syntax. WalnutDSA is a lightweight, quantum-resistant signature scheme based on Group Theoretic Cryptography with implementation and computational efficiency of signature verification in constrained environments, even on 8- and 16-bit platforms.
 The goal of this publication is to document a way to use the lightweight, quantum-resistant WalnutDSA signature algorithm in COSE in a way that would allow multiple developers to build compatible implementations. As of this publication, the security properties of WalnutDSA have not been evaluated by the IETF and its use has not been endorsed by the IETF.
 WalnutDSA and the Walnut Digital Signature Algorithm are trademarks of Veridify Security Inc.

 The Datagram Transport Layer Security (DTLS) Protocol Version 1.3

 This document specifies version 1.3 of the Datagram Transport Layer Security (DTLS) protocol. DTLS 1.3 allows client/server applications to communicate over the Internet in a way that is designed to prevent eavesdropping, tampering, and message forgery.
 The DTLS 1.3 protocol is based on the Transport Layer Security (TLS) 1.3 protocol and provides equivalent security guarantees with the exception of order protection / non-replayability. Datagram semantics of the underlying transport are preserved by the DTLS protocol.
 This document obsoletes RFC 6347.

 Robust Channels: Handling Unreliable Networks in the Record Layers of QUIC and DTLS

 Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC

 Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography

 NIST Special Publication 800-56A, Revision 3

 The JavaScript Object Notation (JSON) Data Interchange Format

 Acknowledgments
 This document is a product of the COSE Working Group of the IETF.
 The following individuals are to blame for getting me started on this
 project in the first place: ,
 , and .
 The initial draft version of the specification was based to some degree on
 the outputs of the JOSE and S/MIME Working Groups.
 The following individuals provided input into the final form of the
 document: , , , , ,
 , , and .

 Author's Address

 August Cellars

