
RFC 9285
The Base45 Data Encoding

Abstract
This document describes the Base45 encoding scheme, which is built upon the Base64, Base32, and
Base16 encoding schemes.

Stream:
RFC:
Category:
Published:
ISSN:
Authors:

Internet Engineering Task Force (IETF)
9285
Informational
August 2022
2070-1721

 P. Fältström
Netnod

F. Ljunggren
Kirei

D.W. van Gulik
Webweaving

Status of This Memo
This document is not an Internet Standards Track specification; it is published for informational
purposes.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Not all documents approved by
the IESG are candidates for any level of Internet Standard; see Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9285

Copyright Notice
Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Fältström, et al. Informational Page 1

https://www.rfc-editor.org/rfc/rfc9285
https://www.rfc-editor.org/info/rfc9285
https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

2. Conventions Used in This Document

3. Interpretation of Encoded Data

4. The Base45 Encoding

4.1. When to Use and Not Use Base45

4.2. The Alphabet Used in Base45

4.3. Encoding Examples

4.4. Decoding Example

5. IANA Considerations

6. Security Considerations

7. Normative References

Acknowledgements

Authors' Addresses

1. Introduction
A QR code is used to encode text as a graphical image. Depending on the characters used in the
text, various encoding options for a QR code exist, e.g., Numeric, Alphanumeric, and Byte mode.
Even in Byte mode, a typical QR code reader tries to interpret a byte sequence as text encoded in
UTF-8 or ISO/IEC 8859-1. Thus, QR codes cannot be used to encode arbitrary binary data directly.
Such data has to be converted into an appropriate text before that text could be encoded as a QR
code. Compared to already established Base64, Base32, and Base16 encoding schemes that are
described in , the Base45 scheme described in this document offers a more compact QR
code encoding.

One important difference from those others and Base45 is the key table and that the padding with
'=' is not required.

[RFC4648]

RFC 9285 Base45 August 2022

Fältström, et al. Informational Page 2

2. Conventions Used in This Document
The key words " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", and " " in this document are to be
interpreted as described in BCP 14 when, and only when, they appear in all
capitals, as shown here.

3. Interpretation of Encoded Data
Encoded data is to be interpreted as described in with the exception that a different
alphabet is selected.

4. The Base45 Encoding
QR codes have a limited ability to store binary data. In practice, binary data have to be encoded
in characters according to one of the modes already defined in the standard for QR codes. The
easiest mode to use in called Alphanumeric mode (see Section 7.3.4 and Table 2 of .
Unfortunately Alphanumeric mode uses 45 different characters which implies neither Base32 nor
Base64 are very effective encodings.

A 45-character subset of US-ASCII is used; the 45 characters usable in a QR code in Alphanumeric
mode (see Section 7.3.4 and Table 2 of). Base45 encodes 2 bytes in 3 characters,
compared to Base64, which encodes 3 bytes in 4 characters.

For encoding, two bytes [a, b] be interpreted as a number n in base 256, i.e. as an unsigned
integer over 16 bits so that the number n = (a * 256) + b.

This number n is converted to base 45 [c, d, e] so that n = c + (d * 45) + (e * 45 * 45). Note the order
of c, d and e which are chosen so that the left-most [c] is the least significant.

The values c, d, and e are then looked up in Table 1 to produce a three character string. The
process is reversed when decoding.

For encoding a single byte [a], it be interpreted as a base 256 number, i.e. as an unsigned
integer over 8 bits. That integer be converted to base 45 [c d] so that a = c + (45 * d). The
values c and d are then looked up in Table 1 to produce a two-character string.

A byte string [a b c d ... x y z] with arbitrary content and arbitrary length be encoded as
follows: From left to right pairs of bytes be encoded as described above. If the number of
bytes is even, then the encoded form is a string with a length that is evenly divisible by 3. If the
number of bytes is odd, then the last (rightmost) byte be encoded on two characters as
described above.

For decoding a Base45 encoded string the inverse operations are performed.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD NOT
RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

[RFC4648]

[ISO18004]

[ISO18004]

MUST

MUST
MUST

MUST
MUST

MUST

RFC 9285 Base45 August 2022

Fältström, et al. Informational Page 3

4.1. When to Use and Not Use Base45
If binary data is to be stored in a QR code, the suggested mechanism is to use the Alphanumeric
mode that uses 11 bits for 2 characters as defined in Section 7.3.4 of . The Extended
Channel Interpretation (ECI) mode indicator for this encoding is 0010.

On the other hand if the data is to be sent via some other transport, a transport encoding suitable
for that transport should be used instead of Base45. For example, it is not recommended to first
encode data in Base45 and then encode the resulting string in Base64 if the data is to be sent via
email. Instead, the Base45 encoding should be removed, and the data itself should be encoded in
Base64.

4.2. The Alphabet Used in Base45
The Alphanumeric mode is defined to use 45 characters as specified in this alphabet.

4.3. Encoding Examples
It should be noted that although the examples are all text, Base45 is an encoding for binary data
where each octet can have any value 0-255.

[ISO18004]

Value Encoding Value Encoding Value Encoding Value Encoding

00 0 12 C 24 O 36 Space

01 1 13 D 25 P 37 $

02 2 14 E 26 Q 38 %

03 3 15 F 27 R 39 *

04 4 16 G 28 S 40 +

05 5 17 H 29 T 41 -

06 6 18 I 30 U 42 .

07 7 19 J 31 V 43 /

08 8 20 K 32 W 44 :

09 9 21 L 33 X

10 A 22 M 34 Y

11 B 23 N 35 Z

Table 1: The Base45 Alphabet

RFC 9285 Base45 August 2022

Fältström, et al. Informational Page 4

Encoding example 1:

The string "AB" is the byte sequence [[65 66]]. If we look at all 16 bits, we get 65 * 256 + 66 = 16706.
16706 equals 11 + (11 * 45) + (8 * 45 * 45), so the sequence in base 45 is [11 11 8]. Referring to
Table 1, we get the encoded string "BB8".

AB Initial string

[[65 66]] Decimal value

[16706] Value in base 16

[11 11 8] Value in base 45

BB8 Encoded string

Table 2: Example 1 in Detail

Encoding example 2:

The string "Hello!!" as ASCII is the byte sequence [[72 101] [108 108] [111 33] [33]]. If we look at
this 16 bits at a time, we get [18533 27756 28449 33]. Note the 33 for the last byte. When looking
at the values in base 45, we get [[38 6 9] [36 31 13] [9 2 14] [33 0]], where the last byte is
represented by two values. The resulting string "%69 VD92EX0" is created by looking up these
values in Table 1. It should be noted it includes a space.

Hello!! Initial string

[[72 101] [108 108] [111 33] [33]] Decimal value

[18533 27756 28449 33] Value in base 16

[[38 6 9] [36 31 13] [9 2 14] [33 0]] Value in base 45

%69 VD92EX0 Encoded string

Table 3: Example 2 in Detail

Encoding example 3:

The string "base-45" as ASCII is the byte sequence [[98 97] [115 101] [45 52] [53]]. If we look at
this two bytes at a time, we get [25185 29541 11572 53]. Note the 53 for the last byte. When
looking at the values in base 45, we get [[30 19 12] [21 26 14] [7 32 5] [8 1]] where the last byte is
represented by two values. Referring to Table 1, we get the encoded string "UJCLQE7W581".

base-45 Initial string

[[98 97] [115 101] [45 52] [53]] Decimal value

RFC 9285 Base45 August 2022

Fältström, et al. Informational Page 5

[25185 29541 11572 53] Value in base 16

[[30 19 12] [21 26 14] [7 32 5] [8 1]] Value in base 45

UJCLQE7W581 Encoded string

Table 4: Example 3 in Detail

4.4. Decoding Example
Decoding example 1:

The string "QED8WEX0" represents, when looked up in Table 1, the values [26 14 13 8 32 14 33 0].
We arrange the numbers in chunks of three, except for the last one which can be two numbers,
and get [[26 14 13] [8 32 14] [33 0]]. In base 45, we get [26981 29798 33] where the bytes are [[105
101] [116 102] [33]]. If we look at the ASCII values, we get the string "ietf!".

QED8WEX0 Initial string

[26 14 13 8 32 14 33 0] Looked up values

[[26 14 13] [8 32 14] [33 0]] Groups of three

[26981 29798 33] Interpreted as base 45

[[105 101] [116 102] [33]] Values in base 8

ietf! Decoded string

Table 5: Example 4 in Detail

5. IANA Considerations
This document has no IANA actions.

6. Security Considerations
When implementing encoding and decoding it is important to be very careful so that buffer
overflow or similar issues do not occur. This of course includes the calculations in base 45 and
lookup in the table of characters (Table 1). A decoder must also be robust regarding input,
including proper handling of any octet value 0-255, including the NUL character (ASCII 0).

It should be noted that Base64 and some other encodings pad the string so that the encoding
starts with an aligned number of characters while Base45 specifically avoids padding. Because of
this, special care has to be taken when an odd number of octets is to be encoded. Similarly, care
must be taken if the number of characters to decode are not evenly divisible by 3.

RFC 9285 Base45 August 2022

Fältström, et al. Informational Page 6

[ISO18004]

[RFC2119]

[RFC4648]

[RFC8174]

Base encodings use a specific, reduced alphabet to encode binary data. Non-alphabet characters
could exist within base-encoded data, caused by data corruption or by design. Non-alphabet
characters may be exploited as a "covert channel", where non-protocol data can be sent for
nefarious purposes. Non-alphabet characters might also be sent in order to exploit
implementation errors leading to, for example, buffer overflow attacks.

Implementations reject any input that is not a valid encoding. For example, it reject
the input (encoded data) if it contains characters outside the base alphabet (in Table 1) when
interpreting base-encoded data.

Even though a Base45-encoded string contains only characters from the alphabet in Table 1,
cases like the following have to be considered: The string "FGW" represents 65535 (FFFF in base
16), which is a valid encoding of 16 bits. A slightly different encoded string of the same length,
"GGW", would represent 65536 (10000 in base 16), which is represented by more than 16 bits.
Implementations also reject the encoded data if it contains a triplet of characters that,
when decoded, results in an unsigned integer that is greater than 65535 (FFFF in base 16).

It should be noted that the resulting string after encoding to Base45 might include non-URL-safe
characters so if the URL including the Base45 encoded data has to be URL-safe, one has to use
percent-encoding.

7. Normative References
,

, ,
February 2015, .

, , ,
, , March 1997,
.

, , ,
, October 2006, .

, , ,
, , May 2017,
.

Acknowledgements
The authors thank , , , , ,

, , , , , ,
, , , , and for the

feedback. Also, everyone who has been working with Base64 over a long period of years and has
proven the implementations are stable.

MUST MUST

MUST

ISO/IEC "Information technology - Automatic identification and data capture
techniques - QR Code bar code symbology specification" ISO/IEC 18004:2015

<https://www.iso.org/standard/62021.html>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Josefsson, S. "The Base16, Base32, and Base64 Data Encodings" RFC 4648 DOI
10.17487/RFC4648 <https://www.rfc-editor.org/info/rfc4648>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP 14
RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Mark Adler Anders Ahl Alan Barrett Sam Spens Clason Alfred Fiedler Tomas
Harreveld Erik Hellman Joakim Jardenberg Michael Joost Erik Kline Christian Landgren
Anders Lowinger Mans Nilsson Jakob Schlyter Peter Teufl Gaby Whitehead

RFC 9285 Base45 August 2022

Fältström, et al. Informational Page 7

https://www.iso.org/standard/62021.html
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc4648
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174

Authors' Addresses
Patrik Fältström
Netnod

 paf@netnod.se Email:

Fredrik Ljunggren
Kirei

 fredrik@kirei.se Email:

Dirk-Willem van Gulik
Webweaving

 dirkx@webweaving.org Email:

RFC 9285 Base45 August 2022

Fältström, et al. Informational Page 8

mailto:paf@netnod.se
mailto:fredrik@kirei.se
mailto:dirkx@webweaving.org

	RFC 9285
	The Base45 Data Encoding
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions Used in This Document
	3. Interpretation of Encoded Data
	4. The Base45 Encoding
	4.1. When to Use and Not Use Base45
	4.2. The Alphabet Used in Base45
	4.3. Encoding Examples
	4.4. Decoding Example

	5. IANA Considerations
	6. Security Considerations
	7. Normative References
	Acknowledgements
	Authors' Addresses

 The Base45 Data Encoding

 Netnod

 paf@netnod.se

 Kirei

 fredrik@kirei.se

 Webweaving

 dirkx@webweaving.org

 BASE45

	This document describes the Base45 encoding scheme, which is
	built upon the Base64, Base32, and Base16 encoding schemes.

 Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are candidates for any level of Internet
 Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Revised BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Revised BSD License.

 Table of Contents

 . Introduction

 . Conventions Used in This Document

 . Interpretation of Encoded Data

 . The Base45 Encoding

 . When to Use and Not Use Base45

 . The Alphabet Used in Base45

 . Encoding Examples

 . Decoding Example

 . IANA Considerations

 . Security Considerations

 . Normative References

 Acknowledgements

 Authors' Addresses

 Introduction

	A QR code is used to encode text as a graphical
	image. Depending on the characters used in the text, various
	encoding options for a QR code exist, e.g., Numeric,
	Alphanumeric, and Byte mode. Even in Byte mode, a typical
	QR code reader tries to interpret a byte sequence as text encoded in UTF-8
	or ISO/IEC 8859-1. Thus, QR codes cannot be used
	to encode arbitrary binary data directly. Such data has to be
	converted into an appropriate text before that text could be
	encoded as a QR code. Compared to already established Base64,
	Base32, and Base16 encoding schemes that are described in
	 , the Base45 scheme
	described in this document offers a more compact QR code
	encoding.

	One important difference from those others and Base45 is the
	key table and that the padding with '=' is not required.

 Conventions Used in This Document

 The key words " MUST", " MUST NOT", " REQUIRED", " SHALL", " SHALL NOT", " SHOULD", " SHOULD NOT", " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are to be interpreted as
 described in BCP 14
 when, and only when, they appear in all capitals, as shown here.

 Interpretation of Encoded Data

	Encoded data is to be interpreted as described in with the exception that a
	different alphabet is selected.

 The Base45 Encoding

	QR codes have a limited ability to store binary data. In
	practice, binary data have to be encoded in characters
	according to one of the modes already defined in the standard
	for QR codes. The easiest mode to use in called Alphanumeric
	mode (see Section 7.3.4 and Table 2 of . Unfortunately
	Alphanumeric mode uses 45 different characters which implies
	neither Base32 nor Base64 are very effective encodings.

	A 45-character subset of US-ASCII is used; the 45 characters
	usable in a QR code in Alphanumeric mode (see Section 7.3.4
	and Table 2 of). Base45 encodes 2 bytes in 3 characters,
	compared to Base64, which encodes 3 bytes in 4 characters.

	For encoding, two bytes [a, b] MUST be
	interpreted as a number n in base 256, i.e. as an unsigned
	integer over 16 bits so that the number n = (a * 256) + b.

	This number n is converted to base 45 [c, d, e] so that n = c
	+ (d * 45) + (e * 45 * 45). Note the order of c, d and e which
	are chosen so that the left-most [c] is the least significant.

	The values c, d, and e are then looked up in to produce a three character string. The
	process is reversed when decoding.

	For encoding a single byte [a], it MUST be
	interpreted as a base 256 number, i.e. as an unsigned integer
	over 8 bits. That integer MUST be converted to
	base 45 [c d] so that a = c + (45 * d). The values c and d are
	then looked up in to produce a
	two-character string.

	A byte string [a b c d ... x y z] with arbitrary content and
	arbitrary length MUST be encoded as follows:
	From left to right pairs of bytes MUST be
	encoded as described above. If the number of bytes is even,
	then the encoded form is a string with a length that is evenly
	divisible by 3. If the number of bytes is odd, then the last
	(rightmost) byte MUST be encoded on two
	characters as described above.

	For decoding a Base45 encoded string the inverse operations
	are performed.

 When to Use and Not Use Base45

	 If binary data is to be stored in a QR code, the suggested
	 mechanism is to use the Alphanumeric mode that uses 11 bits
	 for 2 characters as defined in Section 7.3.4 of . The Extended Channel Interpretation (ECI) mode
	 indicator for this encoding is 0010.

	 On the other hand if the data is to be sent via some other
	 transport, a transport encoding suitable for that transport
	 should be used instead of Base45. For example, it is not
	 recommended to first encode data in Base45 and then encode
	 the resulting string in Base64 if the data is to be sent via
	 email. Instead, the Base45 encoding should be removed, and
	 the data itself should be encoded in Base64.

 The Alphabet Used in Base45

	 The Alphanumeric mode is defined to use 45 characters as specified
	 in this alphabet.

 The Base45 Alphabet

 Value
 Encoding
 Value
 Encoding
 Value
 Encoding
 Value
 Encoding

 00
 0
 12
 C
 24
 O
 36
 Space

 01
 1
 13
 D
 25
 P
 37
 $

 02
 2
 14
 E
 26
 Q
 38
 %

 03
 3
 15
 F
 27
 R
 39
 *

 04
 4
 16
 G
 28
 S
 40
 +

 05
 5
 17
 H
 29
 T
 41
 -

 06
 6
 18
 I
 30
 U
 42
 .

 07
 7
 19
 J
 31
 V
 43
 /

 08
 8
 20
 K
 32
 W
 44
 :

 09
 9
 21
 L
 33
 X

 10
 A
 22
 M
 34
 Y

 11
 B
 23
 N
 35
 Z

 Encoding Examples

	 It should be noted that although the examples are all text,
	 Base45 is an encoding for binary data where each octet can
	 have any value 0-255.

 Encoding example 1:

 The string "AB" is the byte sequence [[65 66]].

 If we look at all 16 bits, we get 65 * 256 + 66 = 16706.

 16706 equals 11 + (11 * 45) + (8 * 45 * 45), so the sequence in base 45 is [11 11 8].

 Referring to , we get the encoded string "BB8".

 Example 1 in Detail

 AB
 Initial string

 [[65 66]]
 Decimal value

 [16706]
 Value in base 16

 [11 11 8]
 Value in base 45

 BB8
 Encoded string

 Encoding example 2:

 The string "Hello!!" as ASCII is the byte sequence [[72 101] [108 108] [111 33] [33]].

 If we look at this 16 bits at a time, we get [18533 27756 28449 33]. Note the 33 for the last byte.

 When looking at the values in base 45, we get [[38 6 9] [36 31 13] [9 2 14] [33 0]], where the last byte is represented by two values.

 The resulting string "%69 VD92EX0" is created by looking up these values in . It should be noted it includes a space.

 Example 2 in Detail

 Hello!!
 Initial string

 [[72 101] [108 108] [111 33] [33]]
 Decimal value

 [18533 27756 28449 33]
 Value in base 16

 [[38 6 9] [36 31 13] [9 2 14] [33 0]]
 Value in base 45

 %69 VD92EX0
 Encoded string

 Encoding example 3:

 The string "base-45" as ASCII is the byte sequence [[98 97] [115 101]
 [45 52] [53]].

 If we look at this two bytes at a time, we get [25185 29541 11572
 53]. Note the 53 for the last byte.

 When looking at the values in base 45, we get [[30 19 12] [21 26 14]
 [7 32 5] [8 1]] where the last byte is represented by two values.

 Referring to , we get the encoded string
 "UJCLQE7W581".

 Example 3 in Detail

 base-45
 Initial string

 [[98 97] [115 101] [45 52] [53]]
 Decimal value

 [25185 29541 11572 53]
 Value in base 16

 [[30 19 12] [21 26 14] [7 32 5] [8 1]]
 Value in base 45

 UJCLQE7W581
 Encoded string

 Decoding Example
 Decoding example 1:

 The string "QED8WEX0" represents, when looked up in Table 1, the
 values [26 14 13 8 32 14 33 0].

 We arrange the numbers in chunks of three, except for the last one
 which can be two numbers, and get [[26 14 13] [8 32 14] [33 0]].

 In base 45, we get [26981 29798 33] where the bytes are [[105 101]
 [116 102] [33]].

 If we look at the ASCII values, we get the string "ietf!".

 Example 4 in Detail

 QED8WEX0
 Initial string

 [26 14 13 8 32 14 33 0]
 Looked up values

 [[26 14 13] [8 32 14] [33 0]]
 Groups of three

 [26981 29798 33]
 Interpreted as base 45

 [[105 101] [116 102] [33]]
 Values in base 8

 ietf!
 Decoded string

 IANA Considerations

	This document has no IANA actions.

 Security Considerations

	When implementing encoding and decoding it is important to be
	very careful so that buffer overflow or similar issues do
	not occur. This of course includes the calculations in base
	45 and lookup in the table of characters (). A decoder must also be robust regarding
	input, including proper handling of any octet value 0-255,
	including the NUL character (ASCII 0).

	It should be noted that Base64 and some other encodings pad
	the string so that the encoding starts with an aligned number
	of characters while Base45 specifically avoids padding. Because of
	this, special care has to be taken when an odd number of octets
	is to be encoded. Similarly, care must be taken if the number
	of characters to decode are not evenly divisible by 3.

	Base encodings use a specific, reduced alphabet to encode
	binary data. Non-alphabet characters could exist within
	base-encoded data, caused by data corruption or by
	design. Non-alphabet characters may be exploited as a "covert
	channel", where non-protocol data can be sent for nefarious
	purposes. Non-alphabet characters might also be sent in order
	to exploit implementation errors leading to, for example, buffer
	overflow attacks.

	Implementations MUST reject any input that is
	not a valid encoding. For example, it MUST
	reject the input (encoded data) if it contains characters
	outside the base alphabet (in) when
	interpreting base-encoded data.

	Even though a Base45-encoded string contains only characters
	from the alphabet in , cases like the
	following have to be considered: The string "FGW" represents
	65535 (FFFF in base 16), which is a valid encoding of 16 bits.
	A slightly different encoded string of the same length, "GGW",
	would represent 65536 (10000 in base 16), which is represented
	by more than 16 bits. Implementations MUST
	also reject the encoded data if it contains a triplet of
	characters that, when decoded, results in an unsigned integer
	that is greater than 65535 (FFFF in base 16).

	It should be noted that the resulting string after encoding to
	Base45 might include non-URL-safe characters so if the URL
	including the Base45 encoded data has to be URL-safe, one
	has to use percent-encoding.

 Normative References

 Information technology - Automatic identification and data capture techniques - QR Code bar code symbology specification

 ISO/IEC

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 The Base16, Base32, and Base64 Data Encodings

 This document describes the commonly used base 64, base 32, and base 16 encoding schemes. It also discusses the use of line-feeds in encoded data, use of padding in encoded data, use of non-alphabet characters in encoded data, use of different encoding alphabets, and canonical encodings. [STANDARDS-TRACK]

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 Acknowledgements

	The authors thank , , , , , , , , , , , , , , , and for the feedback. Also, everyone who has been working with Base64 over a long period of years and has proven the implementations are stable.

 Authors' Addresses

 Netnod

 paf@netnod.se

 Kirei

 fredrik@kirei.se

 Webweaving

 dirkx@webweaving.org

