
RFC 9330

Low Latency, Low Loss, and Scalable Throughput

(L4S) Internet Service: Architecture

Abstract

This document describes the L4S architecture, which enables Internet applications to achieve

low queuing latency, low congestion loss, and scalable throughput control. L4S is based on the

insight that the root cause of queuing delay is in the capacity-seeking congestion controllers of

senders, not in the queue itself. With the L4S architecture, all Internet applications could (but do

not have to) transition away from congestion control algorithms that cause substantial queuing

delay and instead adopt a new class of congestion controls that can seek capacity with very little

queuing. These are aided by a modified form of Explicit Congestion Notification (ECN) from the

network. With this new architecture, applications can have both low latency and high

throughput.

The architecture primarily concerns incremental deployment. It defines mechanisms that allow

the new class of L4S congestion controls to coexist with 'Classic' congestion controls in a shared

network. The aim is for L4S latency and throughput to be usually much better (and rarely worse)

while typically not impacting Classic performance.

Stream:

RFC:

Category:

Published:

ISSN:

Authors:

Internet Engineering Task Force (IETF)

9330

Informational

January 2023

2070-1721

 B. Briscoe, Ed.

Independent

K. De Schepper

Nokia Bell Labs

M. Bagnulo

Universidad Carlos III de Madrid

G. White

CableLabs

Status of This Memo

This document is not an Internet Standards Track specification; it is published for informational

purposes.

This document is a product of the Internet Engineering Task Force (IETF). It represents the

consensus of the IETF community. It has received public review and has been approved for

publication by the Internet Engineering Steering Group (IESG). Not all documents approved by

the IESG are candidates for any level of Internet Standard; see Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback

on it may be obtained at .https://www.rfc-editor.org/info/rfc9330

Briscoe, et al. Informational Page 1

https://www.rfc-editor.org/rfc/rfc9330
https://www.rfc-editor.org/info/rfc9330

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the document authors. All rights

reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF

Documents () in effect on the date of publication of this

document. Please review these documents carefully, as they describe your rights and restrictions

with respect to this document. Code Components extracted from this document must include

Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are

provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

1.1. Document Roadmap

2. L4S Architecture Overview

3. Terminology

4. L4S Architecture Components

4.1. Protocol Mechanisms

4.2. Network Components

4.3. Host Mechanisms

5. Rationale

5.1. Why These Primary Components?

5.2. What L4S Adds to Existing Approaches

6. Applicability

6.1. Applications

6.2. Use Cases

6.3. Applicability with Specific Link Technologies

6.4. Deployment Considerations

6.4.1. Deployment Topology

6.4.2. Deployment Sequences

6.4.3. L4S Flow but Non-ECN Bottleneck

6.4.4. L4S Flow but Classic ECN Bottleneck

RFC 9330 L4S Architecture January 2023

Briscoe, et al. Informational Page 2

https://trustee.ietf.org/license-info

6.4.5. L4S AQM Deployment within Tunnels

7. IANA Considerations

8. Security Considerations

8.1. Traffic Rate (Non-)Policing

8.1.1. (Non-)Policing Rate per Flow

8.1.2. (Non-)Policing L4S Service Rate

8.2. 'Latency Friendliness'

8.3. Interaction between Rate Policing and L4S

8.4. ECN Integrity

8.5. Privacy Considerations

9. Informative References

Acknowledgements

Authors' Addresses

1. Introduction

At any one time, it is increasingly common for all of the traffic in a bottleneck link (e.g., a

household's Internet access or Wi-Fi) to come from applications that prefer low delay: interactive

web, web services, voice, conversational video, interactive video, interactive remote presence,

instant messaging, online and cloud-rendered gaming, remote desktop, cloud-based applications,

cloud-rendered virtual reality or augmented reality, and video-assisted remote control of

machinery and industrial processes. In the last decade or so, much has been done to reduce

propagation delay by placing caches or servers closer to users. However, queuing remains a

major, albeit intermittent, component of latency. For instance, spikes of hundreds of milliseconds

are not uncommon, even with state-of-the-art Active Queue Management (AQM)

. A Classic AQM in an access network bottleneck is typically configured to buffer

the sawteeth of lone flows, which can cause peak overall network delay to roughly double during

a long-running flow, relative to expected base (unloaded) path delay . Low loss is also

important because, for interactive applications, losses translate into even longer retransmission

delays.

It has been demonstrated that, once access network bit rates reach levels now common in the

developed world, increasing link capacity offers diminishing returns if latency (delay) is not

addressed . Therefore, the goal is an Internet service with very low

queuing latency, very low loss, and scalable throughput. Very low queuing latency means less

than 1 millisecond (ms) on average and less than about 2 ms at the 99th percentile. End-to-end

delay above 50 ms , or even above 20 ms , starts to feel unnatural for more

[COBALT]

[DOCSIS3AQM]

[BufferSize]

[Dukkipati06] [Rajiullah15]

[Raaen14] [NASA04]

RFC 9330 L4S Architecture January 2023

Briscoe, et al. Informational Page 3

demanding interactive applications. Therefore, removing unnecessary delay variability increases

the reach of these applications (the distance over which they are comfortable to use) and/or

provides additional latency budget that can be used for enhanced processing. This document

describes the L4S architecture for achieving these goals.

Differentiated services (Diffserv) offers Expedited Forwarding (EF) for some packets at

the expense of others, but this makes no difference when all (or most) of the traffic at a

bottleneck at any one time requires low latency. In contrast, L4S still works well when all traffic

is L4S -- a service that gives without taking needs none of the configuration or management

baggage (traffic policing or traffic contracts) associated with favouring some traffic flows over

others.

Queuing delay degrades performance intermittently . It occurs i) when a large

enough capacity-seeking (e.g., TCP) flow is running alongside the user's traffic in the bottleneck

link, which is typically in the access network, or ii) when the low latency application is itself a

large capacity-seeking or adaptive rate flow (e.g., interactive video). At these times, the

performance improvement from L4S must be sufficient for network operators to be motivated to

deploy it.

Active Queue Management (AQM) is part of the solution to queuing under load. AQM improves

performance for all traffic, but there is a limit to how much queuing delay can be reduced by

solely changing the network without addressing the root of the problem.

The root of the problem is the presence of standard congestion control (Reno) or

compatible variants (e.g., CUBIC) that are used in TCP and in other transports, such as

QUIC . We shall use the term 'Classic' for these Reno-friendly congestion controls.

Classic congestion controls induce relatively large sawtooth-shaped excursions of queue

occupancy. So if a network operator naively attempts to reduce queuing delay by configuring an

AQM to operate at a shallower queue, a Classic congestion control will significantly underutilize

the link at the bottom of every sawtooth. These sawteeth have also been growing in duration as

flow rate scales (see Section 5.1 and).

It has been demonstrated that, if the sending host replaces a Classic congestion control with a

'Scalable' alternative, the performance under load of all the above interactive applications can be

significantly improved once a suitable AQM is deployed in the network. Taking the example

solution cited below that uses Data Center TCP (DCTCP) and a Dual-Queue Coupled

AQM on a DSL or Ethernet link, queuing delay under heavy load is roughly 1-2 ms at

the 99th percentile without losing link utilization (for other link

types, see Section 6.3). This compares with 5-20 ms on average with a Classic congestion control

and current state-of-the-art AQMs, such as Flow Queue CoDel , Proportional Integral

controller Enhanced (PIE) , or DOCSIS PIE and about 20-30 ms at the 99th

percentile .

L4S is designed for incremental deployment. It is possible to deploy the L4S service at a

bottleneck link alongside the existing best efforts service so that unmodified

applications can start using it as soon as the sender's stack is updated. Access networks are

typically designed with one link as the bottleneck for each site (which might be a home, small

[RFC3246]

[Hohlfeld14]

[RFC5681]

[RFC8312]

[RFC9000]

[RFC3649]

[RFC8257]

[RFC9332]

[L4Seval22] [DualPI2Linux]

[RFC8290]

[RFC8033] [RFC8034]

[DualPI2Linux]

[DualPI2Linux]

RFC 9330 L4S Architecture January 2023

Briscoe, et al. Informational Page 4

enterprise, or mobile device), so deployment at either or both ends of this link should give nearly

all the benefit in the respective direction. With some transport protocols, namely TCP ,

the sender has to check that the receiver has been suitably updated to give more accurate

feedback, whereas with more recent transport protocols, such as QUIC and Datagram

Congestion Control Protocol (DCCP) , all receivers have always been suitable.

This document presents the L4S architecture. It consists of three components: network support to

isolate L4S traffic from Classic traffic; protocol features that allow network elements to identify

L4S traffic; and host support for L4S congestion controls. The protocol is defined separately in

 as an experimental change to Explicit Congestion Notification (ECN). This document

describes and justifies the component parts and how they interact to provide the low latency, low

loss, and scalable Internet service. It also details the approach to incremental deployment, as

briefly summarized above.

1.1. Document Roadmap

This document describes the L4S architecture in three passes. First, the brief overview in Section

2 gives the very high-level idea and states the main components with minimal rationale. This is

only intended to give some context for the terminology definitions that follow in Section 3 and to

explain the structure of the rest of the document. Then, Section 4 goes into more detail on each

component with some rationale but still mostly stating what the architecture is, rather than why.

Finally, Section 5 justifies why each element of the solution was chosen (Section 5.1) and why

these choices were different from other solutions (Section 5.2).

After the architecture has been described, Section 6 clarifies its applicability by describing the

applications and use cases that motivated the design, the challenges applying the architecture to

various link technologies, and various incremental deployment models (including the two main

deployment topologies, different sequences for incremental deployment, and various

interactions with preexisting approaches). The document ends with the usual tailpieces,

including extensive discussion of traffic policing and other security considerations in Section 8.

[ACCECN]

[RFC9000]

[RFC4340]

[RFC9331]

2. L4S Architecture Overview

Below, we outline the three main components to the L4S architecture: 1) the Scalable congestion

control on the sending host; 2) the AQM at the network bottleneck; and 3) the protocol between

them.

But first, the main point to grasp is that low latency is not provided by the network; low latency

results from the careful behaviour of the Scalable congestion controllers used by L4S senders.

The network does have a role, primarily to isolate the low latency of the carefully behaving L4S

traffic from the higher queuing delay needed by traffic with preexisting Classic behaviour. The

network also alters the way it signals queue growth to the transport. It uses the Explicit

Congestion Notification (ECN) protocol, but it signals the very start of queue growth immediately,

without the smoothing delay typical of Classic AQMs. Because ECN support is essential for L4S,

senders use the ECN field as the protocol that allows the network to identify which packets are

L4S and which are Classic.

RFC 9330 L4S Architecture January 2023

Briscoe, et al. Informational Page 5

1)

2)

Host:

Scalable congestion controls already exist. They solve the scaling problem with Classic

congestion controls, such as Reno or CUBIC. Because flow rate has scaled since TCP

congestion control was first designed in 1988, assuming the flow lasts long enough, it now

takes hundreds of round trips (and growing) to recover after a congestion signal (whether

a loss or an ECN mark), as shown in the examples in Section 5.1 and . Therefore,

control of queuing and utilization becomes very slack, and the slightest disturbances (e.g.,

from new flows starting) prevent a high rate from being attained.

With a Scalable congestion control, the average time from one congestion signal to the

next (the recovery time) remains invariant as flow rate scales, all other factors being

equal. This maintains the same degree of control over queuing and utilization, whatever

the flow rate, as well as ensuring that high throughput is more robust to disturbances. The

Scalable control used most widely (in controlled environments) is DCTCP , which

has been implemented and deployed in Windows Server Editions (since 2012), in Linux,

and in FreeBSD. Although DCTCP as-is functions well over wide-area round-trip times

(RTTs), most implementations lack certain safety features that would be necessary for use

outside controlled environments, like data centres (see Section 6.4.3). Therefore, Scalable

congestion control needs to be implemented in TCP and other transport protocols (QUIC,

Stream Control Transmission Protocol (SCTP), RTP/RTCP, RTP Media Congestion Avoidance

Techniques (RMCAT), etc.). Indeed, between the present document being drafted and

published, the following Scalable congestion controls were implemented: Prague over TCP

and QUIC , an L4S variant of the RMCAT SCReAM controller

, and the L4S ECN part of Bottleneck Bandwidth and Round-trip propagation

time (BBRv2) intended for TCP and QUIC transports.

Network:

L4S traffic needs to be isolated from the queuing latency of Classic traffic. One queue per

application flow (FQ) is one way to achieve this, e.g., FQ-CoDel . However, using

just two queues is sufficient and does not require inspection of transport layer headers in

the network, which is not always possible (see Section 5.2). With just two queues, it might

seem impossible to know how much capacity to schedule for each queue without

inspecting how many flows at any one time are using each. And it would be undesirable to

arbitrarily divide access network capacity into two partitions. The Dual-Queue Coupled

AQM was developed as a minimal complexity solution to this problem. It acts like a 'semi-

permeable' membrane that partitions latency but not bandwidth. As such, the two queues

are for transitioning from Classic to L4S behaviour, not bandwidth prioritization.

Section 4 gives a high-level explanation of how the per-flow queue (FQ) and DualQ

variants of L4S work, and gives a full explanation of the DualQ Coupled AQM

framework. A specific marking algorithm is not mandated for L4S AQMs. Appendices of

 give non-normative examples that have been implemented and evaluated and

give recommended default parameter settings. It is expected that L4S experiments will

improve knowledge of parameter settings and whether the set of marking algorithms

needs to be limited.

[RFC3649]

[RFC8257]

[PRAGUE-CC] [PragueLinux]

[SCReAM-L4S]

[BBRv2]

[RFC8290]

[RFC9332]

[RFC9332]

RFC 9330 L4S Architecture January 2023

Briscoe, et al. Informational Page 6

3) Protocol:

A sending host needs to distinguish L4S and Classic packets with an identifier so that the

network can classify them into their separate treatments. The L4S identifier spec

 concludes that all alternatives involve compromises, but the ECT(1) and

Congestion Experienced (CE) codepoints of the ECN field represent a workable solution. As

already explained, the network also uses ECN to immediately signal the very start of queue

growth to the transport.

[RFC9331]

Classic Congestion Control:

Scalable Congestion Control:

Classic Service:

Low Latency, Low Loss, and Scalable throughput (L4S) service:

Reno-friendly:

3. Terminology

A congestion control behaviour that can coexist with standard Reno

 without causing significantly negative impact on its flow rate . The

scaling problem with Classic congestion control is explained, with examples, in Section 5.1

and in .

A congestion control where the average time from one congestion

signal to the next (the recovery time) remains invariant as flow rate scales, all other factors

being equal. For instance, DCTCP averages 2 congestion signals per round trip, whatever the

flow rate, as do other recently developed Scalable congestion controls, e.g., Relentless TCP

, Prague for TCP and QUIC , BBRv2

, and the L4S variant of SCReAM for real-time media . See

 for more explanation.

The Classic service is intended for all the congestion control behaviours that

coexist with Reno (e.g., Reno itself, CUBIC , Compound , and TFRC

). The term 'Classic queue' means a queue providing the Classic service.

The 'L4S' service is intended for

traffic from Scalable congestion control algorithms, such as the Prague congestion control

, which was derived from DCTCP . The L4S service is for more general

traffic than just Prague -- it allows the set of congestion controls with similar scaling

properties to Prague to evolve, such as the examples listed above (Relentless, SCReAM, etc.).

The term 'L4S queue' means a queue providing the L4S service.

The terms Classic or L4S can also qualify other nouns, such as 'queue', 'codepoint', 'identifier',

'classification', 'packet', and 'flow'. For example, an L4S packet means a packet with an L4S

identifier sent from an L4S congestion control.

Both Classic and L4S services can cope with a proportion of unresponsive or less-responsive

traffic as well but, in the L4S case, its rate has to be smooth enough or low enough to not build

a queue (e.g., DNS, Voice over IP (VoIP), game sync datagrams, etc.).

The subset of Classic traffic that is friendly to the standard Reno congestion

control defined for TCP in . The TFRC spec indirectly implies that

'friendly' is defined as "generally within a factor of two of the sending rate of a TCP flow

under the same conditions". Reno-friendly is used here in place of 'TCP-friendly', given the

[RFC5681] [RFC5033]

[RFC3649]

[RELENTLESS] [PRAGUE-CC] [PragueLinux] [BBRv2] [BBR-

CC] [SCReAM-L4S] [RFC8298] Section

4.3 of [RFC9331]

[RFC5681] [RFC8312] [CTCP]

[RFC5348]

[PRAGUE-CC] [RFC8257]

[RFC5681] [RFC5348]

RFC 9330 L4S Architecture January 2023

Briscoe, et al. Informational Page 7

https://www.rfc-editor.org/rfc/rfc9331#section-4.3
https://www.rfc-editor.org/rfc/rfc9331#section-4.3

Classic ECN:

Site:

Traffic Policing:

latter has become imprecise, because the TCP protocol is now used with so many different

congestion control behaviours, and Reno is used in non-TCP transports, such as QUIC

.

The original Explicit Congestion Notification (ECN) protocol that

requires ECN signals to be treated as equivalent to drops, both when generated in the

network and when responded to by the sender.

For L4S, the names used for the four codepoints of the 2-bit IP-ECN field are unchanged from

those defined in the ECN spec , i.e., Not-ECT, ECT(0), ECT(1), and CE, where ECT

stands for ECN-Capable Transport and CE stands for Congestion Experienced. A packet

marked with the CE codepoint is termed 'ECN-marked' or sometimes just 'marked' where the

context makes ECN obvious.

A home, mobile device, small enterprise, or campus where the network bottleneck is

typically the access link to the site. Not all network arrangements fit this model, but it is a

useful, widely applicable generalization.

Limiting traffic by dropping packets or shifting them to a lower service class (as

opposed to introducing delay, which is termed 'traffic shaping'). Policing can involve limiting

the average rate and/or burst size. Policing focused on limiting queuing but not the average

flow rate is termed 'congestion policing', 'latency policing', 'burst policing', or 'queue

protection' in this document. Otherwise, the term rate policing is used.

[RFC9000]

[RFC3168]

[RFC3168]

4. L4S Architecture Components

The L4S architecture is composed of the elements in the following three subsections.

4.1. Protocol Mechanisms

The L4S architecture involves: a) unassignment of the previous use of the identifier; b)

reassignment of the same identifier; and c) optional further identifiers:

An essential aspect of a Scalable congestion control is the use of explicit congestion signals.

Classic ECN requires an ECN signal to be treated as equivalent to drop, both when

it is generated in the network and when it is responded to by hosts. L4S needs networks and

hosts to support a more fine-grained meaning for each ECN signal that is less severe than a

drop, so that the L4S signals:

can be much more frequent and

can be signalled immediately, without the significant delay required to smooth out

fluctuations in the queue.

To enable L4S, the Standards Track Classic ECN spec has had to be updated to

allow L4S packets to depart from the 'equivalent-to-drop' constraint. is a

Standards Track update to relax specific requirements in (and certain other

a.

[RFC3168]

◦

◦

[RFC3168]

[RFC8311]

[RFC3168]

RFC 9330 L4S Architecture January 2023

Briscoe, et al. Informational Page 8

Standards Track RFCs), which clears the way for the experimental changes proposed for L4S.

Also, the ECT(1) codepoint was previously assigned as the experimental ECN nonce

, which recategorizes as historic to make the codepoint available again.

 specifies that ECT(1) is used as the identifier to classify L4S packets into a separate

treatment from Classic packets. This satisfies the requirement for identifying an alternative

ECN treatment in .

The CE codepoint is used to indicate Congestion Experienced by both L4S and Classic

treatments. This raises the concern that a Classic AQM earlier on the path might have

marked some ECT(0) packets as CE. Then, these packets will be erroneously classified into the

L4S queue. explains why five unlikely eventualities all have to

coincide for this to have any detrimental effect, which even then would only involve a

vanishingly small likelihood of a spurious retransmission.

A network operator might wish to include certain unresponsive, non-L4S traffic in the L4S

queue if it is deemed to be paced smoothly enough and at a low enough rate not to build a

queue, for instance, VoIP, low rate datagrams to sync online games, relatively low rate

application-limited traffic, DNS, Lightweight Directory Access Protocol (LDAP), etc. This

traffic would need to be tagged with specific identifiers, e.g., a low-latency Diffserv codepoint

such as Expedited Forwarding (EF) , Non-Queue-Building (NQB) , or

operator-specific identifiers.

[RFC3540] [RFC8311]

b. [RFC9331]

[RFC4774]

Appendix B of [RFC9331]

c.

[RFC3246] [NQB-PHB]

4.2. Network Components

The L4S architecture aims to provide low latency without the need for per-flow operations in

network components. Nonetheless, the architecture does not preclude per-flow solutions. The

following bullets describe the known arrangements: a) the DualQ Coupled AQM with an L4S AQM

in one queue coupled from a Classic AQM in the other; b) per-flow queues with an instance of a

Classic and an L4S AQM in each queue; and c) Dual queues with per-flow AQMs but no per-flow

queues:

The Dual-Queue Coupled AQM (illustrated in Figure 1) achieves the 'semi-permeable'

membrane property mentioned earlier as follows:

Latency isolation: Two separate queues are used to isolate L4S queuing delay from the

larger queue that Classic traffic needs to maintain full utilization.

Bandwidth pooling: The two queues act as if they are a single pool of bandwidth in which

flows of either type get roughly equal throughput without the scheduler needing to

identify any flows. This is achieved by having an AQM in each queue, but the Classic AQM

provides a congestion signal to both queues in a manner that ensures a consistent

response from the two classes of congestion control. Specifically, the Classic AQM generates

a drop/mark probability based on congestion in its own queue, which it uses both to drop/

mark packets in its own queue and to affect the marking probability in the L4S queue. The

strength of the coupling of the congestion signalling between the two queues is enough to

make the L4S flows slow down to leave the right amount of capacity for the Classic flows

(as they would if they were the same type of traffic sharing the same queue).

a.

◦

◦

RFC 9330 L4S Architecture January 2023

Briscoe, et al. Informational Page 9

https://www.rfc-editor.org/rfc/rfc9331#appendix-B

Then, the scheduler can serve the L4S queue with priority (denoted by the '1' on the higher

priority input), because the L4S traffic isn't offering up enough traffic to use all the priority

that it is given. Therefore:

for latency isolation on short timescales (sub-round-trip), the prioritization of the L4S

queue protects its low latency by allowing bursts to dissipate quickly;

but for bandwidth pooling on longer timescales (round-trip and longer), the Classic queue

creates an equal and opposite pressure against the L4S traffic to ensure that neither has

priority when it comes to bandwidth -- the tension between prioritizing L4S and coupling

the marking from the Classic AQM results in approximate per-flow fairness.

To protect against the prioritization of persistent L4S traffic deadlocking the Classic queue

for a while in some implementations, it is advisable for the priority to be conditional, not

strict (see).

When there is no Classic traffic, the L4S queue's own AQM comes into play. It starts

congestion marking with a very shallow queue, so L4S traffic maintains very low queuing

delay.

If either queue becomes persistently overloaded, drop of some ECN-capable packets is

introduced, as recommended in and

. The trade-offs with different approaches are discussed in

 (not shown in the figure here).

The Dual-Queue Coupled AQM has been specified as generically as possible

without specifying the particular AQMs to use in the two queues so that designers are free to

implement diverse ideas. Informational appendices in that document give pseudocode

examples of two different specific AQM approaches: one called DualPI2 (pronounced Dual PI

Squared) that uses the PI2 variant of PIE and a zero-config variant of

Random Early Detection (RED) called Curvy RED. A DualQ Coupled AQM based on PIE has

also been specified and implemented for Low Latency DOCSIS .

◦

◦

Appendix A of the DualQ spec [RFC9332]

Section 7 of the ECN spec [RFC3168] Section 4.2.1 of the

AQM recommendations [RFC7567]

Section 4.2.3 of the DualQ spec [RFC9332]

[RFC9332]

[DualPI2Linux]

[DOCSIS3.1]

RFC 9330 L4S Architecture January 2023

Briscoe, et al. Informational Page 10

https://www.rfc-editor.org/rfc/rfc9332#appendix-A
https://www.rfc-editor.org/rfc/rfc3168#section-7
https://www.rfc-editor.org/rfc/rfc7567#section-4.2.1
https://www.rfc-editor.org/rfc/rfc9332#section-4.2.3

Per-Flow Queues and AQMs: A scheduler with per-flow queues, such as FQ-CoDel or FQ-PIE,

can be used for L4S. For instance, within each queue of an FQ-CoDel system, as well as a

CoDel AQM, there is typically also the option of ECN marking at an immediate (unsmoothed)

shallow threshold to support use in data centres (see

). In Linux, this has been modified so that the shallow threshold can be solely

applied to ECT(1) packets . Then, if there is a flow of Not-ECT or ECT(0)

packets in the per-flow queue, the Classic AQM (e.g., CoDel) is applied; whereas, if there is a

flow of ECT(1) packets in the queue, the shallower (typically sub-millisecond) threshold is

applied. In addition, ECT(0) and Not-ECT packets could potentially be classified into a

separate flow queue from ECT(1) and CE packets to avoid them mixing if they share a

common flow identifier (e.g., in a VPN).

Dual queues but per-flow AQMs: It should also be possible to use dual queues for isolation

but with per-flow marking to control flow rates (instead of the coupled per-queue marking of

the Dual-Queue Coupled AQM). One of the two queues would be for isolating L4S packets,

which would be classified by the ECN codepoint. Flow rates could be controlled by flow-

specific marking. The policy goal of the marking could be to differentiate flow rates (e.g.,

, which requires additional signalling of a per-flow 'value') or to equalize flow rates

(perhaps in a similar way to Approx Fair CoDel but with two

queues not one).

Note that, whenever the term 'DualQ' is used loosely without saying whether marking is per

queue or per flow, it means a dual-queue AQM with per-queue marking.

Figure 1: Components of an L4S DualQ Coupled AQM Solution

 (3) (2)

 .-------^------..------------^------------------.

 ,-(1)-----. _____

; ________ : L4S -------. | |

:|Scalable| : _\ ||___|mark |

:| sender | : __________ / / || / |_____|\ _________

:|________|\; | |/ -------' ^ \1|condit'nl|

 `---------'_| IP-ECN | Coupling : \|priority |_\

 ________ / |Classifier| : /|scheduler| /

 |Classic |/ |__________|\ -------. __:__ / |_________|

 | sender | _\ || | ||___|mark/|/

 |________| / || | || / |drop |

 Classic -------' |_____|

(1) Scalable sending host

(2) Isolation in separate network queues

(3) Packet identification protocol

b.

Section 5.2.7 of the FQ-CoDel spec

[RFC8290]

[FQ_CoDel_Thresh]

c.

[Nadas20]

[AFCD] [CODEL-APPROX-FAIR]

RFC 9330 L4S Architecture January 2023

Briscoe, et al. Informational Page 11

https://www.rfc-editor.org/rfc/rfc8290#section-5.2.7

4.3. Host Mechanisms

The L4S architecture includes two main mechanisms in the end host that we enumerate next:

Scalable congestion control at the sender: Section 2 defines a Scalable congestion control as

one where the average time from one congestion signal to the next (the recovery time)

remains invariant as flow rate scales, all other factors being equal. DCTCP is the most widely

used example. It has been documented as an informational record of the protocol currently

in use in controlled environments . A list of safety and performance improvements

for a Scalable congestion control to be usable on the public Internet has been drawn up (see

the so-called 'Prague L4S requirements' in). The subset that involve

risk of harm to others have been captured as normative requirements in

. TCP Prague has been implemented in Linux as a reference

implementation to address these requirements .

Transport protocols other than TCP use various congestion controls that are designed to be

friendly with Reno. Before they can use the L4S service, they will need to be updated to

implement a Scalable congestion response, which they will have to indicate by using the

ECT(1) codepoint. Scalable variants are under consideration for more recent transport

protocols (e.g., QUIC), and the L4S ECN part of BBRv2 is a Scalable

congestion control intended for the TCP and QUIC transports, amongst others. Also, an L4S

variant of the RMCAT SCReAM controller has been implemented for

media transported over RTP.

 defines Scalable congestion control in more detail

and specifies the requirements that an L4S Scalable congestion control has to comply with.

The ECN feedback in some transport protocols is already sufficiently fine-grained for L4S

(specifically DCCP and QUIC). But others either require updates or are

in the process of being updated:

For the case of TCP, the feedback protocol for ECN embeds the assumption from Classic

ECN that an ECN mark is equivalent to a drop, making it unusable for a Scalable

TCP. Therefore, the implementation of TCP receivers will have to be upgraded .

Work to standardize and implement more accurate ECN feedback for TCP (AccECN) is in

progress .

ECN feedback was only roughly sketched in the appendix of the now obsoleted second

specification of SCTP , while a fuller specification was proposed in a long-expired

document . A new design would need to be implemented and deployed before

SCTP could support L4S.

For RTP, sufficient ECN feedback was defined in , but defines the latest

Standards Track improvements.

a.

[RFC8257]

Appendix A of [RFC9331]

Section 4 of

[RFC9331] [PRAGUE-CC]

[PragueLinux]

[BBRv2] [BBR-CC]

[RFC8298] [SCReAM-L4S]

Section 4.3 of the L4S ECN spec [RFC9331]

b.

[RFC4340] [RFC9000]

◦

[RFC3168]

[RFC7560]

[ACCECN] [PragueLinux]

◦

[RFC4960]

[ECN-SCTP]

◦ [RFC6679] [RFC8888]

5. Rationale

5.1. Why These Primary Components?

RFC 9330 L4S Architecture January 2023

Briscoe, et al. Informational Page 12

https://www.rfc-editor.org/rfc/rfc9331#appendix-A
https://www.rfc-editor.org/rfc/rfc9331#section-4
https://www.rfc-editor.org/rfc/rfc9331#section-4.3

Explicit congestion signalling (protocol):

Latency isolation (network):

Explicit congestion signalling is a key part of the L4S

approach. In contrast, use of drop as a congestion signal creates tension because drop is both

an impairment (less would be better) and a useful signal (more would be better):

Explicit congestion signals can be used many times per round trip to keep tight control

without any impairment. Under heavy load, even more explicit signals can be applied so

that the queue can be kept short whatever the load. In contrast, Classic AQMs have to

introduce very high packet drop at high load to keep the queue short. By using ECN, an

L4S congestion control's sawtooth reduction can be smaller and therefore return to the

operating point more often, without worrying that more sawteeth will cause more

signals. The consequent smaller amplitude sawteeth fit between an empty queue and a

very shallow marking threshold (~1 ms in the public Internet), so queue delay variation

can be very low, without risk of underutilization.

Explicit congestion signals can be emitted immediately to track fluctuations of the queue.

L4S shifts smoothing from the network to the host. The network doesn't know the round-

trip times (RTTs) of any of the flows. So if the network is responsible for smoothing (as in

the Classic approach), it has to assume a worst case RTT, otherwise long RTT flows would

become unstable. This delays Classic congestion signals by 100-200 ms. In contrast, each

host knows its own RTT. So, in the L4S approach, the host can smooth each flow over its

own RTT, introducing no more smoothing delay than strictly necessary (usually only a

few milliseconds). A host can also choose not to introduce any smoothing delay if

appropriate, e.g., during flow start-up.

Neither of the above are feasible if explicit congestion signalling has to be considered

'equivalent to drop' (as was required with Classic ECN), because drop is an

impairment as well as a signal. So drop cannot be excessively frequent, and drop cannot be

immediate; otherwise, too many drops would turn out to have been due to only a transient

fluctuation in the queue that would not have warranted dropping a packet in hindsight.

Therefore, in an L4S AQM, the L4S queue uses a new L4S variant of ECN that is not equivalent

to drop (see), while the Classic queue uses either

Classic ECN or drop, which are still equivalent to each other.

Before Classic ECN was standardized, there were various proposals to give an ECN mark a

different meaning from drop. However, there was no particular reason to agree on any one of

the alternative meanings, so 'equivalent to drop' was the only compromise that could be

reached. contains a statement that:

An environment where all end nodes were ECN-Capable could allow new criteria to be

developed for setting the CE codepoint, and new congestion control mechanisms for end-

node reaction to CE packets. However, this is a research issue, and as such is not

addressed in this document.

L4S congestion controls keep queue delay low, whereas Classic

congestion controls need a queue of the order of the RTT to avoid underutilization. One queue

cannot have two lengths; therefore, L4S traffic needs to be isolated in a separate queue (e.g.,

DualQ) or queues (e.g., FQ).

•

•

[RFC3168]

Section 5.2 of the L4S ECN spec [RFC9331]

[RFC3168]

[RFC3168]

RFC 9330 L4S Architecture January 2023

Briscoe, et al. Informational Page 13

https://www.rfc-editor.org/rfc/rfc9331#section-5.2

Coupled congestion notification:

L4S packet identifier (protocol):

Scalable congestion notification:

Low loss:

Scalable throughput:

Coupling the congestion notification between two queues as in

the DualQ Coupled AQM is not necessarily essential, but it is a simple way to allow senders to

determine their rate packet by packet, rather than be overridden by a network scheduler. An

alternative is for a network scheduler to control the rate of each application flow (see the

discussion in Section 5.2).

Once there are at least two treatments in the network, hosts

need an identifier at the IP layer to distinguish which treatment they intend to use.

A Scalable congestion control in the host keeps the signalling

frequency from the network high, whatever the flow rate, so that queue delay variations can

be small when conditions are stable, and rate can track variations in available capacity as

rapidly as possible otherwise.

Latency is not the only concern of L4S. The 'Low Loss' part of the name denotes that

L4S generally achieves zero congestion loss due to its use of ECN. Otherwise, loss would itself

cause delay, particularly for short flows, due to retransmission delay .

The 'Scalable throughput' part of the name denotes that the per-flow

throughput of Scalable congestion controls should scale indefinitely, avoiding the imminent

scaling problems with Reno-friendly congestion control algorithms . It was known

when TCP congestion avoidance was first developed in 1988 that it would not scale to high

bandwidth-delay products (see footnote 6 in). Today, regular broadband flow rates

over WAN distances are already beyond the scaling range of Classic Reno congestion control.

So 'less unscalable' CUBIC and Compound variants of TCP have been

successfully deployed. However, these are now approaching their scaling limits.

For instance, we will consider a scenario with a maximum RTT of 30 ms at the peak of each

sawtooth. As Reno packet rate scales 8 times from 1,250 to 10,000 packet/s (from 15 to 120 Mb/

s with 1500 B packets), the time to recover from a congestion event rises proportionately by 8

times as well, from 422 ms to 3.38 s. It is clearly problematic for a congestion control to take

multiple seconds to recover from each congestion event. CUBIC was developed to

be less unscalable, but it is approaching its scaling limit; with the same max RTT of 30 ms, at

120 Mb/s, CUBIC is still fully in its Reno-friendly mode, so it takes about 4.3 s to recover.

However, once flow rate scales by 8 times again to 960 Mb/s it enters true CUBIC mode, with a

recovery time of 12.2 s. From then on, each further scaling by 8 times doubles CUBIC's

recovery time (because the cube root of 8 is 2), e.g., at 7.68 Gb/s, the recovery time is 24.3 s. In

contrast, a Scalable congestion control like DCTCP or Prague induces 2 congestion signals per

round trip on average, which remains invariant for any flow rate, keeping dynamic control

very tight.

For a feel of where the global average lone-flow download sits on this scale at the time of

writing (2021), according to , the global average fixed access capacity was 103 Mb/s

in 2020 and the average base RTT to a CDN was 25 to 34 ms in 2019. Averaging of per-country

data was weighted by Internet user population (data collected globally is necessarily of

variable quality, but the paper does double-check that the outcome compares well against a

second source). So a lone CUBIC flow would at best take about 200 round trips (5 s) to recover

from each of its sawtooth reductions, if the flow even lasted that long. This is described as 'at

[RFC2884]

[RFC3649]

[TCP-CA]

[RFC8312] [CTCP]

[RFC8312]

[BDPdata]

RFC 9330 L4S Architecture January 2023

Briscoe, et al. Informational Page 14

best' because it assumes everyone uses an AQM, whereas in reality, most users still have a

(probably bloated) tail-drop buffer. In the tail-drop case, the likely average recovery time

would be at least 4 times 5 s, if not more, because RTT under load would be at least double

that of an AQM, and the recovery time of Reno-friendly flows depends on the square of RTT.

Although work on scaling congestion controls tends to start with TCP as the transport, the

above is not intended to exclude other transports (e.g., SCTP and QUIC) or less elastic

algorithms (e.g., RMCAT), which all tend to adopt the same or similar developments.

Diffserv:

State-of-the-art AQMs:

5.2. What L4S Adds to Existing Approaches

All the following approaches address some part of the same problem space as L4S. In each case,

it is shown that L4S complements them or improves on them, rather than being a mutually

exclusive alternative:

Diffserv addresses the problem of bandwidth apportionment for important traffic as

well as queuing latency for delay-sensitive traffic. Of these, L4S solely addresses the problem

of queuing latency. Diffserv will still be necessary where important traffic requires priority

(e.g., for commercial reasons or for protection of critical infrastructure traffic) -- see

. Nonetheless, the L4S approach can provide low latency for all traffic within each

Diffserv class (including the case where there is only the one default Diffserv class).

Also, Diffserv can only provide a latency benefit if a small subset of the traffic on a bottleneck

link requests low latency. As already explained, it has no effect when all the applications in

use at one time at a single site (e.g., a home, small business, or mobile device) require low

latency. In contrast, because L4S works for all traffic, it needs none of the management

baggage (traffic policing or traffic contracts) associated with favouring some packets over

others. This lack of management baggage ought to give L4S a better chance of end-to-end

deployment.

In particular, if networks do not trust end systems to identify which packets should be

favoured, they assign packets to Diffserv classes themselves. However, the techniques

available to such networks, like inspection of flow identifiers or deeper inspection of

application signatures, do not always sit well with encryption of the layers above IP

. In these cases, users can have either privacy or Quality of Service (QoS), but not

both.

As with Diffserv, the L4S identifier is in the IP header. But, in contrast to Diffserv, the L4S

identifier does not convey a want or a need for a certain level of quality. Rather, it promises a

certain behaviour (Scalable congestion response), which networks can objectively verify if

they need to. This is because low delay depends on collective host behaviour, whereas

bandwidth priority depends on network behaviour.

AQMs for Classic traffic, such as PIE and FQ-CoDel, give a significant

reduction in queuing delay relative to no AQM at all. L4S is intended to complement these

AQMs and should not distract from the need to deploy them as widely as possible.

Nonetheless, AQMs alone cannot reduce queuing delay too far without significantly reducing

[L4S-

DIFFSERV]

[RFC8404]

RFC 9330 L4S Architecture January 2023

Briscoe, et al. Informational Page 15

Per-flow queuing or marking:

link utilization, because the root cause of the problem is on the host -- where Classic

congestion controls use large sawtoothing rate variations. The L4S approach resolves this

tension between delay and utilization by enabling hosts to minimize the amplitude of their

sawteeth. A single-queue Classic AQM is not sufficient to allow hosts to use small sawteeth for

two reasons: i) smaller sawteeth would not get lower delay in an AQM designed for larger

amplitude Classic sawteeth, because a queue can only have one length at a time and ii) much

smaller sawteeth implies much more frequent sawteeth, so L4S flows would drive a Classic

AQM into a high level of ECN-marking, which would appear as heavy congestion to Classic

flows, which in turn would greatly reduce their rate as a result (see Section 6.4.4).

Similarly, per-flow approaches, such as FQ-CoDel or Approx Fair

CoDel , are not incompatible with the L4S approach. However, per-flow queuing alone

is not enough -- it only isolates the queuing of one flow from others, not from itself. Per-flow

implementations need to have support for Scalable congestion control added, which has

already been done for FQ-CoDel in Linux (see and

). Without this simple modification, per-flow AQMs, like FQ-CoDel, would

still not be able to support applications that need both very low delay and high bandwidth,

e.g., video-based control of remote procedures or interactive cloud-based video (see Note 1

below).

Although per-flow techniques are not incompatible with L4S, it is important to have the

DualQ alternative. This is because handling end-to-end (layer 4) flows in the network (layer 3

or 2) precludes some important end-to-end functions. For instance:

Per-flow forms of L4S, like FQ-CoDel, are incompatible with full end-to-end encryption of

transport layer identifiers for privacy and confidentiality (e.g., IPsec or encrypted VPN

tunnels, as opposed to DTLS over UDP), because they require packet inspection to access

the end-to-end transport flow identifiers.

In contrast, the DualQ form of L4S requires no deeper inspection than the IP layer. So as

long as operators take the DualQ approach, their users can have both very low queuing

delay and full end-to-end encryption .

With per-flow forms of L4S, the network takes over control of the relative rates of each

application flow. Some see it as an advantage that the network will prevent some flows

running faster than others. Others consider it an inherent part of the Internet's appeal

that applications can control their rate while taking account of the needs of others via

congestion signals. They maintain that this has allowed applications with interesting rate

behaviours to evolve, for instance: i) a variable bit-rate video that varies around an equal

share, rather than being forced to remain equal at every instant or ii) end-to-end

scavenger behaviours that use less than an equal share of capacity

.

The L4S architecture does not require the IETF to commit to one approach over the other,

because it supports both so that the 'market' can decide. Nonetheless, in the spirit of 'Do

one thing and do it well' , the DualQ option provides low delay without

prejudging the issue of flow-rate control. Then, flow rate policing can be added separately

[AFCD]

Section 5.2.7 of [RFC8290]

[FQ_CoDel_Thresh]

a.

[RFC8404]

b.

[RFC6817]

[LEDBAT_AQM]

[McIlroy78]

RFC 9330 L4S Architecture January 2023

Briscoe, et al. Informational Page 16

https://www.rfc-editor.org/rfc/rfc8290#section-5.2.7

Alternative Back-off ECN (ABE):

BBR:

if desired. In contrast to scheduling, a policer would allow application control up to a

point, but the network would still be able to set the point at which it intervened to

prevent one flow completely starving another.

Note:

Here again, L4S is not an alternative to ABE but a complement

that introduces much lower queuing delay. ABE alters the host behaviour in

response to ECN marking to utilize a link better and give ECN flows faster throughput. It uses

ECT(0) and assumes the network still treats ECN and drop the same. Therefore, ABE exploits

any lower queuing delay that AQMs can provide. But, as explained above, AQMs still cannot

reduce queuing delay too much without losing link utilization (to allow for other, non-ABE,

flows).

Bottleneck Bandwidth and Round-trip propagation time (BBR) controls queuing

delay end-to-end without needing any special logic in the network, such as an AQM. So it

works pretty much on any path. BBR keeps queuing delay reasonably low, but perhaps not

quite as low as with state-of-the-art AQMs, such as PIE or FQ-CoDel, and certainly nowhere

near as low as with L4S. Queuing delay is also not consistently low, due to BBR's regular

bandwidth probing spikes and its aggressive flow start-up phase.

L4S complements BBR. Indeed, BBRv2 can use L4S ECN where available and a Scalable L4S

congestion control behaviour in response to any ECN signalling from the path . The

L4S ECN signal complements the delay-based congestion control aspects of BBR with an

explicit indication that hosts can use, both to converge on a fair rate and to keep below a

shallow queue target set by the network. Without L4S ECN, both these aspects need to be

assumed or estimated.

1. It might seem that self-inflicted queuing delay within a per-flow queue should not be

counted, because if the delay wasn't in the network, it would just shift to the sender.

However, modern adaptive applications, e.g., HTTP/2 or some interactive

media applications (see Section 6.1), can keep low latency objects at the front of their local

send queue by shuffling priorities of other objects dependent on the progress of other

transfers (for example, see). They cannot shuffle objects once they have released

them into the network.

[RFC9113]

[lowat]

[RFC8511]

[BBR-CC]

[BBRv2]

6. Applicability

6.1. Applications

A transport layer that solves the current latency issues will provide new service, product, and

application opportunities.

With the L4S approach, the following existing applications also experience significantly better

quality of experience under load:

gaming, including cloud-based gaming; •

RFC 9330 L4S Architecture January 2023

Briscoe, et al. Informational Page 17

VoIP;

video conferencing;

web browsing;

(adaptive) video streaming; and

instant messaging.

The significantly lower queuing latency also enables some interactive application functions to be

offloaded to the cloud that would hardly even be usable today, including:

cloud-based interactive video and

cloud-based virtual and augmented reality.

The above two applications have been successfully demonstrated with L4S, both running

together over a 40 Mb/s broadband access link loaded up with the numerous other latency-

sensitive applications in the previous list, as well as numerous downloads, with all sharing the

same bottleneck queue simultaneously . For the former, a

panoramic video of a football stadium could be swiped and pinched so that, on the fly, a proxy in

the cloud could generate a sub-window of the match video under the finger-gesture control of

each user. For the latter, a virtual reality headset displayed a viewport taken from a 360-degree

camera in a racing car. The user's head movements controlled the viewport extracted by a cloud-

based proxy. In both cases, with a 7 ms end-to-end base delay, the additional queuing delay of

roughly 1 ms was so low that it seemed the video was generated locally.

Using a swiping finger gesture or head movement to pan a video are extremely latency-

demanding actions -- far more demanding than VoIP -- because human vision can detect

extremely low delays of the order of single milliseconds when delay is translated into a visual lag

between a video and a reference point (the finger or the orientation of the head sensed by the

balance system in the inner ear, i.e., the vestibular system). With an alternative AQM, the video

noticeably lagged behind the finger gestures and head movements.

Without the low queuing delay of L4S, cloud-based applications like these would not be credible

without significantly more access-network bandwidth (to deliver all possible areas of the video

that might be viewed) and more local processing, which would increase the weight and power

consumption of head-mounted displays. When all interactive processing can be done in the

cloud, only the data to be rendered for the end user needs to be sent.

Other low latency high bandwidth applications, such as:

interactive remote presence and

video-assisted remote control of machinery or industrial processes

are not credible at all without very low queuing delay. No amount of extra access bandwidth or

local processing can make up for lost time.

•

•

•

•

•

•

•

[L4Sdemo16] [L4Sdemo16-Video]

•

•

RFC 9330 L4S Architecture January 2023

Briscoe, et al. Informational Page 18

6.2. Use Cases

The following use cases for L4S are being considered by various interested parties:

where the bottleneck is one of various types of access network, e.g., DSL, Passive Optical

Networks (PONs), DOCSIS cable, mobile, satellite; or where it's a Wi-Fi link (see Section 6.3

for some technology-specific details)

private networks of heterogeneous data centres, where there is no single administrator that

can arrange for all the simultaneous changes to senders, receivers, and networks needed to

deploy DCTCP:

a set of private data centres interconnected over a wide area with separate

administrations but within the same company

a set of data centres operated by separate companies interconnected by a community of

interest network (e.g., for the finance sector)

multi-tenant (cloud) data centres where tenants choose their operating system stack

(Infrastructure as a Service (IaaS))

different types of transport (or application) congestion control:

elastic (TCP/SCTP);

real-time (RTP, RMCAT); and

query-response (DNS/LDAP).

where low delay QoS is required but without inspecting or intervening above the IP layer

:

Mobile and other networks have tended to inspect higher layers in order to guess

application QoS requirements. However, with growing demand for support of privacy and

encryption, L4S offers an alternative. There is no need to select which traffic to favour for

queuing when L4S can give favourable queuing to all traffic.

If queuing delay is minimized, applications with a fixed delay budget can communicate over

longer distances or via more circuitous paths, e.g., longer chains of service functions

 or of onion routers.

If delay jitter is minimized, it is possible to reduce the dejitter buffers on the receiving end of

video streaming, which should improve the interactive experience.

•

•

◦

◦

◦

•

◦

◦

◦

•

[RFC8404]

◦

•

[RFC7665]

•

6.3. Applicability with Specific Link Technologies

Certain link technologies aggregate data from multiple packets into bursts and buffer incoming

packets while building each burst. Wi-Fi, PON, and cable all involve such packet aggregation,

whereas fixed Ethernet and DSL do not. No sender, whether L4S or not, can do anything to

reduce the buffering needed for packet aggregation. So an AQM should not count this buffering

as part of the queue that it controls, given no amount of congestion signals will reduce it.

RFC 9330 L4S Architecture January 2023

Briscoe, et al. Informational Page 19

6.4. Deployment Considerations

L4S AQMs, whether DualQ or FQ , are in themselves an incremental

deployment mechanism for L4S -- so that L4S traffic can coexist with existing Classic (Reno-

friendly) traffic. Section 6.4.1 explains why only deploying an L4S AQM in one node at each end

of the access link will realize nearly all the benefit of L4S.

L4S involves both the network and end systems, so Section 6.4.2 suggests some typical sequences

to deploy each part and why there will be an immediate and significant benefit after deploying

just one part.

Sections 6.4.3 and 6.4.4 describe the converse incremental deployment case where there is no

L4S AQM at the network bottleneck, so any L4S flow traversing this bottleneck has to take care in

case it is competing with Classic traffic.

Certain link technologies also add buffering for other reasons, specifically:

Radio links (cellular, Wi-Fi, or satellite) that are distant from the source are particularly

challenging. The radio link capacity can vary rapidly by orders of magnitude, so it is

considered desirable to hold a standing queue that can utilize sudden increases of capacity.

Cellular networks are further complicated by a perceived need to buffer in order to make

hand-overs imperceptible.

L4S cannot remove the need for all these different forms of buffering. However, by removing 'the

longest pole in the tent' (buffering for the large sawteeth of Classic congestion controls), L4S

exposes all these 'shorter poles' to greater scrutiny.

Until now, the buffering needed for these additional reasons tended to be over-specified -- with

the excuse that none were 'the longest pole in the tent'. But having removed the 'longest pole', it

becomes worthwhile to minimize them, for instance, reducing packet aggregation burst sizes and

MAC scheduling intervals.

Also, certain link types, particularly radio-based links, are far more prone to transmission losses.

Section 6.4.3 explains how an L4S response to loss has to be as drastic as a Classic response.

Nonetheless, research referred to in the same section has demonstrated potential for

considerably more effective loss repair at the link layer, due to the relaxed ordering constraints

of L4S packets.

•

•

[RFC9332] [RFC8290]

6.4.1. Deployment Topology

L4S AQMs will not have to be deployed throughout the Internet before L4S can benefit anyone.

Operators of public Internet access networks typically design their networks so that the

bottleneck will nearly always occur at one known (logical) link. This confines the cost of queue

management technology to one place.

The case of mesh networks is different and will be discussed later in this section. However, the

known-bottleneck case is generally true for Internet access to all sorts of different 'sites', where

the word 'site' includes home networks, small- to medium-sized campus or enterprise networks

RFC 9330 L4S Architecture January 2023

Briscoe, et al. Informational Page 20

and even cellular devices (Figure 2). Also, this known-bottleneck case tends to be applicable

whatever the access link technology, whether xDSL, cable, PON, cellular, line of sight wireless, or

satellite.

Therefore, the full benefit of the L4S service should be available in the downstream direction

when an L4S AQM is deployed at the ingress to this bottleneck link. And similarly, the full

upstream service will typically be available once an L4S AQM is deployed at the ingress into the

upstream link. (Of course, multihomed sites would only see the full benefit once all their access

links were covered.)

Deployment in mesh topologies depends on how overbooked the core is. If the core is non-

blocking, or at least generously provisioned so that the edges are nearly always the bottlenecks, it

would only be necessary to deploy an L4S AQM at the edge bottlenecks. For example, some data-

centre networks are designed with the bottleneck in the hypervisor or host Network Interface

Controllers (NICs), while others bottleneck at the top-of-rack switch (both the output ports facing

hosts and those facing the core).

An L4S AQM would often next be needed where the Wi-Fi links in a home sometimes become the

bottleneck. Also an L4S AQM would eventually need to be deployed at any other persistent

bottlenecks, such as network interconnections, e.g., some public Internet exchange points and

the ingress and egress to WAN links interconnecting data centres.

Figure 2: Likely Location of DualQ (DQ) Deployments in Common Access Topologies

 ()

 __ __ ()

 |DQ________/DQ|(enterprise)

 ___ |__/ __| (/campus)

 () (______)

 () ___||_

+----+ () __ __ / \

| DC |-----(Core)|DQ_______________/DQ|| home |

+----+ () |__/ __||______|

 (_____) __

 |DQ__/\ __ ,===.

 |__/ \ ____/DQ||| ||mobile

 \/ __|||_||device

 | o |

 `---'

6.4.2. Deployment Sequences

For any one L4S flow to provide benefit, it requires three (or sometimes two) parts to have been

deployed: i) the congestion control at the sender; ii) the AQM at the bottleneck; and iii) older

transports (namely TCP) need upgraded receiver feedback too. This was the same deployment

problem that ECN faced , so we have learned from that experience.[RFC8170]

RFC 9330 L4S Architecture January 2023

Briscoe, et al. Informational Page 21

Firstly, L4S deployment exploits the fact that DCTCP already exists on many Internet hosts (e.g.,

Windows, FreeBSD, and Linux), both servers and clients. Therefore, an L4S AQM can be deployed

at a network bottleneck to immediately give a working deployment of all the L4S parts for

testing, as long as the ECT(0) codepoint is switched to ECT(1). DCTCP needs some safety concerns

to be fixed for general use over the public Internet (see

), but DCTCP is not on by default, so these issues can be managed within controlled

deployments or controlled trials.

Secondly, the performance improvement with L4S is so significant that it enables new interactive

services and products that were not previously possible. It is much easier for companies to

initiate new work on deployment if there is budget for a new product trial. In contrast, if there

were only an incremental performance improvement (as with Classic ECN), spending on

deployment tends to be much harder to justify.

Thirdly, the L4S identifier is defined so that network operators can initially enable L4S

exclusively for certain customers or certain applications. However, this is carefully defined so

that it does not compromise future evolution towards L4S as an Internet-wide service. This is

because the L4S identifier is defined not only as the end-to-end ECN field, but it can also

optionally be combined with any other packet header or some status of a customer or their

access link (see). Operators could do this anyway, even if it were not

blessed by the IETF. However, it is best for the IETF to specify that, if they use their own local

identifier, it must be in combination with the IETF's identifier, ECT(1). Then, if an operator has

opted for an exclusive local-use approach, they only have to remove this extra rule later to make

the service work across the Internet -- it will already traverse middleboxes, peerings, etc.

Section 4.3 of the L4S ECN spec

[RFC9331]

Section 5.4 of [RFC9331]

Figure 3: Example L4S Deployment Sequence

+-+--------------------+----------------------+---------------------+

| | Servers or proxies | Access link | Clients |

+-+--------------------+----------------------+---------------------+

|0| DCTCP (existing) | | DCTCP (existing) |

+-+--------------------+----------------------+---------------------+

|1| |Add L4S AQM downstream| |

| | WORKS DOWNSTREAM FOR CONTROLLED DEPLOYMENTS/TRIALS |

+-+--------------------+----------------------+---------------------+

|2| Upgrade DCTCP to | |Replace DCTCP feedb'k|

| | TCP Prague | | with AccECN |

| | FULLY WORKS DOWNSTREAM |

+-+--------------------+----------------------+---------------------+

| | | | Upgrade DCTCP to |

|3| | Add L4S AQM upstream | TCP Prague |

| | | | |

| | FULLY WORKS UPSTREAM AND DOWNSTREAM |

+-+--------------------+----------------------+---------------------+

RFC 9330 L4S Architecture January 2023

Briscoe, et al. Informational Page 22

https://www.rfc-editor.org/rfc/rfc9331#section-4.3
https://www.rfc-editor.org/rfc/rfc9331#section-5.4

Figure 3 illustrates some example sequences in which the parts of L4S might be deployed. It

consists of the following stages, preceded by a presumption that DCTCP is already installed at

both ends:

DCTCP is not applicable for use over the public Internet, so it is emphasized here that any

DCTCP flow has to be completely contained within a controlled trial environment.

Within this trial environment, once an L4S AQM has been deployed, the trial DCTCP flow will

experience immediate benefit, without any other deployment being needed. In this example,

downstream deployment is first, but in other scenarios, the upstream might be deployed

first. If no AQM at all was previously deployed for the downstream access, an L4S AQM

greatly improves the Classic service (as well as adding the L4S service). If an AQM was

already deployed, the Classic service will be unchanged (and L4S will add an improvement

on top).

In this stage, the name 'TCP Prague' is used to represent a variant of DCTCP that

is designed to be used in a production Internet environment (that is, it has to comply with all

the requirements in , which then means it can be

used over the public Internet). If the application is primarily unidirectional, 'TCP Prague' at

the sending end will provide all the benefit needed, as long as the receiving end supports

Accurate ECN (AccECN) feedback .

For TCP transports, AccECN feedback is needed at the other end, but it is a generic ECN

feedback facility that is already planned to be deployed for other purposes, e.g., DCTCP and

BBR. The two ends can be deployed in either order because, in TCP, an L4S congestion control

only enables itself if it has negotiated the use of AccECN feedback with the other end during

the connection handshake. Thus, deployment of TCP Prague on a server enables L4S trials to

move to a production service in one direction, wherever AccECN is deployed at the other

end. This stage might be further motivated by the performance improvements of TCP Prague

relative to DCTCP (see).

Unlike TCP, from the outset, QUIC ECN feedback has supported L4S. Therefore, if

the transport is QUIC, one-ended deployment of a Prague congestion control at this stage is

simple and sufficient.

For QUIC, if a proxy sits in the path between multiple origin servers and the access

bottlenecks to multiple clients, then upgrading the proxy with a Scalable congestion control

would provide the benefits of L4S over all the clients' downstream bottlenecks in one go --

whether or not all the origin servers were upgraded. Conversely, where a proxy has not been

upgraded, the clients served by it will not benefit from L4S at all in the downstream, even

when any origin server behind the proxy has been upgraded to support L4S.

For TCP, a proxy upgraded to support 'TCP Prague' would provide the benefits of L4S

downstream to all clients that support AccECN (whether or not they support L4S as well).

And in the upstream, the proxy would also support AccECN as a receiver, so that any client

deploying its own L4S support would benefit in the upstream direction, irrespective of

whether any origin server beyond the proxy supported AccECN.

This is a two-move stage to enable L4S upstream. An L4S AQM or TCP Prague can be

deployed in either order as already explained. To motivate the first of two independent

1.

2. [PRAGUE-CC]

Section 4 of the L4S ECN spec [RFC9331]

[ACCECN]

Appendix A.2 of the L4S ECN spec [RFC9331]

[RFC9000]

3.

RFC 9330 L4S Architecture January 2023

Briscoe, et al. Informational Page 23

https://www.rfc-editor.org/rfc/rfc9331#section-4
https://www.rfc-editor.org/rfc/rfc9331#appendix-A.2

moves, the deferred benefit of enabling new services after the second move has to be worth

it to cover the first mover's investment risk. As explained already, the potential for new

interactive services provides this motivation. An L4S AQM also improves the upstream

Classic service significantly if no other AQM has already been deployed.

Note that other deployment sequences might occur. For instance, the upstream might be

deployed first; a non-TCP protocol might be used end to end, e.g., QUIC and RTP; a body, such as

the 3GPP, might require L4S to be implemented in 5G user equipment; or other random acts of

kindness might arise.

6.4.3. L4S Flow but Non-ECN Bottleneck

If L4S is enabled between two hosts, the L4S sender is required to coexist safely with Reno in

response to any drop (see).

Unfortunately, as well as protecting Classic traffic, this rule degrades the L4S service whenever

there is any loss, even if the cause is not persistent congestion at a bottleneck, for example:

congestion loss at other transient bottlenecks, e.g., due to bursts in shallower queues;

transmission errors, e.g., due to electrical interference; and

rate policing.

Three complementary approaches are in progress to address this issue, but they are all currently

research:

In Prague congestion control, ignore certain losses deemed unlikely to be due to congestion

(using some ideas from BBR regarding isolated losses). This could mask any of the

above types of loss while still coexisting with drop-based congestion controls.

A combination of Recent Acknowledgement (RACK) , L4S, and link retransmission

without resequencing could repair transmission errors without the head of line blocking

delay usually associated with link-layer retransmission .

Hybrid ECN/drop rate policers (see Section 8.3).

L4S deployment scenarios that minimize these issues (e.g., over wireline networks) can proceed

in parallel to this research, in the expectation that research success could continually widen L4S

applicability.

Section 4.3 of the L4S ECN spec [RFC9331]

•

•

•

•

[BBR-CC]

• [RFC8985]

[UnorderedLTE] [RFC9331]

•

6.4.4. L4S Flow but Classic ECN Bottleneck

Classic ECN support is starting to materialize on the Internet as an increased level of CE marking.

It is hard to detect whether this is all due to the addition of support for ECN in implementations

of FQ-CoDel and/or FQ-COBALT, which is not generally problematic, because flow queue (FQ)

scheduling inherently prevents a flow from exceeding the 'fair' rate irrespective of its

aggressiveness. However, some of this Classic ECN marking might be due to single-queue ECN

deployment. This case is discussed in .Section 4.3 of the L4S ECN spec [RFC9331]

RFC 9330 L4S Architecture January 2023

Briscoe, et al. Informational Page 24

https://www.rfc-editor.org/rfc/rfc9331#section-4.3
https://www.rfc-editor.org/rfc/rfc9331#section-4.3

6.4.5. L4S AQM Deployment within Tunnels

An L4S AQM uses the ECN field to signal congestion. So in common with Classic ECN, if the AQM

is within a tunnel or at a lower layer, correct functioning of ECN signalling requires standards-

compliant propagation of the ECN field up the layers .[RFC6040] [ECN-SHIM] [ECN-ENCAP]

7. IANA Considerations

This document has no IANA actions.

8. Security Considerations

8.1. Traffic Rate (Non-)Policing

8.1.1. (Non-)Policing Rate per Flow

In the current Internet, ISPs usually enforce separation between the capacity of shared links

assigned to different 'sites' (e.g., households, businesses, or mobile users -- see terminology in

Section 3) using some form of scheduler . And they use various techniques, like

redirection to traffic scrubbing facilities, to deal with flooding attacks. However, there has never

been a universal need to police the rate of individual application flows -- the Internet has

generally always relied on self-restraint of congestion controls at senders for sharing intra-'site'

capacity.

L4S has been designed not to upset this status quo. If a DualQ is used to provide L4S service,

 explains how it is designed to give no more rate advantage to

unresponsive flows than a single-queue AQM would, whether or not there is traffic overload.

Also, in case per-flow rate policing is ever required, it can be added because it is orthogonal to

the distinction between L4S and Classic. As explained in Section 5.2, the DualQ variant of L4S

provides low delay without prejudging the issue of flow-rate control. So if flow-rate control is

needed, per-flow queuing (FQ) with L4S support can be used instead, or flow rate policing can be

added as a modular addition to a DualQ. However, per-flow rate control is not usually deployed

as a security mechanism, because an active attacker can just shard its traffic over more flow

identifiers if the rate of each is restricted.

8.1.2. (Non-)Policing L4S Service Rate

Section 5.2 explains how Diffserv only makes a difference if some packets get less favourable

treatment than others, which typically requires traffic rate policing for a low latency class. In

contrast, it should not be necessary to rate-police access to the L4S service to protect the Classic

service, because L4S is designed to reduce delay without harming the delay or rate of any Classic

traffic.

During early deployment (and perhaps always), some networks will not offer the L4S service. In

general, these networks should not need to police L4S traffic. They are required (by both the ECN

spec and the L4S ECN spec) not to change the L4S identifier, which would

[RFC0970]

Section 4.2 of [RFC9332]

[RFC3168] [RFC9331]

RFC 9330 L4S Architecture January 2023

Briscoe, et al. Informational Page 25

https://www.rfc-editor.org/rfc/rfc9332#section-4.2

Local bottleneck queue protection:

interfere with end-to-end congestion control. If they already treat ECN traffic as Not-ECT, they

can merely treat L4S traffic as Not-ECT too. At a bottleneck, such networks will introduce some

queuing and dropping. When a Scalable congestion control detects a drop, it will have to respond

safely with respect to Classic congestion controls (as required in). This

will degrade the L4S service to be no better (but never worse) than Classic best efforts whenever

a non-ECN bottleneck is encountered on a path (see Section 6.4.3).

In cases that are expected to be rare, networks that solely support Classic ECN in a

single queue bottleneck might opt to police L4S traffic so as to protect competing Classic ECN

traffic (for instance, see). However,

 recommends that the sender adapts its congestion

response to properly coexist with Classic ECN flows, i.e., reverting to the self-restraint approach.

Certain network operators might choose to restrict access to the L4S service, perhaps only to

selected premium customers as a value-added service. Their packet classifier (item 2 in Figure 1)

could identify such customers against some other field (e.g., source address range), as well as

classifying on the ECN field. If only the ECN L4S identifier matched, but not (say) the source

address, the classifier could direct these packets (from non-premium customers) into the Classic

queue. Explaining clearly how operators can use additional local classifiers (see

) is intended to remove any motivation to clear the L4S identifier. Then at least the L4S

ECN identifier will be more likely to survive end to end, even though the service may not be

supported at every hop. Such local arrangements would only require simple registered/not-

registered packet classification, rather than the managed, application-specific traffic policing

against customer-specific traffic contracts that Diffserv uses.

8.2. 'Latency Friendliness'

Like the Classic service, the L4S service relies on self-restraint to limit the rate in response to

congestion. In addition, the L4S service requires self-restraint in terms of limiting latency

(burstiness). It is hoped that self-interest and guidance on dynamic behaviour (especially flow

start-up, which might need to be standardized) will be sufficient to prevent transports from

sending excessive bursts of L4S traffic, given the application's own latency will suffer most from

such behaviour.

Because the L4S service can reduce delay without discernibly increasing the delay of any Classic

traffic, it should not be necessary to police L4S traffic to protect the delay of Classic traffic.

However, whether burst policing becomes necessary to protect other L4S traffic remains to be

seen. Without it, there will be potential for attacks on the low latency of the L4S service.

If needed, various arrangements could be used to address this concern:

A per-flow (5-tuple) queue protection function

 has been developed for the low latency queue in DOCSIS, which has adopted the DualQ

L4S architecture. It protects the low latency service from any queue-building flows that

accidentally or maliciously classify themselves into the low latency queue. It is designed to

Section 4.3 of [RFC9331]

[RFC3168]

Section 6.1.3 of the L4S operational guidance [L4SOPS]

Section 4.3 of the L4S ECN spec [RFC9331]

Section 5.4 of

[RFC9331]

[DOCSIS-Q-

PROT]

RFC 9330 L4S Architecture January 2023

Briscoe, et al. Informational Page 26

https://www.rfc-editor.org/rfc/rfc9331#section-4.3
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-l4sops-03#section-6.1.3
https://www.rfc-editor.org/rfc/rfc9331#section-4.3
https://www.rfc-editor.org/rfc/rfc9331#section-5.4

Distributed traffic scrubbing:

Local bottleneck per-flow scheduling:

Distributed access subnet queue protection:

Distributed Congestion Exposure to ingress policers:

Distributed domain-edge traffic conditioning:

Distributed core network queue protection:

score flows based solely on their contribution to queuing (not flow rate in itself). Then, if the

shared low latency queue is at risk of exceeding a threshold, the function redirects enough

packets of the highest scoring flow(s) into the Classic queue to preserve low latency.

Rather than policing locally at each bottleneck, it may only be

necessary to address problems reactively, e.g., punitively target any deployments of new

bursty malware, in a similar way to how traffic from flooding attack sources is rerouted via

scrubbing facilities.

Per-flow scheduling should inherently isolate non-bursty

flows from bursty flows (see Section 5.2 for discussion of the merits of per-flow scheduling

relative to per-flow policing).

Per-flow queue protection could be arranged for a

queue structure distributed across a subnet intercommunicating using lower layer control

messages (see Section 2.1.4 of). For instance, in a radio access network, user

equipment already sends regular buffer status reports to a radio network controller, which

could use this information to remotely police individual flows.

The Congestion Exposure (ConEx)

architecture uses an egress audit to motivate senders to truthfully signal path

congestion in-band, where it can be used by ingress policers. An edge-to-edge variant of this

architecture is also possible.

An architecture similar to Diffserv may

be preferred, where traffic is proactively conditioned on entry to a domain, rather than

reactively policed only if it leads to queuing once combined with other traffic at a bottleneck.

The policing function could be divided between

per-flow mechanisms at the network ingress that characterize the burstiness of each flow into

a signal carried with the traffic and per-class mechanisms at bottlenecks that act on these

signals if queuing actually occurs once the traffic converges. This would be somewhat similar

to , which is in turn similar to the idea behind core stateless fair queuing.

No single one of these possible queue protection capabilities is considered an essential part of the

L4S architecture, which works without any of them under non-attack conditions (much as the

Internet normally works without per-flow rate policing). Indeed, even where latency policers are

deployed, under normal circumstances, they would not intervene, and if operators found they

were not necessary, they could disable them. Part of the L4S experiment will be to see whether

such a function is necessary and which arrangements are most appropriate to the size of the

problem.

[QDyn]

[RFC7713]

[RFC2475]

[Nadas20]

8.3. Interaction between Rate Policing and L4S

As mentioned in Section 5.2, L4S should remove the need for low latency Diffserv classes.

However, those Diffserv classes that give certain applications or users priority over capacity

would still be applicable in certain scenarios (e.g., corporate networks). Then, within such

Diffserv classes, L4S would often be applicable to give traffic low latency and low loss as well.

RFC 9330 L4S Architecture January 2023

Briscoe, et al. Informational Page 27

8.4. ECN Integrity

Various ways have been developed to protect the integrity of the congestion feedback loop

(whether signalled by loss, Classic ECN, or L4S ECN) against misbehaviour by the receiver,

sender, or network (or all three). Brief details of each, including applicability, pros, and cons, are

given in .

8.5. Privacy Considerations

As discussed in Section 5.2, the L4S architecture does not preclude approaches that inspect end-

to-end transport layer identifiers. For instance, L4S support has been added to FQ-CoDel, which

classifies by application flow identifier in the network. However, the main innovation of L4S is

the DualQ AQM framework that does not need to inspect any deeper than the outermost IP

header, because the L4S identifier is in the IP-ECN field.

Thus, the L4S architecture enables very low queuing delay without requiring inspection of

information above the IP layer. This means that users who want to encrypt application flow

identifiers, e.g., in IPsec or other encrypted VPN tunnels, don't have to sacrifice low delay

.

Within such a Diffserv class, the bandwidth available to a user or application is often limited by a

rate policer. Similarly, in the default Diffserv class, rate policers are sometimes used to partition

shared capacity.

A Classic rate policer drops any packets exceeding a set rate, usually also giving a burst

allowance (variants exist where the policer re-marks noncompliant traffic to a discard-eligible

Diffserv codepoint, so they can be dropped elsewhere during contention). Whenever L4S traffic

encounters one of these rate policers, it will experience drops and the source will have to fall

back to a Classic congestion control, thus losing the benefits of L4S (Section 6.4.3). So in networks

that already use rate policers and plan to deploy L4S, it will be preferable to redesign these rate

policers to be more friendly to the L4S service.

L4S-friendly rate policing is currently a research area (note that this is not the same as latency

policing). It might be achieved by setting a threshold where ECN marking is introduced, such that

it is just under the policed rate or just under the burst allowance where drop is introduced. For

instance, the two-rate, three-colour marker or a PCN threshold and excess-rate marker

 could mark ECN at the lower rate and drop at the higher. Or an existing rate policer

could have congestion-rate policing added, e.g., using the 'local' (non-ConEx) variant of the ConEx

aggregate congestion policer . It might also be possible to design Scalable

congestion controls to respond less catastrophically to loss that has not been preceded by a

period of increasing delay.

The design of L4S-friendly rate policers will require a separate, dedicated document. For further

discussion of the interaction between L4S and Diffserv, see .

[RFC2698]

[RFC5670]

[CONG-POLICING]

[L4S-DIFFSERV]

Appendix C.1 of the L4S ECN spec [RFC9331]

[RFC8404]

RFC 9330 L4S Architecture January 2023

Briscoe, et al. Informational Page 28

https://www.rfc-editor.org/rfc/rfc9331#appendix-C.1

[ACCECN]

[AFCD]

[BBR-CC]

[BBRv2]

[BDPdata]

[BufferSize]

[COBALT]

[CODEL-APPROX-FAIR]

9. Informative References

, , and ,

, , , 9

November 2022,

.

, , , , , and ,

,

,

, July 2016, .

, , , , and ,

, ,

, 7 March 2022,

.

, , June 2022,

.

, , ,

, October 2021, .

, , and , ,

,

, October 2004,

.

, , , , , , and

, ,

,

, July 2019,

.

 and , ,

, , 9

March 2020,

.

Because L4S can provide low delay for a broad set of applications that choose to use it, there is no

need for individual applications or classes within that broad set to be distinguishable in any way

while traversing networks. This removes much of the ability to correlate between the delay

requirements of traffic and other identifying features . There may be some types of

traffic that prefer not to use L4S, but the coarse binary categorization of traffic reveals very little

that could be exploited to compromise privacy.

[RFC6973]

Briscoe, B. Kühlewind, M. R. Scheffenegger "More Accurate ECN Feedback

in TCP" Work in Progress Internet-Draft, draft-ietf-tcpm-accurate-ecn-22

<https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-accurate-

ecn-22>

Xue, L. Kumar, S. Cui, C. Kondikoppa, P. Chiu, C-H. S-J. Park "Towards fair

and low latency next generation high speed networks: AFCD queuing" Journal

of Network and Computer Applications, Volume 70, pp. 183-193 DOI 10.1016/

j.jnca.2016.03.021 <https://doi.org/10.1016/j.jnca.2016.03.021>

Cardwell, N. Cheng, Y. Hassas Yeganeh, S. Swett, I. V. Jacobson "BBR

Congestion Control" Work in Progress Internet-Draft, draft-cardwell-iccrg-bbr-

congestion-control-02 <https://datatracker.ietf.org/doc/html/draft-

cardwell-iccrg-bbr-congestion-control-02>

"TCP BBR v2 Alpha/Preview Release" commit 17700ca <https://

github.com/google/bbr>

Briscoe, B. "PI2 Parameters" TR-BB-2021-001, arXiv:2107.01003 [cs.NI] DOI

10.48550/arXiv.2107.01003 <https://arxiv.org/abs/2107.01003>

Appenzeller, G. Keslassy, I. N. McKeown "Sizing Router Buffers" SIGCOMM

'04: Proceedings of the 2004 conference on Applications, technologies,

architectures, and protocols for computer communications, pp. 281-292 DOI

10.1145/1015467.1015499 <https://doi.org/

10.1145/1015467.1015499>

Palmei, J. Gupta, S. Imputato, P. Morton, J. Tahiliani, M. P. Avallone, S. D.

Täht "Design and Evaluation of COBALT Queue Discipline" IEEE International

Symposium on Local and Metropolitan Area Networks (LANMAN) DOI 10.1109/

LANMAN.2019.8847054 <https://ieeexplore.ieee.org/abstract/

document/8847054>

Morton, J. P. Heist "Controlled Delay Approximate Fairness AQM"

Work in Progress Internet-Draft, draft-morton-tsvwg-codel-approx-fair-01

<https://datatracker.ietf.org/doc/html/draft-morton-tsvwg-codel-

approx-fair-01>

RFC 9330 L4S Architecture January 2023

Briscoe, et al. Informational Page 29

https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-accurate-ecn-22
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-accurate-ecn-22
https://doi.org/10.1016/j.jnca.2016.03.021
https://datatracker.ietf.org/doc/html/draft-cardwell-iccrg-bbr-congestion-control-02
https://datatracker.ietf.org/doc/html/draft-cardwell-iccrg-bbr-congestion-control-02
https://github.com/google/bbr
https://github.com/google/bbr
https://arxiv.org/abs/2107.01003
https://doi.org/10.1145/1015467.1015499
https://doi.org/10.1145/1015467.1015499
https://ieeexplore.ieee.org/abstract/document/8847054
https://ieeexplore.ieee.org/abstract/document/8847054
https://datatracker.ietf.org/doc/html/draft-morton-tsvwg-codel-approx-fair-01
https://datatracker.ietf.org/doc/html/draft-morton-tsvwg-codel-approx-fair-01

[CONG-POLICING]

[CTCP]

[DOCSIS-Q-PROT]

[DOCSIS3.1]

[DOCSIS3AQM]

[DualPI2Linux]

[Dukkipati06]

[ECN-ENCAP]

[ECN-SCTP]

[ECN-SHIM]

, ,

, , 14 February

2014, .

, , , and ,

,

, , 11 November 2008,

.

 and ,

, ,

, 13 May 2022,

.

,

,

, 21 January 2019,

.

,

,

, April 2013,

.

, , , , and ,

,

, March 2019,

.

 and ,

,

, , January 2006,

.

 and ,

, ,

, 11 July 2022,

.

, , and ,

, ,

, 15 January 2014,

.

,

, ,

, 11 July 2022,

.

Briscoe, B. "Network Performance Isolation using Congestion Policing"

Work in Progress Internet-Draft, draft-briscoe-conex-policing-01

<https://datatracker.ietf.org/doc/html/draft-briscoe-conex-policing-01>

Sridharan, M. Tan, K. Bansal, D. D. Thaler "Compound TCP: A New TCP

Congestion Control for High-Speed and Long Distance Networks" Work in

Progress Internet-Draft, draft-sridharan-tcpm-ctcp-02

<https://datatracker.ietf.org/doc/html/draft-sridharan-tcpm-ctcp-02>

Briscoe, B., Ed. G. White "The DOCSIS® Queue Protection Algorithm to

Preserve Low Latency" Work in Progress Internet-Draft, draft-briscoe-docsis-q-

protection-06 <https://datatracker.ietf.org/doc/html/draft-briscoe-

docsis-q-protection-06>

CableLabs "MAC and Upper Layer Protocols Interface (MULPI) Specification,

CM-SP-MULPIv3.1" Data-Over-Cable Service Interface Specifications DOCSIS 3.1

Version i17 or later <https://specification-

search.cablelabs.com/CM-SP-MULPIv3.1>

White, G. "Active Queue Management Algorithms for DOCSIS 3.0: A Simulation

Study of CoDel, SFQ-CoDel and PIE in DOCSIS 3.0 Networks" CableLabs

Technical Report <https://www.cablelabs.com/wp-content/uploads/

2013/11/Active_Queue_Management_Algorithms_DOCSIS_3_0.pdf>

Albisser, O. De Schepper, K. Briscoe, B. Tilmans, O. H. Steen "DUALPI2 -

Low Latency, Low Loss and Scalable (L4S) AQM" Proceedings of Linux Netdev

0x13 <https://www.netdevconf.org/0x13/session.html?talk-

DUALPI2-AQM>

Dukkipati, N. N. McKeown "Why Flow-Completion Time is the Right Metric

for Congestion Control" ACM SIGCOMM Computer Communication Review,

Volume 36, Issue 1, pp. 59-62 DOI 10.1145/1111322.1111336

<https://dl.acm.org/doi/10.1145/1111322.1111336>

Briscoe, B. J. Kaippallimalil "Guidelines for Adding Congestion Notification

to Protocols that Encapsulate IP" Work in Progress Internet-Draft, draft-ietf-

tsvwg-ecn-encap-guidelines-17 <https://datatracker.ietf.org/doc/

html/draft-ietf-tsvwg-ecn-encap-guidelines-17>

Stewart, R. Tuexen, M. X. Dong "ECN for Stream Control Transmission

Protocol (SCTP)" Work in Progress Internet-Draft, draft-stewart-tsvwg-

sctpecn-05 <https://datatracker.ietf.org/doc/html/draft-stewart-

tsvwg-sctpecn-05>

Briscoe, B. "Propagating Explicit Congestion Notification Across IP Tunnel

Headers Separated by a Shim" Work in Progress Internet-Draft, draft-ietf-tsvwg-

rfc6040update-shim-15 <https://datatracker.ietf.org/doc/html/draft-

ietf-tsvwg-rfc6040update-shim-15>

RFC 9330 L4S Architecture January 2023

Briscoe, et al. Informational Page 30

https://datatracker.ietf.org/doc/html/draft-briscoe-conex-policing-01
https://datatracker.ietf.org/doc/html/draft-sridharan-tcpm-ctcp-02
https://datatracker.ietf.org/doc/html/draft-briscoe-docsis-q-protection-06
https://datatracker.ietf.org/doc/html/draft-briscoe-docsis-q-protection-06
https://specification-search.cablelabs.com/CM-SP-MULPIv3.1
https://specification-search.cablelabs.com/CM-SP-MULPIv3.1
https://www.cablelabs.com/wp-content/uploads/2013/11/Active_Queue_Management_Algorithms_DOCSIS_3_0.pdf
https://www.cablelabs.com/wp-content/uploads/2013/11/Active_Queue_Management_Algorithms_DOCSIS_3_0.pdf
https://www.netdevconf.org/0x13/session.html?talk-DUALPI2-AQM
https://www.netdevconf.org/0x13/session.html?talk-DUALPI2-AQM
https://dl.acm.org/doi/10.1145/1111322.1111336
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-ecn-encap-guidelines-17
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-ecn-encap-guidelines-17
https://datatracker.ietf.org/doc/html/draft-stewart-tsvwg-sctpecn-05
https://datatracker.ietf.org/doc/html/draft-stewart-tsvwg-sctpecn-05
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-rfc6040update-shim-15
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-rfc6040update-shim-15

[FQ_CoDel_Thresh]

[Hohlfeld14]

[L4S-DIFFSERV]

[L4Sdemo16]

[L4Sdemo16-Video]

[L4Seval22]

[L4SOPS]

[LEDBAT_AQM]

[lowat]

[McIlroy78]

[Nadas20]

,

, October 2021,

.

, , , , and ,

,

, , November

2014, .

,

, ,

, 4 November 2018,

.

, , , , , and

, ,

, , May 2016,

.

, .

, , , and ,

,

, , September 2022,

.

, ,

, , 28 April 2022,

.

, , and ,

, ,

, October 2017,

.

, ,

, October 2018,

.

, , and ,

, ,

, July 1978, .

, , , and ,

,

, , July 2020,

.

"fq_codel: generalise ce_threshold marking for subset of traffic" commit

dfcb63ce1de6b10b <https://git.kernel.org/pub/scm/linux/kernel/

git/netdev/net-next.git/commit/?id=dfcb63ce1de6b10b>

Hohlfeld, O. Pujol, E. Ciucu, F. Feldmann, A. P. Barford "A QoE Perspective

on Sizing Network Buffers" IMC '14: Proceedings of the 2014 Conference on

Internet Measurement, pp. 333-346 DOI 10.1145/2663716.2663730

<https://doi.acm.org/10.1145/2663716.2663730>

Briscoe, B. "Interactions between Low Latency, Low Loss, Scalable

Throughput (L4S) and Differentiated Services" Work in Progress Internet-Draft,

draft-briscoe-tsvwg-l4s-diffserv-02 <https://

datatracker.ietf.org/doc/html/draft-briscoe-tsvwg-l4s-diffserv-02>

Bondarenko, O. De Schepper, K. Tsang, I. Briscoe, B. Petlund, A. C.

Griwodz "Ultra-Low Delay for All: Live Experience, Live Analysis" Proceedings

of the 7th International Conference on Multimedia Systems, Article No. 33, pp.

1-4 DOI 10.1145/2910017.2910633 <https://dl.acm.org/citation.cfm?

doid=2910017.2910633>

"Videos used in IETF dispatch WG 'Ultra-Low Queuing Delay for All Apps'

slot" <https://riteproject.eu/dctth/#1511dispatchwg>

De Schepper, K. Albisser, O. Tilmans, O. B. Briscoe "Dual Queue Coupled

AQM: Deployable Very Low Queuing Delay for All" TR-BB-2022-001, arXiv:

2209.01078 [cs.NI] DOI 10.48550/arXiv.2209.01078 <https://

arxiv.org/abs/2209.01078>

White, G., Ed. "Operational Guidance for Deployment of L4S in the Internet"

Work in Progress Internet-Draft, draft-ietf-tsvwg-l4sops-03

<https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-l4sops-03>

Al-Saadi, R. Armitage, G. J. But "Characterising LEDBAT Performance

Through Bottlenecks Using PIE, FQ-CoDel and FQ-PIE Active Queue

Management" IEEE 42nd Conference on Local Computer Networks (LCN) DOI

10.1109/LCN.2017.22 <https://ieeexplore.ieee.org/document/

8109367>

Meenan, P. "Optimizing HTTP/2 prioritization with BBR and tcp_notsent_lowat"

Cloudflare Blog <https://blog.cloudflare.com/http-2-prioritization-

with-nginx/>

McIlroy, M.D. Pinson, E. N. B. A. Tague "UNIX Time-Sharing System:

Foreword" The Bell System Technical Journal 57: 6, pp. 1899-1904 DOI 10.1002/j.

1538-7305.1978.tb02135.x <https://archive.org/details/bstj57-6-1899>

Nádas, S. Gombos, G. Fejes, F. S. Laki "A Congestion Control Independent

L4S Scheduler" ANRW '20: Proceedings of the Applied Networking Research

Workshop, pp. 45-51 DOI 10.1145/3404868.3406669 <https://doi.org/

10.1145/3404868.3406669>

RFC 9330 L4S Architecture January 2023

Briscoe, et al. Informational Page 31

https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/commit/?id=dfcb63ce1de6b10b
https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/commit/?id=dfcb63ce1de6b10b
https://doi.acm.org/10.1145/2663716.2663730
https://datatracker.ietf.org/doc/html/draft-briscoe-tsvwg-l4s-diffserv-02
https://datatracker.ietf.org/doc/html/draft-briscoe-tsvwg-l4s-diffserv-02
https://dl.acm.org/citation.cfm?doid=2910017.2910633
https://dl.acm.org/citation.cfm?doid=2910017.2910633
https://riteproject.eu/dctth/#1511dispatchwg
https://arxiv.org/abs/2209.01078
https://arxiv.org/abs/2209.01078
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-l4sops-03
https://ieeexplore.ieee.org/document/8109367
https://ieeexplore.ieee.org/document/8109367
https://blog.cloudflare.com/http-2-prioritization-with-nginx/
https://blog.cloudflare.com/http-2-prioritization-with-nginx/
https://archive.org/details/bstj57-6-1899
https://doi.org/10.1145/3404868.3406669
https://doi.org/10.1145/3404868.3406669

[NASA04]

[NQB-PHB]

[PRAGUE-CC]

[PragueLinux]

[QDyn]

[Raaen14]

[Rajiullah15]

[RELENTLESS]

[RFC0970]

[RFC2475]

[RFC2698]

[RFC2884]

, , and ,

, ,

, April 2004,

.

 and ,

, ,

, 11 January 2023,

.

, , and , ,

,

, 11 July 2022,

.

, , , , , ,

and ,

, , March

2019, .

, ,

, , April 2019,

.

 and ,

,

, 2014,

.

, ,

, 2015,

.

, , ,

, 4 March 2009,

.

, , ,

, December 1985, .

, , , , , and ,

, , ,

December 1998, .

 and , , ,

, September 1999, .

 and ,

, , , July 2000,

.

Bailey, R. Trey Arthur III, J. S. Williams "Latency Requirements for Head-

Worn Display S/EVS Applications" Proceedings of SPIE 5424 DOI

10.1117/12.554462 <https://ntrs.nasa.gov/api/citations/20120009198/

downloads/20120009198.pdf?attachment=true>

White, G. T. Fossati "A Non-Queue-Building Per-Hop Behavior (NQB PHB)

for Differentiated Services" Work in Progress Internet-Draft, draft-ietf-tsvwg-

nqb-15 <https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-

nqb-15>

De Schepper, K. Tilmans, O. B. Briscoe, Ed. "Prague Congestion Control"

Work in Progress Internet-Draft, draft-briscoe-iccrg-prague-congestion-

control-01 <https://datatracker.ietf.org/doc/html/draft-briscoe-

iccrg-prague-congestion-control-01>

Briscoe, B. De Schepper, K. Albisser, O. Misund, J. Tilmans, O. Kühlewind, M.

A.S. Ahmed "Implementing the 'TCP Prague' Requirements for Low Latency

Low Loss Scalable Throughput (L4S)" Proceedings Linux Netdev 0x13

<https://www.netdevconf.org/0x13/session.html?talk-tcp-prague-l4s>

Briscoe, B. "Rapid Signalling of Queue Dynamics" TR-BB-2017-001, arXiv:

1904.07044 [cs.NI] DOI 10.48550/arXiv.1904.07044 <https://arxiv.org/

abs/1904.07044>

Raaen, K. T-M. Grønli "Latency Thresholds for Usability in Games: A

Survey" Norsk IKT-konferanse for forskning og utdanning (Norwegian ICT

conference for research and education) <http://ojs.bibsys.no/index.php/

NIK/article/view/9/6>

Rajiullah, M. "Towards a Low Latency Internet: Understanding and Solutions"

Dissertation, Karlstad University <https://www.diva-portal.org/smash/get/

diva2:846109/FULLTEXT01.pdf>

Mathis, M. "Relentless Congestion Control" Work in Progress Internet-Draft,

draft-mathis-iccrg-relentless-tcp-00 <https://datatracker.ietf.org/

doc/html/draft-mathis-iccrg-relentless-tcp-00>

Nagle, J. "On Packet Switches With Infinite Storage" RFC 970 DOI 10.17487/

RFC0970 <https://www.rfc-editor.org/info/rfc970>

Blake, S. Black, D. Carlson, M. Davies, E. Wang, Z. W. Weiss "An

Architecture for Differentiated Services" RFC 2475 DOI 10.17487/RFC2475

<https://www.rfc-editor.org/info/rfc2475>

Heinanen, J. R. Guerin "A Two Rate Three Color Marker" RFC 2698 DOI

10.17487/RFC2698 <https://www.rfc-editor.org/info/rfc2698>

Hadi Salim, J. U. Ahmed "Performance Evaluation of Explicit Congestion

Notification (ECN) in IP Networks" RFC 2884 DOI 10.17487/RFC2884

<https://www.rfc-editor.org/info/rfc2884>

RFC 9330 L4S Architecture January 2023

Briscoe, et al. Informational Page 32

https://ntrs.nasa.gov/api/citations/20120009198/downloads/20120009198.pdf?attachment=true
https://ntrs.nasa.gov/api/citations/20120009198/downloads/20120009198.pdf?attachment=true
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-nqb-15
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-nqb-15
https://datatracker.ietf.org/doc/html/draft-briscoe-iccrg-prague-congestion-control-01
https://datatracker.ietf.org/doc/html/draft-briscoe-iccrg-prague-congestion-control-01
https://www.netdevconf.org/0x13/session.html?talk-tcp-prague-l4s
https://arxiv.org/abs/1904.07044
https://arxiv.org/abs/1904.07044
http://ojs.bibsys.no/index.php/NIK/article/view/9/6
http://ojs.bibsys.no/index.php/NIK/article/view/9/6
https://www.diva-portal.org/smash/get/diva2:846109/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:846109/FULLTEXT01.pdf
https://datatracker.ietf.org/doc/html/draft-mathis-iccrg-relentless-tcp-00
https://datatracker.ietf.org/doc/html/draft-mathis-iccrg-relentless-tcp-00
https://www.rfc-editor.org/info/rfc970
https://www.rfc-editor.org/info/rfc2475
https://www.rfc-editor.org/info/rfc2698
https://www.rfc-editor.org/info/rfc2884

[RFC3168]

[RFC3246]

[RFC3540]

[RFC3649]

[RFC4340]

[RFC4774]

[RFC4960]

[RFC5033]

[RFC5348]

[RFC5670]

[RFC5681]

[RFC6040]

[RFC6679]

[RFC6817]

, , and ,

, , , September 2001,

.

, , , , , ,

, , and ,

, , , March 2002,

.

, , and ,

, , , June 2003,

.

, , ,

, December 2003, .

, , and ,

, , , March 2006,

.

,

, , , , November

2006, .

, , ,

, September 2007, .

 and , ,

, , , August 2007,

.

, , , and ,

, , , September

2008, .

, , ,

, November 2009, .

, , and , , ,

, September 2009, .

, , ,

, November 2010, .

, , , , and ,

, ,

, August 2012, .

, , , and ,

, , , December

2012, .

Ramakrishnan, K. Floyd, S. D. Black "The Addition of Explicit Congestion

Notification (ECN) to IP" RFC 3168 DOI 10.17487/RFC3168

<https://www.rfc-editor.org/info/rfc3168>

Davie, B. Charny, A. Bennet, J.C.R. Benson, K. Le Boudec, J.Y. Courtney, W.

Davari, S. Firoiu, V. D. Stiliadis "An Expedited Forwarding PHB (Per-Hop

Behavior)" RFC 3246 DOI 10.17487/RFC3246 <https://www.rfc-

editor.org/info/rfc3246>

Spring, N. Wetherall, D. D. Ely "Robust Explicit Congestion Notification

(ECN) Signaling with Nonces" RFC 3540 DOI 10.17487/RFC3540

<https://www.rfc-editor.org/info/rfc3540>

Floyd, S. "HighSpeed TCP for Large Congestion Windows" RFC 3649 DOI

10.17487/RFC3649 <https://www.rfc-editor.org/info/rfc3649>

Kohler, E. Handley, M. S. Floyd "Datagram Congestion Control Protocol

(DCCP)" RFC 4340 DOI 10.17487/RFC4340 <https://www.rfc-

editor.org/info/rfc4340>

Floyd, S. "Specifying Alternate Semantics for the Explicit Congestion

Notification (ECN) Field" BCP 124 RFC 4774 DOI 10.17487/RFC4774

<https://www.rfc-editor.org/info/rfc4774>

Stewart, R., Ed. "Stream Control Transmission Protocol" RFC 4960 DOI

10.17487/RFC4960 <https://www.rfc-editor.org/info/rfc4960>

Floyd, S. M. Allman "Specifying New Congestion Control Algorithms" BCP

133 RFC 5033 DOI 10.17487/RFC5033 <https://www.rfc-editor.org/

info/rfc5033>

Floyd, S. Handley, M. Padhye, J. J. Widmer "TCP Friendly Rate Control

(TFRC): Protocol Specification" RFC 5348 DOI 10.17487/RFC5348

<https://www.rfc-editor.org/info/rfc5348>

Eardley, P., Ed. "Metering and Marking Behaviour of PCN-Nodes" RFC 5670 DOI

10.17487/RFC5670 <https://www.rfc-editor.org/info/rfc5670>

Allman, M. Paxson, V. E. Blanton "TCP Congestion Control" RFC 5681 DOI

10.17487/RFC5681 <https://www.rfc-editor.org/info/rfc5681>

Briscoe, B. "Tunnelling of Explicit Congestion Notification" RFC 6040 DOI

10.17487/RFC6040 <https://www.rfc-editor.org/info/rfc6040>

Westerlund, M. Johansson, I. Perkins, C. O'Hanlon, P. K. Carlberg "Explicit

Congestion Notification (ECN) for RTP over UDP" RFC 6679 DOI 10.17487/

RFC6679 <https://www.rfc-editor.org/info/rfc6679>

Shalunov, S. Hazel, G. Iyengar, J. M. Kuehlewind "Low Extra Delay

Background Transport (LEDBAT)" RFC 6817 DOI 10.17487/RFC6817

<https://www.rfc-editor.org/info/rfc6817>

RFC 9330 L4S Architecture January 2023

Briscoe, et al. Informational Page 33

https://www.rfc-editor.org/info/rfc3168
https://www.rfc-editor.org/info/rfc3246
https://www.rfc-editor.org/info/rfc3246
https://www.rfc-editor.org/info/rfc3540
https://www.rfc-editor.org/info/rfc3649
https://www.rfc-editor.org/info/rfc4340
https://www.rfc-editor.org/info/rfc4340
https://www.rfc-editor.org/info/rfc4774
https://www.rfc-editor.org/info/rfc4960
https://www.rfc-editor.org/info/rfc5033
https://www.rfc-editor.org/info/rfc5033
https://www.rfc-editor.org/info/rfc5348
https://www.rfc-editor.org/info/rfc5670
https://www.rfc-editor.org/info/rfc5681
https://www.rfc-editor.org/info/rfc6040
https://www.rfc-editor.org/info/rfc6679
https://www.rfc-editor.org/info/rfc6817

[RFC6973]

[RFC7560]

[RFC7567]

[RFC7665]

[RFC7713]

[RFC8033]

[RFC8034]

[RFC8170]

[RFC8257]

[RFC8290]

[RFC8298]

, , , , , , and

, , ,

, July 2013, .

, , and ,

, , , August 2015,

.

 and ,

, , , , July 2015,

.

 and ,

, , , October 2015,

.

 and ,

, , , December

2015, .

, , , and ,

, , , February 2017,

.

 and ,

, , ,

February 2017, .

, ,

, , May 2017,

.

, , , , and ,

, ,

, October 2017, .

, , , , and ,

,

, , January 2018,

.

 and , ,

, , December 2017,

.

Cooper, A. Tschofenig, H. Aboba, B. Peterson, J. Morris, J. Hansen, M. R.

Smith "Privacy Considerations for Internet Protocols" RFC 6973 DOI 10.17487/

RFC6973 <https://www.rfc-editor.org/info/rfc6973>

Kuehlewind, M., Ed. Scheffenegger, R. B. Briscoe "Problem Statement and

Requirements for Increased Accuracy in Explicit Congestion Notification (ECN)

Feedback" RFC 7560 DOI 10.17487/RFC7560 <https://www.rfc-

editor.org/info/rfc7560>

Baker, F., Ed. G. Fairhurst, Ed. "IETF Recommendations Regarding Active

Queue Management" BCP 197 RFC 7567 DOI 10.17487/RFC7567

<https://www.rfc-editor.org/info/rfc7567>

Halpern, J., Ed. C. Pignataro, Ed. "Service Function Chaining (SFC)

Architecture" RFC 7665 DOI 10.17487/RFC7665 <https://www.rfc-

editor.org/info/rfc7665>

Mathis, M. B. Briscoe "Congestion Exposure (ConEx) Concepts, Abstract

Mechanism, and Requirements" RFC 7713 DOI 10.17487/RFC7713

<https://www.rfc-editor.org/info/rfc7713>

Pan, R. Natarajan, P. Baker, F. G. White "Proportional Integral Controller

Enhanced (PIE): A Lightweight Control Scheme to Address the Bufferbloat

Problem" RFC 8033 DOI 10.17487/RFC8033 <https://www.rfc-

editor.org/info/rfc8033>

White, G. R. Pan "Active Queue Management (AQM) Based on Proportional

Integral Controller Enhanced (PIE) for Data-Over-Cable Service Interface

Specifications (DOCSIS) Cable Modems" RFC 8034 DOI 10.17487/RFC8034

<https://www.rfc-editor.org/info/rfc8034>

Thaler, D., Ed. "Planning for Protocol Adoption and Subsequent Transitions"

RFC 8170 DOI 10.17487/RFC8170 <https://www.rfc-editor.org/info/

rfc8170>

Bensley, S. Thaler, D. Balasubramanian, P. Eggert, L. G. Judd "Data Center

TCP (DCTCP): TCP Congestion Control for Data Centers" RFC 8257 DOI 10.17487/

RFC8257 <https://www.rfc-editor.org/info/rfc8257>

Hoeiland-Joergensen, T. McKenney, P. Taht, D. Gettys, J. E. Dumazet "The

Flow Queue CoDel Packet Scheduler and Active Queue Management Algorithm"

RFC 8290 DOI 10.17487/RFC8290 <https://www.rfc-editor.org/info/

rfc8290>

Johansson, I. Z. Sarker "Self-Clocked Rate Adaptation for Multimedia" RFC

8298 DOI 10.17487/RFC8298 <https://www.rfc-editor.org/info/

rfc8298>

RFC 9330 L4S Architecture January 2023

Briscoe, et al. Informational Page 34

https://www.rfc-editor.org/info/rfc6973
https://www.rfc-editor.org/info/rfc7560
https://www.rfc-editor.org/info/rfc7560
https://www.rfc-editor.org/info/rfc7567
https://www.rfc-editor.org/info/rfc7665
https://www.rfc-editor.org/info/rfc7665
https://www.rfc-editor.org/info/rfc7713
https://www.rfc-editor.org/info/rfc8033
https://www.rfc-editor.org/info/rfc8033
https://www.rfc-editor.org/info/rfc8034
https://www.rfc-editor.org/info/rfc8170
https://www.rfc-editor.org/info/rfc8170
https://www.rfc-editor.org/info/rfc8257
https://www.rfc-editor.org/info/rfc8290
https://www.rfc-editor.org/info/rfc8290
https://www.rfc-editor.org/info/rfc8298
https://www.rfc-editor.org/info/rfc8298

[RFC8311]

[RFC8312]

[RFC8404]

[RFC8511]

[RFC8888]

[RFC8985]

[RFC9000]

[RFC9113]

[RFC9331]

[RFC9332]

[SCReAM-L4S]

[TCP-CA]

[UnorderedLTE]

,

, , , January 2018,

.

, , , , , and ,

, , , February

2018, .

 and ,

, , , July 2018,

.

, , , and ,

, , , December 2018,

.

, , , and ,

, , , January

2021, .

, , , and ,

, , , February 2021,

.

 and ,

, , , May 2021,

.

 and , , ,

, June 2022, .

 and ,

, ,

, January 2023, .

, , and ,

, , , January 2023,

.

, , June 2022,

.

 and , ,

, November 1988,

.

,

, , 2018.

Black, D. "Relaxing Restrictions on Explicit Congestion Notification (ECN)

Experimentation" RFC 8311 DOI 10.17487/RFC8311 <https://

www.rfc-editor.org/info/rfc8311>

Rhee, I. Xu, L. Ha, S. Zimmermann, A. Eggert, L. R. Scheffenegger "CUBIC

for Fast Long-Distance Networks" RFC 8312 DOI 10.17487/RFC8312

<https://www.rfc-editor.org/info/rfc8312>

Moriarty, K., Ed. A. Morton, Ed. "Effects of Pervasive Encryption on

Operators" RFC 8404 DOI 10.17487/RFC8404 <https://www.rfc-

editor.org/info/rfc8404>

Khademi, N. Welzl, M. Armitage, G. G. Fairhurst "TCP Alternative Backoff

with ECN (ABE)" RFC 8511 DOI 10.17487/RFC8511 <https://

www.rfc-editor.org/info/rfc8511>

Sarker, Z. Perkins, C. Singh, V. M. Ramalho "RTP Control Protocol (RTCP)

Feedback for Congestion Control" RFC 8888 DOI 10.17487/RFC8888

<https://www.rfc-editor.org/info/rfc8888>

Cheng, Y. Cardwell, N. Dukkipati, N. P. Jha "The RACK-TLP Loss Detection

Algorithm for TCP" RFC 8985 DOI 10.17487/RFC8985 <https://

www.rfc-editor.org/info/rfc8985>

Iyengar, J., Ed. M. Thomson, Ed. "QUIC: A UDP-Based Multiplexed and

Secure Transport" RFC 9000 DOI 10.17487/RFC9000 <https://

www.rfc-editor.org/info/rfc9000>

Thomson, M., Ed. C. Benfield, Ed. "HTTP/2" RFC 9113 DOI 10.17487/

RFC9113 <https://www.rfc-editor.org/info/rfc9113>

De Schepper, K. B. Briscoe, Ed. "The Explicit Congestion Notification (ECN)

Protocol for Low Latency, Low Loss, and Scalable Throughput (L4S)" RFC 9331

DOI 10.17487/RFC9331 <https://www.rfc-editor.org/info/rfc9331>

De Schepper, K. Briscoe, B., Ed. G. White "Dual-Queue Coupled Active

Queue Management (AQM) for Low Latency, Low Loss, and Scalable Throughput

(L4S)" RFC 9332 DOI 10.17487/RFC9332 <https://www.rfc-

editor.org/info/rfc9332>

"SCReAM" commit fda6c53 <https://github.com/EricssonResearch/

scream>

Jacobson, V. M. Karels "Congestion Avoidance and Control" Laurence

Berkeley Labs Technical Report <https://ee.lbl.gov/papers/

congavoid.pdf>

Austrheim, M. "Implementing immediate forwarding for 4G in a network

simulator" Master's Thesis, University of Oslo

RFC 9330 L4S Architecture January 2023

Briscoe, et al. Informational Page 35

https://www.rfc-editor.org/info/rfc8311
https://www.rfc-editor.org/info/rfc8311
https://www.rfc-editor.org/info/rfc8312
https://www.rfc-editor.org/info/rfc8404
https://www.rfc-editor.org/info/rfc8404
https://www.rfc-editor.org/info/rfc8511
https://www.rfc-editor.org/info/rfc8511
https://www.rfc-editor.org/info/rfc8888
https://www.rfc-editor.org/info/rfc8985
https://www.rfc-editor.org/info/rfc8985
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9113
https://www.rfc-editor.org/info/rfc9331
https://www.rfc-editor.org/info/rfc9332
https://www.rfc-editor.org/info/rfc9332
https://github.com/EricssonResearch/scream
https://github.com/EricssonResearch/scream
https://ee.lbl.gov/papers/congavoid.pdf
https://ee.lbl.gov/papers/congavoid.pdf

Acknowledgements

Thanks to , , , , ,

, , , , , ,

, , and for their useful review comments. Thanks also to the

area reviewers: , , , and .

 and were partly funded by the European Community under its

Seventh Framework Programme through the Reducing Internet Transport Latency (RITE) project

(ICT-317700). The contribution of was also partly funded by the 5Growth and

DAEMON EU H2020 projects. was also partly funded by the Research Council of

Norway through the TimeIn project, partly by CableLabs, and partly by the Comcast Innovation

Fund. The views expressed here are solely those of the authors.

Richard Scheffenegger Wes Eddy Karen Nielsen David Black Jake Holland Vidhi

Goel Ermin Sakic Praveen Balasubramanian Gorry Fairhurst Mirja Kuehlewind Philip Eardley

Neal Cardwell Pete Heist Martin Duke

Marco Tiloca Lars Eggert Roman Danyliw Éric Vyncke

Bob Briscoe Koen De Schepper

Koen De Schepper

Bob Briscoe

Authors' Addresses

Bob Briscoe ()editor

Independent

United Kingdom

 ietf@bobbriscoe.net Email:

 https://bobbriscoe.net/ URI:

Koen De Schepper

Nokia Bell Labs

Antwerp

Belgium

 koen.de_schepper@nokia.com Email:

 https://www.bell-labs.com/about/researcher-profiles/

koende_schepper/

URI:

Marcelo Bagnulo

Universidad Carlos III de Madrid

Av. Universidad 30

 28911 Madrid

Spain

 34 91 6249500 Phone:

 marcelo@it.uc3m.es Email:

 https://www.it.uc3m.es URI:

Greg White

CableLabs

United States of America

 G.White@CableLabs.com Email:

RFC 9330 L4S Architecture January 2023

Briscoe, et al. Informational Page 36

mailto:ietf@bobbriscoe.net
https://bobbriscoe.net/
mailto:koen.de_schepper@nokia.com
https://www.bell-labs.com/about/researcher-profiles/koende_schepper/
https://www.bell-labs.com/about/researcher-profiles/koende_schepper/
tel:34%2091%206249500
mailto:marcelo@it.uc3m.es
https://www.it.uc3m.es
mailto:G.White@CableLabs.com

	RFC 9330
	Low Latency, Low Loss, and Scalable Throughput (L4S) Internet Service: Architecture
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Document Roadmap

	2. L4S Architecture Overview
	3. Terminology
	4. L4S Architecture Components
	4.1. Protocol Mechanisms
	4.2. Network Components
	4.3. Host Mechanisms

	5. Rationale
	5.1. Why These Primary Components?
	5.2. What L4S Adds to Existing Approaches

	6. Applicability
	6.1. Applications
	6.2. Use Cases
	6.3. Applicability with Specific Link Technologies
	6.4. Deployment Considerations
	6.4.1. Deployment Topology
	6.4.2. Deployment Sequences
	6.4.3. L4S Flow but Non-ECN Bottleneck
	6.4.4. L4S Flow but Classic ECN Bottleneck
	6.4.5. L4S AQM Deployment within Tunnels

	7. IANA Considerations
	8. Security Considerations
	8.1. Traffic Rate (Non-)Policing
	8.1.1. (Non-)Policing Rate per Flow
	8.1.2. (Non-)Policing L4S Service Rate

	8.2. 'Latency Friendliness'
	8.3. Interaction between Rate Policing and L4S
	8.4. ECN Integrity
	8.5. Privacy Considerations

	9. Informative References
	Acknowledgements
	Authors' Addresses

 Low Latency, Low Loss, and Scalable Throughput (L4S) Internet Service: Architecture

 Independent

 United Kingdom

 ietf@bobbriscoe.net
 https://bobbriscoe.net/

 Nokia Bell Labs

 Antwerp
 Belgium

 koen.de_schepper@nokia.com
 https://www.bell-labs.com/about/researcher-profiles/koende_schepper/

 Universidad Carlos III de Madrid

 Av. Universidad 30
 Madrid
 28911
 Spain

 34 91 6249500
 marcelo@it.uc3m.es
 https://www.it.uc3m.es

 CableLabs

 United States of America

 G.White@CableLabs.com

 tsv
 tsvwg
 Performance
 Queuing Delay
 One Way Delay
 Round-Trip Time
 RTT
 Jitter
 Congestion Control
 Congestion Avoidance
 Quality of Service
 QoS
 Quality of Experience
 QoE
 Active Queue Management
 AQM
 Explicit Congestion Notification
 ECN
 Pacing
 Burstiness

 This document describes the L4S architecture, which enables Internet
 applications to achieve low queuing latency, low congestion loss, and scalable
 throughput control. L4S is based on the insight that the root cause of
 queuing delay is in the capacity-seeking congestion controllers of
 senders, not in the queue itself. With the L4S architecture, all Internet
 applications could (but do not have to) transition away from congestion
 control algorithms that cause substantial queuing delay and instead adopt a new class
 of congestion controls that can seek capacity with very little queuing.
 These are aided by a modified form of Explicit Congestion Notification
 (ECN) from the network. With this new architecture, applications can
 have both low latency and high throughput.
 The architecture primarily concerns incremental deployment. It
 defines mechanisms that allow the new class of L4S congestion controls
 to coexist with 'Classic' congestion controls in a shared network. The
 aim is for L4S latency and throughput to be usually much better (and
 rarely worse) while typically not impacting Classic performance.

 Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are candidates for any level of Internet
 Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Revised BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Revised BSD License.

 Table of Contents

 . Introduction

 . Document Roadmap

 . L4S Architecture Overview

 . Terminology

 . L4S Architecture Components

 . Protocol Mechanisms

 . Network Components

 . Host Mechanisms

 . Rationale

 . Why These Primary Components?

 . What L4S Adds to Existing Approaches

 . Applicability

 . Applications

 . Use Cases

 . Applicability with Specific Link Technologies

 . Deployment Considerations

 . Deployment Topology

 . Deployment Sequences

 . L4S Flow but Non-ECN Bottleneck

 . L4S Flow but Classic ECN Bottleneck

 . L4S AQM Deployment within Tunnels

 . IANA Considerations

 . Security Considerations

 . Traffic Rate (Non-)Policing

 . (Non-)Policing Rate per Flow

 . (Non-)Policing L4S Service Rate

 . 'Latency Friendliness'

 . Interaction between Rate Policing and L4S

 . ECN Integrity

 . Privacy Considerations

 . Informative References

 Acknowledgements

 Authors' Addresses

 Introduction
 At any one time, it is increasingly common for all of the traffic in
 a bottleneck link (e.g., a household's Internet access or Wi-Fi) to come from
 applications that prefer low delay: interactive web, web services,
 voice, conversational video, interactive video, interactive remote
 presence, instant messaging, online and cloud-rendered gaming, remote desktop, cloud-based
 applications, cloud-rendered virtual reality or augmented reality, and video-assisted remote control of machinery and
 industrial processes. In the last decade or so, much has been done to
 reduce propagation delay by placing caches or servers closer to users.
 However, queuing remains a major, albeit intermittent, component of
 latency. For instance, spikes of hundreds of milliseconds are not
 uncommon, even with state-of-the-art Active Queue Management
 (AQM) . A Classic AQM in an
 access network bottleneck is typically configured to buffer the sawteeth of
 lone flows, which can cause peak overall
 network delay to roughly double during a long-running flow, relative to
 expected base (unloaded) path delay .
 Low loss is also important because, for interactive applications, losses
 translate into even longer retransmission delays.
 It has been demonstrated that, once access network bit rates reach
 levels now common in the developed world, increasing link capacity
 offers diminishing returns if latency (delay) is not addressed . Therefore, the
 goal is an Internet service with very low queuing latency, very low
 loss, and scalable throughput. Very low queuing latency means less
 than 1 millisecond (ms) on average and less than about 2 ms at
 the 99th percentile. End-to-end delay above 50 ms , or even above 20 ms ,
 starts to feel unnatural for more demanding interactive applications. Therefore,
 removing unnecessary delay variability increases the reach of these
 applications (the distance over which they are comfortable to use) and/or
 provides additional latency budget that can be used for enhanced processing. This
 document describes the L4S architecture for achieving these goals.
 Differentiated services (Diffserv) offers Expedited Forwarding
 (EF) for some packets at the expense of
 others, but this makes no difference when all (or most) of the traffic
 at a bottleneck at any one time requires low latency. In contrast, L4S
 still works well when all traffic is L4S -- a service that gives without
 taking needs none of the configuration or management baggage (traffic
 policing or traffic contracts) associated with favouring some traffic
 flows over others.
 Queuing delay degrades performance intermittently .
 It occurs i) when a large enough capacity-seeking
 (e.g., TCP) flow is running alongside the user's traffic in the
 bottleneck link, which is typically in the access network, or ii) when the
 low latency application is itself a large capacity-seeking or adaptive
 rate flow (e.g., interactive video).
 At these times, the performance
 improvement from L4S must be sufficient for network operators to be motivated
 to deploy it.
 Active Queue Management (AQM) is part of the solution to queuing
 under load. AQM improves performance for all traffic, but there is a
 limit to how much queuing delay can be reduced by solely changing the
 network without addressing the root of the problem.
 The root of the problem is the presence of standard congestion
 control (Reno) or compatible variants
 (e.g., CUBIC) that are used in TCP and
 in other transports, such as QUIC .
 We shall use
 the term 'Classic' for these Reno-friendly congestion controls.
 Classic
 congestion controls induce relatively large sawtooth-shaped excursions
 of queue occupancy. So if a network operator naively
 attempts to reduce queuing delay by configuring an AQM to operate at a
 shallower queue, a Classic congestion control will significantly
 underutilize the link at the bottom of every sawtooth. These sawteeth have
 also been growing in duration as flow rate scales (see
 and).
 It has been demonstrated that, if the sending host replaces a Classic
 congestion control with a 'Scalable' alternative, the performance under load of all the above
 interactive applications can be significantly improved once a suitable AQM is
 deployed in the network.
 Taking the example solution cited below that uses Data Center TCP (DCTCP)
 and a Dual-Queue Coupled AQM on a DSL or Ethernet link,
 queuing delay under heavy load is roughly 1-2 ms at
 the 99th percentile without losing link utilization (for other link types,
 see).
 This compares with
 5-20 ms on average with a Classic
 congestion control and current state-of-the-art AQMs, such as
 Flow Queue CoDel , Proportional Integral controller Enhanced (PIE) , or DOCSIS PIE and about
 20-30 ms at the 99th percentile .
 L4S is designed for incremental deployment. It is possible to deploy
 the L4S service at a bottleneck link alongside the existing best efforts
 service so that unmodified
 applications can start using it as soon as the sender's stack is
 updated. Access networks are typically designed with one link as the
 bottleneck for each site (which might be a home, small enterprise, or
 mobile device), so deployment at either or both ends of this link should
 give nearly all the benefit in the respective direction.
 With some
 transport protocols, namely TCP , the sender has to check that
 the receiver has been suitably updated to give more accurate feedback,
 whereas with more recent transport protocols, such as QUIC and Datagram Congestion Control Protocol (DCCP) , all
 receivers have always been suitable.
 This document presents the L4S architecture. It consists of three
 components: network support to isolate L4S traffic from Classic traffic;
 protocol features that allow network elements to identify L4S traffic;
 and host support for L4S congestion controls. The protocol is defined
 separately in as an experimental
 change to Explicit Congestion Notification (ECN). This document
 describes and justifies the component parts and how they interact to
 provide the low latency, low loss, and scalable Internet service. It also
 details the approach to incremental deployment, as briefly summarized
 above.

 Document Roadmap
 This document describes the L4S architecture in three passes. First,
 the brief overview in gives the very high-level idea and states the main
 components with minimal rationale. This is only intended to give some
 context for the terminology definitions that follow in and to explain the structure of the rest
 of the document. Then, goes into more
 detail on each component with some rationale but still mostly stating
 what the architecture is, rather than why. Finally, justifies why each element of the solution
 was chosen () and why
 these choices were different from other solutions ().
 After the architecture has been described,
 clarifies its applicability by describing the applications and use cases
 that motivated the design, the challenges applying the architecture to
 various link technologies, and various incremental deployment models
 (including the two main deployment topologies, different sequences for
 incremental deployment, and various interactions with preexisting
 approaches). The document
 ends with the usual tailpieces, including extensive discussion of
 traffic policing and other security considerations in .

 L4S Architecture Overview
 Below, we outline the three main components to the L4S architecture:
 1) the Scalable congestion control on the sending host; 2) the AQM at
 the network bottleneck; and 3) the protocol between them.
 But first, the main point to grasp is that low latency is not
 provided by the network; low latency results from the careful behaviour
 of the Scalable congestion controllers used by L4S senders. The network
 does have a role, primarily to isolate the low latency of the carefully
 behaving L4S traffic from the higher queuing delay needed by traffic
 with preexisting Classic behaviour. The network also alters the way it
 signals queue growth to the transport. It uses the Explicit Congestion
 Notification (ECN) protocol, but it signals the very start of queue
 growth immediately, without the smoothing delay typical of Classic
 AQMs. Because ECN support is essential for L4S, senders use the ECN
 field as the protocol that allows the network to identify which packets
 are L4S and which are Classic.

 Host:
 Scalable congestion controls already exist. They solve the scaling
 problem with Classic congestion controls, such as Reno or
 CUBIC. Because flow rate has scaled since TCP congestion control was
 first designed in 1988, assuming the flow lasts long enough, it now
 takes hundreds of round trips (and growing) to recover after a
 congestion signal (whether a loss or an ECN mark), as shown in the
 examples in and . Therefore, control of queuing and utilization
 becomes very slack, and the slightest disturbances (e.g., from new
 flows starting) prevent a high rate from being attained.
 With a Scalable congestion control, the average time from one
 congestion signal to the next (the recovery time) remains invariant as
 flow rate scales, all other factors being equal. This maintains
 the same degree of control over queuing and utilization, whatever the
 flow rate, as well as ensuring that high throughput is more robust to
 disturbances. The Scalable control used most widely (in controlled
 environments) is DCTCP , which has been implemented and deployed in
 Windows Server Editions (since 2012), in Linux, and in
 FreeBSD.
 Although DCTCP as-is functions well over wide-area round-trip
 times (RTTs), most implementations lack certain safety features that would be
 necessary for use outside controlled environments, like data centres
 (see). Therefore,
 Scalable congestion control needs to be implemented in TCP and other
 transport protocols (QUIC, Stream Control Transmission Protocol (SCTP), RTP/RTCP, RTP Media Congestion Avoidance Techniques (RMCAT), etc.).
 Indeed,
 between the present document being drafted and published, the
 following Scalable congestion controls were implemented: Prague over TCP and QUIC
 , an L4S
 variant of the RMCAT SCReAM controller , and the L4S ECN part of Bottleneck Bandwidth and Round-trip propagation time (BBRv2) intended for TCP and QUIC transports.

 Network:
 L4S traffic needs to be isolated from the queuing latency of
 Classic traffic. One queue per application flow (FQ) is one way to
 achieve this, e.g., FQ-CoDel . However, using just two queues is sufficient and
 does not require inspection of transport layer headers in the network,
 which is not always possible (see). With just two queues, it might seem impossible to
 know how much capacity to schedule for each queue without inspecting
 how many flows at any one time are using each. And it would be
 undesirable to arbitrarily divide access network capacity into two
 partitions. The Dual-Queue Coupled AQM was developed as a minimal
 complexity solution to this problem. It acts like a 'semi-permeable'
 membrane that partitions latency but not bandwidth. As such, the two
 queues are for transitioning from Classic to L4S behaviour, not bandwidth
 prioritization.
 gives a high-level
 explanation of how the per-flow queue (FQ) and DualQ variants of
 L4S work, and gives a full explanation of the DualQ Coupled AQM
 framework. A specific marking algorithm is not mandated for L4S
 AQMs. Appendices of give non-normative examples that have been
 implemented and evaluated and give recommended default parameter
 settings. It is expected that L4S experiments will improve knowledge
 of parameter settings and whether the set of marking algorithms needs
 to be limited.

 Protocol:
 A sending host needs to distinguish L4S and Classic packets with an
 identifier so that the network can classify them into their separate
 treatments. The L4S identifier spec concludes that
 all alternatives involve compromises, but the ECT(1) and Congestion Experienced (CE) codepoints
 of the ECN field represent a workable solution. As already explained,
 the network also uses ECN to immediately signal the very start of
 queue growth to the transport.

 Terminology

 Classic Congestion Control:
 A congestion control
 behaviour that can coexist with standard Reno without causing significantly negative impact on
 its flow rate . The scaling problem
 with Classic congestion control is explained, with examples, in
 and in .
 Scalable Congestion Control:
 A congestion control
 where the average time from one congestion signal to the next (the
 recovery time) remains invariant as flow rate scales, all other
 factors being equal.
 For instance, DCTCP averages 2 congestion
 signals per round trip, whatever the flow rate, as do other recently
 developed Scalable congestion controls, e.g., Relentless
 TCP , Prague for TCP and QUIC , BBRv2 , and the L4S
 variant of SCReAM for real-time media . See
 for more
 explanation.
 Classic Service:
 The Classic service is intended for
 all the congestion control behaviours that coexist with
 Reno (e.g., Reno itself,
 CUBIC , Compound , and TFRC). The term 'Classic queue' means a queue
 providing the Classic service.
 Low Latency, Low Loss, and Scalable throughput (L4S) service:

 The
 'L4S' service is intended for traffic from Scalable congestion
 control algorithms, such as the Prague congestion control , which was
 derived from DCTCP . The L4S service
 is for more general traffic than just Prague -- it allows the
 set of congestion controls with similar scaling properties to Prague
 to evolve, such as the examples listed above (Relentless, SCReAM, etc.).
 The term 'L4S queue' means a queue providing the L4S service.
 The terms Classic or L4S can also qualify other
 nouns, such as 'queue', 'codepoint', 'identifier', 'classification',
 'packet', and 'flow'. For example, an L4S packet means a packet with an
 L4S identifier sent from an L4S congestion control.
 Both Classic and L4S services can cope with a
 proportion of unresponsive or less-responsive traffic as well but,
 in the L4S case, its rate has to be smooth enough or low enough to
 not build a queue (e.g., DNS, Voice over IP (VoIP), game sync datagrams,
 etc.).

 Reno-friendly:
 The subset of Classic traffic that is
 friendly to the standard Reno congestion control defined for TCP in
 . The TFRC spec indirectly implies that 'friendly' is defined as
 "generally within a factor of two of the sending rate of a TCP flow
 under the same conditions". Reno-friendly is used here in place of
 'TCP-friendly', given the latter has become imprecise, because the
 TCP protocol is now used with so many different congestion control
 behaviours, and Reno is used in non-TCP transports, such as
 QUIC .
 Classic ECN:

 The original Explicit Congestion
 Notification (ECN) protocol that
 requires ECN signals to be treated as equivalent to drops, both when
 generated in the network and when responded to by the sender.
 For L4S, the names used for the four codepoints of the 2-bit
	 IP-ECN field are unchanged from those defined in the ECN spec
	 , i.e., Not-ECT, ECT(0),
	 ECT(1), and CE, where ECT stands for ECN-Capable Transport and CE
	 stands for Congestion Experienced. A packet marked with the CE
	 codepoint is termed 'ECN-marked' or sometimes just 'marked' where
	 the context makes ECN obvious.

 Site:
 A home, mobile device, small enterprise, or
 campus where the network bottleneck is typically the access link to
 the site. Not all network arrangements fit this model, but it is a
 useful, widely applicable generalization.
 Traffic Policing:
 Limiting traffic by dropping packets
 or shifting them to a lower service class (as opposed to introducing
 delay, which is termed 'traffic shaping'). Policing can involve
 limiting the average rate and/or burst size. Policing focused on
 limiting queuing but not the average flow rate is termed 'congestion
 policing', 'latency policing', 'burst policing', or 'queue protection' in
 this document. Otherwise, the term rate policing is used.

 L4S Architecture Components
 The L4S architecture is composed of the elements in the following
 three subsections.

 Protocol Mechanisms
 The L4S architecture involves: a) unassignment of the previous use
 of the identifier; b) reassignment of the same identifier; and c)
 optional further identifiers:

 An essential aspect of a Scalable congestion control is the use
 of explicit congestion signals. Classic ECN requires an ECN signal to be treated as
 equivalent to drop, both when it is generated in the network and
 when it is responded to by hosts. L4S needs networks and hosts to
 support a more fine-grained meaning for each ECN signal that is
 less severe than a drop, so that the L4S signals:

 can be much more frequent and
 can be signalled immediately, without the significant delay
 required to smooth out fluctuations in the queue.

 To enable L4S, the Standards Track Classic ECN
 spec has had to be updated to allow
 L4S packets to depart from the 'equivalent-to-drop' constraint.
 is a Standards Track update to
	 relax specific requirements in
	 (and certain other Standards
 Track RFCs), which clears the way for the experimental changes
 proposed for L4S. Also, the ECT(1) codepoint was previously
 assigned as the experimental ECN nonce , which recategorizes as historic to
 make the codepoint available again.

 specifies that
 ECT(1) is used as the identifier to classify L4S packets into a
 separate treatment from Classic packets. This satisfies the
 requirement for identifying an alternative ECN treatment in .
 The CE codepoint is
 used to indicate Congestion Experienced by both L4S and Classic
 treatments. This raises the concern that a Classic AQM earlier on
 the path might have marked some ECT(0) packets as CE. Then, these
 packets will be erroneously classified into the L4S queue.
 explains why five unlikely
 eventualities all have to coincide for this to have any
 detrimental effect, which even then would only involve a
 vanishingly small likelihood of a spurious retransmission.

 A network operator might wish to include certain unresponsive,
 non-L4S traffic in the L4S queue if it is deemed to be paced smoothly
 enough and at a low enough rate not to build a queue, for
 instance, VoIP, low rate datagrams to sync online games,
 relatively low rate application-limited traffic, DNS, Lightweight Directory Access Protocol (LDAP), etc.
 This traffic would need to be tagged with specific identifiers,
 e.g., a low-latency Diffserv codepoint such as Expedited
 Forwarding (EF) , Non-Queue-Building
 (NQB) , or
 operator-specific identifiers.

 Network Components
 The L4S architecture aims to provide low latency without the need for per-flow operations in network
 components. Nonetheless, the architecture does not preclude per-flow
 solutions. The following bullets describe the known arrangements: a)
 the DualQ Coupled AQM with an L4S AQM in one queue coupled from a
 Classic AQM in the other; b) per-flow queues with an instance of a
 Classic and an L4S AQM in each queue; and c) Dual queues with per-flow
 AQMs but no per-flow queues:

 The Dual-Queue Coupled AQM (illustrated in) achieves the 'semi-permeable'
 membrane property mentioned earlier as follows:

 Latency isolation: Two separate queues are used to isolate
 L4S queuing delay from the larger queue that Classic traffic
 needs to maintain full utilization.
 Bandwidth pooling: The two queues act as if they are a
 single pool of bandwidth in which flows of either type get
 roughly equal throughput without the scheduler needing to
 identify any flows. This is achieved by having an AQM in each
 queue, but the Classic AQM provides a congestion signal to
 both queues in a manner that ensures a consistent response
 from the two classes of congestion control. Specifically, the
 Classic AQM generates a drop/mark probability based on
 congestion in its own queue, which it uses both to drop/mark
 packets in its own queue and to affect the marking probability
 in the L4S queue. The strength of the coupling of the
 congestion signalling between the two queues is enough to make
 the L4S flows slow down to leave the right amount of capacity
 for the Classic flows (as they would if they were the same
 type of traffic sharing the same queue).

 Then, the scheduler can serve the L4S queue with priority
 (denoted by the '1' on the higher priority input), because the L4S
 traffic isn't offering up enough traffic to use all the priority
 that it is given. Therefore:

 for latency isolation on short timescales (sub-round-trip),
 the prioritization of the L4S queue protects its low latency
 by allowing bursts to dissipate quickly;
 but for bandwidth pooling on longer timescales (round-trip
 and longer), the Classic queue creates an equal and opposite
 pressure against the L4S traffic to ensure that neither has
 priority when it comes to bandwidth -- the tension between
 prioritizing L4S and coupling the marking from the Classic AQM
 results in approximate per-flow fairness.

 To protect against the prioritization of persistent L4S traffic
 deadlocking the Classic queue for a while in some implementations,
 it is advisable for the priority to be conditional, not
 strict (see the DualQ spec).
 When there is no Classic traffic, the L4S
 queue's own AQM comes into play. It starts congestion
 marking with a very shallow queue, so L4S traffic maintains very
 low queuing delay.
 If either queue becomes persistently overloaded, drop of some
 ECN-capable packets is introduced, as recommended in the ECN
 spec and the AQM recommendations. The trade-offs with different approaches
 are discussed in the DualQ
 spec (not shown in the figure here).
 The Dual-Queue Coupled AQM has been specified as
 generically as possible without specifying the
 particular AQMs to use in the two queues so that designers are
 free to implement diverse ideas. Informational appendices in that
 document give pseudocode examples of two different specific AQM
 approaches: one called DualPI2 (pronounced Dual PI
 Squared) that uses the PI2
 variant of PIE and a zero-config variant of Random Early Detection (RED) called Curvy RED.
 A DualQ Coupled AQM based on PIE has also been specified and
 implemented for Low Latency DOCSIS .

 Components of an L4S DualQ Coupled AQM Solution

 (3) (2)
 .-------^------..------------^------------------.
 ,-(1)-----. _____
; ________ : L4S -------. | |
:|Scalable| : _\ ||___|mark |
:| sender | : __________ / / || / |_____|\ _________
:|________|\; | |/ -------' ^ \1|condit'nl|
 `---------'_| IP-ECN | Coupling : \|priority |_\
 ________ / |Classifier| : /|scheduler| /
 |Classic |/ |__________|\ -------. __:__ / |_________|
 | sender | _\ || | ||___|mark/|/
 |________| / || | || / |drop |
 Classic -------' |_____|

(1) Scalable sending host
(2) Isolation in separate network queues
(3) Packet identification protocol

 Per-Flow Queues and AQMs: A scheduler with per-flow queues, such
 as FQ-CoDel or FQ-PIE, can be used for L4S. For instance, within
 each queue of an FQ-CoDel system, as well as a CoDel AQM, there is
 typically also the option of ECN marking at an immediate
 (unsmoothed) shallow threshold to support use in data centres (see
 the FQ-CoDel spec). In
 Linux, this has been modified so that the shallow threshold can be
 solely applied to ECT(1) packets . Then, if there is a flow of Not-ECT or
 ECT(0) packets in the per-flow queue, the Classic AQM
 (e.g., CoDel) is applied; whereas, if there is a flow of ECT(1)
 packets in the queue, the shallower (typically sub-millisecond)
 threshold is applied.
	 In addition, ECT(0) and Not-ECT packets
 could potentially be classified into a separate flow queue from
 ECT(1) and CE packets to avoid them mixing if they share a common
 flow identifier (e.g., in a VPN).

 Dual queues but per-flow AQMs: It should also be possible to
 use dual queues for isolation but with per-flow marking to
 control flow rates (instead of the coupled per-queue marking of
 the Dual-Queue Coupled AQM). One of the two queues would be for
 isolating L4S packets, which would be classified by the ECN
 codepoint. Flow rates could be controlled by flow-specific
 marking. The policy goal of the marking could be to differentiate
 flow rates (e.g., , which requires
 additional signalling of a per-flow 'value') or to equalize
 flow rates (perhaps in a similar way to Approx Fair
 CoDel but with two queues
 not one).
 Note that, whenever the term
 'DualQ' is used loosely without saying whether marking is
 per queue or per flow, it means a dual-queue AQM with per-queue
 marking.

 Host Mechanisms
 The L4S architecture includes two main mechanisms in the end host
 that we enumerate next:

 Scalable congestion control at the sender: defines a Scalable congestion
 control as one where the average time from one congestion signal
 to the next (the recovery time) remains invariant as flow rate
 scales, all other factors being equal. DCTCP is the most
 widely used example. It has been documented as an informational
 record of the protocol currently in use in controlled
 environments . A list of safety
 and performance improvements for a Scalable congestion control to
 be usable on the public Internet has been drawn up (see the so-called
 'Prague L4S requirements' in).
 The subset that involve
 risk of harm to others have been captured as normative
 requirements in . TCP Prague has been
 implemented in Linux as a reference implementation to address
 these requirements .
 Transport protocols other than TCP use various
 congestion controls that are designed to be friendly with Reno.
 Before they can use the L4S service, they will need to be updated
 to implement a Scalable congestion response, which they will have
 to indicate by using the ECT(1) codepoint. Scalable variants are
 under consideration for more recent transport protocols
 (e.g., QUIC), and the L4S ECN part of BBRv2 is a Scalable
 congestion control intended for the TCP and QUIC transports,
 amongst others. Also, an L4S variant of the RMCAT SCReAM
 controller has been
 implemented for media transported
 over RTP.
 the L4S ECN spec defines
 Scalable congestion control in more detail and specifies the
 requirements that an L4S Scalable congestion control has to comply
 with.

 The ECN feedback in some transport protocols is already
 sufficiently fine-grained for L4S (specifically DCCP and QUIC). But
 others either require updates or are in the process of being
 updated:

 For the case of TCP, the feedback protocol for ECN embeds
 the assumption from Classic ECN
 that an ECN mark is equivalent to a drop, making it unusable
 for a Scalable TCP. Therefore, the implementation of TCP
 receivers will have to be upgraded .
 Work to standardize and implement more
 accurate ECN feedback for TCP (AccECN) is in
 progress
 .
 ECN feedback was only roughly sketched in the appendix of
 the now obsoleted second specification of SCTP , while a fuller specification was proposed
 in a long-expired document . A new design would need
 to be implemented and deployed before SCTP could support
 L4S.
 For RTP, sufficient ECN feedback was defined in , but defines the
 latest Standards Track improvements.

 Rationale

 Why These Primary Components?

 Explicit congestion signalling (protocol):

 Explicit
 congestion signalling is a key part of the L4S approach. In
 contrast, use of drop as a congestion signal creates tension
 because drop is both an impairment (less would be better) and a
 useful signal (more would be better):

 Explicit congestion signals can be used many times per
 round trip to keep tight control without any impairment.
 Under heavy load, even more explicit signals can be applied
 so that the queue can be kept short whatever the load. In
 contrast, Classic AQMs have to introduce very high packet drop
 at high load to keep the queue short. By using ECN, an L4S
 congestion control's sawtooth reduction can be smaller and
 therefore return to the operating point more often, without
 worrying that more sawteeth will cause more signals. The
 consequent smaller amplitude sawteeth fit between an empty
 queue and a very shallow marking threshold (~1 ms in the
 public Internet), so queue delay variation can be very low,
 without risk of underutilization.
 Explicit congestion signals can be emitted immediately to
 track fluctuations of the queue. L4S shifts smoothing from the
 network to the host. The network doesn't know the round-trip
 times (RTTs) of any of the flows. So if the network is responsible
 for smoothing (as in the Classic approach), it has to assume a
 worst case RTT, otherwise long RTT flows would become
 unstable. This delays Classic congestion signals by 100-200
 ms. In contrast, each host knows its own RTT. So,
 in the L4S approach, the host can smooth each flow over its
 own RTT, introducing no more smoothing delay than strictly
 necessary (usually only a few milliseconds). A host can also
 choose not to introduce any smoothing delay if appropriate,
 e.g., during flow start-up.

 Neither of the above are feasible if explicit congestion
 signalling has to be considered 'equivalent to drop' (as was
 required with Classic ECN), because
 drop is an impairment as well as a signal. So drop cannot be
 excessively frequent, and drop cannot be immediate; otherwise, too
 many drops would turn out to have been due to only a transient
 fluctuation in the queue that would not have warranted dropping a
 packet in hindsight. Therefore, in an L4S AQM, the L4S queue uses
 a new L4S variant of ECN that is not equivalent to drop (see
 the L4S ECN spec), while the Classic queue
 uses either Classic ECN or drop,
 which are still equivalent to each other.
 Before
 Classic ECN was standardized, there were various proposals to give
 an ECN mark a different meaning from drop. However, there was no
 particular reason to agree on any one of the alternative meanings,
 so 'equivalent to drop' was the only compromise that could be
 reached. contains a statement that:

 An environment where all end nodes were
		ECN-Capable could allow new criteria to be developed for
		setting the CE codepoint, and new congestion control
		mechanisms for end-node reaction to CE packets. However, this
		is a research issue, and as such is not addressed in this
		document.

 Latency isolation (network):
 L4S congestion controls
 keep queue delay low, whereas Classic congestion controls need a
 queue of the order of the RTT to avoid underutilization. One
 queue cannot have two lengths; therefore, L4S traffic needs to be
 isolated in a separate queue (e.g., DualQ) or queues
 (e.g., FQ).
 Coupled congestion notification:
 Coupling the
 congestion notification between two queues as in the DualQ Coupled
 AQM is not necessarily essential, but it is a simple way to allow
 senders to determine their rate packet by packet, rather than be
 overridden by a network scheduler. An alternative is for a network
 scheduler to control the rate of each application flow (see the
 discussion in).
 L4S packet identifier (protocol):
 Once there are at
 least two treatments in the network, hosts need an identifier at
 the IP layer to distinguish which treatment they intend to
 use.
 Scalable congestion notification:
 A Scalable
 congestion control in the host keeps the signalling frequency from
 the network high, whatever the flow rate, so that queue delay
 variations can be small when conditions are stable, and rate can
 track variations in available capacity as rapidly as possible
 otherwise.
 Low loss:
 Latency is not the only concern of L4S.
 The 'Low Loss' part of the name denotes that L4S generally
 achieves zero congestion loss due to its use of ECN. Otherwise,
 loss would itself cause delay, particularly for short flows, due
 to retransmission delay .
 Scalable throughput:

 The 'Scalable throughput' part
 of the name denotes that the per-flow throughput of Scalable
 congestion controls should scale indefinitely, avoiding the
 imminent scaling problems with Reno-friendly congestion control
 algorithms . It was known when TCP
 congestion avoidance was first developed in 1988 that it would not
 scale to high bandwidth-delay products (see footnote 6 in). Today, regular broadband flow rates over WAN
 distances are already beyond the scaling range of Classic Reno
 congestion control. So 'less unscalable' CUBIC and Compound variants of TCP have been
 successfully deployed. However, these are now approaching their
 scaling limits.
 For instance, we will
 consider a scenario with a maximum RTT of 30 ms at the peak
 of each sawtooth. As Reno packet rate scales 8 times from 1,250 to
 10,000 packet/s (from 15 to 120 Mb/s with 1500 B
 packets), the time to recover from a congestion event rises
 proportionately by 8 times as well, from 422 ms to 3.38 s. It
 is clearly problematic for a congestion control to take multiple
 seconds to recover from each congestion event. CUBIC was developed to be less unscalable, but it is
 approaching its scaling limit; with the same max RTT of
 30 ms, at 120 Mb/s, CUBIC is still fully in its
 Reno-friendly mode, so it takes about 4.3 s to recover.
 However, once flow rate scales by 8 times again to 960 Mb/s it
 enters true CUBIC mode, with a recovery time of 12.2 s. From
 then on, each further scaling by 8 times doubles CUBIC's recovery time
 (because the cube root of 8 is 2), e.g., at 7.68 Gb/s, the
 recovery time is 24.3 s. In contrast, a Scalable congestion
 control like DCTCP or Prague induces 2 congestion signals per
 round trip on average, which remains invariant for any flow rate,
 keeping dynamic control very tight.
 For a
 feel of where the global average lone-flow download sits on this
 scale at the time of writing (2021), according to , the global average fixed access capacity was 103
 Mb/s in 2020 and the average base RTT to a CDN was 25 to 34 ms in 2019.
 Averaging of per-country data was weighted by Internet user
 population (data collected globally is necessarily of variable
 quality, but the paper does double-check that the outcome compares
 well against a second source). So a lone CUBIC flow would at best
 take about 200 round trips (5 s) to recover from each of its
 sawtooth reductions, if the flow even lasted that long. This is
 described as 'at best' because it assumes everyone uses an AQM,
 whereas in reality, most users still have a (probably bloated)
 tail-drop buffer.
 In the tail-drop case, the likely average recovery
 time would be at least 4 times 5 s, if not more, because RTT under load
 would be at least double that of an AQM, and the recovery time of Reno-friendly flows depends
 on the square of RTT.
 Although work on
 scaling congestion controls tends to start with TCP as the
 transport, the above is not intended to exclude other transports
 (e.g., SCTP and QUIC) or less elastic algorithms
 (e.g., RMCAT), which all tend to adopt the same or similar
 developments.

 What L4S Adds to Existing Approaches
 All the following approaches address some part of the same problem
 space as L4S. In each case, it is shown that L4S complements them or
 improves on them, rather than being a mutually exclusive
 alternative:

 Diffserv:

 Diffserv addresses the problem of
 bandwidth apportionment for important traffic as well as queuing
 latency for delay-sensitive traffic. Of these, L4S solely
 addresses the problem of queuing latency. Diffserv will still be
 necessary where important traffic requires priority (e.g., for
 commercial reasons or for protection of critical infrastructure
 traffic) -- see .
 Nonetheless, the L4S approach can provide low latency for all
 traffic within each Diffserv class (including the case where there
 is only the one default Diffserv class).
 Also, Diffserv can only provide a latency benefit
 if a small subset of the traffic on a bottleneck link requests low
 latency. As already explained, it has no effect when all the
 applications in use at one time at a single site (e.g., a home, small
 business, or mobile device) require low latency. In contrast,
 because L4S works for all traffic, it needs none of the management
 baggage (traffic policing or traffic contracts) associated with
 favouring some packets over others. This lack of management
 baggage ought to give L4S a better chance of end-to-end
 deployment.
 In particular, if networks do not trust end systems to identify which
 packets should be favoured, they assign packets to Diffserv classes
 themselves. However, the techniques available to such networks, like
 inspection of flow identifiers or deeper inspection of application
 signatures, do not always sit well with encryption of the layers above
 IP . In these cases, users
 can have either privacy or Quality of Service (QoS), but not both.
 As with Diffserv,
 the L4S identifier is in the IP header. But, in contrast to
 Diffserv, the L4S identifier does not convey a want or a need for
 a certain level of quality. Rather, it promises a certain
 behaviour (Scalable congestion response), which networks can
 objectively verify if they need to. This is because low delay
 depends on collective host behaviour, whereas bandwidth priority
 depends on network behaviour.

 State-of-the-art AQMs:
 AQMs for Classic traffic, such as PIE and FQ-CoDel,
 give a significant reduction in queuing delay relative to no AQM
 at all. L4S is intended to complement these AQMs and should not
 distract from the need to deploy them as widely as possible.
 Nonetheless, AQMs alone cannot reduce queuing delay too far
 without significantly reducing link utilization, because the root
 cause of the problem is on the host -- where Classic congestion
 controls use large sawtoothing rate variations. The L4S approach
 resolves this tension between delay and utilization by enabling
 hosts to minimize the amplitude of their sawteeth. A single-queue
 Classic AQM is not sufficient to allow hosts to use small sawteeth
 for two reasons: i) smaller sawteeth would not get lower delay in
 an AQM designed for larger amplitude Classic sawteeth, because a
 queue can only have one length at a time and ii) much smaller
 sawteeth implies much more frequent sawteeth, so L4S flows would
 drive a Classic AQM into a high level of ECN-marking, which would
 appear as heavy congestion to Classic flows, which in turn would
 greatly reduce their rate as a result (see).
 Per-flow queuing or marking:

 Similarly, per-flow
 approaches, such as FQ-CoDel or Approx Fair CoDel , are not incompatible with the L4S approach.
 However, per-flow queuing alone is not enough -- it only isolates
 the queuing of one flow from others, not from itself. Per-flow
 implementations need to have support for Scalable congestion
 control added, which has already been done for FQ-CoDel in Linux
 (see and). Without this simple modification,
 per-flow AQMs, like FQ-CoDel, would still not be able to support
 applications that need both very low delay and high bandwidth,
 e.g., video-based control of remote procedures or interactive
 cloud-based video (see Note below).
 Although per-flow techniques are not incompatible
 with L4S, it is important to have the DualQ alternative. This is
 because handling end-to-end (layer 4) flows in the network (layer
 3 or 2) precludes some important end-to-end functions. For
 instance:

 Per-flow forms of L4S, like FQ-CoDel, are incompatible with
 full end-to-end encryption of transport layer identifiers for
 privacy and confidentiality (e.g., IPsec or encrypted VPN
 tunnels, as opposed to DTLS over UDP), because they require
 packet inspection to access the end-to-end transport flow
 identifiers.
 In contrast, the DualQ
 form of L4S requires no deeper inspection than the IP layer.
 So as long as operators take the DualQ approach, their users
 can have both very low queuing delay and full end-to-end
 encryption .

 With per-flow forms of L4S, the network takes over control of
 the relative rates of each application flow. Some see it as
 an advantage that the network will prevent some flows running
 faster than others. Others consider it an inherent part of the
 Internet's appeal that applications can control their rate
 while taking account of the needs of others via congestion
 signals.
 They maintain that this has allowed applications with
 interesting rate behaviours to evolve, for instance: i) a variable
 bit-rate video that varies around an equal share, rather than
 being forced to remain equal at every instant or ii) end-to-end
 scavenger behaviours that use
 less than an equal share of capacity .
 The L4S
 architecture does not require the IETF to commit to one
 approach over the other, because it supports both so that the
 'market' can decide. Nonetheless, in the spirit of 'Do one
 thing and do it well' , the
 DualQ option provides low delay without prejudging the issue
 of flow-rate control. Then, flow rate policing can be added
 separately if desired. In contrast to scheduling, a policer would allow application control up to a
 point, but the network would still be able to set the point at
 which it intervened to prevent one flow completely starving
 another.

 Note:

	 It might seem that
 self-inflicted queuing delay within a per-flow queue should
 not be counted, because if the delay wasn't in the network, it
 would just shift to the sender. However, modern adaptive
 applications, e.g., HTTP/2
 or some interactive media applications (see), can keep low latency objects at the
 front of their local send queue by shuffling priorities of
 other objects dependent on the progress of other transfers
 (for example, see). They cannot shuffle
 objects once they have released them into the network.

 Alternative Back-off ECN (ABE):
 Here again, L4S is
 not an alternative to ABE but a complement that introduces much
 lower queuing delay. ABE alters the
 host behaviour in response to ECN marking to utilize a link better
 and give ECN flows faster throughput. It uses ECT(0) and assumes
 the network still treats ECN and drop the same. Therefore, ABE
 exploits any lower queuing delay that AQMs can provide. But, as
 explained above, AQMs still cannot reduce queuing delay too much
 without losing link utilization (to allow for other, non-ABE,
 flows).
 BBR:

 Bottleneck Bandwidth and Round-trip propagation
 time (BBR) controls
 queuing delay end-to-end without needing any special logic in the
 network, such as an AQM. So it works pretty much on any path. BBR
 keeps queuing delay reasonably low, but perhaps not quite as low
 as with state-of-the-art AQMs, such as PIE or FQ-CoDel, and
 certainly nowhere near as low as with L4S. Queuing delay is also
 not consistently low, due to BBR's regular bandwidth probing
 spikes and its aggressive flow start-up phase.
 L4S complements BBR. Indeed, BBRv2 can use L4S ECN
 where available and a Scalable L4S congestion control behaviour in
 response to any ECN signalling from the path . The L4S ECN signal complements the delay-based
 congestion control aspects of BBR with an explicit indication that
 hosts can use, both to converge on a fair rate and to keep below a
 shallow queue target set by the network. Without L4S ECN, both
 these aspects need to be assumed or estimated.

 Applicability

 Applications
 A transport layer that solves the current latency issues will
 provide new service, product, and application opportunities.
 With the L4S approach, the following existing applications also
 experience significantly better quality of experience under load:

 gaming, including cloud-based gaming;
 VoIP;
 video conferencing;
 web browsing;
 (adaptive) video streaming; and
 instant messaging.

 The significantly lower queuing latency also enables some
 interactive application functions to be offloaded to the cloud that
 would hardly even be usable today, including:

 cloud-based interactive video and
 cloud-based virtual and augmented reality.

 The above two applications have been successfully demonstrated with
 L4S, both running together over a 40 Mb/s broadband access link
 loaded up with the numerous other latency-sensitive applications in
 the previous list, as well as numerous downloads, with all sharing the same
 bottleneck queue simultaneously . For
 the former, a panoramic video of a football stadium could be swiped
 and pinched so that, on the fly, a proxy in the cloud could generate a
 sub-window of the match video under the finger-gesture control of each
 user. For the latter, a virtual reality headset displayed a viewport
 taken from a 360-degree camera in a racing car. The user's head
 movements controlled the viewport extracted by a cloud-based proxy. In
 both cases, with a 7 ms end-to-end base delay, the additional
 queuing delay of roughly 1 ms was so low that it seemed the video
 was generated locally.
 Using a swiping finger gesture or head movement to pan a video are
 extremely latency-demanding actions -- far more demanding than
 VoIP -- because human vision can detect extremely low delays of the
 order of single milliseconds when delay is translated into a visual
 lag between a video and a reference point (the finger or the
 orientation of the head sensed by the balance system in the inner ear,
 i.e., the vestibular system). With an alternative AQM, the video
 noticeably lagged behind the finger gestures and head movements.
 Without the low queuing delay of L4S, cloud-based applications like
 these would not be credible without significantly more access-network bandwidth
 (to deliver all possible areas of the video that might be viewed) and
 more local processing, which would increase the weight and power
 consumption of head-mounted displays. When all interactive processing
 can be done in the cloud, only the data to be rendered for the end
 user needs to be sent.
 Other low latency high bandwidth applications, such as:

 interactive remote presence and
 video-assisted remote control of machinery or industrial
 processes

 are not credible at all without very low queuing delay. No
 amount of extra access bandwidth or local processing can make up for
 lost time.

 Use Cases
 The following use cases for L4S are being considered by various
 interested parties:

 where the bottleneck is one of various types of access network,
 e.g., DSL, Passive Optical Networks (PONs), DOCSIS cable,
 mobile, satellite; or where it's a Wi-Fi link (see for
 some technology-specific details)

 private networks of heterogeneous data centres, where there is
 no single administrator that can arrange for all the simultaneous
 changes to senders, receivers, and networks needed to deploy
 DCTCP:

 a set of private data centres interconnected over a wide
 area with separate administrations but within the same
 company
 a set of data centres operated by separate companies
 interconnected by a community of interest network
 (e.g., for the finance sector)
 multi-tenant (cloud) data centres where tenants choose
 their operating system stack (Infrastructure as a Service
 (IaaS))

 different types of transport (or application) congestion
 control:

 elastic (TCP/SCTP);
 real-time (RTP, RMCAT); and
 query-response (DNS/LDAP).

 where low delay QoS is required but without
 inspecting or intervening above the IP layer :

 Mobile and other networks have tended to inspect higher
 layers in order to guess application QoS requirements.
 However, with growing demand for support of privacy and
 encryption, L4S offers an alternative. There is no need to
 select which traffic to favour for queuing when L4S can give
 favourable queuing to all traffic.

 If queuing delay is minimized, applications with a fixed delay
 budget can communicate over longer distances or via more circuitous paths, e.g., longer
 chains of service functions or of onion
 routers.
 If delay jitter is minimized, it is possible to reduce the
 dejitter buffers on the receiving end of video streaming, which
 should improve the interactive experience.

 Applicability with Specific Link Technologies
 Certain link technologies aggregate data from multiple packets into
 bursts and buffer incoming packets while building each burst. Wi-Fi,
 PON, and cable all involve such packet aggregation, whereas fixed
 Ethernet and DSL do not. No sender, whether L4S or not, can do
 anything to reduce the buffering needed for packet aggregation. So an
 AQM should not count this buffering as part of the queue that it
 controls, given no amount of congestion signals will reduce it.
 Certain link technologies also add buffering for other reasons,
 specifically:

 Radio links (cellular, Wi-Fi, or satellite) that are distant from
 the source are particularly challenging. The radio link capacity
 can vary rapidly by orders of magnitude, so it is considered
 desirable to hold a standing queue that can utilize sudden
 increases of capacity.
 Cellular networks are further complicated by a perceived need
 to buffer in order to make hand-overs imperceptible.

 L4S cannot remove the need for all these different forms of
 buffering. However, by removing 'the longest pole in the tent'
 (buffering for the large sawteeth of Classic congestion controls), L4S
 exposes all these 'shorter poles' to greater scrutiny.
 Until now, the buffering needed for these additional reasons tended
 to be over-specified -- with the excuse that none were 'the longest
 pole in the tent'. But having removed the 'longest pole', it becomes
 worthwhile to minimize them, for instance, reducing packet aggregation
 burst sizes and MAC scheduling intervals.
 Also, certain link types, particularly radio-based links, are far
 more prone to transmission losses. explains how an L4S response to
 loss has to be as drastic as a Classic response. Nonetheless, research
 referred to in the same section has demonstrated potential for
 considerably more effective loss repair at the link layer, due to the
 relaxed ordering constraints of L4S packets.

 Deployment Considerations
 L4S AQMs, whether DualQ or FQ , are in themselves an incremental deployment
 mechanism for L4S -- so that L4S traffic can coexist with existing
 Classic (Reno-friendly) traffic.
 explains why only deploying an L4S AQM in one node at each end of the
 access link will realize nearly all the benefit of L4S.
 L4S involves both the network and end systems, so suggests some typical sequences to
 deploy each part and why there will be an immediate and significant
 benefit after deploying just one part.
 Sections and describe the converse
 incremental deployment case where there is no L4S AQM at the network
 bottleneck, so any L4S flow traversing this bottleneck has to take
 care in case it is competing with Classic traffic.

 Deployment Topology
 L4S AQMs will not have to be deployed throughout the Internet
 before L4S can benefit anyone. Operators of public Internet access
 networks typically design their networks so that the bottleneck will
 nearly always occur at one known (logical) link. This confines the
 cost of queue management technology to one place.
 The case of mesh networks is different and will be discussed
 later in this section.
 However, the known-bottleneck case is generally
 true for Internet access to all sorts of different 'sites', where
 the word 'site' includes home networks, small- to medium-sized
 campus or enterprise networks and even cellular devices ().
	 Also, this known-bottleneck
 case tends to be applicable whatever the access link technology,
 whether xDSL, cable, PON, cellular, line of sight wireless, or
 satellite.
 Therefore, the full benefit of the L4S service should be
 available in the downstream direction when an L4S AQM is deployed at
 the ingress to this bottleneck link. And similarly, the full
 upstream service will typically be available once an L4S AQM is deployed at
 the ingress into the upstream link. (Of course, multihomed sites
 would only see the full benefit once all their access links were
 covered.)

 Likely Location of DualQ (DQ) Deployments in Common Access Topologies

 ()
 __ __ ()
 |DQ________/DQ|(enterprise)
 ___ |__/ __| (/campus)
 () (______)
 () ___||_
+----+ () __ __ / \
| DC |-----(Core)|DQ_______________/DQ|| home |
+----+ () |__/ __||______|
 (_____) __
 |DQ__/\ __ ,===.
 |__/ \ ____/DQ||| ||mobile
 \/ __|||_||device
 | o |
 `---'

 Deployment in mesh topologies depends on how overbooked the core
 is. If the core is non-blocking, or at least generously provisioned
 so that the edges are nearly always the bottlenecks, it would only
 be necessary to deploy an L4S AQM at the edge bottlenecks.
	 For
 example, some data-centre networks are designed with the bottleneck
 in the hypervisor or host Network Interface Controllers (NICs), while others
	 bottleneck at the
 top-of-rack switch (both the output ports facing hosts and those
 facing the core).
 An L4S AQM would often next be needed where the Wi-Fi links in a
 home sometimes become the bottleneck. Also an L4S AQM would
 eventually need to be deployed at any other persistent
 bottlenecks, such as network interconnections, e.g., some public
 Internet exchange points and the ingress and egress to WAN links
 interconnecting data centres.

 Deployment Sequences
 For any one L4S flow to provide benefit, it requires three (or
 sometimes two) parts to have been deployed: i) the congestion
 control at the sender; ii) the AQM at the bottleneck; and iii) older
 transports (namely TCP) need upgraded receiver feedback too. This
 was the same deployment problem that ECN faced , so we have learned from that experience.
 Firstly, L4S deployment exploits the fact that DCTCP already
 exists on many Internet hosts (e.g., Windows, FreeBSD, and Linux), both
 servers and clients. Therefore, an L4S AQM can be deployed at a
 network bottleneck to immediately give a working deployment of all
 the L4S parts for testing, as long as the ECT(0) codepoint is
 switched to ECT(1). DCTCP needs some safety concerns to be fixed for
 general use over the public Internet (see the L4S ECN spec), but DCTCP is
 not on by default, so these issues can be managed within controlled
 deployments or controlled trials.
 Secondly, the performance improvement with L4S is so significant
 that it enables new interactive services and products that were not
 previously possible. It is much easier for companies to initiate new
 work on deployment if there is budget for a new product trial.
 In contrast, if there were only an incremental performance improvement
 (as with Classic ECN), spending on deployment tends to be much
 harder to justify.
 Thirdly, the L4S identifier is defined so that network
 operators can initially enable L4S exclusively for certain customers or
 certain applications. However, this is carefully defined so that it does
 not compromise future evolution towards L4S as an Internet-wide
 service. This is because the L4S identifier is defined not only as
 the end-to-end ECN field, but it can also optionally be combined
 with any other packet header or some status of a customer or their
 access link (see). Operators could do this
 anyway, even if it were not blessed by the IETF. However, it is best
 for the IETF to specify that, if they use their own local
 identifier, it must be in combination with the IETF's identifier, ECT(1).
 Then, if an operator has opted for an exclusive local-use approach,
 they only have to remove this extra rule later to make the service
 work across the Internet -- it will already traverse middleboxes, peerings,
 etc.

 Example L4S Deployment Sequence

+-+--------------------+----------------------+---------------------+
| | Servers or proxies | Access link | Clients |
+-+--------------------+----------------------+---------------------+
|0| DCTCP (existing) | | DCTCP (existing) |
+-+--------------------+----------------------+---------------------+
|1| |Add L4S AQM downstream| |
| | WORKS DOWNSTREAM FOR CONTROLLED DEPLOYMENTS/TRIALS |
+-+--------------------+----------------------+---------------------+
2	Upgrade DCTCP to		Replace DCTCP feedb'k
	TCP Prague		with AccECN
	FULLY WORKS DOWNSTREAM		
+-+--------------------+----------------------+---------------------+			
			Upgrade DCTCP to
3		Add L4S AQM upstream	TCP Prague
	FULLY WORKS UPSTREAM AND DOWNSTREAM		
+-+--------------------+----------------------+---------------------+

 illustrates some example
 sequences in which the parts of L4S might be deployed. It consists
 of the following stages, preceded by a presumption that DCTCP is
 already installed at both ends:

 DCTCP is not applicable for use over the public Internet, so
 it is emphasized here that any DCTCP flow has to be completely
 contained within a controlled trial environment.
 Within this trial environment, once an L4S AQM
 has been deployed, the trial DCTCP flow will experience
 immediate benefit, without any other deployment being needed. In
 this example, downstream deployment is first, but in other
 scenarios, the upstream might be deployed first. If no AQM at all
 was previously deployed for the downstream access, an L4S AQM
 greatly improves the Classic service (as well as adding the L4S
 service). If an AQM was already deployed, the Classic service
 will be unchanged (and L4S will add an improvement on top).

 In this stage, the name 'TCP Prague' is used
 to represent a variant of DCTCP that is designed to be used in a
 production Internet environment (that is, it has to comply with
 all the requirements in the L4S ECN spec, which then means it can be
 used over the public Internet). If the application is primarily
 unidirectional, 'TCP Prague' at the sending end will provide all
 the benefit needed, as long as the receiving end supports Accurate ECN (AccECN)
 feedback .
 For TCP transports,
 AccECN feedback is needed at the other
 end, but it is a generic ECN feedback facility that is already
 planned to be deployed for other purposes, e.g., DCTCP and BBR.
 The two ends can be deployed in either order because, in TCP,
 an L4S congestion control only enables itself if it has
 negotiated the use of AccECN feedback with the other end during
 the connection handshake. Thus, deployment of TCP Prague on a
 server enables L4S trials to move to a production service in one
 direction, wherever AccECN is deployed at the other end. This
 stage might be further motivated by the performance improvements
 of TCP Prague relative to DCTCP (see the L4S ECN spec).
 Unlike TCP, from the outset, QUIC ECN
 feedback has supported L4S.
 Therefore, if the transport is QUIC, one-ended deployment of a
 Prague congestion control at this stage is simple and
 sufficient.
 For QUIC, if a proxy sits in
 the path between multiple origin servers and the access
 bottlenecks to multiple clients, then upgrading the proxy with a
 Scalable congestion control would provide the benefits of L4S
 over all the clients' downstream bottlenecks in one go --
 whether or not all the origin servers were upgraded. Conversely,
 where a proxy has not been upgraded, the clients served by it
 will not benefit from L4S at all in the downstream, even when
 any origin server behind the proxy has been upgraded to support
 L4S.
 For TCP, a proxy upgraded to support
 'TCP Prague' would provide the benefits of L4S downstream to all
 clients that support AccECN (whether or not they support L4S as
 well). And in the upstream, the proxy would also support AccECN
 as a receiver, so that any client deploying its own L4S support
 would benefit in the upstream direction, irrespective of whether
 any origin server beyond the proxy supported AccECN.

 This is a two-move stage to enable L4S upstream. An L4S AQM
 or TCP Prague can be deployed in either order as already
 explained. To motivate the first of two independent moves, the
 deferred benefit of enabling new services after the second move
 has to be worth it to cover the first mover's investment risk.
 As explained already, the potential for new interactive services
 provides this motivation. An L4S AQM also improves the upstream
 Classic service significantly if no other AQM has already been
 deployed.

 Note that other deployment sequences might occur. For
 instance, the upstream might be deployed first; a non-TCP protocol
 might be used end to end, e.g., QUIC and RTP; a body, such as the
 3GPP, might require L4S to be implemented in 5G user equipment; or
 other random acts of kindness might arise.

 L4S Flow but Non-ECN Bottleneck
 If L4S is enabled between two hosts, the L4S sender is required
 to coexist safely with Reno in response to any drop (see the L4S ECN spec).
 Unfortunately, as well as protecting Classic traffic, this rule
 degrades the L4S service whenever there is any loss, even if the
 cause is not persistent congestion at a bottleneck, for example:

 congestion loss at other transient bottlenecks, e.g., due
 to bursts in shallower queues;
 transmission errors, e.g., due to electrical
 interference; and
 rate policing.

 Three complementary approaches are in progress to address this
 issue, but they are all currently research:

 In Prague congestion control, ignore certain losses deemed
 unlikely to be due to congestion (using some ideas from
 BBR regarding
 isolated losses). This could mask any of the above types of loss
 while still coexisting with drop-based congestion controls.
 A combination of Recent Acknowledgement (RACK) , L4S, and link retransmission without
 resequencing could repair transmission errors without the head
 of line blocking delay usually associated with link-layer
 retransmission .
 Hybrid ECN/drop rate policers (see).

 L4S deployment scenarios that minimize these issues
 (e.g., over wireline networks) can proceed in parallel to this
 research, in the expectation that research success could continually
 widen L4S applicability.

 L4S Flow but Classic ECN Bottleneck
 Classic ECN support is starting to materialize on the Internet as
 an increased level of CE marking. It is hard to detect whether this
 is all due to the addition of support for ECN in implementations of
 FQ-CoDel and/or FQ-COBALT, which is not generally problematic,
 because flow queue (FQ) scheduling inherently prevents a flow from
 exceeding the 'fair' rate irrespective of its aggressiveness.
 However, some of this Classic ECN marking might be due to
 single-queue ECN deployment. This case is discussed in
 the L4S ECN spec.

 L4S AQM Deployment within Tunnels
 An L4S AQM uses the ECN field to signal congestion. So in common
 with Classic ECN, if the AQM is within a tunnel or at a lower layer,
 correct functioning of ECN signalling requires standards-compliant propagation
 of the ECN field up the layers .

 IANA Considerations
 This document has no IANA actions.

 Security Considerations

 Traffic Rate (Non-)Policing

 (Non-)Policing Rate per Flow
 In the current Internet, ISPs usually enforce separation between
 the capacity of shared links assigned to different 'sites'
 (e.g., households, businesses, or mobile users -- see terminology
 in) using some form of
 scheduler . And they use various
 techniques, like redirection to traffic scrubbing facilities, to deal
 with flooding attacks. However, there has never been a universal
 need to police the rate of individual application flows -- the
 Internet has generally always relied on self-restraint of congestion
 controls at senders for sharing intra-'site' capacity.
 L4S has been designed not to upset this status quo. If a DualQ is
 used to provide L4S service, explains how it is
 designed to give no more rate advantage to unresponsive flows than a
 single-queue AQM would, whether or not there is traffic
 overload.
 Also, in case per-flow rate policing is ever required, it can be
 added because it is orthogonal to the distinction between L4S and
 Classic. As explained in , the DualQ
 variant of L4S provides low delay without prejudging the issue of
 flow-rate control. So if flow-rate control is needed,
 per-flow queuing (FQ) with L4S support can be used instead, or flow
 rate policing can be added as a modular addition to a DualQ.
 However, per-flow rate control is not usually deployed as a security
 mechanism, because an active attacker can just shard its traffic
 over more flow identifiers if the rate of each is restricted.

 (Non-)Policing L4S Service Rate
 explains how Diffserv only makes a
 difference if some packets get less favourable treatment than
 others, which typically requires traffic rate policing for a low
 latency class. In contrast, it should not be necessary to
 rate-police access to the L4S service to protect the Classic
 service, because L4S is designed to reduce delay without harming the
 delay or rate of any Classic traffic.
 During early deployment (and perhaps always), some networks will
 not offer the L4S service. In general, these networks should not
 need to police L4S traffic. They are required (by both the ECN
 spec and the L4S ECN spec) not to change the L4S
 identifier, which would interfere with end-to-end congestion
 control. If they already treat ECN traffic as Not-ECT, they can
 merely treat L4S traffic as Not-ECT too. At a bottleneck, such
 networks will introduce some queuing and dropping. When a Scalable
 congestion control detects a drop, it will have to respond safely
 with respect to Classic congestion controls (as required in
). This will
 degrade the L4S service to be no better (but never worse) than
 Classic best efforts whenever a non-ECN bottleneck is encountered
 on a path (see).
 In cases that are expected to be rare, networks that solely
 support Classic ECN in a single queue
 bottleneck might opt to police L4S traffic so as to protect
 competing Classic ECN traffic (for instance, see
 the L4S operational guidance). However, the L4S ECN spec recommends
 that the sender adapts its congestion response to properly coexist
 with Classic ECN flows, i.e., reverting to the self-restraint
 approach.
 Certain network operators might choose to restrict access to the
 L4S service, perhaps only to selected premium customers as a
 value-added service. Their packet classifier (item 2 in) could identify such customers
 against some other field (e.g., source address range), as well as
 classifying on the ECN field. If only the ECN L4S identifier
 matched, but not (say) the source address, the classifier could
 direct these packets (from non-premium customers) into the Classic
 queue. Explaining clearly how operators can use additional local
 classifiers (see) is intended to remove any
 motivation to clear the L4S identifier. Then at least the L4S ECN
 identifier will be more likely to survive end to end, even though the
 service may not be supported at every hop.
	 Such local arrangements
 would only require simple registered/not-registered packet
 classification, rather than the managed, application-specific
 traffic policing against customer-specific traffic contracts that
 Diffserv uses.

 'Latency Friendliness'
 Like the Classic service, the L4S service relies on self-restraint to
 limit the rate in response to congestion. In addition, the L4S
 service requires self-restraint in terms of limiting latency
 (burstiness). It is hoped that self-interest and guidance on dynamic
 behaviour (especially flow start-up, which might need to be
 standardized) will be sufficient to prevent transports from sending
 excessive bursts of L4S traffic, given the application's own latency
 will suffer most from such behaviour.
 Because the L4S service can reduce delay without discernibly
 increasing the delay of any Classic traffic, it should not be
 necessary to police L4S traffic to protect the delay of Classic traffic.
 However, whether burst policing becomes necessary to protect other L4S
 traffic remains to be seen. Without it, there will be potential for
 attacks on the low latency of the L4S service.
 If needed, various arrangements could be used to address this
 concern:

 Local bottleneck queue protection:
 A per-flow
 (5-tuple) queue protection function has been developed for
 the low latency queue in DOCSIS, which has adopted the DualQ L4S
 architecture. It protects the low latency service from any
 queue-building flows that accidentally or maliciously classify
 themselves into the low latency queue. It is designed to score
 flows based solely on their contribution to queuing (not flow rate
 in itself). Then, if the shared low latency queue is at risk of
 exceeding a threshold, the function redirects enough packets of
 the highest scoring flow(s) into the Classic queue to preserve low
 latency.
 Distributed traffic scrubbing:
 Rather than policing
 locally at each bottleneck, it may only be necessary to address
 problems reactively, e.g., punitively target any deployments
 of new bursty malware, in a similar way to how traffic from
 flooding attack sources is rerouted via scrubbing facilities.
 Local bottleneck per-flow scheduling:
 Per-flow
 scheduling should inherently isolate non-bursty flows from bursty flows
 (see for discussion of the merits
 of per-flow scheduling relative to per-flow policing).
 Distributed access subnet queue protection:
 Per-flow
 queue protection could be arranged for a queue structure
 distributed across a subnet intercommunicating using lower layer
 control messages (see Section 2.1.4 of). For
 instance, in a radio access network, user equipment already sends
 regular buffer status reports to a radio network controller, which
 could use this information to remotely police individual
 flows.
 Distributed Congestion Exposure to ingress policers:
 The
 Congestion Exposure (ConEx) architecture uses an egress audit to motivate senders to
 truthfully signal path congestion in-band, where it can be used by
 ingress policers. An edge-to-edge variant of this architecture is
 also possible.
 Distributed domain-edge traffic conditioning:
 An
 architecture similar to Diffserv may
 be preferred, where traffic is proactively conditioned on entry to
 a domain, rather than reactively policed only if it leads to
 queuing once combined with other traffic at a bottleneck.
 Distributed core network queue protection:
 The
 policing function could be divided between per-flow mechanisms at
 the network ingress that characterize the burstiness of each flow
 into a signal carried with the traffic and per-class mechanisms
 at bottlenecks that act on these signals if queuing actually
 occurs once the traffic converges. This would be somewhat similar
 to , which is in turn similar to the idea
 behind core stateless fair queuing.

 No single one of these possible queue protection capabilities is
 considered an essential part of the L4S architecture, which works
 without any of them under non-attack conditions (much as the Internet
 normally works without per-flow rate policing).
 Indeed, even where
 latency policers are deployed, under normal circumstances, they would
 not intervene, and if operators found they were not necessary, they
 could disable them. Part of the L4S experiment will be to see whether
 such a function is necessary and which arrangements are most
 appropriate to the size of the problem.

 Interaction between Rate Policing and L4S
 As mentioned in , L4S should remove
 the need for low latency Diffserv classes. However, those Diffserv
 classes that give certain applications or users priority over
 capacity would still be applicable in certain scenarios
 (e.g., corporate networks). Then, within such Diffserv classes,
 L4S would often be applicable to give traffic low latency and low loss
 as well. Within such a Diffserv class, the bandwidth available to a
 user or application is often limited by a rate policer. Similarly, in
 the default Diffserv class, rate policers are sometimes used to
 partition shared capacity.
 A Classic rate policer drops any packets exceeding a set rate,
 usually also giving a burst allowance (variants exist where the
 policer re-marks noncompliant traffic to a discard-eligible Diffserv
 codepoint, so they can be dropped elsewhere during contention).
 Whenever L4S traffic encounters one of these rate policers, it will
 experience drops and the source will have to fall back to a Classic
 congestion control, thus losing the benefits of L4S (). So in networks that already use
 rate policers and plan to deploy L4S, it will be preferable to
 redesign these rate policers to be more friendly to the L4S
 service.
 L4S-friendly rate policing is currently a research area (note that
 this is not the same as latency policing). It might be achieved by
 setting a threshold where ECN marking is introduced, such that it is
 just under the policed rate or just under the burst allowance where
 drop is introduced. For instance, the two-rate, three-colour
 marker or a PCN threshold and
 excess-rate marker could mark ECN at the
 lower rate and drop at the higher. Or an existing rate policer could
 have congestion-rate policing added, e.g., using the 'local'
 (non-ConEx) variant of the ConEx aggregate congestion
 policer . It might
 also be possible to design Scalable congestion controls to respond
 less catastrophically to loss that has not been preceded by a period
 of increasing delay.
 The design of L4S-friendly rate policers will require a separate,
 dedicated document. For further discussion of the interaction between
 L4S and Diffserv, see .

 ECN Integrity
 Various ways have been developed to protect the integrity of the
 congestion feedback loop (whether signalled by loss, Classic ECN, or
 L4S ECN) against misbehaviour by the receiver, sender, or network (or
 all three). Brief details of each, including applicability, pros, and
 cons, are given in the L4S ECN spec.

 Privacy Considerations
 As discussed in , the L4S
 architecture does not preclude approaches that inspect end-to-end
 transport layer identifiers. For instance, L4S support has been added
 to FQ-CoDel, which classifies by application flow identifier in the network.
 However, the main innovation of L4S is the DualQ AQM framework that
 does not need to inspect any deeper than the outermost IP header,
 because the L4S identifier is in the IP-ECN field.
 Thus, the L4S architecture enables very low queuing delay without
 requiring inspection of information above
 the IP layer. This means that users who want to encrypt application
 flow identifiers, e.g., in IPsec or other encrypted VPN tunnels,
 don't have to sacrifice low delay .
 Because L4S can provide low delay for a broad set of applications
 that choose to use it, there is no need for individual applications or
 classes within that broad set to be distinguishable in any way while
 traversing networks. This removes much of the ability to correlate
 between the delay requirements of traffic and other identifying
 features . There may be some types of
 traffic that prefer not to use L4S, but the coarse binary
 categorization of traffic reveals very little that could be exploited
 to compromise privacy.

 Informative References

 More Accurate ECN Feedback in TCP

 Independent

 Ericsson

 NetApp

 Explicit Congestion Notification (ECN) is a mechanism where network
 nodes can mark IP packets instead of dropping them to indicate
 incipient congestion to the end-points. Receivers with an ECN-
 capable transport protocol feed back this information to the sender.
 ECN was originally specified for TCP in such a way that only one
 feedback signal can be transmitted per Round-Trip Time (RTT). Recent
 new TCP mechanisms like Congestion Exposure (ConEx), Data Center TCP
 (DCTCP) or Low Latency Low Loss Scalable Throughput (L4S) need more
 accurate ECN feedback information whenever more than one marking is
 received in one RTT. This document updates the original ECN
 specification to specify a scheme to provide more than one feedback
 signal per RTT in the TCP header. Given TCP header space is scarce,
 it allocates a reserved header bit previously assigned to the ECN-
 Nonce. It also overloads the two existing ECN flags in the TCP
 header. The resulting extra space is exploited to feed back the IP-
 ECN field received during the 3-way handshake as well. Supplementary
 feedback information can optionally be provided in a new TCP option,
 which is never used on the TCP SYN. The document also specifies the
 treatment of this updated TCP wire protocol by middleboxes.

 Work in Progress

 Towards fair and low latency next generation high speed networks: AFCD queuing

 Journal of Network and Computer Applications, Volume 70, pp. 183-193

 BBR Congestion Control

 Work in Progress

 TCP BBR v2 Alpha/Preview Release

 commit 17700ca

 PI2 Parameters

 TR-BB-2021-001, arXiv:2107.01003 [cs.NI]

 Sizing Router Buffers

 Stanford University

 Stanford University

 Stanford University

 SIGCOMM '04: Proceedings of the 2004 conference on Applications, technologies, architectures, and protocols for computer communications, pp. 281-292

 Design and Evaluation of COBALT Queue Discipline

 IEEE International Symposium on Local and Metropolitan Area Networks (LANMAN)

 Controlled Delay Approximate Fairness AQM

 Work in Progress

 Network Performance Isolation using Congestion Policing

 BT

 This document describes why policing using congestion information can
 isolate users from network performance degradation due to each
 other's usage, but without losing the multiplexing benefits of a LAN-
 style network where anyone can use any amount of any resource.
 Extensive numerical examples and diagrams are given. The document is
 agnostic to how the congestion information reaches the policer. The
 congestion exposure (ConEX) protocol is recommended, but other tunnel
 feedback mechanisms have been proposed.

 Work in Progress

 Compound TCP: A New TCP Congestion Control for High-Speed and Long Distance Networks

 Microsoft

 Microsoft Research

 Microsoft

 Microsoft

 Compound TCP (CTCP) is a modification to TCP's congestion control
mechanism for use with TCP connections with large congestion windows.
This document describes the Compound TCP algorithm in detail, and
solicits experimentation and feedback from the wider community. The
key idea behind CTCP is to add a scalable delay-based component to the
standard TCP's loss-based congestion control. The sending rate of CTCP
is controlled by both loss and delay components. The delay-based
component has a scalable window increasing rule that not only
efficiently uses the link capacity, but on sensing queue build up,
proactively reduces the sending rate.

 Work in Progress

 The DOCSIS® Queue Protection Algorithm to Preserve Low Latency

 Independent

 CableLabs

 Work in Progress

 MAC and Upper Layer Protocols Interface (MULPI) Specification, CM-SP-MULPIv3.1

 CableLabs

 Active Queue Management Algorithms for DOCSIS 3.0: A Simulation Study of CoDel, SFQ-CoDel and PIE in DOCSIS 3.0 Networks

 CableLabs Technical Report

 DUALPI2 - Low Latency, Low Loss and Scalable (L4S) AQM

 Simula Research Lab

 Nokia Bell Labs

 Independent

 Nokia Bell Labs

 Simula Research Lab

 Proceedings of Linux Netdev 0x13

 Why Flow-Completion Time is the Right Metric for Congestion Control

 Stanford University

 Stanford University

 ACM SIGCOMM Computer Communication Review, Volume 36, Issue 1, pp. 59-62

 Guidelines for Adding Congestion Notification to Protocols that Encapsulate IP

 Independent

 Futurewei

 The purpose of this document is to guide the design of congestion
 notification in any lower layer or tunnelling protocol that
 encapsulates IP. The aim is for explicit congestion signals to
 propagate consistently from lower layer protocols into IP. Then the
 IP internetwork layer can act as a portability layer to carry
 congestion notification from non-IP-aware congested nodes up to the
 transport layer (L4). Following these guidelines should assure
 interworking among IP layer and lower layer congestion notification
 mechanisms, whether specified by the IETF or other standards bodies.
 This document updates the advice to subnetwork designers about ECN in
 RFC 3819.

 Work in Progress

 ECN for Stream Control Transmission Protocol (SCTP)

 Work in Progress

 Propagating Explicit Congestion Notification Across IP Tunnel Headers Separated by a Shim

 Independent

 RFC 6040 on "Tunnelling of Explicit Congestion Notification" made the
 rules for propagation of ECN consistent for all forms of IP in IP
 tunnel. This specification updates RFC 6040 to clarify that its
 scope includes tunnels where two IP headers are separated by at least
 one shim header that is not sufficient on its own for wide area
 packet forwarding. It surveys widely deployed IP tunnelling
 protocols that use such shim header(s) and updates the specifications
 of those that do not mention ECN propagation (L2TPv2, L2TPv3, GRE,
 Teredo and AMT). This specification also updates RFC 6040 with
 configuration requirements needed to make any legacy tunnel ingress
 safe.

 Work in Progress

 fq_codel: generalise ce_threshold marking for subset of traffic

 commit dfcb63ce1de6b10b

 A QoE Perspective on Sizing Network Buffers

 IMC '14: Proceedings of the 2014 Conference on Internet Measurement, pp. 333-346

 Interactions between Low Latency, Low Loss, Scalable Throughput (L4S) and Differentiated Services

 CableLabs

 L4S and Diffserv offer somewhat overlapping services (low latency and
 low loss), but bandwidth allocation is out of scope for L4S.
 Therefore there is scope for the two approaches to complement each
 other, but also to conflict. This informational document explains
 how the two approaches interact, how they can be arranged to
 complement each other and in which cases one can stand alone without
 needing the other.

 Work in Progress

 Ultra-Low Delay for All: Live Experience, Live Analysis

 Simula Research Lab

 Bell Labs

 Bell Labs

 BT

 Proceedings of the 7th International Conference on Multimedia Systems, Article No. 33, pp. 1-4

 Videos used in IETF dispatch WG 'Ultra-Low Queuing Delay for All Apps' slot

 Dual Queue Coupled AQM: Deployable Very Low Queuing Delay for All

 Nokia Bell Labs

 Simula Research Lab

 Nokia Bell Labs

 Independent (bobbriscoe.net)

 TR-BB-2022-001, arXiv:2209.01078 [cs.NI]

 Operational Guidance for Deployment of L4S in the Internet

 CableLabs

 Work in Progress

 Characterising LEDBAT Performance Through Bottlenecks Using PIE, FQ-CoDel and FQ-PIE Active Queue Management

 IEEE 42nd Conference on Local Computer Networks (LCN)

 Optimizing HTTP/2 prioritization with BBR and tcp_notsent_lowat

 Cloudflare

 Cloudflare Blog

 UNIX Time-Sharing System: Foreword

 The Bell System Technical Journal 57: 6, pp. 1899-1904

 A Congestion Control Independent L4S Scheduler

 ANRW '20: Proceedings of the Applied Networking Research Workshop, pp. 45-51

 Latency Requirements for Head-Worn Display S/EVS Applications

 NASA Langley Research Center

 NASA Langley Research Center

 NASA Langley Research Center

 Proceedings of SPIE 5424

 A Non-Queue-Building Per-Hop Behavior (NQB PHB) for Differentiated Services

 CableLabs

 ARM

 This document specifies properties and characteristics of a Non-
 Queue-Building Per-Hop Behavior (NQB PHB). The purpose of this NQB
 PHB is to provide a separate queue that enables smooth, low-data-
 rate, application-limited traffic flows, which would ordinarily share
 a queue with bursty and capacity-seeking traffic, to avoid the
 latency, latency variation and loss caused by such traffic. This PHB
 is implemented without prioritization and can be implemented without
 rate policing, making it suitable for environments where the use of
 these features is restricted. The NQB PHB has been developed
 primarily for use by access network segments, where queuing delays
 and queuing loss caused by Queue-Building protocols are manifested,
 but its use is not limited to such segments. In particular,
 applications to cable broadband links, Wi-Fi links, and mobile
 network radio and core segments are discussed. This document
 recommends a specific Differentiated Services Code Point (DSCP) to
 identify Non-Queue-Building flows.

 Work in Progress

 Prague Congestion Control

 Nokia Bell Labs

 Nokia Bell Labs

 Independent

 Work in Progress

 Implementing the 'TCP Prague' Requirements for Low Latency Low Loss Scalable Throughput (L4S)

 Independent

 Nokia Bell Labs

 Simula Research Lab

 Simula Research Lab

 Nokia Bell Labs

 ETH Zurich

 Simula Research Lab

 Proceedings Linux Netdev 0x13

 Rapid Signalling of Queue Dynamics

 bobbriscoe.net Ltd

 TR-BB-2017-001, arXiv:1904.07044 [cs.NI]

 Latency Thresholds for Usability in Games: A Survey

 Norsk IKT-konferanse for forskning og utdanning (Norwegian
 ICT conference for research and education)

 Towards a Low Latency Internet: Understanding and Solutions

 Karlstad University Studies

 Dissertation, Karlstad University

 Relentless Congestion Control

 Pittsburgh Supercomputing Center

 Relentless congestion control is a simple modification that can be
applied to almost any AIMD style congestion control: instead of
applying a multiplicative reduction to cwnd after a loss, cwnd is
reduced by the number of lost segments. It can be modeled as a
strict implementation of van Jacobson's Packet Conservation
Principle. During recovery, new segments are injected into the
network in exact accordance with the segments that are reported to
have been delivered to the receiver by the returning ACKs.

This algorithm offers a valuable new congestion control property: the
TCP portion of the control loop has exactly unity gain, which should
make it easier to implement simple controllers in network devices to
accurately control queue sizes across a huge range of scales.

Relentless Congestion Control conforms to neither the details nor the
philosophy of current congestion control standards. These standards
are based on the idea that the Internet can attain sufficient
fairness by having relatively simple network devices send uniform
congestion signals to all flows, and mandating that all protocols
have equivalent responses to these congestion signals.

To function appropriately in a shared environment, Relentless
Congestion Control requires that the network allocates capacity
through some technique such as Fair Queuing, Approximate Fair
Dropping, etc. The salient features of these algorithms are that
they segregate the traffic into distinct flows, and send different
congestion signals to each flow. This alternative congestion control
paradigm is described in a separate document, also under
consideration by the ICCRG.

The goal of the document is to illustrate some new protocol features
and properties might be possible if we relax the "TCP-friendly"
mandate. A secondary goal of Relentless TCP is to make a distinction
between the bottlenecks that belong to protocol itself, vs standard
congestion control and the "TCP-friendly" paradigm.

 Work in Progress

 On Packet Switches With Infinite Storage

 The purpose of this RFC is to focus discussion on a particular problem in the ARPA-Internet and possible methods of solution. Most prior work on congestion in datagram systems focuses on buffer management. In this memo the case of a packet switch with infinite storage is considered. Such a packet switch can never run out of buffers. It can, however, still become congested. The meaning of congestion in an infinite-storage system is explored. An unexpected result is found that shows a datagram network with infinite storage, first-in-first-out queuing, at least two packet switches, and a finite packet lifetime will, under overload, drop all packets. By attacking the problem of congestion for the infinite-storage case, new solutions applicable to switches with finite storage may be found. No proposed solutions this document are intended as standards for the ARPA-Internet at this time.

 An Architecture for Differentiated Services

 This document defines an architecture for implementing scalable service differentiation in the Internet. This memo provides information for the Internet community.

 A Two Rate Three Color Marker

 This document defines a Two Rate Three Color Marker (trTCM), which can be used as a component in a Diffserv traffic conditioner. This memo provides information for the Internet community.

 Performance Evaluation of Explicit Congestion Notification (ECN) in IP Networks

 This memo presents a performance study of the Explicit Congestion Notification (ECN) mechanism in the TCP/IP protocol using our implementation on the Linux Operating System. This memo provides information for the Internet community.

 The Addition of Explicit Congestion Notification (ECN) to IP

 This memo specifies the incorporation of ECN (Explicit Congestion Notification) to TCP and IP, including ECN's use of two bits in the IP header. [STANDARDS-TRACK]

 An Expedited Forwarding PHB (Per-Hop Behavior)

 This document defines a PHB (per-hop behavior) called Expedited Forwarding (EF). The PHB is a basic building block in the Differentiated Services architecture. EF is intended to provide a building block for low delay, low jitter and low loss services by ensuring that the EF aggregate is served at a certain configured rate. This document obsoletes RFC 2598. [STANDARDS-TRACK]

 Robust Explicit Congestion Notification (ECN) Signaling with Nonces

 This note describes the Explicit Congestion Notification (ECN)-nonce, an optional addition to ECN that protects against accidental or malicious concealment of marked packets from the TCP sender. It improves the robustness of congestion control by preventing receivers from exploiting ECN to gain an unfair share of network bandwidth. The ECN-nonce uses the two ECN-Capable Transport (ECT)codepoints in the ECN field of the IP header, and requires a flag in the TCP header. It is computationally efficient for both routers and hosts. This memo defines an Experimental Protocol for the Internet community.

 HighSpeed TCP for Large Congestion Windows

 The proposals in this document are experimental. While they may be deployed in the current Internet, they do not represent a consensus that this is the best method for high-speed congestion control. In particular, we note that alternative experimental proposals are likely to be forthcoming, and it is not well understood how the proposals in this document will interact with such alternative proposals. This document proposes HighSpeed TCP, a modification to TCP's congestion control mechanism for use with TCP connections with large congestion windows. The congestion control mechanisms of the current Standard TCP constrains the congestion windows that can be achieved by TCP in realistic environments. For example, for a Standard TCP connection with 1500-byte packets and a 100 ms round-trip time, achieving a steady-state throughput of 10 Gbps would require an average congestion window of 83,333 segments, and a packet drop rate of at most one congestion event every 5,000,000,000 packets (or equivalently, at most one congestion event every 1 2/3 hours). This is widely acknowledged as an unrealistic constraint. To address his limitation of TCP, this document proposes HighSpeed TCP, and solicits experimentation and feedback from the wider community.

 Datagram Congestion Control Protocol (DCCP)

 The Datagram Congestion Control Protocol (DCCP) is a transport protocol that provides bidirectional unicast connections of congestion-controlled unreliable datagrams. DCCP is suitable for applications that transfer fairly large amounts of data and that can benefit from control over the tradeoff between timeliness and reliability. [STANDARDS-TRACK]

 Specifying Alternate Semantics for the Explicit Congestion Notification (ECN) Field

 There have been a number of proposals for alternate semantics for the Explicit Congestion Notification (ECN) field in the IP header RFC 3168. This document discusses some of the issues in defining alternate semantics for the ECN field, and specifies requirements for a safe coexistence in an Internet that could include routers that do not understand the defined alternate semantics. This document evolved as a result of discussions with the authors of one recent proposal for such alternate semantics. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Stream Control Transmission Protocol

 This document obsoletes RFC 2960 and RFC 3309. It describes the Stream Control Transmission Protocol (SCTP). SCTP is designed to transport Public Switched Telephone Network (PSTN) signaling messages over IP networks, but is capable of broader applications.
 SCTP is a reliable transport protocol operating on top of a connectionless packet network such as IP. It offers the following services to its users:
 -- acknowledged error-free non-duplicated transfer of user data,
 -- data fragmentation to conform to discovered path MTU size,
 -- sequenced delivery of user messages within multiple streams, with an option for order-of-arrival delivery of individual user messages,
 -- optional bundling of multiple user messages into a single SCTP packet, and
 -- network-level fault tolerance through supporting of multi-homing at either or both ends of an association.
 The design of SCTP includes appropriate congestion avoidance behavior and resistance to flooding and masquerade attacks. [STANDARDS-TRACK]

 Specifying New Congestion Control Algorithms

 The IETF's standard congestion control schemes have been widely shown to be inadequate for various environments (e.g., high-speed networks). Recent research has yielded many alternate congestion control schemes that significantly differ from the IETF's congestion control principles. Using these new congestion control schemes in the global Internet has possible ramifications to both the traffic using the new congestion control and to traffic using the currently standardized congestion control. Therefore, the IETF must proceed with caution when dealing with alternate congestion control proposals. The goal of this document is to provide guidance for considering alternate congestion control algorithms within the IETF. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 TCP Friendly Rate Control (TFRC): Protocol Specification

 This document specifies TCP Friendly Rate Control (TFRC). TFRC is a congestion control mechanism for unicast flows operating in a best-effort Internet environment. It is reasonably fair when competing for bandwidth with TCP flows, but has a much lower variation of throughput over time compared with TCP, making it more suitable for applications such as streaming media where a relatively smooth sending rate is of importance.
 This document obsoletes RFC 3448 and updates RFC 4342. [STANDARDS-TRACK]

 Metering and Marking Behaviour of PCN-Nodes

 The objective of Pre-Congestion Notification (PCN) is to protect the quality of service (QoS) of inelastic flows within a Diffserv domain in a simple, scalable, and robust fashion. This document defines the two metering and marking behaviours of PCN-nodes. Threshold-metering and -marking marks all PCN-packets if the rate of PCN-traffic is greater than a configured rate ("PCN-threshold-rate"). Excess- traffic-metering and -marking marks a proportion of PCN-packets, such that the amount marked equals the rate of PCN-traffic in excess of a configured rate ("PCN-excess-rate"). The level of marking allows PCN-boundary-nodes to make decisions about whether to admit or terminate PCN-flows. [STANDARDS-TRACK]

 TCP Congestion Control

 This document defines TCP's four intertwined congestion control algorithms: slow start, congestion avoidance, fast retransmit, and fast recovery. In addition, the document specifies how TCP should begin transmission after a relatively long idle period, as well as discussing various acknowledgment generation methods. This document obsoletes RFC 2581. [STANDARDS-TRACK]

 Tunnelling of Explicit Congestion Notification

 This document redefines how the explicit congestion notification (ECN) field of the IP header should be constructed on entry to and exit from any IP-in-IP tunnel. On encapsulation, it updates RFC 3168 to bring all IP-in-IP tunnels (v4 or v6) into line with RFC 4301 IPsec ECN processing. On decapsulation, it updates both RFC 3168 and RFC 4301 to add new behaviours for previously unused combinations of inner and outer headers. The new rules ensure the ECN field is correctly propagated across a tunnel whether it is used to signal one or two severity levels of congestion; whereas before, only one severity level was supported. Tunnel endpoints can be updated in any order without affecting pre-existing uses of the ECN field, thus ensuring backward compatibility. Nonetheless, operators wanting to support two severity levels (e.g., for pre-congestion notification -- PCN) can require compliance with this new specification. A thorough analysis of the reasoning for these changes and the implications is included. In the unlikely event that the new rules do not meet a specific need, RFC 4774 gives guidance on designing alternate ECN semantics, and this document extends that to include tunnelling issues. [STANDARDS-TRACK]

 Explicit Congestion Notification (ECN) for RTP over UDP

 This memo specifies how Explicit Congestion Notification (ECN) can be used with the Real-time Transport Protocol (RTP) running over UDP, using the RTP Control Protocol (RTCP) as a feedback mechanism. It defines a new RTCP Extended Report (XR) block for periodic ECN feedback, a new RTCP transport feedback message for timely reporting of congestion events, and a Session Traversal Utilities for NAT (STUN) extension used in the optional initialisation method using Interactive Connectivity Establishment (ICE). Signalling and procedures for negotiation of capabilities and initialisation methods are also defined. [STANDARDS-TRACK]

 Low Extra Delay Background Transport (LEDBAT)

 Low Extra Delay Background Transport (LEDBAT) is an experimental delay-based congestion control algorithm that seeks to utilize the available bandwidth on an end-to-end path while limiting the consequent increase in queueing delay on that path. LEDBAT uses changes in one-way delay measurements to limit congestion that the flow itself induces in the network. LEDBAT is designed for use by background bulk-transfer applications to be no more aggressive than standard TCP congestion control (as specified in RFC 5681) and to yield in the presence of competing flows, thus limiting interference with the network performance of competing flows. This document defines an Experimental Protocol for the Internet community.

 Privacy Considerations for Internet Protocols

 This document offers guidance for developing privacy considerations for inclusion in protocol specifications. It aims to make designers, implementers, and users of Internet protocols aware of privacy-related design choices. It suggests that whether any individual RFC warrants a specific privacy considerations section will depend on the document's content.

 Problem Statement and Requirements for Increased Accuracy in Explicit Congestion Notification (ECN) Feedback

 Explicit Congestion Notification (ECN) is a mechanism where network nodes can mark IP packets, instead of dropping them, to indicate congestion to the endpoints. An ECN-capable receiver will feed this information back to the sender. ECN is specified for TCP in such a way that it can only feed back one congestion signal per Round-Trip Time (RTT). In contrast, ECN for other transport protocols, such as RTP/UDP and SCTP, is specified with more accurate ECN feedback. Recent new TCP mechanisms (like Congestion Exposure (ConEx) or Data Center TCP (DCTCP)) need more accurate ECN feedback in the case where more than one marking is received in one RTT. This document specifies requirements for an update to the TCP protocol to provide more accurate ECN feedback.

 IETF Recommendations Regarding Active Queue Management

 This memo presents recommendations to the Internet community concerning measures to improve and preserve Internet performance. It presents a strong recommendation for testing, standardization, and widespread deployment of active queue management (AQM) in network devices to improve the performance of today's Internet. It also urges a concerted effort of research, measurement, and ultimate deployment of AQM mechanisms to protect the Internet from flows that are not sufficiently responsive to congestion notification.
 Based on 15 years of experience and new research, this document replaces the recommendations of RFC 2309.

 Service Function Chaining (SFC) Architecture

 This document describes an architecture for the specification, creation, and ongoing maintenance of Service Function Chains (SFCs) in a network. It includes architectural concepts, principles, and components used in the construction of composite services through deployment of SFCs, with a focus on those to be standardized in the IETF. This document does not propose solutions, protocols, or extensions to existing protocols.

 Congestion Exposure (ConEx) Concepts, Abstract Mechanism, and Requirements

 This document describes an abstract mechanism by which senders inform the network about the congestion recently encountered by packets in the same flow. Today, network elements at any layer may signal congestion to the receiver by dropping packets or by Explicit Congestion Notification (ECN) markings, and the receiver passes this information back to the sender in transport-layer feedback. The mechanism described here enables the sender to also relay this congestion information back into the network in-band at the IP layer, such that the total amount of congestion from all elements on the path is revealed to all IP elements along the path, where it could, for example, be used to provide input to traffic management. This mechanism is called Congestion Exposure, or ConEx. The companion document, "Congestion Exposure (ConEx) Concepts and Use Cases" (RFC 6789), provides the entry point to the set of ConEx documentation.

 Proportional Integral Controller Enhanced (PIE): A Lightweight Control Scheme to Address the Bufferbloat Problem

 Bufferbloat is a phenomenon in which excess buffers in the network cause high latency and latency variation. As more and more interactive applications (e.g., voice over IP, real-time video streaming, and financial transactions) run in the Internet, high latency and latency variation degrade application performance. There is a pressing need to design intelligent queue management schemes that can control latency and latency variation, and hence provide desirable quality of service to users.
 This document presents a lightweight active queue management design called "PIE" (Proportional Integral controller Enhanced) that can effectively control the average queuing latency to a target value. Simulation results, theoretical analysis, and Linux testbed results have shown that PIE can ensure low latency and achieve high link utilization under various congestion situations. The design does not require per-packet timestamps, so it incurs very little overhead and is simple enough to implement in both hardware and software.

 Active Queue Management (AQM) Based on Proportional Integral Controller Enhanced (PIE) for Data-Over-Cable Service Interface Specifications (DOCSIS) Cable Modems

 Cable modems based on Data-Over-Cable Service Interface Specifications (DOCSIS) provide broadband Internet access to over one hundred million users worldwide. In some cases, the cable modem connection is the bottleneck (lowest speed) link between the customer and the Internet. As a result, the impact of buffering and bufferbloat in the cable modem can have a significant effect on user experience. The CableLabs DOCSIS 3.1 specification introduces requirements for cable modems to support an Active Queue Management (AQM) algorithm that is intended to alleviate the impact that buffering has on latency-sensitive traffic, while preserving bulk throughput performance. In addition, the CableLabs DOCSIS 3.0 specifications have also been amended to contain similar requirements. This document describes the requirements on AQM that apply to DOCSIS equipment, including a description of the "DOCSIS-PIE" algorithm that is required on DOCSIS 3.1 cable modems.

 Planning for Protocol Adoption and Subsequent Transitions

 Over the many years since the introduction of the Internet Protocol, we have seen a number of transitions throughout the protocol stack, such as deploying a new protocol, or updating or replacing an existing protocol. Many protocols and technologies were not designed to enable smooth transition to alternatives or to easily deploy extensions; thus, some transitions, such as the introduction of IPv6, have been difficult. This document attempts to summarize some basic principles to enable future transitions, and it also summarizes what makes for a good transition plan.

 Data Center TCP (DCTCP): TCP Congestion Control for Data Centers

 This Informational RFC describes Data Center TCP (DCTCP): a TCP congestion control scheme for data-center traffic. DCTCP extends the Explicit Congestion Notification (ECN) processing to estimate the fraction of bytes that encounter congestion rather than simply detecting that some congestion has occurred. DCTCP then scales the TCP congestion window based on this estimate. This method achieves high-burst tolerance, low latency, and high throughput with shallow- buffered switches. This memo also discusses deployment issues related to the coexistence of DCTCP and conventional TCP, discusses the lack of a negotiating mechanism between sender and receiver, and presents some possible mitigations. This memo documents DCTCP as currently implemented by several major operating systems. DCTCP, as described in this specification, is applicable to deployments in controlled environments like data centers, but it must not be deployed over the public Internet without additional measures.

 The Flow Queue CoDel Packet Scheduler and Active Queue Management Algorithm

 This memo presents the FQ-CoDel hybrid packet scheduler and Active Queue Management (AQM) algorithm, a powerful tool for fighting bufferbloat and reducing latency.
 FQ-CoDel mixes packets from multiple flows and reduces the impact of head-of-line blocking from bursty traffic. It provides isolation for low-rate traffic such as DNS, web, and videoconferencing traffic. It improves utilisation across the networking fabric, especially for bidirectional traffic, by keeping queue lengths short, and it can be implemented in a memory- and CPU-efficient fashion across a wide range of hardware.

 Self-Clocked Rate Adaptation for Multimedia

 This memo describes a rate adaptation algorithm for conversational media services such as interactive video. The solution conforms to the packet conservation principle and uses a hybrid loss-and-delay- based congestion control algorithm. The algorithm is evaluated over both simulated Internet bottleneck scenarios as well as in a Long Term Evolution (LTE) system simulator and is shown to achieve both low latency and high video throughput in these scenarios.

 Relaxing Restrictions on Explicit Congestion Notification (ECN) Experimentation

 This memo updates RFC 3168, which specifies Explicit Congestion Notification (ECN) as an alternative to packet drops for indicating network congestion to endpoints. It relaxes restrictions in RFC 3168 that hinder experimentation towards benefits beyond just removal of loss. This memo summarizes the anticipated areas of experimentation and updates RFC 3168 to enable experimentation in these areas. An Experimental RFC in the IETF document stream is required to take advantage of any of these enabling updates. In addition, this memo makes related updates to the ECN specifications for RTP in RFC 6679 and for the Datagram Congestion Control Protocol (DCCP) in RFCs 4341, 4342, and 5622. This memo also records the conclusion of the ECN nonce experiment in RFC 3540 and provides the rationale for reclassification of RFC 3540 from Experimental to Historic; this reclassification enables new experimental use of the ECT(1) codepoint.

 CUBIC for Fast Long-Distance Networks

 CUBIC is an extension to the current TCP standards. It differs from the current TCP standards only in the congestion control algorithm on the sender side. In particular, it uses a cubic function instead of a linear window increase function of the current TCP standards to improve scalability and stability under fast and long-distance networks. CUBIC and its predecessor algorithm have been adopted as defaults by Linux and have been used for many years. This document provides a specification of CUBIC to enable third-party implementations and to solicit community feedback through experimentation on the performance of CUBIC.

 Effects of Pervasive Encryption on Operators

 Pervasive monitoring attacks on the privacy of Internet users are of serious concern to both user and operator communities. RFC 7258 discusses the critical need to protect users' privacy when developing IETF specifications and also recognizes that making networks unmanageable to mitigate pervasive monitoring is not an acceptable outcome: an appropriate balance is needed. This document discusses current security and network operations as well as management practices that may be impacted by the shift to increased use of encryption to help guide protocol development in support of manageable and secure networks.

 TCP Alternative Backoff with ECN (ABE)

 Active Queue Management (AQM) mechanisms allow for burst tolerance while enforcing short queues to minimise the time that packets spend enqueued at a bottleneck. This can cause noticeable performance degradation for TCP connections traversing such a bottleneck, especially if there are only a few flows or their bandwidth-delay product (BDP) is large. The reception of a Congestion Experienced (CE) Explicit Congestion Notification (ECN) mark indicates that an AQM mechanism is used at the bottleneck, and the bottleneck network queue is therefore likely to be short. Feedback of this signal allows the TCP sender-side ECN reaction in congestion avoidance to reduce the Congestion Window (cwnd) by a smaller amount than the congestion control algorithm's reaction to inferred packet loss. Therefore, this specification defines an experimental change to the TCP reaction specified in RFC 3168, as permitted by RFC 8311.

 RTP Control Protocol (RTCP) Feedback for Congestion Control

 An effective RTP congestion control algorithm requires more fine-grained feedback on packet loss, timing, and Explicit Congestion Notification (ECN) marks than is provided by the standard RTP Control Protocol (RTCP) Sender Report (SR) and Receiver Report (RR) packets. This document describes an RTCP feedback message intended to enable congestion control for interactive real-time traffic using RTP. The feedback message is designed for use with a sender-based congestion control algorithm, in which the receiver of an RTP flow sends back to the sender RTCP feedback packets containing the information the sender needs to perform congestion control.

 The RACK-TLP Loss Detection Algorithm for TCP

 This document presents the RACK-TLP loss detection algorithm for TCP. RACK-TLP uses per-segment transmit timestamps and selective acknowledgments (SACKs) and has two parts. Recent Acknowledgment (RACK) starts fast recovery quickly using time-based inferences derived from acknowledgment (ACK) feedback, and Tail Loss Probe (TLP) leverages RACK and sends a probe packet to trigger ACK feedback to avoid retransmission timeout (RTO) events. Compared to the widely used duplicate acknowledgment (DupAck) threshold approach, RACK-TLP detects losses more efficiently when there are application-limited flights of data, lost retransmissions, or data packet reordering events. It is intended to be an alternative to the DupAck threshold approach.

 QUIC: A UDP-Based Multiplexed and Secure Transport

 This document defines the core of the QUIC transport protocol. QUIC provides applications with flow-controlled streams for structured communication, low-latency connection establishment, and network path migration. QUIC includes security measures that ensure confidentiality, integrity, and availability in a range of deployment circumstances. Accompanying documents describe the integration of TLS for key negotiation, loss detection, and an exemplary congestion control algorithm.

 HTTP/2

 This specification describes an optimized expression of the semantics of the Hypertext Transfer Protocol (HTTP), referred to as HTTP version 2 (HTTP/2). HTTP/2 enables a more efficient use of network resources and a reduced latency by introducing field compression and allowing multiple concurrent exchanges on the same connection.
 This document obsoletes RFCs 7540 and 8740.

 The Explicit Congestion Notification (ECN) Protocol for Low Latency, Low Loss, and Scalable Throughput (L4S)

 Nokia Bell Labs

 Independent

 Dual-Queue Coupled Active Queue Management (AQM) for Low Latency, Low Loss, and Scalable Throughput (L4S)

 Nokia Bell Labs

 Independent

 CableLabs

 SCReAM

 commit fda6c53

 Congestion Avoidance and Control

 Implementing immediate forwarding for 4G in a network simulator

 Master's Thesis, University of Oslo

 Acknowledgements
 Thanks to , , , , , , , , , , , ,
 , and
 for their useful review comments. Thanks also to the area reviewers:
 , ,
 , and .
 and were partly funded by the European Community under its Seventh
 Framework Programme through the Reducing Internet Transport Latency
 (RITE) project (ICT-317700). The contribution of was also partly funded by the 5Growth and DAEMON EU H2020
 projects. was also partly funded by the
 Research Council of Norway through the TimeIn project, partly by
 CableLabs, and partly by the Comcast Innovation Fund. The views expressed
 here are solely those of the authors.

 Authors' Addresses

 Independent

 United Kingdom

 ietf@bobbriscoe.net
 https://bobbriscoe.net/

 Nokia Bell Labs

 Antwerp
 Belgium

 koen.de_schepper@nokia.com
 https://www.bell-labs.com/about/researcher-profiles/koende_schepper/

 Universidad Carlos III de Madrid

 Av. Universidad 30
 Madrid
 28911
 Spain

 34 91 6249500
 marcelo@it.uc3m.es
 https://www.it.uc3m.es

 CableLabs

 United States of America

 G.White@CableLabs.com

