
RFC 9553

JSContact: A JSON Representation of Contact Data

Abstract

This specification defines a data model and JavaScript Object Notation (JSON) representation of

contact card information that can be used for data storage and exchange in address book or

directory applications. It aims to be an alternative to the vCard data format and to be

unambiguous, extendable, and simple to process. In contrast to the JSON-based jCard format, it is

not a direct mapping from the vCard data model and expands semantics where appropriate. Two

additional specifications define new vCard elements and how to convert between JSContact and

vCard.

Stream:

RFC:

Category:

Published:

ISSN:

Authors:

Internet Engineering Task Force (IETF)

9553

Standards Track

May 2024

2070-1721

 R. Stepanek

Fastmail

M. Loffredo

IIT-CNR

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the

consensus of the IETF community. It has received public review and has been approved for

publication by the Internet Engineering Steering Group (IESG). Further information on Internet

Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback

on it may be obtained at .https://www.rfc-editor.org/info/rfc9553

Copyright Notice

Copyright (c) 2024 IETF Trust and the persons identified as the document authors. All rights

reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF

Documents () in effect on the date of publication of this

document. Please review these documents carefully, as they describe your rights and restrictions

https://trustee.ietf.org/license-info

Stepanek & Loffredo Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9553
https://www.rfc-editor.org/info/rfc9553
https://trustee.ietf.org/license-info

with respect to this document. Code Components extracted from this document must include

Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are

provided without warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Motivation and Relation to vCard, jCard, and xCard

1.2. Notational Conventions

1.3. Data Type Notations

1.3.1. Objects and Properties

1.3.2. Type Signatures

1.3.3. Property Attributes

1.3.4. The @type Property

1.4. Common Data Types

1.4.1. Id

1.4.2. Int and UnsignedInt

1.4.3. PatchObject

1.4.4. Resource

1.4.5. UTCDateTime

1.5. Common Properties

1.5.1. contexts

1.5.2. label

1.5.3. pref

1.5.4. phonetic

1.6. Internationalization

1.6.1. Free-Form Text

1.6.2. URIs

1.7. Validating JSContact

1.7.1. Case-Sensitivity

1.7.2. IANA-Registered Properties

1.7.3. Reserved Properties

5

6

6

7

7

8

8

8

9

9

9

10

10

11

11

11

12

12

12

13

13

13

14

14

14

14

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 2

1.7.4. Unknown Properties

1.7.5. Enumerated Values

1.8. Vendor-Specific Extensions

1.8.1. Vendor-Specific Properties

1.8.2. Vendor-Specific Values

1.9. Versioning

1.9.1. Version Format and Requirements

1.9.2. Current Version

2. Card

2.1. Metadata Properties

2.1.1. @type

2.1.2. version

2.1.3. created

2.1.4. kind

2.1.5. language

2.1.6. members

2.1.7. prodId

2.1.8. relatedTo

2.1.9. uid

2.1.10. updated

2.2. Name and Organization Properties

2.2.1. name

2.2.2. nicknames

2.2.3. organizations

2.2.4. speakToAs

2.2.5. titles

2.3. Contact Properties

2.3.1. emails

2.3.2. onlineServices

2.3.3. phones

15

15

15

15

16

17

17

17

17

18

18

18

18

18

19

19

20

20

21

21

22

22

26

26

27

29

29

29

30

31

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 3

2.3.4. preferredLanguages

2.4. Calendaring and Scheduling Properties

2.4.1. calendars

2.4.2. schedulingAddresses

2.5. Address and Location Properties

2.5.1. addresses

2.6. Resource Properties

2.6.1. cryptoKeys

2.6.2. directories

2.6.3. links

2.6.4. media

2.7. Multilingual Properties

2.7.1. localizations

2.8. Additional Properties

2.8.1. anniversaries

2.8.2. keywords

2.8.3. notes

2.8.4. personalInfo

3. IANA Considerations

3.1. Media Type Registration

3.2. Creation of the JSContact Registry Group

3.3. Registry Policy and Change Procedures

3.3.1. Preliminary Community Review

3.3.2. Submit Request to IANA

3.3.3. Designated Expert Review

3.3.4. Change Procedures

3.4. Creation of the JSContact Version Registry

3.4.1. JSContact Version Registry Template

3.4.2. Initial Contents of the JSContact Version Registry

32

33

33

34

34

34

39

39

40

41

41

42

42

44

44

45

46

46

48

48

49

49

50

50

50

50

51

51

51

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 4

3.5. Creation of the JSContact Properties Registry

3.5.1. JSContact Properties Registry Template

3.5.2. Initial Contents of the JSContact Properties Registry

3.6. Creation of the JSContact Types Registry

3.6.1. JSContact Types Registry Template

3.6.2. Initial Contents of the JSContact Types Registry

3.7. Creation of the JSContact Enum Values Registry

3.7.1. JSContact Enum Values Registry Property Template

3.7.2. JSContact Enum Values Registry Value Template

3.7.3. Initial Contents of the JSContact Enum Values Registry

4. Security Considerations

4.1. JSON Parsing

4.2. URI Values

5. References

5.1. Normative References

5.2. Informative References

Authors' Addresses

51

51

52

58

58

58

60

60

61

61

69

69

70

70

70

72

73

1. Introduction

This document defines a data model for contact card data normally used in address book or

directory applications and services. It aims to be an alternative to the vCard data format

.

The key design considerations for this data model are as follows:

The data model and set of attributes should be mostly compatible with the model defined for

the vCard data format and extensions

. The specification should add new attributes or value types where appropriate.

Not all existing vCard definitions need an equivalent in JSContact, especially if the vCard

definition is considered to be obsolete or otherwise inappropriate. Conversion between the

data formats need not fully preserve semantic meaning.

The attributes of the card data must be described as simple key-value pairs to reduce the

complexity of the representation of the card data.

[RFC6350]

•

[RFC6350] [RFC6473] [RFC6474] [RFC6715] [RFC6869]

[RFC8605]

•

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 5

The data model should avoid all ambiguities and make it difficult to make mistakes during

implementation.

Extensions, such as new properties and components, lead to a required update of

this document.

The representation of this data model is defined in the Internet JSON (I-JSON) format ,

which is a strict subset of the JSON data interchange format . Using JSON is mostly a

pragmatic choice: its widespread use makes JSContact easier to adopt, and the availability of

production-ready JSON implementations eliminates a whole category of parser-related

interoperability issues.

•

• MUST NOT

[RFC7493]

[RFC8259]

1.1. Motivation and Relation to vCard, jCard, and xCard

The vCard data format is an interchange format for contacts data between address

book service providers and vendors. However, this format has gone through multiple

specification iterations with only a subset of its deprecated being widely in

use. Consequently, products and services use an internal contact data model that is richer than

what they expose when serializing that information to vCard. In addition, service providers often

use a proprietary JSON representation of contact data in their APIs.

JSContact provides a standard JSON-based data model and representation of contact data as an

alternative to proprietary formats.

At the time of writing this document, several missing features in vCard were brought to the

attention of the authors such as social media contacts, gender pronouns, and others. This

highlights how vCard is not perceived as an evolving format and, consequently, hasn't been

updated for about ten years. JSContact addresses these unmet demands and defines new vCard

properties and parameters to allow interchanging them in both formats.

Two additional documents define the relation of JSContact and vCard: defines new

vCard properties and parameters, and defines how to convert JSContact data from and

to vCard.

The xCard and jCard specifications define alternative representations for

vCard data in XML and JSON formats, respectively. Both explicitly aim to not change the

underlying data model. Accordingly, they are regarded as equal to vCard in the context of this

document.

[RFC6350]

version 3 [RFC2426]

[RFC9554]

[RFC9555]

[RFC6351] [RFC7095]

1.2. Notational Conventions

The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to

be interpreted as described in BCP 14 when, and only when, they appear in

all capitals, as shown here.

The ABNF definitions in this document use the notations of . ABNF rules not defined in

this document are defined in either (such as the ABNF for CRLF, WSP, DQUOTE,

VCHAR, ALPHA, and DIGIT) or .

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD

NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

[RFC5234]

[RFC5234]

[RFC6350]

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 6

1.3. Data Type Notations

This section introduces the notations and terminology used to define data types in JSContact.

The underlying format for JSContact is JSON, so its data types also build on JSON values. The

terms "object" and "array" as well as the four primitive types ("strings", "numbers", "booleans",

and "null") are to be interpreted as described in . All JSContact data

be valid according to the constraints given in . Unless otherwise noted, all

member names in JSON objects and all string values are case-sensitive. Within the context of

JSON objects, the term "key" is synonymous with "member name" as defined in

.

Section 1 of [RFC8259] MUST

I-JSON [RFC7493]

Section 1 of

[RFC8259]

@type: String.

baz: Number (mandatory).

1.3.1. Objects and Properties

JSContact defines data types for contact information such as addresses or names. This

information typically consists of multiple related elements; for example, a personal name and

surname together form a name. These related elements are organized in JSContact objects. A

JSContact object is a JSON object that has the following:

A unique type name registered in the IANA .

One or more object members for which the name and allowed value types are specified.

Such members are called "properties".

One property named @type with a string value that matches the type name of the JSContact

object. In general, this property does not need to be set explicitly as outlined in Section 1.3.4.

The following sections specify how to define JSContact object types. Sections 1.7 and 1.8 then

define the exact requirements for property names.

The next paragraph illustrates how a JSContact object is defined. The names "Foo" and "baz" are

only for demonstration and have no meaning outside the example.

A Foo object has the following properties:

The JSContact type of the object. The value be "Foo", if set.

The baz level of the contact. The value be an integer

greater than 0 and less than 10.

The above paragraph illustrates the following:

It defines a JSContact object type named "Foo" that has two properties, named "@type" and

"baz".

The @type property adheres to the rules outlined in Section 1.3.4. Because of this, it is

neither defined to be mandatory nor optional, as this depends on how the Foo object type is

used.

The baz property value be valid according to the definition of the Number type.

1. "JSContact Types" registry (Section 3.6)

2.

3.

MUST

MUST

•

•

• MUST

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 7

https://rfc-editor.org/rfc/rfc8259#section-1
https://rfc-editor.org/rfc/rfc8259#section-1

The property has one attribute, "mandatory", which specifies that the property be

present for a value of the Foo object type to be valid.

The free-text description of the baz property describes the semantics and further restrictions

for its values.

• MUST

•

String:

Number:

Boolean:

A[B]:

A[]:

A|B:

*:

1.3.2. Type Signatures

Type signatures are given for all JSON values and JSContact definitions in this document. The

following conventions are used:

The JSON string type.

The JSON number type.

The JSON boolean type.

A JSON object where all keys are of type A and all values are of type B.

A JSON array of values of type A.

The value is either of type A or of type B.

The type is undefined (the value could be any type, although permitted values may be

constrained by the context of this value).

Section 1.4 defines common data types, including signed or unsigned integers and dates.

mandatory:

optional:

default:

defaultType:

1.3.3. Property Attributes

Object properties may also have a set of attributes defined along with the type signature. These

have the following meanings:

The property be set for an instance of this object to be valid.

The property can, but need not, be set for an instance of this object to be valid.

This is followed by a JSON value. That value will be used for this property if it is

omitted.

This is followed by the name of a JSContact object type. A property value of

JSContact object type is expected to be of this named type, in case it omits the @type property.

MUST

@type: String.

1.3.4. The @type Property

The JSContact type of a JSON object. It match the type name of the

JSContact object of which the JSON object is an instance of.

The purpose of the @type property is to help implementations identify which JSContact object

type a given JSON object represents. Implementations validate that JSON objects with this

property conform to the specification of the JSContact object type of that name.

MUST

MUST

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 8

In many cases, the @type property value is implied by where its object occurs in JSContact data.

Assuming that both A and B are JSContact object types:

An object that is set as the value for a property with type signature "A" have the @type

property set. If the @type property is not set, then its value is implied to be A by the property

definition.

An object that is set as the value for a property with type signature "A|B (defaultType: A)"

 have the @type property set if it is an instance of A. It have the @type property set

if it is an instance of B. If, instead, the defaultType attribute is not defined, then the @type

property also be set for A.

An object that is not the value of a property, such as the topmost object in JSON data (directly

or as a member of an array), have the @type property set.

• MAY

•

MAY MUST

MUST

•

MUST

1.4. Common Data Types

In addition to the standard JSON data types, a couple of additional data types are common to the

definitions of JSContact objects and properties.

1.4.1. Id

Where "Id" is given as a data type, it means a String of at least 1 and a maximum of 255 octets in

size, and it only contain characters from the "URL and Filename Safe" base64url alphabet,

as defined in , excluding the pad character ("="). This means the allowed

characters are the ASCII alphanumeric characters ("A-Za-z0-9"), hyphen ("-"), and underscore

("_").

In many places in JSContact, a JSON map is used where the map keys are of type Id and the map

values are all the same type of object. This construction represents an unordered set of objects,

with the added advantage that each entry has a name (the corresponding map key). This allows

for more concise patching of objects and, when applicable, for the objects in question to be

referenced from other objects within the JSContact object. The map keys be preserved

across multiple versions of the JSContact object.

Unless otherwise specified for a particular property, there are no uniqueness constraints on an Id

value (other than, of course, the requirement that you cannot have two values with the same key

within a single JSON map). For example, two objects might use the same Ids in

their respective photos properties. Or within the same Card, the same Id could appear in the

emails and phones properties. These situations do not imply any semantic connections among

the objects.

MUST

Section 5 of [RFC4648]

MUST

Card (Section 2)

1.4.2. Int and UnsignedInt

Where "Int" is given as a data type, it means an integer in the range -253+1 <= value <= 2 53-1,

which is the safe range for integers stored in a floating-point double, represented as a JSON

Number.

Where "UnsignedInt" is given as a data type, it means an integer in the range 0 <= value <= 2 53-1

represented as a JSON Number.

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 9

https://rfc-editor.org/rfc/rfc4648#section-5

1.4.3. PatchObject

A PatchObject is of type "String[*]" and represents an unordered set of patches on a JSON object.

Each key is a path represented in a subset of the JSON Pointer format . The paths have

an implicit leading "/", so each key is prefixed with "/" before applying the JSON Pointer

evaluation algorithm.

A patch within a PatchObject is only valid if all the following conditions apply:

The pointer reference inside an array, but if the last reference token in the pointer is an

array index, then the patch value be null. The pointer use "-" as an

array index in any of its reference tokens (i.e., you insert/delete from an array, but

you replace the contents of its existing members. To add or remove members, one needs

to replace the complete array value).

All reference tokens prior to the last (i.e., the value after the final slash) already exist

as values in the object being patched. If the last reference token is an array index, then a

member at this index already exist in the referenced array.

There be two patches in the PatchObject where the pointer of one is the prefix of

the pointer of the other, e.g., "addresses/1/city" and "addresses".

The value for the patch be valid for the property being set (of the correct type and

obeying any other applicable restrictions), or if null, the property be optional.

The value associated with each pointer determines how to apply that patch:

If null, remove the property from the patched object. If the key is not present in the parent,

this is a no-op.

If non-null, set the value given as the value for this property (this may be a replacement or

addition to the object being patched).

A PatchObject does not define its own property. Instead, the @type property

in a patch be handled as any other patched property value.

Implementations reject a PatchObject in its entirety if any of its patches are invalid.

Implementations apply partial patches.

[RFC6901]

1. MAY

MUST NOT MUST NOT

MUST NOT

MAY

2. MUST

MUST

3. MUST NOT

4. MUST

MUST

•

•

@type (Section 1.3.4)

MUST

MUST

MUST NOT

@type: String.

1.4.4. Resource

The Resource data type defines a resource associated with the entity represented by the Card,

identified by a URI . Later in this document, several property definitions refer to the

Resource type as the basis for their property-specific value types. The Resource type defines the

properties that are common to all of them. Property definitions making use of Resource

define additional properties for their value types.

A Resource object has the following properties:

The JSContact type of the object. The value be "Resource"; instead, the

value be the name of a concrete resource type (see Section 2.6).

[RFC3986]

MAY

MUST NOT

MUST

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 10

kind: String (optional).

uri: String (mandatory).

mediaType: String (optional).

contexts: String[Boolean] (optional).

pref: UnsignedInt (optional).

label: String (optional).

The kind of the resource. The allowed values are defined in the property

definition that makes use of the Resource type. Some property definitions may change this

property from being optional to mandatory.

The resource value. This be a URI as defined in

.

The media type of the resource identified by the uri

property value.

The contexts in which to use this resource. Also see Section

1.5.1.

The preference of the resource in relation to other resources. Also

see Section 1.5.3.

A custom label for the value. Also see Section 1.5.2.

MUST Section 3 of

[RFC3986]

[RFC2046]

1.4.5. UTCDateTime

The UTCDateTime type is a String in "date-time" format , with further restrictions that

any letters be in uppercase and the time offset be the character "Z". Fractional

second values be included unless they are non-zero, and they have trailing

zeros to ensure there is only a single representation for each date-time.

For example, "2010-10-10T10:10:10.003Z" is conformant, but "2010-10-10T10:10:10.000Z" is

invalid; the correct encoding is "2010-10-10T10:10:10Z".

[RFC3339]

MUST MUST

MUST NOT MUST NOT

1.5. Common Properties

Most of the properties in this document are specific to a single JSContact object type. Such

properties are defined along with the respective object type. The properties in this section are

common to multiple data types and are defined here to avoid repetition. Note that these

properties only be set for a JSContact object if they are explicitly mentioned as allowable

for this object type.

MUST

contexts: String[Boolean].

1.5.1. contexts

The contexts in which to use the contact information. For example,

someone might have distinct phone numbers for work and private contexts and may set the

desired context on the respective phone number in the property.

This section defines common contexts. Additional contexts may be defined in the properties

or data types that make use of this property. The common context

values are:

private: the contact information that may be used in a private context.

work: the contact information that may be used in a professional context.

phones (Section 2.3.3)

enumerated (Section 1.7.5)

•

•

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 11

https://rfc-editor.org/rfc/rfc3986#section-3

label: String.

1.5.2. label

The labels associated with the contact data. Such labels may be set for phone

numbers, email addresses, and other resources. Typically, these labels are displayed along

with their associated contact data in graphical user interfaces. Note that succinct labels are

best for proper display on small graphical interfaces and screens.

pref: UnsignedInt.

1.5.3. pref

A preference order for contact information. For example, a person may have

two email addresses and prefer to be contacted with one of them.

The value be in the range of 1 to 100. Lower values correspond to a higher level of

preference, with 1 being most preferred. If no preference is set, then the contact information

 be interpreted as being least preferred.

Note that the preference is only defined in relation to contact information of the same type.

For example, the preference orders within emails and phone numbers are independent of

each other.

MUST

MUST

phonetic: String.

phoneticScript: String.

phoneticSystem: String.

1.5.4. phonetic

The following properties define how to pronounce a value in the language indicated in the Card

 property or the language tag of its .

Exemplary uses of these properties are defining how to pronounce Japanese names and

romanizing Mandarin or Cantonese name and address components. The properties are defined

as follows:

The phonetic representation of a value. Any script language subtag in the Card

 property be ignored and not used with the phonetic property. If

this property is set, then at least one of the phoneticScript or phoneticSystem properties that

relate to this value be set.

The script used in the value of the related phonetic property. This

be a valid script subtag as defined in .

The phonetic system used in the related value of the phonetic property.

The values are:

ipa: denotes the .

jyut: denotes the Cantonese romanization system "Jyutping".

piny: denotes the Standard Mandarin romanization system "Hanyu Pinyin".

The relation between the phoneticSystem, phoneticScript, and phonetic properties is type-

specific. This specification defines this relation in the and

 object types, respectively.

language (Section 2.1.5) localizations (Section 2.7.1)

language (Section 2.1.5) MUST

MUST

MUST

Section 2.2.3 of [RFC5646]

enumerated (Section 1.7.5)

• International Phonetic Alphabet [IPA]

•

•

Name (Section 2.2.1.1) Address (Section

2.5.1.1)

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 12

https://rfc-editor.org/rfc/rfc5646#section-2.2.3

The following example illustrates the phonetic property for a :name (Section 2.2.1)

Figure 1: Example of a phonetic Property for the Name "John Smith" as Pronounced in the USA

"name": {

 "components": [{

 "kind": "given",

 "value": "John",

 "phonetic": "/ˈdʒɑːn/"
 }, {

 "kind": "surname",

 "value": "Smith",

 "phonetic": "/smɪθ/"
 }],

 "phoneticSystem": "ipa"

}

1.6. Internationalization

JSContact aims to be used for international contacts and address book data. Notably, text values

such as names and addresses are likely to cover a wide range of languages and cultures. This

section describes internationalization for free-form text values as well as Uniform Resource

Identifiers (URIs).

1.6.1. Free-Form Text

Properties having free-form text values contain any valid sequence of Unicode characters

encoded as a JSON string. Such values can contain unidirectional left-to-right and right-to-left

text, as well as bidirectional text using Unicode Directional Formatting Characters as described in

Section 2 of . Implementations setting bidirectional text make sure that each

property value complies with the requirements of the Unicode Bidirectional Algorithm.

Implementations assume that text values of adjacent properties are processed or

displayed as a combined string; for example, the values of a given name component and a

surname component may or may not be rendered together.

1.6.2. URIs

Several properties require their string value to be a URI as defined in .

Implementations make sure to use proper percent-encoding for URIs that cannot be

represented using unreserved URI characters. defines how to convert

Internationalized Resource Identifiers to URIs. JSContact makes no recommendation on how to

display URIs, but the WHATWG URL Living Standard (see "Internationalization and special

characters" (Section 4.8.3) of) provides guidance for URLs found in the context

of a web browser.

MAY

[UBiDi] MUST

MUST NOT

[RFC3986]

MUST

Section 3.1 of [RFC3987]

[WHATWG-URL]

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 13

https://rfc-editor.org/rfc/rfc3987#section-3.1

1.7. Validating JSContact

This specification distinguishes between three kinds of properties regarding validation: IANA-

registered properties and unknown properties, which are defined in this section, and vendor-

specific properties, which are defined in Section 1.8.1. A JSContact object is invalid if any of its

properties are invalid.

This document defines whether each property is mandatory or optional. A mandatory property

 be present for a JSContact object to be valid. An optional property does not need to be

present. The values of both required and optional properties adhere to the data type and

definition of that property.

MUST

MUST

1.7.1. Case-Sensitivity

All property names, object type names, and enumerated values are case-sensitive, unless

explicitly stated otherwise in their definitions. Implementations handle a JSContact object

as invalid if a type name, property name, or enumerated value only differs in case from one

defined for any JSContact version known to that implementation. This applies regardless of what

JSContact version the Card object defines in its property. Section 1.7.4

defines how to handle unknown properties.

MUST

version (Section 2.1.2)

1.7.2. IANA-Registered Properties

An IANA-registered property is any property that has been registered according to the IANA

property registry rules as outlined in Section 3. All properties defined in this specification,

including their object value types and enumerated values, are registered at IANA.

Implementations validate IANA-registered properties in JSContact data, unless they are

unknown to the implementation (Section 1.7.4). They reject invalid IANA-registered

properties. A property is invalid if its name matches the name of an IANA-registered property

but the value violates its definition according to the JSContact specification version defined in the

Card property.

IANA-registered property names contain ASCII control characters (U+0000 to U+001F,

U+007F), the COLON (U+003A), or the QUOTATION MARK (U+0022). They only contain ASCII

alphanumeric characters that match the ALPHA and DIGIT rules defined in

 or the COMMERCIAL AT (U+0040) character. IANA-registered property names be

notated in lower camel case.

MUST

MUST

version (Section 2.1.2)

MUST NOT

MUST

Appendix B.1 of

[RFC5234] MUST

1.7.3. Reserved Properties

IANA-registered properties can be reserved (Section 3.3). Implementations set

properties having a reserved name in JSContact objects for which this property is reserved or all

objects if the property context in the registry is "not applicable". Reserved properties have no

type, and their type signature is "not applicable". Any JSContact object including a property that

is reserved in context of this object be considered invalid.

This document reserves one property as described below.

MUST NOT

MUST

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 14

https://rfc-editor.org/rfc/rfc5234#appendix-B.1

extra: not applicable.

1.7.3.1. extra

The reserved property "extra" provides implementors with a property

name that is certain to never occur as a property in any JSContact object. Implementations

might want to map unknown or vendor-specific properties to a variable with this name, but

this is implementation-specific.

1.7.4. Unknown Properties

Implementations may encounter JSContact data where a property name is unknown to that

implementation but the name adheres to the syntactic restrictions of IANA-registered property

names. Implementations make sure that such a name does not violate the case-sensitivity

rules defined in Section 1.7.1. If the property name is valid, then implementations

treat such properties as invalid. Instead, they preserve them in the JSContact object.

Implementations that create or update JSContact data only set IANA-registered properties

or vendor-specific properties. Preserving properties that are unknown to the implementation is

to allow applications and services to interoperate without data loss, even if not all of them

implement the same set of JSContact extensions.

MUST

MUST NOT

MUST

MUST

1.7.5. Enumerated Values

Several properties in this document restrict their allowed values to a list of String values. These

values are case-sensitive. If not noted otherwise for a specific property, the initial list of values

for such properties is registered at IANA in the .

Implementations only set IANA-registered or values for such

properties.

"JSContact Enum Values" registry (Section 3.7)

MUST vendor-specific (Section 1.8.2)

1.8. Vendor-Specific Extensions

Vendors may extend properties and values for experimentation or to store contacts data that is

only useful for a single service or application. Such extensions are not meant for interoperation.

If, instead, interoperation is desired, vendors are strongly encouraged to define and register new

properties, types, and values at IANA as defined in Section 3. Section 1.7.2 defines the naming

conventions for IANA-registered elements.

1.8.1. Vendor-Specific Properties

Vendor-specific property names start with a vendor-specific prefix followed by a name, as

produced by the "v-extension" ABNF below. The prefix and name together form the property

name. The vendor-specific prefix be a domain name under control of the service or

application that sets the property, but it need not resolve in the Domain Name System

. The prefix "ietf.org" and its subdomain names are reserved for IETF specifications.

The name contain the TILDE (U+007E) and SOLIDUS (U+002F) characters, as these

require special escaping when encoding a JSON Pointer for that property.

MUST

MUST

[RFC1034]

[RFC1035]

MUST NOT

[RFC6901]

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 15

Vendor-specific properties be set in any JSContact object. Implementations preserve

vendor-specific properties in JSContact data, irrespective if they know their use. They

reject the property value as invalid, unless they are in control of the vendor-specific property as

outlined in the above paragraph.

The ABNF rule "v-extension" formally defines valid vendor-specific property names. Note that the

vendor prefix allows for more values than Internationalized Domain Names (IDNs) ;

therefore, JSContact implementations can simply validate property names without implementing

the full set of rules that apply to domain names.

The value of vendor-specific properties can be any valid JSON value, and naming restrictions do

not apply to such values. Specifically, if the property value is a JSON object, then the keys of such

objects need not be named as vendor-specific properties, as illustrated in Figure 3:

MAY MUST

MUST NOT

[RFC9499]

Figure 2: ABNF Rules for Vendor-Specific Property Names

v-extension = v-prefix ":" v-name

v-prefix = v-label *("." v-label)

v-label = alnum-int / alnum-int *(alnum-int / "-") alnum-int

alnum-int = ALPHA / DIGIT / NON-ASCII

 ; see RFC 6350, Section 3.3

v-name = 1*(WSP / "!" / %x23-2e / %x30-7d / NON-ASCII)

 ; any characters except CTLs, DQUOTE, SOLIDUS, and TILDE

Figure 3: Examples of Vendor-Specific Properties

"example.com:foo": "bar",

"example.com:foo2": {

 "bar": "baz"

}

1.8.2. Vendor-Specific Values

Some JSContact IANA-registered properties allow their values to be vendor-specific. One such

example is the property, which enumerates its standard values but also

allows for arbitrary vendor-specific values. Such vendor-specific values be valid "v-

extension" values as defined in Section 1.8.1. The example in Figure 4 illustrates this:

Vendors are strongly encouraged to specify a new standard value once a vendor-specific one

turns out to also be useful for other systems.

"kind" (Section 2.1.4)

MUST

Figure 4: Example of a Vendor-Specific Value

"kind": "example.com:baz"

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 16

1.9. Versioning

Every instance of a JSContact indicates which JSContact version its IANA-

registered properties and values are based on. The version is indicated both in the

 property within the Card and in the parameter of the

JSContact media type. All IANA-registered elements indicate the version at which they were

introduced or obsoleted.

A JSContact version consists of a major and minor version.

Differing major version values indicate substantial differences in JSContact semantics and

format. Implementations be prepared for property definitions and other JSContact

elements that differ in a backwards-incompatible manner.

Differing minor version values indicate additions that enrich JSContact data but do not introduce

backwards-incompatible changes. Typically, these are new property enum values or properties

with a narrow semantic scope. A new minor version require implementations to

change their processing of JSContact data. Changing the major version number resets the minor

version number to zero.

Card (Section 2)

version

(Section 2.1.2) version (Section 3.1)

MUST

MUST NOT

1.9.1. Version Format and Requirements

A version value starts with the numeric major version, followed by the FULL STOP character

(U+002E), followed by the numeric minor version. Later versions are numerically higher than

former versions, with the major version being more significant than the minor version. A

version value is produced by the following ABNF:

Figure 5: The ABNF for JSContact Version Values

jsversion = 1*DIGIT "." 1*DIGIT

1.9.2. Current Version

This specification registers JSContact version value "1.0" (Table 1).

2. Card

This section defines the JSContact object type Card. A Card stores contact information, typically

that of a person, organization, or company.

Its media type is defined in Section 3.1.

Figure 6 shows a basic Card for the person "John Doe". As the object is the topmost object in the

JSON data, it has the @type property set according to the rules defined in Section 1.3.4.

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 17

Figure 6: Example of a Basic Card

{

 "@type": "Card",

 "version": "1.0",

 "uid": "22B2C7DF-9120-4969-8460-05956FE6B065",

 "kind": "individual",

 "name": {

 "components": [

 { "kind": "given", "value": "John" },

 { "kind": "surname", "value": "Doe" }

],

 "isOrdered": true

 }

}

2.1. Metadata Properties

This section defines properties about this instance of a Card such as its unique identifier, its

creation date, and how it relates to other Cards and other metadata information.

@type: String (mandatory).

2.1.1. @type

The JSContact type of the Card object. The value be "Card". MUST

version: String (mandatory).

2.1.2. version

The JSContact version of this Card. The value be one of the

IANA-registered JSContact Version values for the version property. Also see Section 1.9.2.

MUST

Figure 7: Example for the version Property

"version": "1.0"

created: UTCDateTime (optional).

2.1.3. created

The date and time when the Card was created.

Figure 8: Example for the created Property

"created": "2022-09-30T14:35:10Z"

kind: String (optional; default: "individual").

2.1.4. kind

The kind of the entity the Card represents.

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 18

The values are:

individual: a single person

group: a group of people or entities

org: an organization

location: a named location

device: a device such as an appliance, a computer, or a network element

application: a software application

enumerated (Section 1.7.5)

•

•

•

•

•

•

Figure 9: Example for the kind Property

"kind": "individual"

language: String (optional).

2.1.5. language

The language tag, as defined in , that best describes the

language used for text in the Card, optionally including additional information such as the

script. Note that values be localized in the property.

[RFC5646]

MAY localizations (Section 2.7.1)

Figure 10: Example for the language Property

"language": "de-AT"

members: String[Boolean] (optional).

2.1.6. members

The set of Cards that are members of this group Card.

Each key in the set is the uid property value of the member, and each boolean value be

"true". If this property is set, then the value of the kind property be "group".

The opposite is not true. A group Card will usually contain the members property to specify

the members of the group, but it is not required to. A group Card without the members

property can be considered an abstract grouping or one whose members are known

empirically (e.g., "IETF Participants").

MUST

MUST

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 19

Figure 11: Example for the members Property

"kind": "group",

"name": {

 "full": "The Doe family"

},

"uid": "urn:uuid:ab4310aa-fa43-11e9-8f0b-362b9e155667",

"members": {

 "urn:uuid:03a0e51f-d1aa-4385-8a53-e29025acd8af": true,

 "urn:uuid:b8767877-b4a1-4c70-9acc-505d3819e519": true

}

prodId: String (optional).

2.1.7. prodId

The identifier for the product that created the Card. If set, the value

 be at least one character long.MUST

Figure 12: Example for the prodId Property

"prodId": "ACME Contacts App version 1.23.5"

relatedTo: String[Relation] (optional).

2.1.8. relatedTo

The set of Card objects that relate to the Card. The value is

a map, where each key is the uid property value of the related Card, and the value defines the

relation.

The Relation object has the following properties:

@type: String.

The JSContact type of the object. The value be "Relation", if set.

relation: String[Boolean] (optional; default: empty Object).

The relationship of the related Card to the Card, defined as a set of relation types. The keys in

the set define the relation type; the values for each key in the set be "true". The

relationship between the two objects is undefined if the set is empty.

The initial list of relation types matches the IANA-registered

 parameter values of the vCard RELATED property ():

acquaintance

agent

child

co-resident

co-worker

MUST

MUST

enumerated (Section 1.7.5) TYPE

[IANA-vCard] Section 6.6.6 of [RFC6350]

•

•

•

•

•

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 20

https://rfc-editor.org/rfc/rfc6350#section-6.6.6

colleague

contact

crush

date

emergency

friend

kin

me

met

muse

neighbor

parent

sibling

spouse

sweetheart

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Figure 13: Example for the relatedTo Property

"relatedTo": {

 "urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6": {

 "relation": {

 "friend": true

 }

 },

 "8cacdfb7d1ffdb59@example.com": {

 "relation": {}

 }

}

uid: String (mandatory).

2.1.9. uid

An identifier that associates the object as the same across different

systems, address books, and views. The value be a URN , but for

compatibility with , it also be a URI or free-text value. The value of

the URN be in the "uuid" namespace . describes multiple

versions of Universally Unique IDentifiers (UUIDs); UUID version 4 is .

SHOULD [RFC8141]

[RFC6350] MAY [RFC3986]

SHOULD [RFC9562] [RFC9562]

RECOMMENDED

Figure 14: Example for the uid Property

"uid": "urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6"

2.1.10. updated

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 21

updated: UTCDateTime (optional). The date and time when the data in the Card was last

modified.

Figure 15: Example for the updated Property

"updated": "2021-10-31T22:27:10Z"

2.2. Name and Organization Properties

This section defines properties that name the entity represented by the Card and its related

organizations and roles. It also describes how to refer to the entity represented by the Card in

spoken or written language.

name: Name (optional).

2.2.1. name

The name of the entity represented by the Card. This can be any type of

name, e.g., it can, but need not, be the legal name of a person.

@type: String.

components: NameComponent[] (optional).

2.2.1.1. Name Object

A Name object has the following properties:

The JSContact type of the object. The value be "Name", if set.

The making up this

name. The components property be set if the full property is not set; otherwise, it

 be set. The component list have at least one entry having a different kind

property value than "separator".

Name components be ordered such that when their values are joined as a String, a

valid full name of the entity is produced. If so, implementations set the isOrdered

property value to "true".

If the name components are ordered, then the defaultSeparator property and name

components with the kind property value set to "separator" give guidance on what characters

to insert between components, but implementations are free to choose any others. When

lacking a separator, inserting a single space character in between the name component values

is a good choice.

If, instead, the name components follow no particular order, then the isOrdered property

value be "false", the components property contain a NameComponent with

the kind property value set to "separator", and the defaultSeparator property be

set.

Figure 16 shows an example for the name "Vincent van Gogh". Note how a single name

component value may consist of multiple words.

MUST

components (Section 2.2.1.2)

MUST

SHOULD MUST

SHOULD

MUST

MUST MUST NOT

MUST NOT

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 22

isOrdered: Boolean (optional; default: "false").

defaultSeparator: String (optional).

full: String (optional).

sortAs: String[String] (optional).

Figure 17 illustrates a name with a second surname such as a Spanish name. Additional

examples are shown in Figures 19 and 39.

The indicator if the name components in the

components property are ordered.

The default separator to insert between name component

values when concatenating all name component values to a single String. Also see the

definition of the kind property value "separator" for the

object. The defaultSeparator property be set if the Name isOrdered property value

is "false" or if the components property is not set.

The full name representation of the Name. The full property be set

if the components property is not set.

The value to lexicographically sort the name in relation to

other names when compared by a name component type. The keys in the map define the

name component type. The values define the verbatim string to compare when sorting by the

name component type. Absence of a key indicates that the name component type

Figure 16: Example of a Surname with Two Words

"name": {

 "components": [

 { "kind": "given", "value": "Vincent" },

 { "kind": "surname", "value": "van Gogh" }

],

 "isOrdered": true

}

Figure 17: Example of a Second Surname

"name": {

 "components": [

 { "kind": "given", "value": "Diego" },

 { "kind": "surname", "value": "Rivera" },

 { "kind": "surname2", "value": "Barrientos" }

],

 "isOrdered": true

}

NameComponent (Section 2.2.1.2)

MUST NOT

MUST

Figure 18: Example for the full Property

"full": "Mr. John Q. Public, Esq."

SHOULD

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 23

phoneticScript: String (optional).

phoneticSystem: String (optional).

 be considered during sort. Sorting by that missing name component type, or if the sortAs

property is not set, is implementation-specific. The sortAs property be set if the

components property is not set.

Each key in the map be a valid name component type value as defined for the kind

property of the NameComponent object (see below). For each key in the map, there exist

at least one NameComponent object that has the type in the components property of the

name.

Figure 19 illustrates the use of the sortAs property. The property value indicates that the

middle name followed by both surnames should be used when sorting the name by surname.

The absence of "middle" indicates that the middle name on its own should be disregarded

during sort. Even though the name only contains one name component for the given name,

the sortAs property still explicitly defines how to sort by the given name; otherwise, sorting by

it would be undefined.

The script used in the value of the NameComponent phonetic

property. See Section 1.5.4 for more information and Figure 20 for an example.

The phonetic system used in the NameComponent phonetic

property. See Section 1.5.4 for more information and Figure 20 for an example.

NOT

MUST NOT

MUST

MUST

Figure 19: Example for the sortAs Property

"name": {

 "components": [

 { "kind": "given", "value": "Robert" },

 { "kind": "given2", "value": "Pau" },

 { "kind": "surname", "value": "Shou Chang" }

],

 "sortAs": {

 "surname": "Pau Shou Chang",

 "given": "Robert"

 },

 "isOrdered": true

}

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 24

Figure 20: Example for the phonetic and localizations Properties

{

 "@type": "Card",

 "language": "zh-Hant",

 "name": {

 "components": [

 { "kind": "surname", "value": "孫" },

 { "kind": "given", "value": "中山" },

 { "kind": "given2", "value": "文" },

 { "kind": "given2", "value": "逸仙" }

]

 },

 "localizations": {

 "yue": {

 "name/phoneticSystem": "jyut",

 "name/phoneticScript": "Latn",

 "name/components/0/phonetic": "syun1",

 "name/components/1/phonetic": "zung1saan1",

 "name/components/2/phonetic": "man4",

 "name/components/3/phonetic": "jat6sin1"

 }

 }

}

@type: String.

value: String (mandatory).

kind: String (mandatory).

2.2.1.2. NameComponent

A NameComponent object has the following properties:

The JSContact type of the object. The value be "NameComponent", if set.

The value of the name component. This can be composed of one or

multiple words such as "Poe" or "van Gogh".

The kind of the name component. The

values are:

title: an honorific title or prefix, e.g., "Mr.", "Ms.", or "Dr.".

given: a given name, also known as "first name" or "personal name".

given2: a name that appears between the given and surname such as a middle name or

patronymic name.

surname: a surname, also known as "last name" or "family name".

surname2: a secondary surname (used in some cultures), also known as "maternal

surname".

credential: a credential, also known as "accreditation qualifier" or "honorific suffix", e.g.,

"B.A.", "Esq.".

generation: a generation marker or qualifier, e.g., "Jr." or "III".

MUST

enumerated (Section 1.7.5)

•

•

•

•

•

•

•

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 25

phonetic: String (optional).

separator: a formatting separator between two ordered name non-separator components.

The value property of the component includes the verbatim separator, for example, a

hyphen character or even an empty string. This value has higher precedence than the

defaultSeparator property of the Name. Implementations insert two

consecutive separator components; instead, they insert a single separator

component with the combined value. This component kind be set if the Name

isOrdered property value is "false".

The pronunciation of the name component. If this property is set,

then at least one of the Name object properties, phoneticSystem or phoneticScript, be

set. Also see Section 1.5.4.

•

MUST NOT

SHOULD

MUST NOT

MUST

nicknames: Id[Nickname] (optional).

@type: String.

name: String (mandatory).

contexts: String[Boolean] (optional).

pref: UnsignedInt (optional).

2.2.2. nicknames

The nicknames of the entity represented by the Card.

A Nickname object has the following properties:

The JSContact type of the object. The value be "Nickname", if set.

The nickname.

The contexts in which to use the nickname. Also see

Section 1.5.1.

The preference of the nickname in relation to other nicknames.

Also see Section 1.5.3.

MUST

Figure 21: Example for the nicknames Property

"nicknames": {

 "k391": {

 "name": "Johnny"

 }

}

organizations: Id[Organization] (optional).

@type: String.

name: String (optional).

2.2.3. organizations

The company or organization names and units

associated with the Card.

An Organization object has the following properties, of which at least one of the name and units

properties be set:

The JSContact type of the object. The value be "Organization", if set.

The name of the organization.

MUST

MUST

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 26

units: OrgUnit[] (optional).

sortAs: String (optional).

contexts: String[Boolean] (optional).

@type: String.

name: String (mandatory).

sortAs: String (optional).

A list of organizational units, ordered as descending by hierarchy

(e.g., a geographic or functional division sorts before a department within that division). If set,

the list contain at least one entry.

The value to lexicographically sort the organization in relation to

other organizations when compared by name. The value defines the verbatim string value to

compare. In absence of this property, the name property value be used for comparison.

The contexts in which association with the organization

applies. For example, membership in a choir may only apply in a private context. Also see

Section 1.5.1.

An OrgUnit object has the following properties:

The JSContact type of the object. The value be "OrgUnit", if set.

The name of the organizational unit.

The value to lexicographically sort the organizational unit in relation

to other organizational units of the same level when compared by name. The level is defined

by the array index of the organizational unit in the units property of the Organization object.

The property value defines the verbatim string value to compare. In absence of this property,

the name property value be used for comparison.

MUST

MAY

MUST

MAY

Figure 22: Example for the organizations Property

"organizations": {

 "o1": {

 "name": "ABC, Inc.",

 "units": [

 { "name": "North American Division" },

 { "name": "Marketing" }

],

 "sortAs": "ABC"

 }

}

speakToAs: SpeakToAs (optional).

@type: String.

2.2.4. speakToAs

The information that directs how to address, speak to, or

refer to the entity that is represented by the Card.

A SpeakToAs object has the following properties, of which at least one of the grammaticalGender

and pronouns properties be set:

The JSContact type of the object. The value be "SpeakToAs", if set.

MUST

MUST

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 27

grammaticalGender: String (optional).

pronouns: Id[Pronouns] (optional).

@type: String.

pronouns: String (mandatory).

contexts: String[Boolean] (optional).

pref: UnsignedInt (optional).

The grammatical gender to use in salutations and other

grammatical constructs. For example, the German language distinguishes by grammatical

gender in salutations such as "Sehr geehrte" (feminine) and "Sehr geehrter" (masculine). The

 values are:

animate

common

feminine

inanimate

masculine

neuter

Note that the grammatical gender does not allow inferring the gender identities or assigned

sex of the contact.

The pronouns that the contact chooses to use for

themselves.

A Pronouns object has the following properties:

The JSContact type of the object. The value be "Pronouns", if set.

The pronouns. Any value or form is allowed. Examples in

English include "she/her" and "they/them/theirs". The value be overridden in the

 property.

The contexts in which to use the pronouns. Also see

Section 1.5.1.

The preference of the pronouns in relation to other pronouns in

the same context. Also see Section 1.5.3.

enumerated (Section 1.7.5)

•

•

•

•

•

•

MUST

MAY

localizations (Section 2.7.1)

Figure 23: Example for the speakToAs Property

"speakToAs": {

 "grammaticalGender": "neuter",

 "pronouns": {

 "k19": {

 "pronouns": "they/them",

 "pref": 2

 },

 "k32": {

 "pronouns": "xe/xir",

 "pref": 1

 }

 }

}

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 28

titles: Id[Title] (optional).

@type: String.

name: String (mandatory).

kind: String (optional; default: "title").

organizationId: Id (optional).

2.2.5. titles

The job titles or functional positions of the entity represented by the

Card.

A Title object has the following properties:

The JSContact type of the object. The value be "Title", if set.

The title or role name of the entity represented by the Card.

The organizational or situational kind of the title. Some

organizations and individuals distinguish between titles as organizational positions and roles

as more temporary assignments such as in project management.

The values are:

title

role

The identifier of the organization in which this title is held.

MUST

enumerated (Section 1.7.5)

•

•

Figure 24: Example for the titles Property

"titles": {

 "le9": {

 "kind": "title",

 "name": "Research Scientist"

 },

 "k2": {

 "kind": "role",

 "name": "Project Leader",

 "organizationId": "o2"

 }

},

"organizations": {

 "o2": {

 "name": "ABC, Inc."

 }

}

2.3. Contact Properties

This section defines how properties contact the entity represented by the Card.

emails: Id[EmailAddress] (optional).

2.3.1. emails

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 29

@type: String.

address: String (mandatory).

contexts: String[Boolean] (optional).

pref: UnsignedInt (optional).

label: String (optional).

The email addresses in which to contact the entity represented by the Card.

An EmailAddress object has the following properties:

The JSContact type of the object. The value be "EmailAddress", if set.

The email address. This be an addr-spec value as defined in

.

The contexts in which to use this email address. Also see

Section 1.5.1.

The preference of the email address in relation to other email

addresses. Also see Section 1.5.3.

A custom label for the value. Also see Section 1.5.2.

MUST

MUST

Section 3.4.1 of [RFC5322]

Figure 25: Example for the emails Property

"emails": {

 "e1": {

 "contexts": {

 "work": true

 },

 "address": "jqpublic@xyz.example.com"

 },

 "e2": {

 "address": "jane_doe@example.com",

 "pref": 1

 }

}

onlineServices: Id[OnlineService] (optional).

@type: String.

service: String (optional).

2.3.2. onlineServices

The online services that are associated with the

entity represented by the Card. This can be messaging services, social media profiles, and

other.

An OnlineService object has the following properties, of which at least the uri or user property

 be set:

The JSContact type of the object. The value be "OnlineService", if set.

The name of the online service or protocol. The name be

capitalized the same as on the service's website, app, or publishing material, but names

be considered equal if they match case-insensitively. Examples are "GitHub", "kakao", and

"Mastodon".

MUST

MUST

MAY

MUST

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 30

https://rfc-editor.org/rfc/rfc5322#section-3.4.1

uri: String (optional).

user: String (optional).

contexts: String[Boolean] (optional).

pref: UnsignedInt (optional).

label: String (optional).

The identifier for the entity represented by the Card at the online service.

This be a URI as defined in .

The name the entity represented by the Card at the online service. Any

free-text value is allowed. The service property be set.

The contexts in which to use the service. Also see Section

1.5.1.

The preference of the service in relation to other services. Also see

Section 1.5.3.

A custom label for the value. Also see Section 1.5.2.

MUST Section 3 of [RFC3986]

SHOULD

Figure 26: Example for the onlineServices Property

"onlineServices": {

 "x1": {

 "uri": "xmpp:alice@example.com"

 },

 "x2": {

 "service": "Mastodon",

 "user": "@alice@example2.com",

 "uri": "https://example2.com/@alice"

 }

}

phones: Id[Phone] (optional).

@type: String.

number: String (mandatory).

features: String[Boolean] (optional).

2.3.3. phones

The phone numbers by which to contact the entity represented by

the Card.

Phone object has the following properties:

The JSContact type of the object. The value be "Phone", if set.

The phone number as either a URI or free text. Typical URI

schemes are "tel" or "sip" , but any URI scheme is allowed.

The set of contact features that the phone number may be

used for. The set is represented as an object, with each key being a method type. The boolean

value be "true". The method type values are:

mobile: this number is for a mobile phone.

voice: this number supports calling by voice.

text: this number supports text messages (SMS).

video: this number supports video conferencing.

main-number: this number is a main phone number such as the number of the front desk

at a company, as opposed to a direct-dial number of an individual employee.

MUST

[RFC3966] [RFC3261]

MUST enumerated (Section 1.7.5)

•

•

•

•

•

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 31

https://rfc-editor.org/rfc/rfc3986#section-3

contexts: String[Boolean] (optional).

pref: UnsignedInt (optional).

label: String (optional).

textphone: this number is for a device for people with hearing or speech difficulties.

fax: this number supports sending faxes.

pager: this number is for a pager or beeper.

The contexts in which to use the number. Also see Section

1.5.1.

The preference of the number in relation to other numbers. Also

see Section 1.5.3.

A custom label for the value. Also see Section 1.5.2.

•

•

•

Figure 27: Example for the phones Property

"phones": {

 "tel0": {

 "contexts": {

 "private": true

 },

 "features": {

 "voice": true

 },

 "number": "tel:+1-555-555-5555;ext=5555",

 "pref": 1

 },

 "tel3": {

 "contexts": {

 "work": true

 },

 "number": "tel:+1-201-555-0123"

 }

}

preferredLanguages : Id[LanguagePref] (optional).

@type: String.

language: String (mandatory).

contexts: String[Boolean] (optional).

pref: UnsignedInt (optional).

2.3.4. preferredLanguages

The preferred languages for contacting the

entity associated with the Card.

A LanguagePref object has the following properties:

The JSContact type of the object. The value be "LanguagePref", if set.

The preferred language. This be a language tag as defined

in .

The contexts in which to use the language. Also see Section

1.5.1.

The preference of the language in relation to other languages of

the same contexts. Also see Section 1.5.3.

MUST

MUST

[RFC5646]

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 32

Figure 28: Example for the preferredLanguages Property

"preferredLanguages": {

 "l1": {

 "language": "en",

 "contexts": {

 "work": true

 },

 "pref": 1

 },

 "l2": {

 "language": "fr",

 "contexts": {

 "work": true

 },

 "pref": 2

 },

 "l3": {

 "language": "fr",

 "contexts": {

 "private": true

 }

 }

}

2.4. Calendaring and Scheduling Properties

This section defines properties for scheduling calendar events with the entity represented by the

Card.

calendars: Id[Calendar] (optional).

2.4.1. calendars

The calendaring resources of the entity represented by the

Card, such as to look up free-busy information.

A Calendar object has all properties of the data type, with the following

additional definitions:

The @type property value be "Calendar", if set.

The kind property is mandatory. Its values are:

calendar: The resource is a calendar that contains entries such as calendar events or tasks.

freeBusy: The resource allows for free-busy lookups, for example, to schedule group

events.

Resource (Section 1.4.4)

• MUST

• enumerated (Section 1.7.5)

◦

◦

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 33

Figure 29: Example for the calendars Property

"calendars": {

 "calA": {

 "kind": "calendar",

 "uri": "webcal://calendar.example.com/calA.ics"

 },

 "project-a": {

 "kind": "freeBusy",

 "uri": "https://calendar.example.com/busy/project-a"

 }

}

schedulingAddresses: Id[SchedulingAddress] (optional).

@type: String.

uri: String (mandatory).

contexts: String[Boolean] (optional).

pref: UnsignedInt (optional).

label: String (optional).

2.4.2. schedulingAddresses

The scheduling addresses by which the

entity may receive calendar scheduling invitations.

A SchedulingAddress object has the following properties:

The JSContact type of the object. The value be "SchedulingAddress", if set.

The address to use for calendar scheduling with the contact. This

be a URI as defined in .

The contexts in which to use the scheduling address. Also

see Section 1.5.1.

The preference of the scheduling address in relation to other

scheduling addresses. Also see Section 1.5.3.

A custom label for the scheduling address. Also see Section 1.5.2.

MUST

MUST

Section 3 of [RFC3986]

Figure 30: Example for the schedulingAddresses Property

"schedulingAddresses": {

 "sched1": {

 "uri": "mailto:janedoe@example.com"

 }

}

2.5. Address and Location Properties

This section defines properties for postal addresses and geographical locations associated with

the entity represented by the Card.

2.5.1. addresses

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 34

https://rfc-editor.org/rfc/rfc3986#section-3

addresses: Id[Address] (optional). The addresses of the entity represented by the Card, such as

postal addresses or geographic locations.

@type: String.

components: AddressComponent[] (optional).

isOrdered: Boolean (optional; default: "false").

countryCode: String (optional).

coordinates: String (optional).

timeZone: String (optional).

contexts: String[Boolean] (optional).

full: String (optional).

2.5.1.1. Address Object

An Address object has the following properties, of which at least one of components, coordinates,

countryCode, full or timeZone be set:

The JSContact type of the object. The value be "Address", if set.

The that make up

the address. The component list have at least one entry that has a kind property value

other than "separator".

Address components be ordered such that when their values are joined as a String, a

valid full address is produced. If so, implementations set the isOrdered property value

to "true".

If the address components are ordered, then the defaultSeparator property and address

components with the kind property value set to "separator" give guidance on what characters

to insert between components, but implementations are free to choose any others. When

lacking a separator, inserting a single space character in between address component values

is a good choice.

If, instead, the address components follow no particular order, then the isOrdered property

value be "false", the components property contain an AddressComponent

with the kind property value set to "separator", and the defaultSeparator property

be set.

The indicator if the address components in the

components property are ordered.

The Alpha-2 country code .

A "geo:" URI for the address.

The time zone in which the address is located. This be a time

zone name registered in the IANA .

The contexts in which to use this address. The boolean

value be "true". In addition to the common contexts (Section 1.5.1), allowed key values

are:

billing: an address to be used for billing.

delivery: an address to be used for delivering physical items.

The full address, including street, region, or country. The purpose of this

property is to define an address, even if the individual address components are not known.

MUST

MUST

components (Section 2.5.1.2)

MUST

SHOULD

MUST

MUST MUST NOT

MUST NOT

[ISO.3166-1]

[RFC5870]

MUST

Time Zone Database [IANA-TZ]

MUST

•

•

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 35

defaultSeparator: String (optional).

pref: UnsignedInt (optional).

phoneticScript: String (optional).

phoneticSystem: String (optional).

The default separator to insert between address component

values when concatenating all address component values to a single String. Also see the

definition of the kind property value "separator" for the

object. The defaultSeparator property be set if the Address isOrdered property

value is "false" or if the components property is not set.

The preference of the address in relation to other addresses. Also

see Section 1.5.3.

The script used in the value of the AddressComponent

phonetic property. Also see Section 1.5.4.

The phonetic system used in the AddressComponent

phonetic property. Also see Section 1.5.4.

The following example illustrates the use of the address property for "54321 Oak St, Reston, CA

20190, USA". Additional examples are shown in Section 2.5.1.3.

AddressComponent (Section 2.5.1.2)

MUST NOT

Figure 31: Example of an Address in the USA

"addresses": {

 "k23": {

 "contexts": {

 "work": true

 },

 "components": [

 { "kind": "number", "value": "54321" },

 { "kind": "separator", "value": " " },

 { "kind": "name", "value": "Oak St" },

 { "kind": "locality", "value": "Reston" },

 { "kind": "region", "value": "VA" },

 { "kind": "separator", "value": " " },

 { "kind": "postcode", "value": "20190" },

 { "kind": "country", "value": "USA" }

],

 "countryCode": "US",

 "defaultSeparator": ", ",

 "isOrdered": true

 }

}

@type: String.

value: String (mandatory).

2.5.1.2. AddressComponent Object

An AddressComponent object has the following properties:

The JSContact type of the object. The value be "AddressComponent", if set.

The value of the address component.

MUST

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 36

kind: String (mandatory).

phonetic: String (optional).

The kind of the address component. The

values are:

room: the room, suite number, or identifier.

apartment: the extension designation such as the apartment number, unit, or box

number.

floor: the floor or level the address is located on.

building: the building, tower, or condominium the address is located in.

number: the street number, e.g., "123". This value is not restricted to numeric values and

can include any value such as number ranges ("112-10"), grid style ("39.2 RD"),

alphanumerics ("N6W23001"), or fractionals ("123 1/2").

name: the street name.

block: the block name or number.

subdistrict: the subdistrict, ward, or other subunit of a district.

district: the district name.

locality: the municipality, city, town, village, post town, or other locality.

region: the administrative area such as province, state, prefecture, county, or canton.

postcode: the postal code, post code, ZIP code, or other short code associated with the

address by the relevant country's postal system.

country: the country name.

direction: the cardinal direction or quadrant, e.g., "north".

landmark: the publicly known prominent feature that can substitute the street name and

number, e.g., "White House" or "Taj Mahal".

postOfficeBox: the post office box number or identifier.

separator: a formatting separator between two ordered address non-separator

components. The value property of the component includes the verbatim separator, for

example, a hyphen character or even an empty string. This value has higher precedence

than the defaultSeparator property of the Address. Implementations insert two

consecutive separator components; instead, they insert a single separator

component with the combined value. This component kind be set if the

Address isOrdered property value is "false".

The pronunciation of the name component. If this property is set,

then at least one of the Address object phoneticSystem or phoneticScript properties be

set. Also see Section 1.5.4.

enumerated (Section 1.7.5)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

MUST NOT

SHOULD

MUST NOT

MUST

2.5.1.3. Additional Address Examples

The following example illustrates the use of the address property for "46, 1 Sukhumvit 51 Alley,

Khlong Tan Nuea, Watthana, Bangkok 10110, Thailand".

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 37

The following example illustrates the use of the address property for "2-7-2 Marunouchi,

Chiyoda-ku, Tokyo 100-8994" and its Japanese localization (Section 2.7.1).

Figure 32: Example of an Address in Thailand

"addresses": {

 "k25": {

 "components": [

 { "kind": "number", "value": "46" },

 { "kind": "name", "value": "1 Sukhumvit 51 Alley" },

 { "kind": "subdistrict", "value": "Khlong Tan Nuea" },

 { "kind": "district", "value": " Watthana" },

 { "kind": "locality", "value": "Bangkok" },

 { "kind": "country", "value": "Thailand" },

 { "kind": "postcode", "value": "10110" }

],

 "defaultSeparator": ", ",

 "isOrdered": true

 }

}

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 38

Figure 33: Example of an Address in Tokyo and Its Localization in Japanese

"addresses": {

 "k26": {

 "components": [

 { "kind": "block", "value": "2-7" },

 { "kind": "separator", "value": "-" },

 { "kind": "number", "value": "2" },

 { "kind": "separator", "value": " " },

 { "kind": "district", "value": "Marunouchi" },

 { "kind": "locality", "value": "Chiyoda-ku" },

 { "kind": "region", "value": "Tokyo" },

 { "kind": "separator", "value": " " },

 { "kind": "postcode", "value": "100-8994" }

],

 "defaultSeparator": ", ",

 "full": "2-7-2 Marunouchi, Chiyoda-ku, Tokyo 100-8994",

 "isOrdered": true

 }

},

"localizations": {

 "jp": {

 "addresses/k26": {

 "components": [

 { "kind": "region", "value": "東京都" },

 { "kind": "locality", "value": "千代田区" },

 { "kind": "district", "value": "丸ノ内" },

 { "kind": "block", "value": "2-7" },

 { "kind": "separator", "value": "-" },

 { "kind": "number", "value": "2" },

 { "kind": "postcode", "value": "〒100-8994" }

],

 "defaultSeparator": "",

 "full": "〒100-8994東京都千代田区丸ノ内2-7-2",

 "isOrdered": true

 }

 }

}

2.6. Resource Properties

This section defines properties for digital resources associated with the entity represented by the

Card.

cryptoKeys: Id[CryptoKey] (optional).

2.6.1. cryptoKeys

The cryptographic resources such as public keys and

certificates associated with the entity represented by the Card.

A CryptoKey object has all properties of the data type, with the following

additional definition:

The @type property value be "CryptoKey", if set.

Resource (Section 1.4.4)

• MUST

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 39

The following example shows how to refer to an external cryptographic resource.

The following example shows how to embed key data in the CryptoKey. The key data is depicted

in multiple lines only for demonstration purposes.

Figure 34: Example of cryptoKeys with External Data

"cryptoKeys": {

 "mykey1": {

 "uri": "https://www.example.com/keys/jdoe.cer"

 }

}

Figure 35: Example of cryptoKeys with Embedded Data

"cryptoKeys": {

 "mykey2": {

 "uri": "data:application/pgp-keys;base64,LS0tLS1CRUdJTiBSU0EgUFVC

 TElDIEtFWS0tLS0tCk1JSUJDZ0tDQVFFQSt4R1ovd2N6OXVnRnBQMDdOc

 3BvNlUxN2wwWWhGaUZweHhVNHBUazNMaWZ6OVIzenNJc3UKRVJ3dGE3K2

 ZXSWZ4T28yMDhldHQvamhza2lWb2RTRXQzUUJHaDRYQmlweVdvcEt3Wjk

 zSEhhRFZaQUFMaS8yQQoreFRCdFdkRW83WEdVdWpLRHZDMi9hWkt1a2Zq

 cE9pVUk4QWhMQWZqbWxjRC9VWjFRUGgwbUhzZ2xSTkNtcEN3Cm13U1hBO

 VZObWh6K1BpQitEbWw0V1duS1cvVkhvMnVqVFh4cTcrZWZNVTRIMmZueT

 NTZTNLWU9zRlBGR1oxVE4KUVNZbEZ1U2hXckhQdGlMbVVkUG9QNkNWMm1

 NTDF0aytsN0RJSXFYclFoTFVLREFDZU01cm9NeDBrTGhVV0I4UAorMHVq

 MUNObE5ONEpSWmxDN3hGZnFpTWJGUlU5WjRONll3SURBUUFCCi0tLS0tR

 U5EIFJTQSBQVUJMSUMgS0VZLS0tLS0K"

 }

}

directories: Id[Directory] (optional).

2.6.2. directories

The directories containing information about the entity

represented by the Card.

A Directory object has all properties of the data type, with the following

additional definitions:

The @type property value be "Directory", if set.

The kind property is mandatory. Its values are:

directory: the resource is a directory service that the entity represented by the Card is a

part of. This typically is an organizational directory that also contains associated entities,

e.g., co-workers and management in a company directory.

entry: the resource is a directory entry of the entity represented by the Card. In contrast to

the "directory" type, this is the specific URI for the entity within a directory.

In addition, the Directory object has the following property:

Resource (Section 1.4.4)

• MUST

• enumerated (Section 1.7.5)

◦

◦

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 40

listAs: UnsignedInt (optional). The position of the directory resource in the list of all Directory

objects having the same kind property value in the Card. If set, the listAs value be

higher than zero. Multiple directory resources have the same listAs property value or

none. Sorting such same-valued entries is implementation-specific.

MUST

MAY

Figure 36: Example for the directories Property

"directories": {

 "dir1": {

 "kind": "entry",

 "uri": "https://dir.example.com/addrbook/jdoe/Jean%20Dupont.vcf"

 },

 "dir2": {

 "kind": "directory",

 "uri": "ldap://ldap.example/o=Example%20Tech,ou=Engineering",

 "pref": 1

 }

links: Id[Link] (optional).

2.6.3. links

The links to resources that do not fit any of the other use-case-specific

resource properties.

A Link object has all properties of the data type, with the following

additional definitions:

The @type property value be "Link", if set.

The kind property is optional. Its values are:

contact: the resource is a URI by which the entity represented by the Card may be

contacted; this includes web forms or other media that require user interaction.

Resource (Section 1.4.4)

• MUST

• enumerated (Section 1.7.5)

◦

Figure 37: Example for the links Property

"links": {

 "link3": {

 "kind": "contact",

 "uri": "mailto:contact@example.com",

 "pref": 1

 }

}

media: Id[Media] (optional).

2.6.4. media

The media resources such as photographs, avatars, or sounds that

are associated with the entity represented by the Card.

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 41

A Media object has all properties of the data type, with the following

additional definitions:

The @type property value be "Media", if set.

The kind property is mandatory. Its values are:

photo: the resource is a photograph or avatar.

sound: the resource is audio media, e.g., to specify the proper pronunciation of the name

property contents.

logo: the resource is a graphic image or logo associated with the entity represented by the

Card.

Resource (Section 1.4.4)

• MUST

• enumerated (Section 1.7.5)

◦

◦

◦

Figure 38: Example for the media Property

"media": {

 "res45": {

 "kind": "sound",

 "uri": "CID:JOHNQ.part8.19960229T080000.xyzMail@example.com"

 },

 "res47": {

 "kind": "logo",

 "uri": "https://www.example.com/pub/logos/abccorp.jpg"

 },

 "res1": {

 "kind": "photo",

 "uri": "..."

 }

}

2.7. Multilingual Properties

This section defines properties for localizing the content of the Card in human languages.

localizations: String[PatchObject] (optional).

2.7.1. localizations

The property values localized to languages other

than the of the Card. Localizations provide language-specific

alternatives for existing property values and add new properties. The keys in

the localizations property value are language tags ; the values are of type

PatchObject and localize the Card in that language tag. The paths in the PatchObject are

relative to the Card that includes the localizations property. A patch target the

localizations property.

Conceptually, a Card is localized as follows:

Determine the language tag in which the Card should be localized.

If the localizations property includes a key for that language, obtain the PatchObject value. If

there is no such key, stop.

main language (Section 2.1.5)

SHOULD NOT

[RFC5646]

MUST NOT

•

•

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 42

Create a copy of the Card, but do not copy the localizations property.

Apply all patches in the PatchObject to the copy of the Card.

Optionally, set the language property in the copy of the Card.

Use the patched copy of the Card as the localized variant of the original Card.

A patch in the PatchObject may contain any value type. Its value be a valid value according

to the definition of the patched property.

Figure 39 localizes the name property by completely replacing its contents in Ukrainian language

with Cyrillic script.

Figure 40 localizes the title name by patching inside the titles property. All properties, except the

name property in the Title object, are left as is.

•

•

•

•

MUST

Figure 39: Example of Localizing a Top-Level Property

{

 "name": {

 "components": [

 { "kind": "title", "value": "Mr." },

 { "kind": "given", "value": "Ivan" },

 { "kind": "given2", "value": "Petrovich" },

 { "kind": "surname", "value": "Vasiliev" }

]

 },

 "localizations": {

 "uk-Cyrl": {

 "name": {

 "components": [

 { "kind": "title", "value": "г-н" },

 { "kind": "given", "value": "Иван" },

 { "kind": "given2", "value": "Петрович" },

 { "kind": "surname", "value": "Васильев" }

]

 }

 }

 }

}

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 43

Figure 40: Example of Localizing a Nested Property

"name": {

 "full": "Gabriel García Márquez"

},

"titles": {

 "t1": {

 "kind": "title",

 "name": "novelist"

 }

},

"localizations": {

 "es": {

 "titles/t1/name": "escritor"

 }

}

2.8. Additional Properties

This section defines properties for which none of the previous sections are appropriate.

anniversaries: Id[Anniversary] (optional).

@type: String.

kind: String (mandatory).

date: PartialDate|Timestamp (mandatory; defaultType: PartialDate).

place: Address (optional).

2.8.1. anniversaries

The memorable dates and events for the entity

represented by the Card.

An Anniversary object has the following properties:

The JSContact type of the object. The value be "Anniversary", if set.

The kind of anniversary. The values are:

birth: a birthday anniversary

death: a deathday anniversary

wedding: a wedding day anniversary

The date of the

anniversary in the Gregorian calendar. This be either a whole or partial calendar date

or a complete UTC timestamp (see the definition of the Timestamp and PartialDate object

types below).

An address associated with this anniversary, e.g., the place of birth or

death.

A PartialDate object represents a complete or partial calendar date in the Gregorian calendar. It

represents a complete date, a year, a month in a year, or a day in a month. It has the following

properties:

MUST

enumerated (Section 1.7.5)

•

•

•

MUST

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 44

@type: String.

year:

month: UnsignedInt (optional).

day: UnsignedInt (optional).

calendarScale: String (optional).

@type: String.

utc: UTCDateTime (mandatory).

The JSContact type of the object. The value be "PartialDate", if set.

UnsignedInt (optional). The calendar year.

The calendar month, represented as the integers 1 <= month <=

12. If this property is set, then either the year or the day property be set.

The calendar month day, represented as the integers 1 <= day <=

31, depending on the validity within the month and year. If this property is set, then the

month property be set.

The calendar system in which this date occurs, in lowercase.

This be either a calendar system name registered as a Common Locale Data Repository

(CLDR) or a vendor-specific value. The year, month, and day still be

represented in the Gregorian calendar. Note that the year property might be required to

convert the date between the Gregorian calendar and the respective calendar system.

A Timestamp object has the following properties:

The JSContact type of the object. The value be "Timestamp", if set.

The point in time in UTC time.

Figure 41 illustrates anniversaries with partial dates and a timestamp. Note how the @type

property is set for the Timestamp object value according to the rules defined in Section 1.3.4.

MUST

MUST

MUST

MUST

[RFC7529] MUST

MUST

Figure 41: Example for the anniversaries Property

"anniversaries": {

 "k8": {

 "kind": "birth",

 "date": {

 "year": 1953,

 "month": 4,

 "day": 15

 }

 },

 "k9": {

 "kind": "death",

 "date": {

 "@type": "Timestamp",

 "utc": "2019-10-15T23:10:00Z"

 },

 "place": {

 "full": "4445 Tree Street\nNew England, ND 58647\nUSA"

 }

 }

}

2.8.2. keywords

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 45

keywords: String[Boolean] (optional). The set of free-text keywords, also known as tags. Each

key in the set is a keyword, and each boolean value be "true".MUST

Figure 42: Example for the keywords Property

"keywords": {

 "internet": true,

 "IETF": true

}

notes: Id[Note] (optional).

@type: String.

note: String (mandatory).

created: UTCDateTime (optional).

author: Author (optional).

@type: String.

name: String (optional).

uri: String (optional).

2.8.3. notes

The free-text notes that are associated with the Card.

A Note object has the following properties:

The JSContact type of the object. The value be "Note", if set.

The free-text value of this note.

The date and time when this note was created.

The author of this note.

An Author object has the following properties, of which at least one property other than @type

 be set:

The JSContact type of the object. The value be "Author", if set.

The name of this author.

The URI value that identifies the author.

MUST

MUST

MUST

Figure 43: Example for the notes Property

"notes": {

 "n1": {

 "note": "Open office hours are 1600 to 1715 EST, Mon-Fri",

 "created": "2022-11-23T15:01:32Z",

 "author": {

 "name": "John"

 }

 }

}

personalInfo: Id[PersonalInfo] (optional).

2.8.4. personalInfo

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 46

@type: String.

kind: String (mandatory).

value: String (mandatory).

level: String (optional).

listAs: UnsignedInt (optional).

label: String (optional).

The personal information of the entity represented by the Card.

A PersonalInfo object has the following properties:

The JSContact type of the object. The value be "PersonalInfo", if set.

The kind of personal information. The

values are:

expertise: a field of expertise or a credential

hobby: a hobby

interest: an interest

The actual information.

The level of expertise or engagement in hobby or interest. The

 values are:

high

medium

low

The position of the personal information in the list of all

PersonalInfo objects that have the same kind property value in the Card. If set, the listAs

value be higher than zero. Multiple personal information entries have the same

listAs property value or none. Sorting such same-valued entries is implementation-specific.

A custom label. See Section 1.5.2.

MUST

enumerated (Section 1.7.5)

•

•

•

enumerated (Section 1.7.5)

•

•

•

MUST MAY

Figure 44: Example for the personalInfo Property

"personalInfo": {

 "pi2": {

 "kind": "expertise",

 "value": "chemistry",

 "level": "high"

 },

 "pi1": {

 "kind": "hobby",

 "value": "reading",

 "level": "high"

 },

 "pi6": {

 "kind": "interest",

 "value": "r&b music",

 "level": "medium"

 }

}

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 47

3. IANA Considerations

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Fragment identifier considerations:

Additional information:

Magic number(s):

File extensions(s):

Macintosh file type code(s):

Person & email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

3.1. Media Type Registration

This document defines a media type for use with JSContact data formatted in JSON.

application

jscontact+json

None

version

This parameter conveys the version of the JSContact data in the body part. It occur

more than once. If this parameter is set, then the values of all JSContact

properties in the body part match the parameter value.

This is the same as the encoding considerations of application/json, as

specified in .

See Section 4 of RFC 9553.

While JSContact is designed to avoid ambiguities as much as

possible, when converting objects from other contact formats to/from JSContact, it is possible

that differing representations for the same logical data or ambiguities in interpretation might

arise. The semantic equivalence of two JSContact objects may be determined differently by

different applications, for example, where URL values differ in case between the two objects.

RFC 9553

Applications that currently make use of the text/vcard

media type can use this as an alternative.

A JSON Pointer fragment identifier may be used, as defined

in .

N/A

N/A

N/A

calsify@ietf.org

COMMON

N/A

See the "Authors' Addresses" section of RFC 9553.

MUST NOT

version (Table 2)

MUST

Section 11 of [RFC8259]

[RFC6901], Section 6

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 48

https://rfc-editor.org/rfc/rfc8259#section-11
https://rfc-editor.org/rfc/rfc6901#section-6

Change controller: IETF

3.2. Creation of the JSContact Registry Group

IANA has created the "JSContact" registry group. The new registry definitions in the following

sections all belong to that group.

3.3. Registry Policy and Change Procedures

Registry assignments that introduce changes require the

JSContact major version to change; other changes only require a change to the minor version.

The registry policy for assignments that require the JSContact major version to change is

Standards Action (). The registry policy for other assignments is

Specification Required ().

The designated expert (DE) decides if a major or minor version change is required and assigns

the new version to the . Version numbers increment by

one, and a major version change resets the minor version to zero. An assignment may apply

multiple changes and to more than one registry at once, in which case a single version change is

sufficient. If the registry policy is Specification Required, then the DE may decide that it is enough

to document the new assignment in the Description item of the respective registry.

A registration have an intended usage of "common", "reserved", or "obsolete".

A "common" usage denotes an item with shared semantics and syntax across systems. Up-to-

date systems expect such items to occur in JSContact data.

A "reserved" usage reserves an item in the registry without assigning semantics to avoid

name collisions with future extensions or protocol use. Implementations expect or

add items with such names outside the protocols or extensions that use them; otherwise, any

such JSContact data is invalid.

An "obsolete" usage denotes an item that is no longer expected to be added by up-to-date

systems. A new assignment has probably been defined, covering the obsolete item's

semantics. Implementations expect such items to occur in JSContact data up to the

"Until Version" registry field, inclusively. They add such items for any version after

which the item was obsoleted; otherwise, any such JSContact data is invalid.

The intended usage of registry items may change between versions, but the DE must carefully

consider the impact on existing implementations and standards before doing so.

The registration procedure is not a formal standards process but rather an administrative

procedure intended to allow community comments and to check whether it is coherent without

excessive time delay. It is designed to encourage vendors to document and register new items

they add for use cases not covered by the original specification, leading to increased

interoperability.

backwards-incompatible (Section 1.9)

[RFC8126], Section 4.9

[RFC8126], Section 4.6

"JSContact Version" registry (Section 3.4)

MUST

•

MUST

•

MUST NOT

•

MUST

MUST NOT

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 49

https://rfc-editor.org/rfc/rfc8126#section-4.9
https://rfc-editor.org/rfc/rfc8126#section-4.6

3.3.1. Preliminary Community Review

Notice of a potential new registration be sent to the Calext WG mailing list

<calsify@ietf.org> for review. This mailing list is appropriate for soliciting community feedback

on a proposed registry assignment.

The intent of the public posting to this list is to solicit comments and feedback on the choice of

the item name or value, the unambiguity of its description, and a review of any interoperability

or security considerations. The submitter may submit a revised registration proposal or abandon

the registration completely at any time.

MUST

3.3.2. Submit Request to IANA

Registration requests can be sent to IANA <iana@iana.org>.

3.3.3. Designated Expert Review

The primary concern of the DE is preventing name collisions and encouraging the submitter to

document security and privacy considerations.

A new type name, property name, or enumerated value differ only in case from an

already-registered name or value.

For a common-use registration, the DE is expected to confirm that suitable documentation is

available to ensure interoperability. The DE should also verify that the new assignment does not

conflict with work that is active or already published within the IETF.

The DE will either approve or deny the registration request and publish a notice of the decision

to the Calext WG mailing list or its successor, as well as inform IANA. A denial notice must be

justified by an explanation, and in the cases where it is possible, concrete suggestions on how the

request can be modified to become acceptable should be provided.

MUST NOT

3.3.4. Change Procedures

Once a JSContact registry group item has been published by IANA, the Change Controller may

request a change to its definition. The same procedure that would be appropriate for the original

registration request is used to process a change request.

JSContact registrations do not get deleted; instead, items that are no longer believed appropriate

for use are declared obsolete by a change to their "Intended Usage" field; such items will be

clearly marked in the IANA registry.

Significant changes to a JSContact registry item's definition should be requested only when there

are serious omissions or errors in the published specification, as such changes may cause

interoperability issues. When review is required, a change request may be denied if it renders

entities that were valid under the previous definition invalid under the new definition.

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 50

3.4. Creation of the JSContact Version Registry

IANA has created the "JSContact Version" registry. The purpose of this new registry is to define

the allowed value range of JSContact major and minor version numbers.

The registry entries sort numerically in ascending order by the "Major Version" column, and

entries with equal "Major Version" sort numerically in ascending order by the "Minor Version"

column.

The registry process is outlined in Section 3.3.

Major Version:

Highest Minor Version:

3.4.1. JSContact Version Registry Template

The numeric value of a JSContact major version number. It be a positive

integer.

The maximum numeric value of a JSContact minor version for the given

major version. It be zero or a positive integer. All numbers less than or equal to this

value are valid minor version values for the given major version.

MUST

MUST

3.4.2. Initial Contents of the JSContact Version Registry

The following table lists the initial valid major and minor version number ranges.

Major Version Highest Minor Version Reference

1 0 RFC 9553

Table 1: JSContact Version Registry

3.5. Creation of the JSContact Properties Registry

IANA has created the "JSContact Properties" registry. The purpose of this new registry is to allow

interoperability of extensions to JSContact objects.

The registry entries sort alphabetically in ascending order by the following columns: "Property

Name" first, "Property Context" second, and "Since Version" third. Equal entries sort in any order.

The registry process for a new property is outlined in Section 3.3.

Property Name:

3.5.1. JSContact Properties Registry Template

The name of the property. The property name already be registered

for any of the object types listed in the "Property Context" field of this registration. Other

object types have already registered a different property with the same name; however,

the same name only be used when the semantics are analogous.

MUST NOT

MAY

MUST

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 51

Property Type:

Property Context:

Intended Usage:

Since Version:

Until Version:

Change Controller:

Reference or Description:

For properties with intended usage other than "reserved", this is the type of this

property, using type signatures as specified in Section 1.3.2. The property type be

registered in the "JSContact Types" registry. For reserved property names, the value be

the verbatim string "not applicable".

A comma-separated list of JSContact object types (Section 3.6.2) that contain

the property. For reserved property names, the value be the verbatim string "not

applicable".

May be "common", "reserved", or "obsolete".

The JSContact version on which the property definition is based. The version

 be one of the allowed values of the version property in the "JSContact Version" registry

(see Table 1).

The JSContact version after which the property was obsoleted; therefore, it

 be used in later versions. The Until Version value either be set or be one

of the allowed values of the version property in the "JSContact Version" registry (see Table 1).

Person or entity responsible for requesting a change to the entry's definition

("IETF" for RFCs from the IETF stream).

A brief description or RFC number and section reference where the

property is specified. This must include references to all RFC documents where this property

is introduced or updated. For reserved property names, the reference or description be

omitted.

MUST

MUST

MAY

MUST

MUST

NOT MUST NOT MUST

MAY

3.5.2. Initial Contents of the JSContact Properties Registry

The following table lists the initial "common" usage entries of the "JSContact Properties" registry.

For all properties, the Since Version is "1.0", the Until Version is not set, the Change Controller is

"IETF", and RFC section references are for RFC 9553.

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 52

Property Name Property Type Property Context

@type String Address (Section 2.5.1.1),

AddressComponent (Section 2.5.1.2),

Anniversary (Section 2.8.1), Author (Section

2.8.3), Card (Section 2.1.1), Calendar

(Section 2.4.1), CryptoKey (Section 2.6.1),

Directory (Section 2.6.2), EmailAddress

(Section 2.3.1), LanguagePref (Section 2.3.4),

Link Section 2.6.3), Media (Section 2.6.4),

Name (Section 2.2.1.1), NameComponent

(Section 2.2.1.2), Nickname (Section 2.2.2),

Note (Section 2.8.3), OnlineService (Section

2.3.2), Organization (Section 2.2.3), OrgUnit

(Section 2.2.3), PartialDate (Section 2.8.1),

PersonalInfo (Section 2.8.4), Phone (Section

2.3.3), Pronouns (Section 2.2.4), Relation

(Section 2.1.8), SchedulingAddress (Section

2.4.2), SpeakToAs (Section 2.2.4), Timestamp

(Section 2.8.1), Title (Section 2.2.5)

address String EmailAddress (Section 2.3.1)

addresses Id[Address] Card (Section 2.5.1.1)

anniversaries Id[Anniversary] Card (Section 2.8.1)

author Author Note (Section 2.8.3)

calendars Id[Calendar] Card (Section 2.4.1)

calendarScale String PartialDate (Section 2.8.1)

components AddressComponent[] Address (Section 2.5.1.1)

components NameComponent[] Name (Section 2.2.1.2)

contexts String[Boolean] Address (Section 2.5.1.1), Calendar (Section

2.4.1), CryptoKey (Section 2.6.1), Directory

(Section 2.6.2), EmailAddress (Section 2.3.1),

LanguagePref (Section 2.3.4), Link (Section

2.6.3), Media (Section 2.6.4), Nickname

(Section 2.2.2), OnlineService (Section 2.3.2),

Organization (Section 2.2.3), Phone (Section

2.3.3), Pronouns (Section 2.2.4),

SchedulingAddress (Section 2.4.2). Also see

Sections 1.4.4 and 1.5.1.

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 53

Property Name Property Type Property Context

coordinates String Address (Section 2.5.1.1)

countryCode String Address (Section 2.5.1.1)

created UTCDateTime Card (Section 2.1.3), Note (Section 2.8.3)

date PartialDate|

Timestamp

Anniversary (Section 2.8.1)

day UnsignedInt PartialDate (Section 2.8.1)

defaultSeparator String Address (Section 2.5.1.1), Name (Section

2.2.1.1)

directories Id[Directory] Card (Section 2.6.2)

emails Id[EmailAddress] Card (Section 2.3.1)

features String[Boolean] Phone (Section 2.3.3)

full String Address (Section 2.5.1.1), Name (Section

2.2.1.1)

grammaticalGender String SpeakToAs (Section 2.2.4)

isOrdered Boolean Address (Section 2.5.1.1), Name (Section

2.2.1.1)

keywords String[Boolean] Card (Section 2.8.2)

kind String AddressComponent (Section 2.5.1.2),

Anniversary (Section 2.8.1), Calendar

(Section 2.4.1), Card (Section 2.1.4),

CryptoKey (Section 2.6.1), Directory

(Section 2.6.2), Link (Section 2.6.3), Media

(Section 2.6.4), NameComponent (Section

2.2.1.2), PersonalInfo (Section 2.8.4), Title

(Section 2.2.5)

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 54

Property Name Property Type Property Context

label String Calendar (Section 2.4.1), CryptoKey (Section

2.6.1), Directory (Section 2.6.2),

EmailAddress (Section 2.3.1), Link (Section

2.6.3), Media (Section 2.6.4), OnlineService

(Section 2.3.2), PersonalInfo (Section 2.8.4),

Phone (Section 2.3.3), SchedulingAddress

(Section 2.4.2). Also see Sections 1.4.4 and

1.5.2.

language String Card (Section 2.1.5), LanguagePref (Section

2.3.4)

level String PersonalInfo (Section 2.8.4)

links Id[Link] Card (Section 2.6.3)

listAs UnsignedInt Directory (Section 2.6.2), PersonalInfo

(Section 2.8.4)

localizations String[PatchObject] Card (Section 2.7.1)

media Id[Media] Card (Section 2.6.4)

mediaType String Calendar (Section 2.4.1), CryptoKey (Section

2.6.1), Directory (Section 2.6.2), Link

(Section 2.6.3), Media (Section 2.6.4). Also

see Section 1.4.4.

members String[Boolean] Card (Section 2.1.6)

month UnsignedInt PartialDate (Section 2.8.1)

name Name Card (Section 2.2.1.1)

name String Author (Section 2.8.3), Nickname (Section

2.2.2), Organization (Section 2.2.3), OrgUnit

(Section 2.2.3), Title (Section 2.2.5)

nicknames Id[Nickname] Card (Section 2.2.2)

note String Note (Section 2.8.3)

notes Id[Note] Card (Section 2.8.3)

number String Phone (Section 2.3.3)

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 55

Property Name Property Type Property Context

onlineServices Id[OnlineService] Card (Section 2.3.2)

organizationId String Title (Section 2.2.5)

organizations Id[Organization] Card (Section 2.2.3)

personalInfo Id[PersonalInfo] Card (Section 2.8.4)

phones Id[Phone] Card (Section 2.3.3)

phonetic String AddressComponent (Section 2.5.1.2),

NameComponent (Section 2.2.1.2)

phoneticScript String Address (Section 2.5.1.1), Name (Section

2.2.1.1)

phoneticSystem String Address (2.5.1.1), Name (Section 2.2.1.1)

place Address Anniversary (Section 2.8.1)

pref UnsignedInt Address (Section 2.5.1.1), Calendar (Section

2.4.1), CryptoKey (Section 2.6.1), Directory

(Section 2.6.2), EmailAddress (Section 2.3.1),

LanguagePref (Section 2.3.4), Link (Section

2.6.3), Media (Section 2.6.4), Nickname

(Section 2.2.2), OnlineService (Section 2.3.2),

Phone (Section 2.3.3), Pronouns (Section

2.2.4), SchedulingAddress (Section 2.4.2).

Also see Sections 1.4.4 and 1.5.3.

preferredLanguages String[LanguagePref] Card (Section 2.3.4)

prodId String Card (Section 2.1.7)

pronouns Id[Pronouns] SpeakToAs (Section 2.2.4)

relatedTo String[Relation] Card (Section 2.1.8)

relation String[Boolean] Relation (Section 2.1.8)

schedulingAddresses Id[SchedulingAddress] Card (Section 2.4.2)

service String OnlineService (Section 2.3.2)

sortAs String[String] Name (Section 2.2.1.1)

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 56

The following table lists the initial "reserved" usage entries of the "JSContact Properties" registry.

For this property, the Change Controller is "IETF", and the RFC section reference is for RFC 9553.

Property Name Property Type Property Context

sortAs String Organization (Section 2.2.3), OrgUnit

(Section 2.2.3)

speakToAs SpeakToAs Card (Section 2.2.4)

timeZone String Address (Section 2.5.1.1)

titles Id[Title] Card (Section 2.2.5)

uid String Card (Section 2.1.9)

units OrgUnit[] Organization (Section 2.2.3)

updated UTCDateTime Card (Section 2.1.10)

uri String Author (Section 2.8.3), Calendar (Section

2.4.1), CryptoKey (Section 2.6.1), Directory

(Section 2.6.2), Link (Section 2.6.3), Media

(Section 2.6.4), OnlineService (Section 2.3.2),

SchedulingAddress (Section 2.4.2). Also see

Section 1.4.4.

user String OnlineService (Section 2.3.2)

utc UTCDateTime Timestamp (Section 2.8.1)

value String AddressComponent (Section 2.5.1.2),

NameComponent (Section 2.2.1.2),

PersonalInfo (Section 2.8.4)

version String Card (Section 2.1.2)

year UnsignedInt PartialDate (Section 2.8.1)

Table 2: JSContact Properties with "common" Usage

Property

Name

Property

Type

Property

Context

Intended

Usage

Reference/

Description

extra not

applicable

not applicable reserved Section 1.7.3.1

Table 3: JSContact Properties with "reserved" Usage

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 57

3.6. Creation of the JSContact Types Registry

IANA has created the "JSContact Types" registry. The purpose of this new registry is to avoid

name collisions for JSContact type names and provide a complete reference for all data types

used for JSContact property values.

The registry entries sort alphabetically in ascending order by the "Type Name" column. Equal

entries sort in any order.

The registry process for a new type is outlined in Section 3.3.

Type Name:

Intended Usage:

Since Version:

Until Version:

Change Controller:

Reference or Description:

3.6.1. JSContact Types Registry Template

The name of the type.

May be "common", "reserved", or "obsolete".

The JSContact version on which this type definition is based. The version

be one of the allowed values of the version property in the "JSContact Version" registry (see

Table 1).

The JSContact version after which the type definition was obsoleted; therefore, it

 be used in later versions. The Until Version value either be set or

be one of the allowed values of the version property in the "JSContact Version" registry (see

Table 1).

Person or entity responsible for requesting a change to the entry's definition

("IETF" for RFCs from the IETF stream).

A brief description or RFC number and section reference where the

Type is specified. For reserved type names, the reference or description be omitted.

MUST

MUST NOT MUST NOT MUST

MAY

3.6.2. Initial Contents of the JSContact Types Registry

The following table lists the initial "common" usage entries in the "JSContact Types" registry. For

all of these types, the Since Version is "1.0", the Until Version is not set, the Change Controller is

"IETF", and RFC section references are for RFC 9553.

Type Name Reference/Description

Address Section 2.5.1.1

AddressComponent Section 2.5.1.2

Anniversary Section 2.8.1

Author Section 2.8.3

Boolean Section 1.3.2

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 58

Type Name Reference/Description

Calendar Section 2.4.1

Card Section 2

CryptoKey Section 2.6.1

Directory Section 2.6.2

EmailAddress Section 2.3.1

Id Section 1.4.1

Int Section 1.4.2

LanguagePref Section 2.3.4

Link Section 2.6.3

Media Section 2.6.4

Name Section 2.2.1.1

NameComponent Section 2.2.1.2

Nickname Section 2.2.2

Note Section 2.8.3

Number Section 1.3.2

OnlineService Section 2.3.2

Organization Section 2.2.3

OrgUnit Section 2.2.3

PartialDate Section 2.8.1

PatchObject Section 1.4.3

PersonalInfo Section 2.8.4

Phone Section 2.3.3

Pronouns Section 2.2.4

Relation Section 2.1.8

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 59

The following table lists the initial "reserved" usage entry of the "JSContact Types" registry. For

this type, the version is "1.0", the Change Controller is "IETF", and the RFC section reference is for

RFC 9553.

Type Name Reference/Description

SchedulingAddress Section 2.4.2

SpeakToAs Section 2.2.4

String Section 1.3.2

Timestamp Section 2.8.1

Title Section 2.2.5

UnsignedInt Section 1.4.2

UTCDateTime Section 1.4.5

Table 4: JSContact Types with "common" Usage

Type Name Reference/Description

Resource Section 1.4.4

Table 5: JSContact Types with "reserved"

Usage

3.7. Creation of the JSContact Enum Values Registry

IANA has created the "JSContact Enum Values" registry. The purpose of the new registry is to

allow interoperable extension of semantics for JSContact properties with enumerable values.

Each such property will have a subregistry of allowed values.

The registry entries sort alphabetically in ascending order by the following columns: "Property

Name" first, "Property Context" second, and "Since Version" third. The enum values sort

alphabetically in ascending order. Equal entries sort in any order.

The registry process for a new enum value or adding a new enumerable property is outlined in

Section 3.3.

Property Name:

3.7.1. JSContact Enum Values Registry Property Template

This template is for adding a subregistry for a new enumerable property to the "JSContact Enum

Values" registry.

The name(s) of the property or properties where these values may be used.

This be registered in the "JSContact Properties" registry. MUST

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 60

Context:

Since Version:

Until Version:

Change Controller:

Reference or Description:

The list of allowed object types where the property or properties may appear, as

registered in the "JSContact Properties" registry. This disambiguates where there may be two

distinct properties with the same name in different contexts.

The JSContact version on which the enum value definition is based. The version

 be one of the allowed values of the version property in the "JSContact Version" registry

(see Table 1).

The JSContact version after which the enum value definition was obsoleted;

therefore, the enum value definition be used in later versions. The Until Version

value either be set or be one of the allowed values of the version property in

the "JSContact Version" registry (see Table 1).

Person or entity responsible for requesting a change to the entry's definition

("IETF" for RFCs from the IETF stream).

A brief description or RFC number and section reference for the

semantics of the value.

Note that the initial contents will be the initial list of defined values for the enum, using the

template defined in Section 3.7.2. A subregistry will be created with these values for this property

name/context tuple.

MUST

MUST NOT

MUST NOT MUST

Enum Value:

Since Version:

Until Version:

Change Controller:

Reference or Description:

3.7.2. JSContact Enum Values Registry Value Template

This template is for adding a new enum value to a subregistry in the "JSContact Enum Values"

registry.

The verbatim value of the enum.

The JSContact version on which the enum value definition is based. The version

 be one of the allowed values of the version property in the "JSContact Version" registry

(see Table 1).

The JSContact version after which the enum value was obsoleted; therefore, the

enum value be used in later versions. The Until Version value either be

set or be one of the allowed values of the version property in the "JSContact Version"

registry (see Table 1).

Person or entity responsible for requesting a change to the entry's definition

("IETF" for RFCs from the IETF stream).

A brief description or RFC number and section reference for the

semantics of the value.

MUST

MUST NOT MUST NOT

MUST

3.7.3. Initial Contents of the JSContact Enum Values Registry

For all entries in each subregistry created in this section, the Since Version is "1.0", the Until

Version is not set, the Change Controller is "IETF", and RFC section references are for RFC 9553.

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 61

Property Name:

Context:

Initial Contents:

Property Name:

Context:

Initial Contents:

Property Name:

Context:

Initial Contents:

contexts

Address

contexts

Calendar, CryptoKey, Directory, EmailAddress, LanguagePref, Link, Media,

Nickname, OnlineService, Organization, Phone, Pronouns,

SchedulingAddress

features

Phone

Enum Value Reference/Description

billing Section 2.5.1.1

delivery Section 2.5.1.1

private Section 1.5.1

work Section 1.5.1

Table 6: JSContact Enum Values for contexts

(Context: Address)

Enum Value Reference/Description

private Section 1.5.1

work Section 1.5.1

Table 7: JSContact Enum Values for contexts

(Context: Calendar, CryptoKey, Directory,

EmailAddress, LanguagePref, Link, Media,

Nickname, OnlineService, Organization,

Phone, Pronouns, SchedulingAddress)

Enum Value Reference/Description

fax Section 2.3.3

main-number Section 2.3.3

mobile Section 2.3.3

pager Section 2.3.3

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 62

Property Name:

Context:

Initial Contents:

Property Name:

Context:

Initial Contents:

grammaticalGender

SpeakToAs

kind

AddressComponent

Enum Value Reference/Description

text Section 2.3.3

textphone Section 2.3.3

video Section 2.3.3

voice Section 2.3.3

Table 8: JSContact Enum Values for features

(Context: Phone)

Enum Value Reference/Description

animate Section 2.2.4

common Section 2.2.4

feminine Section 2.2.4

inanimate Section 2.2.4

masculine Section 2.2.4

neuter Section 2.2.4

Table 9: JSContact Enum Values for

grammaticalGender (Context: SpeakToAs)

Enum Value Reference/Description

apartment Section 2.5.1.2

block Section 2.5.1.2

building Section 2.5.1.2

country Section 2.5.1.2

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 63

Property Name:

Context:

Initial Contents:

Property Name:

Context:

kind

Anniversary

kind

Calendar

Enum Value Reference/Description

direction Section 2.5.1.2

district Section 2.5.1.2

floor Section 2.5.1.2

landmark Section 2.5.1.2

locality Section 2.5.1.2

name Section 2.5.1.2

number Section 2.5.1.2

postcode Section 2.5.1.2

postOfficeBox Section 2.5.1.2

region Section 2.5.1.2

room Section 2.5.1.2

separator Section 2.5.1.2

subdistrict Section 2.5.1.2

Table 10: JSContact Enum Values for kind

(Context: AddressComponent)

Enum Value Reference/Description

birth Section 2.8.1

death Section 2.8.1

wedding Section 2.8.1

Table 11: JSContact Enum Values for kind

(Context: Anniversary)

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 64

Initial Contents:

Property Name:

Context:

Initial Contents:

Property Name:

Context:

Initial Contents:

Property Name:

Context:

Initial Contents:

kind

Card

kind

Directory

kind

Link

Enum Value Reference/Description

calendar Section 2.4.1

freeBusy Section 2.4.1

Table 12: JSContact Enum Values for kind

(Context: Calendar)

Enum Value Reference/Description

application Section 2.1.4

device Section 2.1.4

group Section 2.1.4

individual Section 2.1.4

location Section 2.1.4

org Section 2.1.4

Table 13: JSContact Enum Values for kind

(Context: Card)

Enum Value Reference/Description

directory Section 2.6.2

entry Section 2.6.2

Table 14: JSContact Enum Values for kind

(Context: Directory)

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 65

Property Name:

Context:

Initial Contents:

Property Name:

Context:

Initial Contents:

Property Name:

kind

Media

kind

NameComponent

kind

Enum Value Reference/Description

contact Section 2.6.3

Table 15: JSContact Enum Values for kind

(Context: Link)

Enum Value Reference/Description

logo Section 2.6.4

photo Section 2.6.4

sound Section 2.6.4

Table 16: JSContact Enum Values for kind

(Context: Media)

Enum Value Reference/Description

credential Section 2.2.1.2

generation Section 2.2.1.2

given Section 2.2.1.2

given2 Section 2.2.1.2

separator Section 2.2.1.2

surname Section 2.2.1.2

surname2 Section 2.2.1.2

title Section 2.2.1.2

Table 17: JSContact Enum Values for kind

(Context: NameComponent)

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 66

Context:

Initial Contents:

Property Name:

Context:

Initial Contents:

Property Name:

Context:

Initial Contents:

Property Name:

Context:

Initial Contents:

PersonalInfo

kind

Title

level

PersonalInfo

phoneticSystem

Address, Name

Enum Value Reference/Description

expertise Section 2.8.4

hobby Section 2.8.4

interest Section 2.8.4

Table 18: JSContact Enum Values for kind

(Context: PersonalInfo)

Enum Value Reference/Description

role Section 2.2.5

title Section 2.2.5

Table 19: JSContact Enum Values for kind

(Context: Title)

Enum Value Reference/Description

high Section 2.8.4

low Section 2.8.4

medium Section 2.8.4

Table 20: JSContact Enum Values for level

(Context: PersonalInfo)

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 67

Property Name:

Context:

Initial Contents:

relation

Relation

Enum Value Reference/Description

ipa Section 1.5.4

jyut Section 1.5.4

piny Section 1.5.4

Table 21: JSContact Enum Values for

phoneticSystem (Context: Address, Name)

Enum Value Reference/Description

acquaintance Section 2.1.8

agent Section 2.1.8

child Section 2.1.8

colleague Section 2.1.8

contact Section 2.1.8

co-resident Section 2.1.8

co-worker Section 2.1.8

crush Section 2.1.8

date Section 2.1.8

emergency Section 2.1.8

friend Section 2.1.8

kin Section 2.1.8

me Section 2.1.8

met Section 2.1.8

muse Section 2.1.8

neighbor Section 2.1.8

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 68

Enum Value Reference/Description

parent Section 2.1.8

sibling Section 2.1.8

spouse Section 2.1.8

sweetheart Section 2.1.8

Table 22: JSContact Enum Values for relation

(Context: Relation)

4. Security Considerations

Contact information is very privacy sensitive. It can reveal the identity, location, credentials

information, employment status, interests and hobbies, and social network of a user. Its

transmission and storage must be done carefully to protect it from possible threats such as

eavesdropping, replay, message insertion, deletion, modification, and on-path attacks.

The data being stored and transmitted may be used in systems with real-world consequences.

For example, a malicious actor might provide JSContact data that uses the name of another

person but insert their contact details to impersonate the unknown victim. Such systems must be

careful to authenticate all data they receive to prevent them from being subverted and ensure

the change comes from an authorized entity.

This document only defines the data format; such considerations are primarily the concern of

the API or method of storage and transmission of such files.

4.1. JSON Parsing

The security considerations of apply to the use of JSON as the data interchange format.

As for any serialization format, parsers need to thoroughly check the syntax of the supplied data.

JSON uses opening and closing brackets for several types and structures, and it is possible that

the end of the supplied data will be reached when scanning for a matching closing bracket; this is

an error condition, and implementations need to stop scanning at the end of the supplied data.

JSON also uses a string encoding with some escape sequences to encode special characters within

a string. Care is needed when processing these escape sequences to ensure that they are fully

formed before the special processing is triggered, with special care taken when the escape

sequences appear adjacent to other (non-escaped) special characters or adjacent to the end of

data (as in the previous paragraph).

[RFC8259]

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 69

[IANA-TZ]

[IANA-vCard]

[ISO.3166-1]

[RFC1034]

[RFC1035]

[RFC2046]

[RFC2119]

5. References

5.1. Normative References

, , .

, , .

,

,

, August 2020.

, , , ,

, November 1987, .

, , ,

, , November 1987,

.

 and ,

, , , November 1996,

.

, , ,

, , March 1997,

.

If parsing JSON into a non-textual structured data format, implementations may need to allocate

storage to hold JSON string elements. Since JSON does not use explicit string lengths, the risk of

denial of service due to resource exhaustion is small, but implementations may still wish to place

limits on the size of allocations they are willing to make in any given context, to avoid untrusted

data causing excessive memory allocation.

4.2. URI Values

Several JSContact properties contain URIs as values, and processing these properties requires

extra care. discusses security risks related to URIs.

Fetching remote resources carries inherent risks. Connections must only be allowed on well-

known ports, using allowed protocols (generally, just HTTP/HTTPS on their default ports). The

URL must be resolved externally and not allowed to access internal resources. Connecting to an

external source reveals IP (and therefore often location) information.

A maliciously constructed JSContact object may contain a very large number of URIs. In the case

of published address books with a large number of subscribers, such objects could be widely

distributed. Implementations should be careful to limit the automatic fetching of linked

resources to reduce the risk of this being an amplification vector for a denial-of-service attack.

Section 7 of [RFC3986]

IANA "Time Zone Database" <https://www.iana.org/time-zones>

IANA "vCard Elements" <https://www.iana.org/assignments/vcard-elements>

International Organization for Standardization "Codes for the representation of

names of countries and their subdivisions -- Part 1: Country codes" ISO

3166-1:2020

Mockapetris, P. "Domain names - concepts and facilities" STD 13 RFC 1034 DOI

10.17487/RFC1034 <https://www.rfc-editor.org/info/rfc1034>

Mockapetris, P. "Domain names - implementation and specification" STD 13

RFC 1035 DOI 10.17487/RFC1035 <https://www.rfc-editor.org/

info/rfc1035>

Freed, N. N. Borenstein "Multipurpose Internet Mail Extensions (MIME)

Part Two: Media Types" RFC 2046 DOI 10.17487/RFC2046

<https://www.rfc-editor.org/info/rfc2046>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14

RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/

rfc2119>

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 70

https://rfc-editor.org/rfc/rfc3986#section-7
https://www.iana.org/time-zones
https://www.iana.org/assignments/vcard-elements
https://www.rfc-editor.org/info/rfc1034
https://www.rfc-editor.org/info/rfc1035
https://www.rfc-editor.org/info/rfc1035
https://www.rfc-editor.org/info/rfc2046
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119

[RFC2426]

[RFC3339]

[RFC4648]

[RFC5234]

[RFC5322]

[RFC5646]

[RFC5870]

[RFC6350]

[RFC6901]

[RFC7493]

[RFC7529]

[RFC8126]

[RFC8141]

[RFC8174]

 and , , ,

, September 1998, .

 and , ,

, , July 2002,

.

, , ,

, October 2006, .

 and ,

, , , , January 2008,

.

, , , ,

October 2008, .

 and , , ,

, , September 2009,

.

 and ,

, , , June 2010,

.

, , , ,

August 2011, .

, , and ,

, , , April 2013,

.

, , , ,

March 2015, .

 and ,

, ,

, May 2015, .

, , and ,

, , , , June

2017, .

 and , , ,

, April 2017, .

, ,

, , , May 2017,

.

Dawson, F. T. Howes "vCard MIME Directory Profile" RFC 2426 DOI

10.17487/RFC2426 <https://www.rfc-editor.org/info/rfc2426>

Klyne, G. C. Newman "Date and Time on the Internet: Timestamps" RFC

3339 DOI 10.17487/RFC3339 <https://www.rfc-editor.org/info/

rfc3339>

Josefsson, S. "The Base16, Base32, and Base64 Data Encodings" RFC 4648 DOI

10.17487/RFC4648 <https://www.rfc-editor.org/info/rfc4648>

Crocker, D., Ed. P. Overell "Augmented BNF for Syntax Specifications:

ABNF" STD 68 RFC 5234 DOI 10.17487/RFC5234 <https://

www.rfc-editor.org/info/rfc5234>

Resnick, P., Ed. "Internet Message Format" RFC 5322 DOI 10.17487/RFC5322

<https://www.rfc-editor.org/info/rfc5322>

Phillips, A., Ed. M. Davis, Ed. "Tags for Identifying Languages" BCP 47 RFC

5646 DOI 10.17487/RFC5646 <https://www.rfc-editor.org/info/

rfc5646>

Mayrhofer, A. C. Spanring "A Uniform Resource Identifier for Geographic

Locations ('geo' URI)" RFC 5870 DOI 10.17487/RFC5870 <https://

www.rfc-editor.org/info/rfc5870>

Perreault, S. "vCard Format Specification" RFC 6350 DOI 10.17487/RFC6350

<https://www.rfc-editor.org/info/rfc6350>

Bryan, P., Ed. Zyp, K. M. Nottingham, Ed. "JavaScript Object Notation

(JSON) Pointer" RFC 6901 DOI 10.17487/RFC6901 <https://www.rfc-

editor.org/info/rfc6901>

Bray, T., Ed. "The I-JSON Message Format" RFC 7493 DOI 10.17487/RFC7493

<https://www.rfc-editor.org/info/rfc7493>

Daboo, C. G. Yakushev "Non-Gregorian Recurrence Rules in the Internet

Calendaring and Scheduling Core Object Specification (iCalendar)" RFC 7529

DOI 10.17487/RFC7529 <https://www.rfc-editor.org/info/rfc7529>

Cotton, M. Leiba, B. T. Narten "Guidelines for Writing an IANA

Considerations Section in RFCs" BCP 26 RFC 8126 DOI 10.17487/RFC8126

<https://www.rfc-editor.org/info/rfc8126>

Saint-Andre, P. J. Klensin "Uniform Resource Names (URNs)" RFC 8141 DOI

10.17487/RFC8141 <https://www.rfc-editor.org/info/rfc8141>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP

14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/

rfc8174>

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 71

https://www.rfc-editor.org/info/rfc2426
https://www.rfc-editor.org/info/rfc3339
https://www.rfc-editor.org/info/rfc3339
https://www.rfc-editor.org/info/rfc4648
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5322
https://www.rfc-editor.org/info/rfc5646
https://www.rfc-editor.org/info/rfc5646
https://www.rfc-editor.org/info/rfc5870
https://www.rfc-editor.org/info/rfc5870
https://www.rfc-editor.org/info/rfc6350
https://www.rfc-editor.org/info/rfc6901
https://www.rfc-editor.org/info/rfc6901
https://www.rfc-editor.org/info/rfc7493
https://www.rfc-editor.org/info/rfc7529
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8141
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174

[RFC8259]

[IPA]

[RFC3261]

[RFC3966]

[RFC3986]

[RFC3987]

[RFC6351]

[RFC6473]

[RFC6474]

[RFC6715]

[RFC6869]

[RFC7095]

[RFC8605]

, ,

, , , December 2017,

.

5.2. Informative References

, ,

.

, , , , , ,

, and , , ,

, June 2002, .

, , ,

, December 2004, .

, , and ,

, , , , January 2005,

.

 and , ,

, , January 2005,

.

, , ,

, August 2011, .

, , , ,

December 2011, .

 and ,

, , , December 2011,

.

, , and ,

, , , August 2012,

.

, , and , , ,

, February 2013, .

, , ,

, January 2014, .

 and ,

, , ,

May 2019, .

Bray, T., Ed. "The JavaScript Object Notation (JSON) Data Interchange Format"

STD 90 RFC 8259 DOI 10.17487/RFC8259 <https://www.rfc-

editor.org/info/rfc8259>

IPA "International Phonetic Alphabet" <https://

www.internationalphoneticalphabet.org/>

Rosenberg, J. Schulzrinne, H. Camarillo, G. Johnston, A. Peterson, J. Sparks, R.

Handley, M. E. Schooler "SIP: Session Initiation Protocol" RFC 3261 DOI

10.17487/RFC3261 <https://www.rfc-editor.org/info/rfc3261>

Schulzrinne, H. "The tel URI for Telephone Numbers" RFC 3966 DOI 10.17487/

RFC3966 <https://www.rfc-editor.org/info/rfc3966>

Berners-Lee, T. Fielding, R. L. Masinter "Uniform Resource Identifier (URI):

Generic Syntax" STD 66 RFC 3986 DOI 10.17487/RFC3986

<https://www.rfc-editor.org/info/rfc3986>

Duerst, M. M. Suignard "Internationalized Resource Identifiers (IRIs)" RFC

3987 DOI 10.17487/RFC3987 <https://www.rfc-editor.org/info/

rfc3987>

Perreault, S. "xCard: vCard XML Representation" RFC 6351 DOI 10.17487/

RFC6351 <https://www.rfc-editor.org/info/rfc6351>

Saint-Andre, P. "vCard KIND:application" RFC 6473 DOI 10.17487/RFC6473

<https://www.rfc-editor.org/info/rfc6473>

Li, K. B. Leiba "vCard Format Extensions: Place of Birth, Place and Date of

Death" RFC 6474 DOI 10.17487/RFC6474 <https://www.rfc-

editor.org/info/rfc6474>

Cauchie, D. Leiba, B. K. Li "vCard Format Extensions: Representing vCard

Extensions Defined by the Open Mobile Alliance (OMA) Converged Address Book

(CAB) Group" RFC 6715 DOI 10.17487/RFC6715 <https://www.rfc-

editor.org/info/rfc6715>

Salgueiro, G. Clarke, J. P. Saint-Andre "vCard KIND:device" RFC 6869 DOI

10.17487/RFC6869 <https://www.rfc-editor.org/info/rfc6869>

Kewisch, P. "jCard: The JSON Format for vCard" RFC 7095 DOI 10.17487/

RFC7095 <https://www.rfc-editor.org/info/rfc7095>

Hollenbeck, S. R. Carney "vCard Format Extensions: ICANN Extensions for

the Registration Data Access Protocol (RDAP)" RFC 8605 DOI 10.17487/RFC8605

<https://www.rfc-editor.org/info/rfc8605>

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 72

https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://www.internationalphoneticalphabet.org/
https://www.internationalphoneticalphabet.org/
https://www.rfc-editor.org/info/rfc3261
https://www.rfc-editor.org/info/rfc3966
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3987
https://www.rfc-editor.org/info/rfc3987
https://www.rfc-editor.org/info/rfc6351
https://www.rfc-editor.org/info/rfc6473
https://www.rfc-editor.org/info/rfc6474
https://www.rfc-editor.org/info/rfc6474
https://www.rfc-editor.org/info/rfc6715
https://www.rfc-editor.org/info/rfc6715
https://www.rfc-editor.org/info/rfc6869
https://www.rfc-editor.org/info/rfc7095
https://www.rfc-editor.org/info/rfc8605

[RFC9499]

[RFC9554]

[RFC9555]

[RFC9562]

[UBiDi]

[WHATWG-URL]

 and , , , ,

, March 2024, .

 and , ,

, , May 2024,

.

 and , ,

, , May 2024,

.

, , and , ,

, , May 2024,

.

,

, , , August 2023,

.

, , January 2024,

.

Hoffman, P. K. Fujiwara "DNS Terminology" BCP 219 RFC 9499 DOI

10.17487/RFC9499 <https://www.rfc-editor.org/info/rfc9499>

Stepanek, R. M. Loffredo "vCard Format Extensions for JSContact" RFC

9554 DOI 10.17487/RFC9554 <https://www.rfc-editor.org/info/

rfc9554>

Stepanek, R. M. Loffredo "JSContact: Converting from and to vCard" RFC

9555 DOI 10.17487/RFC9555 <https://www.rfc-editor.org/info/

rfc9555>

Davis, K. Peabody, B. P. Leach "Universally Unique IDentifiers (UUIDs)"

RFC 9562 DOI 10.17487/RFC9562 <https://www.rfc-editor.org/info/

rfc9562>

The Unicode Consortium "Unicode Standard Annex #9: Unicode Bidirectional

Algorithm" Revision 48 Unicode 15.1.0 <https://www.unicode.org/

reports/tr9/>

WHATWG "URL Living Standard" <https://

url.spec.whatwg.org>

Authors' Addresses

Robert Stepanek

Fastmail

PO Box 234

Collins St. West

 Melbourne VIC 8007

Australia

 rsto@fastmailteam.com Email:

Mario Loffredo

IIT-CNR

Via Moruzzi, 1

 56124 Pisa

Italy

 mario.loffredo@iit.cnr.it Email:

RFC 9553 JSContact May 2024

Stepanek & Loffredo Standards Track Page 73

https://www.rfc-editor.org/info/rfc9499
https://www.rfc-editor.org/info/rfc9554
https://www.rfc-editor.org/info/rfc9554
https://www.rfc-editor.org/info/rfc9555
https://www.rfc-editor.org/info/rfc9555
https://www.rfc-editor.org/info/rfc9562
https://www.rfc-editor.org/info/rfc9562
https://www.unicode.org/reports/tr9/
https://www.unicode.org/reports/tr9/
https://url.spec.whatwg.org
https://url.spec.whatwg.org
mailto:rsto@fastmailteam.com
mailto:mario.loffredo@iit.cnr.it

	RFC 9553
	JSContact: A JSON Representation of Contact Data
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Motivation and Relation to vCard, jCard, and xCard
	1.2. Notational Conventions
	1.3. Data Type Notations
	1.3.1. Objects and Properties
	1.3.2. Type Signatures
	1.3.3. Property Attributes
	1.3.4. The @type Property

	1.4. Common Data Types
	1.4.1. Id
	1.4.2. Int and UnsignedInt
	1.4.3. PatchObject
	1.4.4. Resource
	1.4.5. UTCDateTime

	1.5. Common Properties
	1.5.1. contexts
	1.5.2. label
	1.5.3. pref
	1.5.4. phonetic

	1.6. Internationalization
	1.6.1. Free-Form Text
	1.6.2. URIs

	1.7. Validating JSContact
	1.7.1. Case-Sensitivity
	1.7.2. IANA-Registered Properties
	1.7.3. Reserved Properties
	1.7.3.1. extra

	1.7.4. Unknown Properties
	1.7.5. Enumerated Values

	1.8. Vendor-Specific Extensions
	1.8.1. Vendor-Specific Properties
	1.8.2. Vendor-Specific Values

	1.9. Versioning
	1.9.1. Version Format and Requirements
	1.9.2. Current Version

	2. Card
	2.1. Metadata Properties
	2.1.1. @type
	2.1.2. version
	2.1.3. created
	2.1.4. kind
	2.1.5. language
	2.1.6. members
	2.1.7. prodId
	2.1.8. relatedTo
	2.1.9. uid
	2.1.10. updated

	2.2. Name and Organization Properties
	2.2.1. name
	2.2.1.1. Name Object
	2.2.1.2. NameComponent

	2.2.2. nicknames
	2.2.3. organizations
	2.2.4. speakToAs
	2.2.5. titles

	2.3. Contact Properties
	2.3.1. emails
	2.3.2. onlineServices
	2.3.3. phones
	2.3.4. preferredLanguages

	2.4. Calendaring and Scheduling Properties
	2.4.1. calendars
	2.4.2. schedulingAddresses

	2.5. Address and Location Properties
	2.5.1. addresses
	2.5.1.1. Address Object
	2.5.1.2. AddressComponent Object
	2.5.1.3. Additional Address Examples

	2.6. Resource Properties
	2.6.1. cryptoKeys
	2.6.2. directories
	2.6.3. links
	2.6.4. media

	2.7. Multilingual Properties
	2.7.1. localizations

	2.8. Additional Properties
	2.8.1. anniversaries
	2.8.2. keywords
	2.8.3. notes
	2.8.4. personalInfo

	3. IANA Considerations
	3.1. Media Type Registration
	3.2. Creation of the JSContact Registry Group
	3.3. Registry Policy and Change Procedures
	3.3.1. Preliminary Community Review
	3.3.2. Submit Request to IANA
	3.3.3. Designated Expert Review
	3.3.4. Change Procedures

	3.4. Creation of the JSContact Version Registry
	3.4.1. JSContact Version Registry Template
	3.4.2. Initial Contents of the JSContact Version Registry

	3.5. Creation of the JSContact Properties Registry
	3.5.1. JSContact Properties Registry Template
	3.5.2. Initial Contents of the JSContact Properties Registry

	3.6. Creation of the JSContact Types Registry
	3.6.1. JSContact Types Registry Template
	3.6.2. Initial Contents of the JSContact Types Registry

	3.7. Creation of the JSContact Enum Values Registry
	3.7.1. JSContact Enum Values Registry Property Template
	3.7.2. JSContact Enum Values Registry Value Template
	3.7.3. Initial Contents of the JSContact Enum Values Registry

	4. Security Considerations
	4.1. JSON Parsing
	4.2. URI Values

	5. References
	5.1. Normative References
	5.2. Informative References

	Authors' Addresses

 JSContact: A JSON Representation of Contact Data

 Fastmail

 PO Box 234
 Collins St. West
 Melbourne
 VIC
 8007
 Australia

 rsto@fastmailteam.com

 IIT-CNR

 Via Moruzzi, 1
 Pisa
 56124
 Italy

 mario.loffredo@iit.cnr.it

 art
 calext
 JSON
 addressbook
 contacts
 cards
 VCARD

 This specification defines a data model and JavaScript Object Notation (JSON) representation of contact card
 information that can be used for data storage and exchange in address book or directory applications. It aims to
 be an alternative to the vCard data format and to be unambiguous, extendable, and simple to process. In contrast
 to the JSON-based jCard format, it is not a direct mapping from the vCard data model and expands semantics where
 appropriate. Two additional specifications define new vCard elements and how to convert between JSContact and
 vCard.

 Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further
 information on Internet Standards is available in Section 2 of
 RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Revised BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Revised BSD License.

 Table of Contents

 . Introduction

 . Motivation and Relation to vCard, jCard, and xCard

 . Notational Conventions

 . Data Type Notations

 . Objects and Properties

 . Type Signatures

 . Property Attributes

 . The @type Property

 . Common Data Types

 . Id

 . Int and UnsignedInt

 . PatchObject

 . Resource

 . UTCDateTime

 . Common Properties

 . contexts

 . label

 . pref

 . phonetic

 . Internationalization

 . Free-Form Text

 . URIs

 . Validating JSContact

 . Case-Sensitivity

 . IANA-Registered Properties

 . Reserved Properties

 . Unknown Properties

 . Enumerated Values

 . Vendor-Specific Extensions

 . Vendor-Specific Properties

 . Vendor-Specific Values

 . Versioning

 . Version Format and Requirements

 . Current Version

 . Card

 . Metadata Properties

 . @type

 . version

 . created

 . kind

 . language

 . members

 . prodId

 . relatedTo

 . uid

 . updated

 . Name and Organization Properties

 . name

 . nicknames

 . organizations

 . speakToAs

 . titles

 . Contact Properties

 . emails

 . onlineServices

 . phones

 . preferredLanguages

 . Calendaring and Scheduling Properties

 . calendars

 . schedulingAddresses

 . Address and Location Properties

 . addresses

 . Resource Properties

 . cryptoKeys

 . directories

 . links

 . media

 . Multilingual Properties

 . localizations

 . Additional Properties

 . anniversaries

 . keywords

 . notes

 . personalInfo

 . IANA Considerations

 . Media Type Registration

 . Creation of the JSContact Registry Group

 . Registry Policy and Change Procedures

 . Preliminary Community Review

 . Submit Request to IANA

 . Designated Expert Review

 . Change Procedures

 . Creation of the JSContact Version Registry

 . JSContact Version Registry Template

 . Initial Contents of the JSContact Version Registry

 . Creation of the JSContact Properties Registry

 . JSContact Properties Registry Template

 . Initial Contents of the JSContact Properties Registry

 . Creation of the JSContact Types Registry

 . JSContact Types Registry Template

 . Initial Contents of the JSContact Types Registry

 . Creation of the JSContact Enum Values Registry

 . JSContact Enum Values Registry Property Template

 . JSContact Enum Values Registry Value Template

 . Initial Contents of the JSContact Enum Values Registry

 . Security Considerations

 . JSON Parsing

 . URI Values

 . References

 . Normative References

 . Informative References

 Authors' Addresses

 Introduction
 This document defines a data model for contact card data normally used in address book or directory
 applications and services. It aims to be an alternative to the vCard data format .

 The key design considerations for this data model are as follows:

 The data model and set of attributes should be mostly compatible with the model defined for the vCard data
 format

 and extensions

 . The specification should add new attributes or value types where
 appropriate. Not all existing vCard definitions need an equivalent in JSContact, especially if the vCard
 definition is considered to be obsolete or otherwise inappropriate. Conversion between the data formats need
 not fully preserve semantic meaning.

 The attributes of the card data must be described as simple key-value pairs to reduce the complexity of the
 representation of the card data.

 The data model should avoid all ambiguities and make it difficult to make mistakes during implementation.

 Extensions, such as new properties and components, MUST NOT lead to a required update of this
 document.

 The representation of this data model is defined in the Internet JSON (I-JSON) format ,
 which is a strict subset of the JSON data interchange format . Using
 JSON is mostly a pragmatic choice: its widespread use makes JSContact easier to adopt, and the availability of
 production-ready JSON implementations eliminates a whole category of parser-related interoperability issues.

 Motivation and Relation to vCard, jCard, and xCard
 The vCard data format

 is an interchange format for contacts data between address book service providers and vendors. However, this
 format has gone through multiple specification iterations with only a subset of its deprecated version 3
 being widely in use. Consequently, products and services use an internal contact data model that is
 richer than what they expose when serializing that information to vCard. In addition, service providers often
 use a proprietary JSON representation of contact data in their APIs.

 JSContact provides a standard JSON-based data model and representation of contact data as an alternative to
 proprietary formats.

 At the time of writing this document, several missing features in vCard were brought to the attention of the
 authors such as social media contacts, gender pronouns, and others. This highlights how vCard is not perceived
 as an evolving format and, consequently, hasn't been updated for about ten years. JSContact addresses these
 unmet demands and defines new vCard properties and parameters to allow interchanging them in both formats.

 Two additional documents define the relation of JSContact and vCard:

 defines new vCard properties and parameters, and

 defines how to convert JSContact data from and to vCard.

 The xCard

 and jCard

 specifications define alternative representations for vCard data in XML and JSON formats, respectively. Both
 explicitly aim to not change the underlying data model. Accordingly, they are regarded as equal to vCard in
 the context of this document.

 Notational Conventions

 The key words " MUST", " MUST NOT",
 " REQUIRED", " SHALL", " SHALL NOT",
 " SHOULD", " SHOULD NOT",
 " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are to be
 interpreted as described in BCP 14 when, and only when, they appear in all capitals, as
 shown here.

 The ABNF definitions in this document use the notations of . ABNF rules not defined in
 this document are defined in either

 (such as the ABNF for CRLF, WSP, DQUOTE, VCHAR, ALPHA, and DIGIT) or .

 Data Type Notations
 This section introduces the notations and terminology used to define data types in JSContact.
 The underlying format for JSContact is JSON, so its data types also build on JSON values. The terms "object"
 and "array" as well as the four primitive types ("strings", "numbers", "booleans", and "null") are to be
 interpreted as described in . All JSContact data MUST be
 valid according to the constraints given in I-JSON. Unless otherwise noted, all
 member names in JSON objects and all string values are case-sensitive. Within the context of JSON objects, the
 term "key" is synonymous with "member name" as defined in .

 Objects and Properties
 JSContact defines data types for contact information such as addresses or names. This information typically
 consists of multiple related elements; for example, a personal name and surname together form a name. These
 related elements are organized in JSContact objects. A JSContact object is a JSON object that has the
 following:

 A unique type name registered in the IANA "JSContact Types"
 registry.

 One or more object members for which the name and allowed value types are specified. Such members are
 called "properties".

 One property named @type with a string value that matches the type name of the JSContact object. In
 general, this property does not need to be set explicitly as outlined in .

 The following sections specify how to define JSContact object types. Sections

 and

 then define the exact requirements for property names.

 The next paragraph illustrates how a JSContact object is defined. The names "Foo" and "baz" are only for demonstration and have no meaning outside the example.

 A Foo object has the following properties:

 @type: String.
 The JSContact type of the object. The value MUST be "Foo", if set.

 baz: Number (mandatory).
 The baz level of the contact. The value MUST be an integer greater than 0 and less
 than 10.

 The above paragraph illustrates the following:

 It defines a JSContact object type named "Foo" that has two properties, named "@type" and "baz".
 The @type property adheres to the rules outlined in . Because of this, it is
 neither defined to be mandatory nor optional, as this depends on how the Foo object type is used.

 The baz property value MUST be valid according to the definition of the Number type.

 The property has one attribute, "mandatory", which specifies that the property MUST be
 present for a value of the Foo object type to be valid.

 The free-text description of the baz property describes the semantics and further restrictions for its
 values.

 Type Signatures
 Type signatures are given for all JSON values and JSContact definitions in this document. The following
 conventions are used:

 String:
 The JSON string type.
 Number:
 The JSON number type.
 Boolean:
 The JSON boolean type.
 A[B]:
 A JSON object where all keys are of type A and all values are of type B.
 A[]:
 A JSON array of values of type A.
 A|B:
 The value is either of type A or of type B.
 *:
 The type is undefined (the value could be any type, although permitted values may be constrained by the
 context of this value).

 defines common data types, including signed or unsigned integers and dates.

 Property Attributes
 Object properties may also have a set of attributes defined along with the type signature. These have the
 following meanings:

 mandatory:
 The property MUST be set for an instance of this object to be valid.

 optional:
 The property can, but need not, be set for an instance of this object to be valid.
 default:
 This is followed by a JSON value. That value will be used for this property if it is omitted.
 defaultType:
 This is followed by the name of a JSContact object type. A property value of JSContact object type is
 expected to be of this named type, in case it omits the @type property.

 The @type Property

 @type: String.
 The JSContact type of a JSON object. It MUST match the
 type name of the JSContact object of which the JSON object is an instance of.

 The purpose of the @type property is to help implementations identify which JSContact object type a given
 JSON object represents. Implementations MUST validate that JSON objects with this property
 conform to the specification of the JSContact object type of that name.

 In many cases, the @type property value is implied by where its object occurs in JSContact data. Assuming
 that both A and B are JSContact object types:

 An object that is set as the value for a property with type signature "A" MAY have the
 @type property set. If the @type property is not set, then its value is implied to be A by the property
 definition.

 An object that is set as the value for a property with type signature "A|B (defaultType: A)" MAY have the @type property set if it is an instance of A. It MUST have the @type
 property set if it is an instance of B. If, instead, the defaultType attribute is not defined, then the
 @type property MUST also be set for A.

 An object that is not the value of a property, such as the topmost object in JSON data (directly or as a
 member of an array), MUST have the @type property set.

 Common Data Types
 In addition to the standard JSON data types, a couple of additional data types are common to the definitions
 of JSContact objects and properties.

 Id
 Where "Id" is given as a data type, it means a String of at least 1 and a maximum of 255 octets in size,
 and it MUST only contain characters from the "URL and Filename Safe" base64url alphabet, as
 defined in , excluding the pad character ("="). This
 means the allowed characters are the ASCII alphanumeric characters ("A-Za-z0-9"), hyphen ("-"), and
 underscore ("_").

 In many places in JSContact, a JSON map is used where the map keys are of type Id and the map values are
 all the same type of object. This construction represents an unordered set of objects, with the added
 advantage that each entry has a name (the corresponding map key). This allows for more concise patching of
 objects and, when applicable, for the objects in question to be referenced from other objects within the
 JSContact object. The map keys MUST be preserved across multiple versions of the JSContact
 object.

 Unless otherwise specified for a particular property, there are no uniqueness constraints on an Id value
 (other than, of course, the requirement that you cannot have two values with the same key within a single
 JSON map). For example, two Card objects might use the same Ids in their
 respective photos properties. Or within the same Card, the same Id could appear in the emails and phones
 properties. These situations do not imply any semantic connections among the objects.

 Int and UnsignedInt
 Where "Int" is given as a data type, it means an integer in the range -2 53+1 <= value <= 2
 53-1, which is the safe range for integers stored in a floating-point double, represented as a JSON
 Number.

 Where "UnsignedInt" is given as a data type, it means an integer in the range 0 <= value <= 2
 53-1 represented as a JSON Number.

 PatchObject
 A PatchObject is of type "String[*]" and represents an unordered set of patches on a JSON object. Each key
 is a path represented in a subset of the JSON Pointer format . The paths have an
 implicit leading "/", so each key is prefixed with "/" before applying the JSON Pointer evaluation
 algorithm.

 A patch within a PatchObject is only valid if all the following conditions apply:

 The pointer MAY reference inside an array, but if the last reference token in the pointer
 is an array index, then the patch value MUST NOT be null. The pointer MUST NOT use "-" as an array index in any of its reference tokens (i.e., you MUST NOT insert/delete
 from an array, but you MAY replace the contents of its existing members. To add or remove
 members, one needs to replace the complete array value).

 All reference tokens prior to the last (i.e., the value after the final slash) MUST already
 exist as values in the object being patched. If the last reference token is an array index, then a member
 at this index MUST already exist in the referenced array.

 There MUST NOT be two patches in the PatchObject where the pointer of one is the prefix
 of the pointer of the other, e.g., "addresses/1/city" and "addresses".

 The value for the patch MUST be valid for the property being set (of the correct type and
 obeying any other applicable restrictions), or if null, the property MUST be optional.

 The value associated with each pointer determines how to apply that patch:

 If null, remove the property from the patched object. If the key is not present in the parent, this is a
 no-op.

 If non-null, set the value given as the value for this property (this may be a replacement or addition
 to the object being patched).

 A PatchObject does not define its own @type property. Instead, the @type
 property in a patch MUST be handled as any other patched property value.

 Implementations MUST reject a PatchObject in its entirety if any of its patches are invalid.
 Implementations MUST NOT apply partial patches.

 Resource
 The Resource data type defines a resource associated with the entity represented by the Card, identified by
 a URI . Later in this document, several property definitions refer
 to the Resource type as the basis for their property-specific value types. The Resource type defines the
 properties that are common to all of them. Property definitions making use of Resource MAY define
 additional properties for their value types.

 A Resource object has the following properties:

 @type: String.
 The JSContact type of the object. The value MUST NOT be "Resource"; instead, the value MUST be the name
 of a concrete resource type (see).
 kind: String (optional).

 The kind of the resource. The allowed values are defined in the property definition that makes use of the
 Resource type. Some property definitions may change this property from being optional to mandatory.

 uri: String (mandatory).

 The resource value. This MUST be a URI as defined in .

 mediaType: String (optional).

 The media type of the resource identified by the uri property value.

 contexts: String[Boolean] (optional).

 The contexts in which to use this resource. Also see .

 pref: UnsignedInt (optional).

 The preference of the resource in relation to other resources. Also see .

 label: String (optional).

 A custom label for the value. Also see .

 UTCDateTime
 The UTCDateTime type is a String in "date-time" format , with
 further restrictions that any letters MUST be in uppercase and the time offset MUST be the character "Z". Fractional second values MUST NOT be included unless they are
 non-zero, and they MUST NOT have trailing zeros to ensure there is only a single
 representation for each date-time.

 For example, "2010-10-10T10:10:10.003Z" is conformant, but "2010-10-10T10:10:10.000Z" is invalid; the
 correct encoding is "2010-10-10T10:10:10Z".

 Common Properties
 Most of the properties in this document are specific to a single JSContact object type. Such properties are
 defined along with the respective object type. The properties in this section are common to multiple data
 types and are defined here to avoid repetition. Note that these properties MUST only be set for
 a JSContact object if they are explicitly mentioned as allowable for this object type.

 contexts

 contexts: String[Boolean].

 The contexts in which to use the contact information. For example, someone might have distinct phone numbers for work and private contexts and may set the desired context on the respective phone number in the phones property.
 This section defines common contexts. Additional contexts may be defined in the properties or data
 types that make use of this property. The enumerated
 common context values are:

 private: the contact information that may be used in a private context.
 work: the contact information that may be used in a professional context.

 label

 label: String.
 The labels associated with the contact data. Such labels may be set for
 phone numbers, email addresses, and other resources. Typically, these labels are displayed along with their
 associated contact data in graphical user interfaces. Note that succinct labels are best for proper
 display on small graphical interfaces and screens.

 pref

 pref: UnsignedInt.

 A preference order for contact information. For example, a person may
 have two email addresses and prefer to be contacted with one of them.

 The value MUST be in the range of 1 to 100. Lower values correspond to a higher level of
 preference, with 1 being most preferred. If no preference is set, then the contact information MUST be interpreted as being least preferred.

 Note that the preference is only defined in relation to contact information of the same type. For
 example, the preference orders within emails and phone numbers are independent of each other.

 phonetic
 The following properties define how to pronounce a value in the language indicated in the Card language
 property or the language tag of its localizations. Exemplary uses
 of these properties are defining how to pronounce Japanese names and romanizing Mandarin or Cantonese name
 and address components. The properties are defined as follows:

 phonetic: String.

 The phonetic representation of a value.
 Any script language subtag in the Card language property MUST be ignored and not used with the phonetic property. If this property is set, then at least one of
 the phoneticScript or phoneticSystem properties that relate to this value MUST be set.

 phoneticScript: String.

 The script used in the value of the related phonetic property. This MUST be a valid script
 subtag as defined in .

 phoneticSystem: String.

 The phonetic system used in the related value of the phonetic property. The enumerated
 values are:

 ipa: denotes the International Phonetic Alphabet.

 jyut: denotes the Cantonese romanization system "Jyutping".
 piny: denotes the Standard Mandarin romanization system "Hanyu Pinyin".

 The relation between the phoneticSystem, phoneticScript, and phonetic properties is type-specific. This
 specification defines this relation in the Name and
 Address
 object types, respectively.

 The following example illustrates the phonetic property for a name:

 Example of a phonetic Property for the Name "John Smith" as Pronounced in the USA

"name": {
 "components": [{
 "kind": "given",
 "value": "John",
 "phonetic": "/ˈdʒɑːn/"
 }, {
 "kind": "surname",
 "value": "Smith",
 "phonetic": "/smɪθ/"
 }],
 "phoneticSystem": "ipa"
}

 Internationalization
 JSContact aims to be used for international contacts and address book data. Notably, text values such as
 names and addresses are likely to cover a wide range of languages and cultures. This section describes
 internationalization for free-form text values as well as Uniform Resource Identifiers (URIs).

 Free-Form Text
 Properties having free-form text values MAY contain any valid sequence of Unicode characters
 encoded as a JSON string. Such values can contain unidirectional left-to-right and right-to-left text, as
 well as bidirectional text using Unicode Directional Formatting Characters as described in Section 2 of . Implementations setting bidirectional text MUST make sure that each
 property value complies with the requirements of the Unicode Bidirectional Algorithm. Implementations MUST NOT assume that text values of adjacent properties are processed or displayed as a combined string; for
 example, the values of a given name component and a surname component may or may not be rendered together.

 URIs
 Several properties require their string value to be a URI as defined in .
 Implementations MUST make sure to use proper percent-encoding for URIs that cannot be
 represented using unreserved URI characters.

 defines how to convert Internationalized Resource Identifiers to URIs.
 JSContact makes no recommendation on how to display URIs, but the WHATWG URL Living Standard (see
 "Internationalization and special characters" (Section 4.8.3) of) provides
 guidance for URLs found in the context of a web browser.

 Validating JSContact
 This specification distinguishes between three kinds of properties regarding validation: IANA-registered
 properties and unknown properties, which are defined in this section, and vendor-specific properties, which
 are defined in . A JSContact object is invalid if any of its
 properties are invalid.

 This document defines whether each property is mandatory or optional. A mandatory property MUST be present for a JSContact object to be valid. An optional property does not need to be present. The
 values of both required and optional properties MUST adhere to the data type and definition of
 that property.

 Case-Sensitivity
 All property names, object type names, and enumerated values are case-sensitive, unless explicitly stated
 otherwise in their definitions. Implementations MUST handle a JSContact object as invalid if
 a type name, property name, or enumerated value only differs in case from one defined for any JSContact
 version known to that implementation. This applies regardless of what JSContact version the Card object
 defines in its version property.

 defines how to handle unknown properties.

 IANA-Registered Properties

 An IANA-registered property is any property that has been registered according to the IANA property registry
 rules as outlined in . All properties defined in this specification,
 including their object value types and enumerated values, are registered at IANA.

 Implementations MUST validate IANA-registered properties in JSContact data, unless they are
 unknown to the implementation (). They MUST reject invalid
 IANA-registered properties. A property is invalid if its name matches the name of an IANA-registered
 property but the value violates its definition according to the JSContact specification version defined in
 the Card version property.

 IANA-registered property names MUST NOT contain ASCII control characters (U+0000 to U+001F,
 U+007F), the COLON (U+003A), or the QUOTATION MARK (U+0022). They MUST only contain ASCII
 alphanumeric characters that match the ALPHA and DIGIT rules defined in

 or the COMMERCIAL AT (U+0040) character. IANA-registered property names MUST be notated in
 lower camel case.

 Reserved Properties
 IANA-registered properties can be reserved (). Implementations MUST NOT set properties having a reserved name in JSContact
 objects for which this property is reserved or all objects if the property context in the registry is "not applicable".
 Reserved properties have no type, and their type signature is "not applicable". Any JSContact object including a property that is reserved in context of this object MUST be considered invalid.
 This document reserves one property as described below.

 extra

 extra: not applicable.
 The reserved property "extra" provides implementors with a property name that is certain to never
 occur as a property in any JSContact object. Implementations might want to map unknown or vendor-specific
 properties to a variable with this name, but this is implementation-specific.

 Unknown Properties

 Implementations may encounter JSContact data where a property name is unknown to that implementation but the
 name adheres to the syntactic restrictions of IANA-registered property names. Implementations MUST make sure that such a name does not violate the case-sensitivity rules defined in . If the property name is valid, then implementations MUST NOT treat such properties as invalid. Instead, they MUST preserve them in the JSContact
 object.

 Implementations that create or update JSContact data MUST only set IANA-registered
 properties or vendor-specific properties. Preserving properties that are unknown to the implementation is to
 allow applications and services to interoperate without data loss, even if not all of them implement the
 same set of JSContact extensions.

 Enumerated Values
 Several properties in this document restrict their allowed values to a list of String values. These values
 are case-sensitive. If not noted otherwise for a specific property, the initial list of values for such
 properties is registered at IANA in the "JSContact Enum Values"
 registry. Implementations MUST only set IANA-registered or vendor-specific
 values for such properties.

 Vendor-Specific Extensions
 Vendors may extend properties and values for experimentation or to store contacts data that is only useful
 for a single service or application. Such extensions are not meant for interoperation. If, instead,
 interoperation is desired, vendors are strongly encouraged to define and register new properties, types, and
 values at IANA as defined in .

 defines the naming conventions for IANA-registered elements.

 Vendor-Specific Properties

 Vendor-specific property names MUST start with a vendor-specific prefix followed by a name,
 as produced by the "v-extension" ABNF below. The prefix and name together form the property name. The
 vendor-specific prefix MUST be a domain name under control of the service or application that
 sets the property, but it need not resolve in the Domain Name System

 . The prefix "ietf.org" and its subdomain names are reserved for IETF
 specifications. The name MUST NOT contain the TILDE (U+007E) and SOLIDUS (U+002F) characters,
 as these require special escaping when encoding a JSON Pointer

 for that property.

 Vendor-specific properties MAY be set in any JSContact object. Implementations MUST preserve vendor-specific properties in JSContact data, irrespective if they know their use. They MUST NOT reject the property value as invalid, unless they are in control of the vendor-specific property as
 outlined in the above paragraph.

 The ABNF rule "v-extension" formally defines valid vendor-specific property names. Note that the vendor
 prefix allows for more values than Internationalized Domain Names (IDNs) ; therefore,
 JSContact implementations can simply validate property names without implementing the full set of rules that
 apply to domain names.

 ABNF Rules for Vendor-Specific Property Names

v-extension = v-prefix ":" v-name

v-prefix = v-label *("." v-label)

v-label = alnum-int / alnum-int *(alnum-int / "-") alnum-int

alnum-int = ALPHA / DIGIT / NON-ASCII
 ; see RFC 6350, Section 3.3

v-name = 1*(WSP / "!" / %x23-2e / %x30-7d / NON-ASCII)
 ; any characters except CTLs, DQUOTE, SOLIDUS, and TILDE

 The value of vendor-specific properties can be any valid JSON value, and naming restrictions do not apply to
 such values. Specifically, if the property value is a JSON object, then the keys of such objects need not be
 named as vendor-specific properties, as illustrated in :

 Examples of Vendor-Specific Properties

"example.com:foo": "bar",
"example.com:foo2": {
 "bar": "baz"
}

 Vendor-Specific Values

 Some JSContact IANA-registered properties allow their values to be vendor-specific. One such example is the "kind"
 property, which enumerates its standard values but also allows for arbitrary vendor-specific values.
 Such vendor-specific values MUST be valid "v-extension" values as defined in . The example in

 illustrates this:

 Example of a Vendor-Specific Value

"kind": "example.com:baz"

 Vendors are strongly encouraged to specify a new standard value once a vendor-specific one turns out to also
 be useful for other systems.

 Versioning
 Every instance of a JSContact Card indicates which JSContact version its
 IANA-registered properties and values are based on.
 The version is indicated both in the version property within the Card and
 in the version parameter of the JSContact media type. All
 IANA-registered elements indicate the version at which they were introduced or obsoleted.

 A JSContact version consists of a major and minor version.
 Differing major version values indicate substantial differences in JSContact semantics and format.
 Implementations MUST be prepared for property definitions and other JSContact elements that
 differ in a backwards-incompatible manner.

 Differing minor version values indicate additions that enrich JSContact data but do not introduce
 backwards-incompatible changes. Typically, these are new property enum values or properties with a narrow
 semantic scope. A new minor version MUST NOT require implementations to change their processing
 of JSContact data. Changing the major version number resets the minor version number to zero.

 Version Format and Requirements
 A version value starts with the numeric major version, followed by the FULL STOP character (U+002E),
 followed by the numeric minor version. Later versions are numerically higher than former versions, with the
 major version being more significant than the minor version. A version value is produced by the following
 ABNF:

 The ABNF for JSContact Version Values

jsversion = 1*DIGIT "." 1*DIGIT

 Current Version
 This specification registers JSContact version value "1.0" ().

 Card
 This section defines the JSContact object type Card. A Card stores contact information, typically that of a
 person, organization, or company.

 Its media type is defined in .

 shows a basic Card for the person "John Doe". As the object is the topmost object in the JSON data, it has the
 @type property set according to the rules defined in .

 Example of a Basic Card

{
 "@type": "Card",
 "version": "1.0",
 "uid": "22B2C7DF-9120-4969-8460-05956FE6B065",
 "kind": "individual",
 "name": {
 "components": [
 { "kind": "given", "value": "John" },
 { "kind": "surname", "value": "Doe" }
],
 "isOrdered": true
 }
}

 Metadata Properties
 This section defines properties about this instance of a Card such as its unique identifier, its creation
 date, and how it relates to other Cards and other metadata information.

 @type

 @type: String (mandatory).
 The JSContact type of the Card object. The value MUST be "Card".

 version

 version: String (mandatory).
 The JSContact version of this Card. The value MUST be one of
 the IANA-registered JSContact Version values for the version property. Also see .

 Example for the version Property

"version": "1.0"

 created

 created: UTCDateTime (optional).
 The date and time when the Card was created.

 Example for the created Property

"created": "2022-09-30T14:35:10Z"

 kind

 kind: String (optional; default: "individual").

 The kind of the entity the Card represents.
 The enumerated values are:

 individual: a single person
 group: a group of people or entities
 org: an organization
 location: a named location
 device: a device such as an appliance, a computer, or a network element
 application: a software application

 Example for the kind Property

"kind": "individual"

 language

 language: String (optional).

 The language tag, as defined in , that best describes the language used
 for text in the Card, optionally including additional information such as the script. Note that values MAY be localized in the
 localizations
 property.

 Example for the language Property

"language": "de-AT"

 members

 members: String[Boolean] (optional).

 The set of Cards that are members of this group Card. Each key in the set is the uid
 property value of the member, and each boolean value MUST be "true". If this property is
 set, then the value of the kind property MUST be "group".

 The opposite is not true. A group Card will usually contain the members property to specify the members
 of the group, but it is not required to. A group Card without the members property can be considered an
 abstract grouping or one whose members are known empirically (e.g., "IETF Participants").

 Example for the members Property

"kind": "group",
"name": {
 "full": "The Doe family"
},
"uid": "urn:uuid:ab4310aa-fa43-11e9-8f0b-362b9e155667",
"members": {
 "urn:uuid:03a0e51f-d1aa-4385-8a53-e29025acd8af": true,
 "urn:uuid:b8767877-b4a1-4c70-9acc-505d3819e519": true
}

 prodId

 prodId: String (optional).

 The identifier for the product that created the Card. If set, the value MUST be at least
 one character long.

 Example for the prodId Property

"prodId": "ACME Contacts App version 1.23.5"

 relatedTo

 relatedTo: String[Relation] (optional).

 The set of Card objects that relate to the Card. The value is a map, where each key is the uid property
 value of the related Card, and the value defines the relation.

 The Relation object has the following properties:

 @type: String.

 The JSContact type of the object. The value MUST be "Relation", if set.

 relation: String[Boolean] (optional; default: empty Object).

 The relationship of the related Card to the Card, defined as a set of relation types.
 The keys in the set define the relation type; the values for each key in the set MUST be "true".
 The relationship between the two objects is undefined if the set is empty.

 The initial list of enumerated relation types matches the
 IANA-registered TYPE parameter values of the vCard RELATED property
 ():

 acquaintance

 agent

 child

 co-resident

 co-worker

 colleague

 contact

 crush

 date

 emergency

 friend

 kin

 me

 met

 muse

 neighbor

 parent

 sibling

 spouse

 sweetheart

 Example for the relatedTo Property

"relatedTo": {
 "urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6": {
 "relation": {
 "friend": true
 }
 },
 "8cacdfb7d1ffdb59@example.com": {
 "relation": {}
 }
}

 uid

 uid: String (mandatory).

 An identifier that associates the object as the same across different systems, address books,
 and views. The value SHOULD be a URN , but for compatibility with
 , it MAY also be a URI

 or free-text value. The value of the URN SHOULD be in the "uuid" namespace . describes multiple versions of Universally Unique IDentifiers (UUIDs); UUID version 4 is RECOMMENDED.

 Example for the uid Property

"uid": "urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6"

 updated

 updated: UTCDateTime (optional).
 The date and time when the data in the Card was last modified.

 Example for the updated Property

"updated": "2021-10-31T22:27:10Z"

 Name and Organization Properties
 This section defines properties that name the entity represented by the Card and its related organizations
 and roles. It also describes how to refer to the entity represented by the Card in spoken or written language.

 name

 name: Name (optional).
 The name of the entity represented by the Card. This can be any type of name, e.g., it can, but need
 not, be the legal name of a person.

 Name Object
 A Name object has the following properties:

 @type: String.

 The JSContact type of the object. The value MUST be "Name", if set.

 components: NameComponent[] (optional).

 The components making up this name. The components property MUST be set if the full property is not set; otherwise, it SHOULD be set. The
 component list MUST have at least one entry having a different kind property value than
 "separator".

 Name components SHOULD be ordered such that when their values are joined as a String,
 a valid full name of the entity is produced. If so, implementations MUST set the
 isOrdered property value to "true".

 If the name components are ordered, then the defaultSeparator property and name components with the
 kind property value set to "separator" give guidance on what characters to insert between components,
 but implementations are free to choose any others. When lacking a separator, inserting a single space
 character in between the name component values is a good choice.

 If, instead, the name components follow no particular order, then the isOrdered property value MUST be "false", the components property MUST NOT contain a NameComponent with the
 kind property value set to "separator", and the defaultSeparator property MUST NOT be
 set.

 shows an example for the name "Vincent van Gogh". Note how a single name component value may consist
 of multiple words.

 Example of a Surname with Two Words

"name": {
 "components": [
 { "kind": "given", "value": "Vincent" },
 { "kind": "surname", "value": "van Gogh" }
],
 "isOrdered": true
}

 illustrates a name with a second surname such as a Spanish name. Additional examples are shown in
 Figures

 and .

 Example of a Second Surname

"name": {
 "components": [
 { "kind": "given", "value": "Diego" },
 { "kind": "surname", "value": "Rivera" },
 { "kind": "surname2", "value": "Barrientos" }
],
 "isOrdered": true
}

 isOrdered: Boolean (optional; default: "false").
 The indicator if the name components in the components property are ordered.
 defaultSeparator: String (optional).

 The default separator to insert between name component values when concatenating all name component
 values to a single String. Also see the definition of the kind property value "separator" for the
 NameComponent
 object. The defaultSeparator property MUST NOT be set if the Name isOrdered
 property value is "false" or if the components property is not set.

 full: String (optional).

 The full name representation of the Name. The full property MUST be set if the
 components property is not set.

 Example for the full Property

"full": "Mr. John Q. Public, Esq."

 sortAs: String[String] (optional).

 The value to lexicographically sort the name in relation to other names when compared by a name
 component type. The keys in the map define the name component type. The values define the
 verbatim string to compare when sorting by the name component type. Absence of a key indicates that
 the name component type SHOULD NOT be considered during sort. Sorting by that missing
 name component type, or if the sortAs property is not set, is implementation-specific. The sortAs
 property MUST NOT be set if the components property is not set.

 Each key in the map MUST be a valid name component type value as defined for the kind
 property of the NameComponent object (see below). For each key in the map, there MUST exist
 at least one NameComponent object that has the type in the components property of the name.

 illustrates the use of the sortAs property. The property value indicates that the middle name followed
 by both surnames should be used when sorting the name by surname. The absence of "middle" indicates
 that the middle name on its own should be disregarded during sort. Even though the name only contains
 one name component for the given name, the sortAs property still explicitly defines how to sort by the
 given name; otherwise, sorting by it would be undefined.

 phoneticScript: String (optional).

 The script used in the value of the NameComponent phonetic property. See

 for more information and

 for an example.

 phoneticSystem: String (optional).

 The phonetic system used in the NameComponent phonetic property. See

 for more information and

 for an example.

 Example for the sortAs Property

"name": {
 "components": [
 { "kind": "given", "value": "Robert" },
 { "kind": "given2", "value": "Pau" },
 { "kind": "surname", "value": "Shou Chang" }
],
 "sortAs": {
 "surname": "Pau Shou Chang",
 "given": "Robert"
 },
 "isOrdered": true
}

 Example for the phonetic and localizations Properties

{
 "@type": "Card",
 "language": "zh-Hant",
 "name": {
 "components": [
 { "kind": "surname", "value": "孫" },
 { "kind": "given", "value": "中山" },
 { "kind": "given2", "value": "文" },
 { "kind": "given2", "value": "逸仙" }
]
 },
 "localizations": {
 "yue": {
 "name/phoneticSystem": "jyut",
 "name/phoneticScript": "Latn",
 "name/components/0/phonetic": "syun1",
 "name/components/1/phonetic": "zung1saan1",
 "name/components/2/phonetic": "man4",
 "name/components/3/phonetic": "jat6sin1"
 }
 }
}

 NameComponent
 A NameComponent object has the following properties:

 @type: String.

 The JSContact type of the object. The value MUST be "NameComponent", if set.

 value: String (mandatory).

 The value of the name component. This can be composed of one or multiple words such as "Poe" or "van
 Gogh".

 kind: String (mandatory).

 The kind of the name component. The enumerated values are:

 title: an honorific title or prefix, e.g., "Mr.", "Ms.", or "Dr.".
 given: a given name, also known as "first name" or "personal name".
 given2: a name that appears between the given and surname such as a middle name or patronymic
 name.

 surname: a surname, also known as "last name" or "family name".
 surname2: a secondary surname (used in some cultures), also known as "maternal surname".
 credential: a credential, also known as "accreditation qualifier" or "honorific suffix", e.g.,
 "B.A.", "Esq.".

 generation: a generation marker or qualifier, e.g., "Jr." or "III".
 separator: a formatting separator between two ordered name non-separator components. The value
 property of the component includes the verbatim separator, for example, a hyphen character or even
 an empty string. This value has higher precedence than the defaultSeparator property of the Name.
 Implementations MUST NOT insert two consecutive separator components; instead, they SHOULD insert a single separator component with the combined value. This component kind MUST NOT be set if the Name isOrdered property value is "false".

 phonetic: String (optional).
 The pronunciation of the name component. If this property is set, then at least one of the Name
 object properties, phoneticSystem or phoneticScript, MUST be set. Also see .

 nicknames

 nicknames: Id[Nickname] (optional).
 The nicknames of the entity represented by the Card.

 A Nickname object has the following properties:

 @type: String.

 The JSContact type of the object. The value MUST be "Nickname", if set.

 name: String (mandatory).

 The nickname.

 contexts: String[Boolean] (optional).
 The contexts in which to use the nickname. Also see .

 pref: UnsignedInt (optional).

 The preference of the nickname in relation to other nicknames. Also see .

 Example for the nicknames Property

"nicknames": {
 "k391": {
 "name": "Johnny"
 }
}

 organizations

 organizations: Id[Organization] (optional).
 The company or organization names and units associated with the Card.

 An Organization object has the following properties, of which at least one of the name and units properties MUST be set:

 @type: String.

 The JSContact type of the object. The value MUST be "Organization", if set.

 name: String (optional).

 The name of the organization.

 units: OrgUnit[] (optional).
 A list of organizational units, ordered as descending by hierarchy (e.g., a geographic or functional
 division sorts before a department within that division). If set, the list MUST contain at
 least one entry.

 sortAs: String (optional).

 The value to lexicographically sort the organization in relation to other organizations when compared
 by name. The value defines the verbatim string value to compare. In absence of this property, the name
 property value MAY be used for comparison.

 contexts: String[Boolean] (optional).
 The contexts in which association with the organization applies. For example, membership in a choir may
 only apply in a private context. Also see .

 An OrgUnit object has the following properties:

 @type: String.

 The JSContact type of the object. The value MUST be "OrgUnit", if set.

 name: String (mandatory).

 The name of the organizational unit.

 sortAs: String (optional).

 The value to lexicographically sort the organizational unit in relation to other organizational units
 of the same level when compared by name. The level is defined by the array index of the organizational
 unit in the units property of the Organization object. The property value defines the verbatim string
 value to compare. In absence of this property, the name property value MAY be used for
 comparison.

 Example for the organizations Property

"organizations": {
 "o1": {
 "name": "ABC, Inc.",
 "units": [
 { "name": "North American Division" },
 { "name": "Marketing" }
],
 "sortAs": "ABC"
 }
}

 speakToAs

 speakToAs: SpeakToAs (optional).
 The information that directs how to address, speak to, or refer to the entity that is represented by the Card.

 A SpeakToAs object has the following properties, of which at least one of the grammaticalGender and
 pronouns properties MUST be set:

 @type: String.

 The JSContact type of the object. The value MUST be "SpeakToAs", if set.

 grammaticalGender: String (optional).

 The grammatical gender to use in salutations and other grammatical constructs. For example,
 the German language distinguishes by grammatical gender in salutations such as "Sehr geehrte" (feminine)
 and "Sehr geehrter" (masculine). The enumerated values are:

 animate

 common

 feminine

 inanimate

 masculine

 neuter

 Note that the grammatical gender does not allow inferring the gender identities or assigned sex of the
 contact.

 pronouns: Id[Pronouns] (optional).

 The pronouns that the contact chooses to use for themselves.

 A Pronouns object has the following properties:

 @type: String.

 The JSContact type of the object. The value MUST be "Pronouns", if set.

 pronouns: String (mandatory).

 The pronouns. Any value or form is allowed. Examples in English include "she/her" and
 "they/them/theirs". The value MAY be overridden in the
 localizations
 property.

 contexts: String[Boolean] (optional).
 The contexts in which to use the pronouns. Also see .

 pref: UnsignedInt (optional).

 The preference of the pronouns in relation to other pronouns in the same context. Also see .

 Example for the speakToAs Property

"speakToAs": {
 "grammaticalGender": "neuter",
 "pronouns": {
 "k19": {
 "pronouns": "they/them",
 "pref": 2
 },
 "k32": {
 "pronouns": "xe/xir",
 "pref": 1
 }
 }
}

 titles

 titles: Id[Title] (optional).
 The job titles or functional positions of the entity represented by the Card.

 A Title object has the following properties:

 @type: String.

 The JSContact type of the object. The value MUST be "Title", if set.

 name: String (mandatory).

 The title or role name of the entity represented by the Card.

 kind: String (optional; default: "title").

 The organizational or situational kind of the title. Some organizations and individuals
 distinguish between titles as organizational positions and roles as more temporary
 assignments such as in project management.

 The enumerated values are:

 title
 role

 organizationId: Id (optional).

 The identifier of the organization in which this title is held.

 Example for the titles Property

"titles": {
 "le9": {
 "kind": "title",
 "name": "Research Scientist"
 },
 "k2": {
 "kind": "role",
 "name": "Project Leader",
 "organizationId": "o2"
 }
},
"organizations": {
 "o2": {
 "name": "ABC, Inc."
 }
}

 Contact Properties
 This section defines how properties contact the entity represented by the Card.

 emails

 emails: Id[EmailAddress] (optional).
 The email addresses in which to contact the entity represented by the Card.

 An EmailAddress object has the following properties:

 @type: String.

 The JSContact type of the object. The value MUST be "EmailAddress", if set.

 address: String (mandatory).

 The email address. This MUST be an addr-spec value as defined in .

 contexts: String[Boolean] (optional).
 The contexts in which to use this email address. Also see .

 pref: UnsignedInt (optional).

 The preference of the email address in relation to other email addresses. Also see .

 label: String (optional).

 A custom label for the value. Also see .

 Example for the emails Property

"emails": {
 "e1": {
 "contexts": {
 "work": true
 },
 "address": "jqpublic@xyz.example.com"
 },
 "e2": {
 "address": "jane_doe@example.com",
 "pref": 1
 }
}

 onlineServices

 onlineServices: Id[OnlineService] (optional).
 The online services that are associated with the entity represented by the Card. This can be messaging
 services, social media profiles, and other.

 An OnlineService object has the following properties, of which at least the uri or user property MUST be set:

 @type: String.

 The JSContact type of the object. The value MUST be "OnlineService", if set.

 service: String (optional).

 The name of the online service or protocol. The name MAY be capitalized the same as on the
 service's website, app, or publishing material, but names MUST be considered equal if they
 match case-insensitively. Examples are "GitHub", "kakao", and "Mastodon".

 uri: String (optional).

 The identifier for the entity represented by the Card at the online service. This MUST be a
 URI
 as defined in .

 user: String (optional).

 The name the entity represented by the Card at the online service. Any free-text value is allowed. The
 service property SHOULD be set.

 contexts: String[Boolean] (optional).
 The contexts in which to use the service. Also see .

 pref: UnsignedInt (optional).

 The preference of the service in relation to other services. Also see .

 label: String (optional).

 A custom label for the value. Also see .

 Example for the onlineServices Property

"onlineServices": {
 "x1": {
 "uri": "xmpp:alice@example.com"
 },
 "x2": {
 "service": "Mastodon",
 "user": "@alice@example2.com",
 "uri": "https://example2.com/@alice"
 }
}

 phones

 phones: Id[Phone] (optional).
 The phone numbers by which to contact the entity represented by the Card.

 Phone object has the following properties:

 @type: String.

 The JSContact type of the object. The value MUST be "Phone", if set.

 number: String (mandatory).

 The phone number as either a URI or free text. Typical URI schemes are "tel"

 or "sip" , but any URI scheme is allowed.

 features: String[Boolean] (optional).

 The set of contact features that the phone number may be used for. The set is represented as an object,
 with each key being a method type. The boolean value MUST be "true". The enumerated
 method type values are:

 mobile: this number is for a mobile phone.
 voice: this number supports calling by voice.
 text: this number supports text messages (SMS).
 video: this number supports video conferencing.
 main-number: this number is a main phone number such as the number of the front desk at a company,
 as opposed to a direct-dial number of an individual employee.

 textphone: this number is for a device for people with hearing or speech difficulties.
 fax: this number supports sending faxes.
 pager: this number is for a pager or beeper.

 contexts: String[Boolean] (optional).
 The contexts in which to use the number. Also see .

 pref: UnsignedInt (optional).

 The preference of the number in relation to other numbers. Also see .

 label: String (optional).

 A custom label for the value. Also see .

 Example for the phones Property

"phones": {
 "tel0": {
 "contexts": {
 "private": true
 },
 "features": {
 "voice": true
 },
 "number": "tel:+1-555-555-5555;ext=5555",
 "pref": 1
 },
 "tel3": {
 "contexts": {
 "work": true
 },
 "number": "tel:+1-201-555-0123"
 }
}

 preferredLanguages

 preferredLanguages : Id[LanguagePref] (optional).
 The preferred languages for contacting the entity associated with the Card.

 A LanguagePref object has the following properties:

 @type: String.

 The JSContact type of the object. The value MUST be "LanguagePref", if set.

 language: String (mandatory).
 The preferred language. This MUST be a language tag as defined in
 .

 contexts: String[Boolean] (optional).
 The contexts in which to use the language. Also see .

 pref: UnsignedInt (optional).
 The preference of the language in relation to other languages of the same contexts. Also see .

 Example for the preferredLanguages Property

"preferredLanguages": {
 "l1": {
 "language": "en",
 "contexts": {
 "work": true
 },
 "pref": 1
 },
 "l2": {
 "language": "fr",
 "contexts": {
 "work": true
 },
 "pref": 2
 },
 "l3": {
 "language": "fr",
 "contexts": {
 "private": true
 }
 }
}

 Calendaring and Scheduling Properties
 This section defines properties for scheduling calendar events with the entity represented by the Card.

 calendars

 calendars: Id[Calendar] (optional).
 The calendaring resources of the entity represented by the Card, such as to look up free-busy information.

 A Calendar object has all properties of the Resource data type, with the
 following additional definitions:

 The @type property value MUST be "Calendar", if set.

 The kind property is mandatory. Its enumerated values are:

 calendar: The resource is a calendar that contains entries such as calendar events or tasks.

 freeBusy: The resource allows for free-busy lookups, for example, to schedule group events.

 Example for the calendars Property

"calendars": {
 "calA": {
 "kind": "calendar",
 "uri": "webcal://calendar.example.com/calA.ics"
 },
 "project-a": {
 "kind": "freeBusy",
 "uri": "https://calendar.example.com/busy/project-a"
 }
}

 schedulingAddresses

 schedulingAddresses: Id[SchedulingAddress] (optional).
 The scheduling addresses by which the entity may receive calendar scheduling invitations.

 A SchedulingAddress object has the following properties:

 @type: String.

 The JSContact type of the object. The value MUST be "SchedulingAddress", if set.

 uri: String (mandatory).

 The address to use for calendar scheduling with the contact. This MUST be a URI as defined
 in .

 contexts: String[Boolean] (optional).
 The contexts in which to use the scheduling address. Also see .

 pref: UnsignedInt (optional).

 The preference of the scheduling address in relation to other scheduling addresses. Also see .

 label: String (optional).

 A custom label for the scheduling address. Also see .

 Example for the schedulingAddresses Property

"schedulingAddresses": {
 "sched1": {
 "uri": "mailto:janedoe@example.com"
 }
}

 Address and Location Properties
 This section defines properties for postal addresses and geographical locations associated with the entity
 represented by the Card.

 addresses

 addresses: Id[Address] (optional).
 The addresses of the entity represented by the Card, such as postal addresses or geographic locations.

 Address Object
 An Address object has the following properties, of which at least one of components, coordinates,
 countryCode, full or timeZone MUST be set:

 @type: String.

 The JSContact type of the object. The value MUST be "Address", if set.

 components: AddressComponent[] (optional).

 The components that make up the address. The component list MUST have at least one entry that has a kind property value other than "separator".

 Address components SHOULD be ordered such that when their values are joined as a
 String, a valid full address is produced. If so, implementations MUST set the isOrdered
 property value to "true".

 If the address components are ordered, then the defaultSeparator property and address components with
 the kind property value set to "separator" give guidance on what characters to insert between
 components, but implementations are free to choose any others. When lacking a separator, inserting a
 single space character in between address component values is a good choice.

 If, instead, the address components follow no particular order, then the isOrdered property value MUST be "false", the components property MUST NOT contain an AddressComponent with
 the kind property value set to "separator", and the defaultSeparator property MUST NOT be
 set.

 isOrdered: Boolean (optional; default: "false").
 The indicator if the address components in the components property are ordered.
 countryCode: String (optional).

 The Alpha-2 country code .

 coordinates: String (optional).
 A "geo:" URI

 for the address.

 timeZone: String (optional).
 The time zone in which the address is located. This MUST be a time zone name
 registered in the IANA Time Zone Database.

 contexts: String[Boolean] (optional).

 The contexts in which to use this address. The boolean value MUST be "true". In addition
 to the common contexts (), allowed key values are:

 billing: an address to be used for billing.
 delivery: an address to be used for delivering physical items.

 full: String (optional).

 The full address, including street, region, or country. The purpose of this property is to define an
 address, even if the individual address components are not known.

 defaultSeparator: String (optional).

 The default separator to insert between address component values when concatenating all address
 component values to a single String. Also see the definition of the kind property value "separator" for
 the AddressComponent object. The defaultSeparator property MUST NOT be set if the Address isOrdered property value is "false" or if the components property is not
 set.

 pref: UnsignedInt (optional).

 The preference of the address in relation to other addresses. Also see .

 phoneticScript: String (optional).

 The script used in the value of the AddressComponent phonetic property. Also see .

 phoneticSystem: String (optional).

 The phonetic system used in the AddressComponent phonetic property. Also see .

 The following example illustrates the use of the address property for "54321 Oak St, Reston, CA 20190,
 USA". Additional examples are shown in .

 Example of an Address in the USA

"addresses": {
 "k23": {
 "contexts": {
 "work": true
 },
 "components": [
 { "kind": "number", "value": "54321" },
 { "kind": "separator", "value": " " },
 { "kind": "name", "value": "Oak St" },
 { "kind": "locality", "value": "Reston" },
 { "kind": "region", "value": "VA" },
 { "kind": "separator", "value": " " },
 { "kind": "postcode", "value": "20190" },
 { "kind": "country", "value": "USA" }
],
 "countryCode": "US",
 "defaultSeparator": ", ",
 "isOrdered": true
 }
}

 AddressComponent Object
 An AddressComponent object has the following properties:

 @type: String.

 The JSContact type of the object. The value MUST be "AddressComponent", if set.

 value: String (mandatory).

 The value of the address component.

 kind: String (mandatory).

 The kind of the address component. The enumerated values are:

 room: the room, suite number, or identifier.
 apartment: the extension designation such as the apartment number, unit, or box number.
 floor: the floor or level the address is located on.
 building: the building, tower, or condominium the address is located in.
 number: the street number, e.g., "123". This value is not restricted to numeric values and can
 include any value such as number ranges ("112-10"), grid style ("39.2 RD"), alphanumerics
 ("N6W23001"), or fractionals ("123 1/2").

 name: the street name.
 block: the block name or number.
 subdistrict: the subdistrict, ward, or other subunit of a district.
 district: the district name.
 locality: the municipality, city, town, village, post town, or other locality.
 region: the administrative area such as province, state, prefecture, county, or canton.
 postcode: the postal code, post code, ZIP code, or other short code associated with the address by
 the relevant country's postal system.

 country: the country name.
 direction: the cardinal direction or quadrant, e.g., "north".
 landmark: the publicly known prominent feature that can substitute the street name and number,
 e.g., "White House" or "Taj Mahal".

 postOfficeBox: the post office box number or identifier.
 separator: a formatting separator between two ordered address non-separator components. The value
 property of the component includes the verbatim separator, for example, a hyphen character or even
 an empty string. This value has higher precedence than the defaultSeparator property of the Address.
 Implementations MUST NOT insert two consecutive separator components; instead, they SHOULD insert a single separator component with the combined value. This component kind MUST NOT be set if the Address isOrdered property value is "false".

 phonetic: String (optional).
 The pronunciation of the name component. If this property is set, then at least one of the Address
 object phoneticSystem or phoneticScript properties MUST be set. Also see .

 Additional Address Examples
 The following example illustrates the use of the address property for "46, 1 Sukhumvit 51 Alley, Khlong
 Tan Nuea, Watthana, Bangkok 10110, Thailand".

 Example of an Address in Thailand

"addresses": {
 "k25": {
 "components": [
 { "kind": "number", "value": "46" },
 { "kind": "name", "value": "1 Sukhumvit 51 Alley" },
 { "kind": "subdistrict", "value": "Khlong Tan Nuea" },
 { "kind": "district", "value": " Watthana" },
 { "kind": "locality", "value": "Bangkok" },
 { "kind": "country", "value": "Thailand" },
 { "kind": "postcode", "value": "10110" }
],
 "defaultSeparator": ", ",
 "isOrdered": true
 }
}

 The following example illustrates the use of the address property for "2-7-2 Marunouchi, Chiyoda-ku, Tokyo
 100-8994" and its Japanese localization ().

 Example of an Address in Tokyo and Its Localization in Japanese

"addresses": {
 "k26": {
 "components": [
 { "kind": "block", "value": "2-7" },
 { "kind": "separator", "value": "-" },
 { "kind": "number", "value": "2" },
 { "kind": "separator", "value": " " },
 { "kind": "district", "value": "Marunouchi" },
 { "kind": "locality", "value": "Chiyoda-ku" },
 { "kind": "region", "value": "Tokyo" },
 { "kind": "separator", "value": " " },
 { "kind": "postcode", "value": "100-8994" }
],
 "defaultSeparator": ", ",
 "full": "2-7-2 Marunouchi, Chiyoda-ku, Tokyo 100-8994",
 "isOrdered": true
 }
},
"localizations": {
 "jp": {
 "addresses/k26": {
 "components": [
 { "kind": "region", "value": "東京都" },
 { "kind": "locality", "value": "千代田区" },
 { "kind": "district", "value": "丸ノ内" },
 { "kind": "block", "value": "2-7" },
 { "kind": "separator", "value": "-" },
 { "kind": "number", "value": "2" },
 { "kind": "postcode", "value": "〒100-8994" }
],
 "defaultSeparator": "",
 "full": "〒100-8994東京都千代田区丸ノ内2-7-2",
 "isOrdered": true
 }
 }
}

 Resource Properties
 This section defines properties for digital resources associated with the entity represented by the Card.

 cryptoKeys

 cryptoKeys: Id[CryptoKey] (optional).
 The cryptographic resources such as public keys and certificates associated with the entity
 represented by the Card.

 A CryptoKey object has all properties of the Resource data type, with the
 following additional definition:

 The @type property value MUST be "CryptoKey", if set.

 The following example shows how to refer to an external cryptographic resource.

 Example of cryptoKeys with External Data

"cryptoKeys": {
 "mykey1": {
 "uri": "https://www.example.com/keys/jdoe.cer"
 }
}

 The following example shows how to embed key data in the CryptoKey. The key data is depicted in multiple
 lines only for demonstration purposes.

 Example of cryptoKeys with Embedded Data

"cryptoKeys": {
 "mykey2": {
 "uri": "data:application/pgp-keys;base64,LS0tLS1CRUdJTiBSU0EgUFVC
 TElDIEtFWS0tLS0tCk1JSUJDZ0tDQVFFQSt4R1ovd2N6OXVnRnBQMDdOc
 3BvNlUxN2wwWWhGaUZweHhVNHBUazNMaWZ6OVIzenNJc3UKRVJ3dGE3K2
 ZXSWZ4T28yMDhldHQvamhza2lWb2RTRXQzUUJHaDRYQmlweVdvcEt3Wjk
 zSEhhRFZaQUFMaS8yQQoreFRCdFdkRW83WEdVdWpLRHZDMi9hWkt1a2Zq
 cE9pVUk4QWhMQWZqbWxjRC9VWjFRUGgwbUhzZ2xSTkNtcEN3Cm13U1hBO
 VZObWh6K1BpQitEbWw0V1duS1cvVkhvMnVqVFh4cTcrZWZNVTRIMmZueT
 NTZTNLWU9zRlBGR1oxVE4KUVNZbEZ1U2hXckhQdGlMbVVkUG9QNkNWMm1
 NTDF0aytsN0RJSXFYclFoTFVLREFDZU01cm9NeDBrTGhVV0I4UAorMHVq
 MUNObE5ONEpSWmxDN3hGZnFpTWJGUlU5WjRONll3SURBUUFCCi0tLS0tR
 U5EIFJTQSBQVUJMSUMgS0VZLS0tLS0K"
 }
}

 directories

 directories: Id[Directory] (optional).
 The directories containing information about the entity represented by the Card.

 A Directory object has all properties of the Resource data type, with the
 following additional definitions:

 The @type property value MUST be "Directory", if set.

 The kind property is mandatory. Its enumerated values are:

 directory: the resource is a directory service that the entity represented by the Card is a part of.
 This typically is an organizational directory that also contains associated entities, e.g., co-workers
 and management in a company directory.

 entry: the resource is a directory entry of the entity represented by the Card. In contrast to the
 "directory" type, this is the specific URI for the entity within a directory.

 In addition, the Directory object has the following property:

 listAs: UnsignedInt (optional).

 The position of the directory resource in the list of all Directory objects having the same kind
 property value in the Card. If set, the listAs value MUST be higher than zero. Multiple
 directory resources MAY have the same listAs property value or none. Sorting such
 same-valued entries is implementation-specific.

 Example for the directories Property

"directories": {
 "dir1": {
 "kind": "entry",
 "uri": "https://dir.example.com/addrbook/jdoe/Jean%20Dupont.vcf"
 },
 "dir2": {
 "kind": "directory",
 "uri": "ldap://ldap.example/o=Example%20Tech,ou=Engineering",
 "pref": 1
 }

 links

 links: Id[Link] (optional).
 The links to resources that do not fit any of the other use-case-specific resource properties.

 A Link object has all properties of the Resource data type, with the
 following additional definitions:

 The @type property value MUST be "Link", if set.

 The kind property is optional. Its enumerated values are:

 contact: the resource is a URI by which the entity represented by the Card may be contacted; this
 includes web forms or other media that require user interaction.

 Example for the links Property

"links": {
 "link3": {
 "kind": "contact",
 "uri": "mailto:contact@example.com",
 "pref": 1
 }
}

 media

 media: Id[Media] (optional).
 The media resources such as photographs, avatars, or sounds that are associated with the entity
 represented by the Card.

 A Media object has all properties of the Resource data type, with the
 following additional definitions:

 The @type property value MUST be "Media", if set.

 The kind property is mandatory. Its enumerated values are:

 photo: the resource is a photograph or avatar.
 sound: the resource is audio media, e.g., to specify the proper pronunciation of the name property
 contents.

 logo: the resource is a graphic image or logo associated with the entity represented by the Card.

 Example for the media Property

"media": {
 "res45": {
 "kind": "sound",
 "uri": "CID:JOHNQ.part8.19960229T080000.xyzMail@example.com"
 },
 "res47": {
 "kind": "logo",
 "uri": "https://www.example.com/pub/logos/abccorp.jpg"
 },
 "res1": {
 "kind": "photo",
 "uri": "..."
 }
}

 Multilingual Properties
 This section defines properties for localizing the content of the Card in human languages.

 localizations

 localizations: String[PatchObject] (optional).

 The property values localized to languages other than the main language of
 the Card. Localizations provide language-specific alternatives for existing property values and SHOULD NOT add new properties. The keys in the localizations property value are language tags ; the values are of type PatchObject and localize the Card in that language
 tag. The paths in the PatchObject are relative to the Card that includes the localizations property. A
 patch MUST NOT target the localizations property.

 Conceptually, a Card is localized as follows:

 Determine the language tag in which the Card should be localized.
 If the localizations property includes a key for that language, obtain the PatchObject value. If there
 is no such key, stop.

 Create a copy of the Card, but do not copy the localizations property.
 Apply all patches in the PatchObject to the copy of the Card.
 Optionally, set the language property in the copy of the Card.
 Use the patched copy of the Card as the localized variant of the original Card.

 A patch in the PatchObject may contain any value type. Its value MUST be a valid value
 according to the definition of the patched property.

 localizes the name property by completely replacing its contents in Ukrainian language with Cyrillic script.

 Example of Localizing a Top-Level Property

{
 "name": {
 "components": [
 { "kind": "title", "value": "Mr." },
 { "kind": "given", "value": "Ivan" },
 { "kind": "given2", "value": "Petrovich" },
 { "kind": "surname", "value": "Vasiliev" }
]
 },
 "localizations": {
 "uk-Cyrl": {
 "name": {
 "components": [
 { "kind": "title", "value": "г-н" },
 { "kind": "given", "value": "Иван" },
 { "kind": "given2", "value": "Петрович" },
 { "kind": "surname", "value": "Васильев" }
]
 }
 }
 }
}

 localizes the title name by patching inside the titles property. All properties, except the name
 property in the Title object, are left as is.

 Example of Localizing a Nested Property

"name": {
 "full": "Gabriel García Márquez"
},
"titles": {
 "t1": {
 "kind": "title",
 "name": "novelist"
 }
},
"localizations": {
 "es": {
 "titles/t1/name": "escritor"
 }
}

 Additional Properties
 This section defines properties for which none of the previous sections are appropriate.

 anniversaries

 anniversaries: Id[Anniversary] (optional).
 The memorable dates and events for the entity represented by the Card.

 An Anniversary object has the following properties:

 @type: String.

 The JSContact type of the object. The value MUST be "Anniversary", if set.

 kind: String (mandatory).

 The kind of anniversary. The enumerated values are:

 birth: a birthday anniversary
 death: a deathday anniversary
 wedding: a wedding day anniversary

 date: PartialDate|Timestamp (mandatory; defaultType: PartialDate).

 The date of the anniversary in the Gregorian calendar. This MUST be either a whole or
 partial calendar date or a complete UTC timestamp (see the definition of the Timestamp and PartialDate
 object types below).

 place: Address (optional).
 An address associated with this anniversary, e.g., the place of birth or death.

 A PartialDate object represents a complete or partial calendar date in the Gregorian calendar. It
 represents a complete date, a year, a month in a year, or a day in a month. It has the following properties:

 @type: String.

 The JSContact type of the object. The value MUST be "PartialDate", if set.

 year:
 UnsignedInt (optional). The calendar year.
 month: UnsignedInt (optional).
 The calendar month, represented as the integers 1 <= month <= 12. If this property is set, then
 either the year or the day property MUST be set.

 day: UnsignedInt (optional).
 The calendar month day, represented as the integers 1 <= day <= 31, depending on the validity
 within the month and year. If this property is set, then the month property MUST be set.

 calendarScale: String (optional).
 The calendar system in which this date occurs, in lowercase. This MUST be either a
 calendar system name registered as a Common Locale Data Repository (CLDR)

 or a vendor-specific value. The year, month, and day still MUST be represented in the
 Gregorian calendar. Note that the year property might be required to convert the date between the
 Gregorian calendar and the respective calendar system.

 A Timestamp object has the following properties:

 @type: String.
 The JSContact type of the object. The value MUST be "Timestamp", if set.

 utc: UTCDateTime (mandatory).
 The point in time in UTC time.

 illustrates anniversaries with partial dates and a timestamp. Note how the @type property is set for the
 Timestamp object value according to the rules defined in .

 Example for the anniversaries Property

"anniversaries": {
 "k8": {
 "kind": "birth",
 "date": {
 "year": 1953,
 "month": 4,
 "day": 15
 }
 },
 "k9": {
 "kind": "death",
 "date": {
 "@type": "Timestamp",
 "utc": "2019-10-15T23:10:00Z"
 },
 "place": {
 "full": "4445 Tree Street\nNew England, ND 58647\nUSA"
 }
 }
}

 keywords

 keywords: String[Boolean] (optional).

 The set of free-text keywords, also known as tags. Each key in the set is a keyword, and each boolean value MUST be "true".

 Example for the keywords Property

"keywords": {
 "internet": true,
 "IETF": true
}

 notes

 notes: Id[Note] (optional).
 The free-text notes that are associated with the Card.

 A Note object has the following properties:

 @type: String.

 The JSContact type of the object. The value MUST be "Note", if set.

 note: String (mandatory).

 The free-text value of this note.

 created: UTCDateTime (optional).

 The date and time when this note was created.

 author: Author (optional).

 The author of this note.

 An Author object has the following properties, of which at least one property other than @type MUST be set:

 @type: String.

 The JSContact type of the object. The value MUST be "Author", if set.

 name: String (optional).

 The name of this author.

 uri: String (optional).

 The URI value that identifies the author.

 Example for the notes Property

"notes": {
 "n1": {
 "note": "Open office hours are 1600 to 1715 EST, Mon-Fri",
 "created": "2022-11-23T15:01:32Z",
 "author": {
 "name": "John"
 }
 }
}

 personalInfo

 personalInfo: Id[PersonalInfo] (optional).
 The personal information of the entity represented by the Card.

 A PersonalInfo object has the following properties:

 @type: String.

 The JSContact type of the object. The value MUST be "PersonalInfo", if set.

 kind: String (mandatory).

 The kind of personal information. The enumerated values
 are:

 expertise: a field of expertise or a credential
 hobby: a hobby
 interest: an interest

 value: String (mandatory).

 The actual information.

 level: String (optional).

 The level of expertise or engagement in hobby or interest. The enumerated values are:

 high

 medium

 low

 listAs: UnsignedInt (optional).

 The position of the personal information in the list of all PersonalInfo objects that have the
 same kind property value in the Card. If set, the listAs value MUST be higher than zero.
 Multiple personal information entries MAY have the same listAs property value or none.
 Sorting such same-valued entries is implementation-specific.

 label: String (optional).

 A custom label. See .

 Example for the personalInfo Property

"personalInfo": {
 "pi2": {
 "kind": "expertise",
 "value": "chemistry",
 "level": "high"
 },
 "pi1": {
 "kind": "hobby",
 "value": "reading",
 "level": "high"
 },
 "pi6": {
 "kind": "interest",
 "value": "r&b music",
 "level": "medium"
 }
}

 IANA Considerations

 Media Type Registration
 This document defines a media type for use with JSContact data formatted in JSON.

 Type name:
 application
 Subtype name:
 jscontact+json
 Required parameters:

 None

 Optional parameters:

 version
 This parameter conveys the version of the JSContact data in the body part. It MUST NOT occur
 more than once. If this parameter is set, then the values of all JSContact version
 properties in the body part MUST match the parameter value.

 Encoding considerations:
 This is the same as the encoding considerations of application/json, as specified in .

 Security considerations:
 See

 of RFC 9553.

 Interoperability considerations:
 While JSContact is designed to avoid ambiguities as much as possible, when converting objects from other
 contact formats to/from JSContact, it is possible that differing representations for the same logical data
 or ambiguities in interpretation might arise. The semantic equivalence of two JSContact objects may be
 determined differently by different applications, for example, where URL values differ in case between the
 two objects.

 Published specification:
 RFC 9553
 Applications that use this media type:
 Applications that currently make use of the text/vcard media type can use this as an alternative.
 Fragment identifier considerations:
 A JSON Pointer fragment identifier may be used, as defined in .

 Additional information:

 Magic number(s):
 N/A
 File extensions(s):
 N/A
 Macintosh file type code(s):
 N/A

 Person & email address to contact for further information:
 calsify@ietf.org
 Intended usage:
 COMMON
 Restrictions on usage:
 N/A
 Author:
 See the "Authors' Addresses" section of RFC 9553.
 Change controller:
 IETF

 Creation of the JSContact Registry Group
 IANA has created the "JSContact" registry group. The new registry definitions in the following sections all
 belong to that group.

 Registry Policy and Change Procedures
 Registry assignments that introduce backwards-incompatible changes require
 the JSContact major version to change; other changes only require a change to the minor version. The registry
 policy for assignments that require the JSContact major version to change is Standards Action (). The registry policy for other assignments is
 Specification Required ().

 The designated expert (DE) decides if a major or minor version change is required and assigns the new version
 to the "JSContact Version" registry. Version numbers increment by
 one, and a major version change resets the minor version to zero. An assignment may apply multiple changes and
 to more than one registry at once, in which case a single version change is sufficient. If the registry policy
 is Specification Required, then the DE may decide that it is enough to document the new assignment in the
 Description item of the respective registry.

 A registration MUST have an intended usage of "common", "reserved", or "obsolete".

 A "common" usage denotes an item with shared semantics and syntax across systems. Up-to-date systems MUST expect such items to occur in JSContact data.

 A "reserved" usage reserves an item in the registry without assigning semantics to avoid name collisions
 with future extensions or protocol use. Implementations MUST NOT expect or add items with
 such names outside the protocols or extensions that use them; otherwise, any such JSContact data is invalid.

 An "obsolete" usage denotes an item that is no longer expected to be added by up-to-date systems. A new
 assignment has probably been defined, covering the obsolete item's semantics. Implementations MUST expect such items to occur in JSContact data up to the "Until Version" registry field, inclusively.
 They MUST NOT add such items for any version after which the item was obsoleted; otherwise,
 any such JSContact data is invalid.

 The intended usage of registry items may change between versions, but the DE must carefully
 consider the impact on existing implementations and standards before doing so.

 The registration procedure is not a formal standards process but rather an administrative procedure intended
 to allow community comments and to check whether it is coherent without excessive time delay. It is designed
 to encourage vendors to document and register new items they add for use cases not covered by the original
 specification, leading to increased interoperability.

 Preliminary Community Review
 Notice of a potential new registration MUST be sent to the Calext WG mailing list <calsify@ietf.org>
 for review. This mailing list is appropriate for soliciting community feedback on a proposed registry
 assignment.

 The intent of the public posting to this list is to solicit comments and feedback on the choice of the item
 name or value, the unambiguity of its description, and a review of any interoperability or security
 considerations. The submitter may submit a revised registration proposal or abandon the registration
 completely at any time.

 Submit Request to IANA
 Registration requests can be sent to IANA <iana@iana.org>.

 Designated Expert Review
 The primary concern of the DE is preventing name collisions and encouraging the submitter to document
 security and privacy considerations.

 A new type name, property name, or enumerated value MUST NOT differ only in case from an
 already-registered name or value.

 For a common-use registration, the DE is expected to confirm that suitable documentation is available to
 ensure interoperability. The DE should also verify that the new assignment does not conflict with work that
 is active or already published within the IETF.

 The DE will either approve or deny the registration request and publish a notice of the decision to the
 Calext WG mailing list or its successor, as well as inform IANA. A denial notice must be justified by an
 explanation, and in the cases where it is possible, concrete suggestions on how the request can be modified
 to become acceptable should be provided.

 Change Procedures
 Once a JSContact registry group item has been published by IANA, the Change Controller may request a change
 to its definition. The same procedure that would be appropriate for the original registration request is
 used to process a change request.

 JSContact registrations do not get deleted; instead, items that are no longer believed appropriate for use
 are declared obsolete by a change to their "Intended Usage" field; such items will be clearly marked in the
 IANA registry.

 Significant changes to a JSContact registry item's definition should be requested only when there are
 serious omissions or errors in the published specification, as such changes may cause interoperability
 issues. When review is required, a change request may be denied if it renders entities that were valid under
 the previous definition invalid under the new definition.

 Creation of the JSContact Version Registry
 IANA has created the "JSContact Version" registry. The purpose of this new registry is to define the allowed
 value range of JSContact major and minor version numbers.

 The registry entries sort numerically in ascending order by the "Major Version" column, and entries with equal "Major Version" sort numerically in ascending order by the "Minor Version" column.
 The registry process is outlined in .

 JSContact Version Registry Template

 Major Version:
 The numeric value of a JSContact major version number. It MUST be a positive integer.

 Highest Minor Version:
 The maximum numeric value of a JSContact minor version for the given major version. It MUST be zero or a positive integer. All numbers less than or equal to this value are valid minor version
 values for the given major version.

 Initial Contents of the JSContact Version Registry
 The following table lists the initial valid major and minor version number ranges.

 JSContact Version Registry

 Major Version
 Highest Minor Version
 Reference

 1
 0
 RFC 9553

 Creation of the JSContact Properties Registry
 IANA has created the "JSContact Properties" registry. The purpose of this new registry is to allow
 interoperability of extensions to JSContact objects.

 The registry entries sort alphabetically in ascending order by the following columns: "Property Name" first,
 "Property Context" second, and "Since Version" third. Equal entries sort in any order.

 The registry process for a new property is outlined in .

 JSContact Properties Registry Template

 Property Name:
 The name of the property. The property name MUST NOT already be registered for any of the
 object types listed in the "Property Context" field of this registration. Other object types MAY have already registered a different property with the same name; however, the same name MUST only be used when the semantics are analogous.

 Property Type:
 For properties with intended usage other than "reserved", this
 is the type of this property, using type signatures as specified
 in . The property
 type MUST be registered in the "JSContact Types"
 registry. For reserved property names, the value MUST be the
 verbatim string "not applicable".

 Property Context:
 A comma-separated list of JSContact object types () that
 contain the property. For reserved property names, the value MAY be the verbatim string "not applicable".

 Intended Usage:
 May be "common", "reserved", or "obsolete".
 Since Version:
 The JSContact version on which the property definition is based. The version MUST be one
 of the allowed values of the version property in the "JSContact Version" registry (see).

 Until Version:
 The JSContact version after which the property was obsoleted; therefore, it MUST NOT be
 used in later versions. The Until Version value either MUST NOT be set or MUST be one of the allowed values of the version property in the "JSContact Version" registry (see
).

 Change Controller:
 Person or entity responsible for requesting a change to the entry's definition ("IETF" for RFCs from the
 IETF stream).

 Reference or Description:
 A brief description or RFC number and section reference where the property is specified. This must
 include references to all RFC documents where this property is introduced or updated. For reserved
 property names, the reference or description MAY be omitted.

 Initial Contents of the JSContact Properties Registry
 The following table lists the initial "common" usage entries of the "JSContact Properties" registry. For
 all properties, the Since Version is "1.0", the Until Version is not set, the Change Controller is "IETF",
 and RFC section references are for RFC 9553.

 JSContact Properties with "common" Usage

 Property Name
 Property Type
 Property Context

 @type
 String
 Address (), AddressComponent (), Anniversary (), Author (), Card (), Calendar (), CryptoKey (), Directory (), EmailAddress (), LanguagePref (), Link), Media (), Name (), NameComponent (), Nickname (), Note (), OnlineService (), Organization (), OrgUnit (), PartialDate (), PersonalInfo (), Phone (), Pronouns (), Relation (), SchedulingAddress (), SpeakToAs (), Timestamp (), Title ()

 address
 String
 EmailAddress ()

 addresses
 Id[Address]
 Card ()

 anniversaries
 Id[Anniversary]
 Card ()

 author
 Author
 Note ()

 calendars
 Id[Calendar]
 Card ()

 calendarScale
 String
 PartialDate ()

 components
 AddressComponent[]
 Address ()

 components
 NameComponent[]
 Name ()

 contexts
 String[Boolean]
 Address (), Calendar (), CryptoKey (), Directory (), EmailAddress (), LanguagePref (), Link (), Media (), Nickname (), OnlineService (), Organization (), Phone (), Pronouns (), SchedulingAddress (). Also see Sections and .

 coordinates
 String
 Address ()

 countryCode
 String
 Address ()

 created
 UTCDateTime
 Card (), Note ()

 date
 PartialDate|Timestamp
 Anniversary ()

 day
 UnsignedInt
 PartialDate ()

 defaultSeparator
 String
 Address (), Name ()

 directories
 Id[Directory]
 Card ()

 emails
 Id[EmailAddress]
 Card ()

 features
 String[Boolean]
 Phone ()

 full
 String
 Address (), Name ()

 grammaticalGender
 String
 SpeakToAs ()

 isOrdered
 Boolean
 Address (), Name ()

 keywords
 String[Boolean]
 Card ()

 kind
 String
 AddressComponent (), Anniversary (), Calendar (), Card (), CryptoKey (), Directory (), Link (), Media (), NameComponent (), PersonalInfo (), Title ()

 label
 String
 Calendar (), CryptoKey (), Directory (), EmailAddress (), Link (), Media (), OnlineService (), PersonalInfo (), Phone (), SchedulingAddress (). Also see Sections and .

 language
 String
 Card (), LanguagePref ()

 level
 String
 PersonalInfo ()

 links
 Id[Link]
 Card ()

 listAs
 UnsignedInt
 Directory (), PersonalInfo ()

 localizations
 String[PatchObject]
 Card ()

 media
 Id[Media]
 Card ()

 mediaType
 String
 Calendar (), CryptoKey (), Directory (), Link (), Media (). Also see .

 members
 String[Boolean]
 Card ()

 month
 UnsignedInt
 PartialDate ()

 name
 Name
 Card ()

 name
 String
 Author (), Nickname (), Organization (), OrgUnit (), Title ()

 nicknames
 Id[Nickname]
 Card ()

 note
 String
 Note ()

 notes
 Id[Note]
 Card ()

 number
 String
 Phone ()

 onlineServices
 Id[OnlineService]
 Card ()

 organizationId
 String
 Title ()

 organizations
 Id[Organization]
 Card ()

 personalInfo
 Id[PersonalInfo]
 Card ()

 phones
 Id[Phone]
 Card ()

 phonetic
 String
 AddressComponent (), NameComponent ()

 phoneticScript
 String
 Address (), Name ()

 phoneticSystem
 String
 Address (), Name ()

 place
 Address
 Anniversary ()

 pref
 UnsignedInt
 Address (), Calendar (), CryptoKey (), Directory (), EmailAddress (), LanguagePref (), Link (), Media (), Nickname (), OnlineService (), Phone (), Pronouns (), SchedulingAddress (). Also see Sections and .

 preferredLanguages
 String[LanguagePref]
 Card ()

 prodId
 String
 Card ()

 pronouns
 Id[Pronouns]
 SpeakToAs ()

 relatedTo
 String[Relation]
 Card ()

 relation
 String[Boolean]
 Relation ()

 schedulingAddresses
 Id[SchedulingAddress]
 Card ()

 service
 String
 OnlineService ()

 sortAs
 String[String]
 Name ()

 sortAs
 String
 Organization (), OrgUnit ()

 speakToAs
 SpeakToAs
 Card ()

 timeZone
 String
 Address ()

 titles
 Id[Title]
 Card ()

 uid
 String
 Card ()

 units
 OrgUnit[]
 Organization ()

 updated
 UTCDateTime
 Card ()

 uri
 String
 Author (), Calendar (), CryptoKey (), Directory (), Link (), Media (), OnlineService (), SchedulingAddress (). Also see .

 user
 String
 OnlineService ()

 utc
 UTCDateTime
 Timestamp ()

 value
 String
 AddressComponent (), NameComponent (), PersonalInfo ()

 version
 String
 Card ()

 year
 UnsignedInt
 PartialDate ()

 The following table lists the initial "reserved" usage entries of the "JSContact Properties" registry. For
 this property, the Change Controller is "IETF", and the RFC section reference is for RFC 9553.

 JSContact Properties with "reserved" Usage

 Property Name
 Property Type
 Property Context
 Intended Usage
 Reference/Description

 extra
 not applicable
 not applicable
 reserved

 Creation of the JSContact Types Registry
 IANA has created the "JSContact Types" registry. The purpose of this new registry is to avoid name collisions
 for JSContact type names and provide a complete reference for all data types used for JSContact property
 values.

 The registry entries sort alphabetically in ascending order by the "Type Name" column. Equal entries sort in
 any order.

 The registry process for a new type is outlined in .

 JSContact Types Registry Template

 Type Name:
 The name of the type.
 Intended Usage:
 May be "common", "reserved", or "obsolete".
 Since Version:
 The JSContact version on which this type definition is based. The version MUST be one of
 the allowed values of the version property in the "JSContact Version" registry (see).

 Until Version:
 The JSContact version after which the type definition was obsoleted; therefore, it MUST NOT be used in later versions. The Until Version value either MUST NOT be set or MUST be one of the allowed values of the version property in the "JSContact Version" registry (see).

 Change Controller:
 Person or entity responsible for requesting a change to the entry's definition ("IETF" for RFCs from the
 IETF stream).

 Reference or Description:
 A brief description or RFC number and section reference where the Type is specified. For reserved type
 names, the reference or description MAY be omitted.

 Initial Contents of the JSContact Types Registry
 The following table lists the initial "common" usage entries in the "JSContact Types" registry. For all of
 these types, the Since Version is "1.0", the Until Version is not set, the Change Controller is "IETF", and
 RFC section references are for RFC 9553.

 JSContact Types with "common" Usage

 Type Name
 Reference/Description

 Address

 AddressComponent

 Anniversary

 Author

 Boolean

 Calendar

 Card

 CryptoKey

 Directory

 EmailAddress

 Id

 Int

 LanguagePref

 Link

 Media

 Name

 NameComponent

 Nickname

 Note

 Number

 OnlineService

 Organization

 OrgUnit

 PartialDate

 PatchObject

 PersonalInfo

 Phone

 Pronouns

 Relation

 SchedulingAddress

 SpeakToAs

 String

 Timestamp

 Title

 UnsignedInt

 UTCDateTime

 The following table lists the initial "reserved" usage entry of the "JSContact Types" registry. For this
 type, the version is "1.0", the Change Controller is "IETF", and the RFC section reference is for RFC 9553.

 JSContact Types with "reserved" Usage

 Type Name
 Reference/Description

 Resource

 Creation of the JSContact Enum Values Registry
 IANA has created the "JSContact Enum Values" registry. The purpose of the new registry is to allow
 interoperable extension of semantics for JSContact properties with enumerable values. Each such property will
 have a subregistry of allowed values.

 The registry entries sort alphabetically in ascending order by the following columns: "Property Name" first,
 "Property Context" second, and "Since Version" third. The enum values sort alphabetically in ascending order.
 Equal entries sort in any order.

 The registry process for a new enum value or adding a new enumerable property is outlined in .

 JSContact Enum Values Registry Property Template
 This template is for adding a subregistry for a new enumerable property to the "JSContact Enum Values"
 registry.

 Property Name:
 The name(s) of the property or properties where these values may be used. This MUST be
 registered in the "JSContact Properties" registry.

 Context:
 The list of allowed object types where the property or properties may appear, as registered in the
 "JSContact Properties" registry. This disambiguates where there may be two distinct properties with the
 same name in different contexts.

 Since Version:
 The JSContact version on which the enum value definition is based. The version MUST be
 one of the allowed values of the version property in the "JSContact Version" registry (see).

 Until Version:
 The JSContact version after which the enum value definition was obsoleted; therefore, the enum value
 definition MUST NOT be used in later versions. The Until Version value either MUST NOT be set or MUST be one of the allowed values of the version property in the
 "JSContact Version" registry (see).

 Change Controller:
 Person or entity responsible for requesting a change to the entry's definition ("IETF" for RFCs from the
 IETF stream).

 Reference or Description:
 A brief description or RFC number and
 section reference for the semantics of the value.

 Note that the initial contents will be the initial list of defined values for the enum, using the template defined in . A subregistry will be created with
 these values for this property name/context tuple.

 JSContact Enum Values Registry Value Template
 This template is for adding a new enum value to a subregistry in the "JSContact Enum Values" registry.

 Enum Value:
 The verbatim value of the enum.
 Since Version:
 The JSContact version on which the enum value definition is based. The version MUST be
 one of the allowed values of the version property in the "JSContact Version" registry (see).

 Until Version:
 The JSContact version after which the enum value was obsoleted; therefore, the enum value MUST NOT be used in later versions. The Until Version value either MUST NOT be set or MUST be one of the allowed values of the version property in the "JSContact Version" registry (see).

 Change Controller:
 Person or entity responsible for requesting a
 change to the entry's definition ("IETF" for RFCs from the IETF
 stream).
 Reference or Description:
 A brief description or RFC number and section reference for the semantics of the value.

 Initial Contents of the JSContact Enum Values Registry
 For all entries in each subregistry created in this section, the Since Version is "1.0", the Until Version
 is not set, the Change Controller is "IETF", and RFC section references are for RFC 9553.

 Property Name:
 contexts
 Context:
 Address

 Initial Contents:

 JSContact Enum Values for contexts (Context: Address)

 Enum Value
 Reference/Description

 billing

 delivery

 private

 work

 Property Name:
 contexts
 Context:
 Calendar, CryptoKey, Directory, EmailAddress, LanguagePref, Link, Media, Nickname, OnlineService,
 Organization, Phone, Pronouns, SchedulingAddress

 Initial Contents:

 JSContact Enum Values for contexts (Context: Calendar, CryptoKey, Directory, EmailAddress,
 LanguagePref, Link, Media, Nickname, OnlineService, Organization, Phone, Pronouns, SchedulingAddress)

 Enum Value
 Reference/Description

 private

 work

 Property Name:
 features
 Context:
 Phone

 Initial Contents:

 JSContact Enum Values for features (Context: Phone)

 Enum Value
 Reference/Description

 fax

 main-number

 mobile

 pager

 text

 textphone

 video

 voice

 Property Name:
 grammaticalGender
 Context:
 SpeakToAs

 Initial Contents:

 JSContact Enum Values for grammaticalGender (Context: SpeakToAs)

 Enum Value
 Reference/Description

 animate

 common

 feminine

 inanimate

 masculine

 neuter

 Property Name:
 kind
 Context:
 AddressComponent

 Initial Contents:

 JSContact Enum Values for kind (Context: AddressComponent)

 Enum Value
 Reference/Description

 apartment

 block

 building

 country

 direction

 district

 floor

 landmark

 locality

 name

 number

 postcode

 postOfficeBox

 region

 room

 separator

 subdistrict

 Property Name:
 kind
 Context:
 Anniversary

 Initial Contents:

 JSContact Enum Values for kind (Context: Anniversary)

 Enum Value
 Reference/Description

 birth

 death

 wedding

 Property Name:
 kind
 Context:
 Calendar

 Initial Contents:

 JSContact Enum Values for kind (Context: Calendar)

 Enum Value
 Reference/Description

 calendar

 freeBusy

 Property Name:
 kind
 Context:
 Card

 Initial Contents:

 JSContact Enum Values for kind (Context: Card)

 Enum Value
 Reference/Description

 application

 device

 group

 individual

 location

 org

 Property Name:
 kind
 Context:
 Directory

 Initial Contents:

 JSContact Enum Values for kind (Context: Directory)

 Enum Value
 Reference/Description

 directory

 entry

 Property Name:
 kind
 Context:
 Link

 Initial Contents:

 JSContact Enum Values for kind (Context: Link)

 Enum Value
 Reference/Description

 contact

 Property Name:
 kind
 Context:
 Media

 Initial Contents:

 JSContact Enum Values for kind (Context: Media)

 Enum Value
 Reference/Description

 logo

 photo

 sound

 Property Name:
 kind
 Context:
 NameComponent

 Initial Contents:

 JSContact Enum Values for kind (Context: NameComponent)

 Enum Value
 Reference/Description

 credential

 generation

 given

 given2

 separator

 surname

 surname2

 title

 Property Name:
 kind
 Context:
 PersonalInfo

 Initial Contents:

 JSContact Enum Values for kind (Context: PersonalInfo)

 Enum Value
 Reference/Description

 expertise

 hobby

 interest

 Property Name:
 kind
 Context:
 Title

 Initial Contents:

 JSContact Enum Values for kind (Context: Title)

 Enum Value
 Reference/Description

 role

 title

 Property Name:
 level
 Context:
 PersonalInfo

 Initial Contents:

 JSContact Enum Values for level (Context: PersonalInfo)

 Enum Value
 Reference/Description

 high

 low

 medium

 Property Name:
 phoneticSystem
 Context:
 Address, Name

 Initial Contents:

 JSContact Enum Values for phoneticSystem (Context: Address, Name)

 Enum Value
 Reference/Description

 ipa

 jyut

 piny

 Property Name:
 relation
 Context:
 Relation

 Initial Contents:

 JSContact Enum Values for relation (Context: Relation)

 Enum Value
 Reference/Description

 acquaintance

 agent

 child

 colleague

 contact

 co-resident

 co-worker

 crush

 date

 emergency

 friend

 kin

 me

 met

 muse

 neighbor

 parent

 sibling

 spouse

 sweetheart

 Security Considerations
 Contact information is very privacy sensitive. It can reveal the identity, location, credentials information,
 employment status, interests and hobbies, and social network of a user. Its transmission and storage must be
 done carefully to protect it from possible threats such as eavesdropping, replay, message insertion, deletion,
 modification, and on-path attacks.

 The data being stored and transmitted may be used in systems with real-world consequences. For example, a
 malicious actor might provide JSContact data that uses the name of another person but insert their contact
 details to impersonate the unknown victim. Such systems must be careful to authenticate all data they receive to
 prevent them from being subverted and ensure the change comes from an authorized entity.

 This document only defines the data format; such considerations are primarily the concern of the API or method
 of storage and transmission of such files.

 JSON Parsing
 The security considerations of

 apply to the use of JSON as the data interchange format.

 As for any serialization format, parsers need to thoroughly check the syntax of the supplied data. JSON uses
 opening and closing brackets for several types and structures, and it is possible that the end of the supplied
 data will be reached when scanning for a matching closing bracket; this is an error condition, and
 implementations need to stop scanning at the end of the supplied data.

 JSON also uses a string encoding with some escape sequences to encode special characters within a string.
 Care is needed when processing these escape sequences to ensure that they are fully formed before the special
 processing is triggered, with special care taken when the escape sequences appear adjacent to other
 (non-escaped) special characters or adjacent to the end of data (as in the previous paragraph).

 If parsing JSON into a non-textual structured data format, implementations may need to allocate storage to
 hold JSON string elements. Since JSON does not use explicit string lengths, the risk of denial of service due
 to resource exhaustion is small, but implementations may still wish to place limits on the size of allocations
 they are willing to make in any given context, to avoid untrusted data causing excessive memory allocation.

 URI Values
 Several JSContact properties contain URIs as values, and processing these properties requires extra care.

 discusses security risks related to URIs.

 Fetching remote resources carries inherent risks. Connections must only be allowed on well-known ports, using
 allowed protocols (generally, just HTTP/HTTPS on their default ports). The URL must be resolved externally and
 not allowed to access internal resources. Connecting to an external source reveals IP (and therefore often
 location) information.

 A maliciously constructed JSContact object may contain a very large number of URIs. In the case of published
 address books with a large number of subscribers, such objects could be widely distributed. Implementations
 should be careful to limit the automatic fetching of linked resources to reduce the risk of this being an
 amplification vector for a denial-of-service attack.

 References

 Normative References

 Time Zone Database

 IANA

 vCard Elements

 IANA

 Codes for the representation of names of countries and their subdivisions -- Part 1: Country codes

 International Organization for Standardization

 Domain names - concepts and facilities

 This RFC is the revised basic definition of The Domain Name System. It obsoletes RFC-882. This memo describes the domain style names and their used for host address look up and electronic mail forwarding. It discusses the clients and servers in the domain name system and the protocol used between them.

 Domain names - implementation and specification

 This RFC is the revised specification of the protocol and format used in the implementation of the Domain Name System. It obsoletes RFC-883. This memo documents the details of the domain name client - server communication.

 Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types

 This second document defines the general structure of the MIME media typing system and defines an initial set of media types. [STANDARDS-TRACK]

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 vCard MIME Directory Profile

 This memo defines the profile of the MIME Content-Type for directory information for a white-pages person object, based on a vCard electronic business card. [STANDARDS-TRACK]

 Date and Time on the Internet: Timestamps

 This document defines a date and time format for use in Internet protocols that is a profile of the ISO 8601 standard for representation of dates and times using the Gregorian calendar.

 The Base16, Base32, and Base64 Data Encodings

 This document describes the commonly used base 64, base 32, and base 16 encoding schemes. It also discusses the use of line-feeds in encoded data, use of padding in encoded data, use of non-alphabet characters in encoded data, use of different encoding alphabets, and canonical encodings. [STANDARDS-TRACK]

 Augmented BNF for Syntax Specifications: ABNF

 Internet technical specifications often need to define a formal syntax. Over the years, a modified version of Backus-Naur Form (BNF), called Augmented BNF (ABNF), has been popular among many Internet specifications. The current specification documents ABNF. It balances compactness and simplicity with reasonable representational power. The differences between standard BNF and ABNF involve naming rules, repetition, alternatives, order-independence, and value ranges. This specification also supplies additional rule definitions and encoding for a core lexical analyzer of the type common to several Internet specifications. [STANDARDS-TRACK]

 Internet Message Format

 This document specifies the Internet Message Format (IMF), a syntax for text messages that are sent between computer users, within the framework of "electronic mail" messages. This specification is a revision of Request For Comments (RFC) 2822, which itself superseded Request For Comments (RFC) 822, "Standard for the Format of ARPA Internet Text Messages", updating it to reflect current practice and incorporating incremental changes that were specified in other RFCs. [STANDARDS-TRACK]

 Tags for Identifying Languages

 This document describes the structure, content, construction, and semantics of language tags for use in cases where it is desirable to indicate the language used in an information object. It also describes how to register values for use in language tags and the creation of user-defined extensions for private interchange. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 A Uniform Resource Identifier for Geographic Locations ('geo' URI)

 This document specifies a Uniform Resource Identifier (URI) for geographic locations using the 'geo\' scheme name. A 'geo' URI identifies a physical location in a two- or three-dimensional coordinate reference system in a compact, simple, human-readable, and protocol-independent way. The default coordinate reference system used is the World Geodetic System 1984 (WGS-84). [STANDARDS-TRACK]

 vCard Format Specification

 This document defines the vCard data format for representing and exchanging a variety of information about individuals and other entities (e.g., formatted and structured name and delivery addresses, email address, multiple telephone numbers, photograph, logo, audio clips, etc.). This document obsoletes RFCs 2425, 2426, and 4770, and updates RFC 2739. [STANDARDS-TRACK]

 JavaScript Object Notation (JSON) Pointer

 JSON Pointer defines a string syntax for identifying a specific value within a JavaScript Object Notation (JSON) document.

 The I-JSON Message Format

 I-JSON (short for "Internet JSON") is a restricted profile of JSON designed to maximize interoperability and increase confidence that software can process it successfully with predictable results.

 Non-Gregorian Recurrence Rules in the Internet Calendaring and Scheduling Core Object Specification (iCalendar)

 This document defines extensions to the Internet Calendaring and Scheduling Core Object Specification (iCalendar) (RFC 5545) to support use of non-Gregorian recurrence rules. It also defines how Calendaring Extensions to WebDAV (CalDAV) (RFC 4791) servers and clients can be extended to support these new recurrence rules.

 Guidelines for Writing an IANA Considerations Section in RFCs

 Many protocols make use of points of extensibility that use constants to identify various protocol parameters. To ensure that the values in these fields do not have conflicting uses and to promote interoperability, their allocations are often coordinated by a central record keeper. For IETF protocols, that role is filled by the Internet Assigned Numbers Authority (IANA).
 To make assignments in a given registry prudently, guidance describing the conditions under which new values should be assigned, as well as when and how modifications to existing values can be made, is needed. This document defines a framework for the documentation of these guidelines by specification authors, in order to assure that the provided guidance for the IANA Considerations is clear and addresses the various issues that are likely in the operation of a registry.
 This is the third edition of this document; it obsoletes RFC 5226.

 Uniform Resource Names (URNs)

 A Uniform Resource Name (URN) is a Uniform Resource Identifier (URI) that is assigned under the "urn" URI scheme and a particular URN namespace, with the intent that the URN will be a persistent, location-independent resource identifier. With regard to URN syntax, this document defines the canonical syntax for URNs (in a way that is consistent with URI syntax), specifies methods for determining URN-equivalence, and discusses URI conformance. With regard to URN namespaces, this document specifies a method for defining a URN namespace and associating it with a namespace identifier, and it describes procedures for registering namespace identifiers with the Internet Assigned Numbers Authority (IANA). This document obsoletes both RFCs 2141 and 3406.

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 The JavaScript Object Notation (JSON) Data Interchange Format

 JavaScript Object Notation (JSON) is a lightweight, text-based, language-independent data interchange format. It was derived from the ECMAScript Programming Language Standard. JSON defines a small set of formatting rules for the portable representation of structured data.
 This document removes inconsistencies with other specifications of JSON, repairs specification errors, and offers experience-based interoperability guidance.

 Informative References

 International Phonetic Alphabet

 IPA

 SIP: Session Initiation Protocol

 This document describes Session Initiation Protocol (SIP), an application-layer control (signaling) protocol for creating, modifying, and terminating sessions with one or more participants. These sessions include Internet telephone calls, multimedia distribution, and multimedia conferences. [STANDARDS-TRACK]

 The tel URI for Telephone Numbers

 This document specifies the URI (Uniform Resource Identifier) scheme "tel". The "tel" URI describes resources identified by telephone numbers. This document obsoletes RFC 2806. [STANDARDS-TRACK]

 Uniform Resource Identifier (URI): Generic Syntax

 A Uniform Resource Identifier (URI) is a compact sequence of characters that identifies an abstract or physical resource. This specification defines the generic URI syntax and a process for resolving URI references that might be in relative form, along with guidelines and security considerations for the use of URIs on the Internet. The URI syntax defines a grammar that is a superset of all valid URIs, allowing an implementation to parse the common components of a URI reference without knowing the scheme-specific requirements of every possible identifier. This specification does not define a generative grammar for URIs; that task is performed by the individual specifications of each URI scheme. [STANDARDS-TRACK]

 Internationalized Resource Identifiers (IRIs)

 This document defines a new protocol element, the Internationalized Resource Identifier (IRI), as a complement of the Uniform Resource Identifier (URI). An IRI is a sequence of characters from the Universal Character Set (Unicode/ISO 10646). A mapping from IRIs to URIs is defined, which means that IRIs can be used instead of URIs, where appropriate, to identify resources.
 The approach of defining a new protocol element was chosen instead of extending or changing the definition of URIs. This was done in order to allow a clear distinction and to avoid incompatibilities with existing software. Guidelines are provided for the use and deployment of IRIs in various protocols, formats, and software components that currently deal with URIs.

 xCard: vCard XML Representation

 This document defines the XML schema of the vCard data format. [STANDARDS-TRACK]

 vCard KIND:application

 This document defines a value of "application" for the vCard KIND property so that vCards can be used to represent software applications. [STANDARDS-TRACK]

 vCard Format Extensions: Place of Birth, Place and Date of Death

 The base vCard 4.0 specification defines a large number of properties, including date of birth. This specification adds three new properties to vCard 4.0: place of birth, place of death, and date of death. [STANDARDS-TRACK]

 vCard Format Extensions: Representing vCard Extensions Defined by the Open Mobile Alliance (OMA) Converged Address Book (CAB) Group

 This document defines extensions to the vCard data format for representing and exchanging certain contact information. The properties covered here have been defined by the Open Mobile Alliance (OMA) Converged Address Book group, in order to synchronize, using OMA Data Synchronization, contact fields that were not already defined in the base vCard 4.0 specification. [STANDARDS-TRACK]

 vCard KIND:device

 This document defines a value of "device" for the vCard KIND property so that the vCard format can be used to represent computing devices such as appliances, computers, or network elements (e.g., a server, router, switch, printer, sensor, or phone). [STANDARDS-TRACK]

 jCard: The JSON Format for vCard

 This specification defines "jCard", a JSON format for vCard data. The vCard data format is a text format for representing and exchanging information about individuals and other entities, for example, telephone numbers, email addresses, structured names, and delivery addresses. JSON is a lightweight, text-based, language- independent data interchange format commonly used in Internet applications.

 vCard Format Extensions: ICANN Extensions for the Registration Data Access Protocol (RDAP)

 This document defines extensions to the vCard data format for representing and exchanging contact information used to implement the Internet Corporation for Assigned Names and Numbers (ICANN) operational profile for the Registration Data Access Protocol (RDAP). The property and parameter defined here are used to add values to RDAP responses that are consistent with ICANN policies.

 DNS Terminology

 The Domain Name System (DNS) is defined in literally dozens of different RFCs. The terminology used by implementers and developers of DNS protocols, and by operators of DNS systems, has changed in the decades since the DNS was first defined. This document gives current definitions for many of the terms used in the DNS in a single document.
 This document updates RFC 2308 by clarifying the definitions of "forwarder" and "QNAME". It obsoletes RFC 8499 by adding multiple terms and clarifications. Comprehensive lists of changed and new definitions can be found in Appendices A and B.

 vCard Format Extensions for JSContact

 Fastmail

 IIT-CNR

 JSContact: Converting from and to vCard

 Fastmail

 IIT-CNR

 Universally Unique IDentifiers (UUIDs)

 Cisco Systems

 Uncloud

 University of Washington

 Unicode Standard Annex #9: Unicode Bidirectional Algorithm

 The Unicode Consortium

 Revision 48

 URL Living Standard

 WHATWG

 Authors' Addresses

 Fastmail

 PO Box 234
 Collins St. West
 Melbourne
 VIC
 8007
 Australia

 rsto@fastmailteam.com

 IIT-CNR

 Via Moruzzi, 1
 Pisa
 56124
 Italy

 mario.loffredo@iit.cnr.it

