
RFC 9629
Using Key Encapsulation Mechanism (KEM)
Algorithms in the Cryptographic Message Syntax
(CMS)

Abstract
The Cryptographic Message Syntax (CMS) supports key transport and key agreement algorithms.
In recent years, cryptographers have been specifying Key Encapsulation Mechanism (KEM)
algorithms, including quantum-secure KEM algorithms. This document defines conventions for
the use of KEM algorithms by the originator and recipients to encrypt and decrypt CMS content.
This document updates RFC 5652.

Stream:
RFC:
Updates:
Category:
Published:
ISSN:
Authors:

Internet Engineering Task Force (IETF)
9629
5652
Standards Track
August 2024
2070-1721
R. Housley
Vigil Security

J. Gray
Entrust

 ()大久保　智史 T. Okubo
Penguin Securities Pte. Ltd.

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9629

Copyright Notice
Copyright (c) 2024 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions

https://trustee.ietf.org/license-info

Housley, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9629
https://www.rfc-editor.org/rfc/rfc5652
https://www.rfc-editor.org/info/rfc9629
https://trustee.ietf.org/license-info

with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

Table of Contents
1. Introduction

1.1. Terminology

1.2. ASN.1

1.3. CMS Version Numbers

2. KEM Processing Overview

3. KEM Recipient Information

4. KEM Algorithm Identifier

5. Key Derivation

6. ASN.1 Modules

6.1. KEMAlgorithmInformation-2023 ASN.1 Module

6.2. CMS-KEMRecipientInfo-2023 ASN.1 Module

7. Security Considerations

8. IANA Considerations

9. References

9.1. Normative References

9.2. Informative References

Acknowledgements

Authors' Addresses

2

3

4

4

4

5

7

7

8

8

9

11

12

13

13

14

14

15

1. Introduction
This document updates "Cryptographic Message Syntax (CMS)" .

The CMS enveloped-data content type and the CMS authenticated-enveloped-data
content type support both key transport and key agreement algorithms to establish the
key used to encrypt and decrypt the content. In recent years, cryptographers have been

[RFC5652]

[RFC5652]
[RFC5083]

RFC 9629 CMS KEMRecipientInfo August 2024

Housley, et al. Standards Track Page 2

specifying Key Encapsulation Mechanism (KEM) algorithms, including quantum-secure KEM
algorithms. This document defines conventions for the use of KEM algorithms for the CMS
enveloped-data content type and the CMS authenticated-enveloped-data content type.

A KEM algorithm is a one-pass (store-and-forward) mechanism for transporting random keying
material to a recipient using the recipient's public key. This means that the originator and the
recipients do not need to be online at the same time. The recipient's private key is needed to
recover the random keying material, which is then treated as a pairwise shared secret (ss)
between the originator and recipient.

The KEMRecipientInfo structure defined in this document uses the pairwise shared secret as an
input to a key derivation function (KDF) to produce a pairwise key-encryption key (KEK). Then,
the pairwise KEK is used to encrypt a content-encryption key (CEK) or a content-authenticated-
encryption key (CAEK) for that recipient. All of the recipients receive the same CEK or CAEK.

In this environment, security depends on three things. First, the KEM algorithm must be secure
against adaptive chosen ciphertext attacks. Second, the key-encryption algorithm must provide
confidentiality and integrity protection. Third, the choices of the KDF and the key-encryption
algorithm need to provide the same level of security as the KEM algorithm.

A KEM algorithm provides three functions:

KeyGen() -> (pk, sk):
Generate the public key (pk) and a private key (sk).

Encapsulate(pk) -> (ct, ss):
Given the recipient's public key (pk), produce a ciphertext (ct) to be passed to the recipient
and shared secret (ss) for the originator.

Decapsulate(sk, ct) -> ss:
Given the private key (sk) and the ciphertext (ct), produce the shared secret (ss) for the
recipient.

To support a particular KEM algorithm, the CMS originator implement the KEM
Encapsulate() function.

To support a particular KEM algorithm, the CMS recipient implement the KEM KeyGen()
function and the KEM Decapsulate() function. The recipient's public key is usually carried in a
certificate .

MUST

MUST

[RFC5280]

1.1. Terminology
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

RFC 9629 CMS KEMRecipientInfo August 2024

Housley, et al. Standards Track Page 3

1.2. ASN.1
CMS values are generated using ASN.1 , which uses the Basic Encoding Rules (BER) and
the Distinguished Encoding Rules (DER) .

[X.680]
[X.690]

1.3. CMS Version Numbers
As described in , the major data structures include a version number as
the first item in the data structure. The version number is intended to avoid ASN.1 decode errors.
Some implementations do not check the version number prior to attempting a decode, and then
if a decode error occurs, the version number is checked as part of the error-handling routine.
This is a reasonable approach; it places error processing outside of the fast path. This approach is
also forgiving when an incorrect version number is used by the originator.

Whenever the structure is updated, a higher version number will be assigned. However, to
ensure maximum interoperability, the higher version number is only used when the new syntax
feature is employed. That is, the lowest version number that supports the generated syntax is
used.

Section 1.3 of [RFC5652]

2. KEM Processing Overview
KEM algorithms can be used with three CMS content types: the enveloped-data content type

, the authenticated-data content type , or the authenticated-enveloped-data
content type . For simplicity, the terminology associated with the enveloped-data
content type will be used in this overview.

The originator randomly generates the CEK (or the CAEK), and then all recipients obtain that key
as an encrypted object within the KEMRecipientInfo encryptedKey field explained in Section 3.
All recipients use the originator-generated symmetric key to decrypt the CMS message.

A KEM algorithm and a key derivation function are used to securely establish a pairwise
symmetric KEK, which is used to encrypt the originator-generated CEK (or the CAEK).

In advance, each recipient uses the KEM KeyGen() function to create a key pair. The recipient
will often obtain a certificate that includes the newly generated public key. Whether
the public key is certified or not, the newly generated public key is made available to potential
originators.

The originator establishes the CEK (or the CAEK) using these steps:

The CEK (or the CAEK) is generated at random.
For each recipient:

The recipient's public key is used with the KEM Encapsulate() function to obtain a pairwise
shared secret (ss) and the ciphertext for the recipient.
The key derivation function is used to derive a pairwise symmetric KEK, from the pairwise
ss and other data that is optionally sent in the ukm field.

[RFC5652] [RFC5652]
[RFC5083]

[RFC5280]

1.
2.

◦

◦

RFC 9629 CMS KEMRecipientInfo August 2024

Housley, et al. Standards Track Page 4

https://rfc-editor.org/rfc/rfc5652#section-1.3

The KEK is used to encrypt the CEK for this recipient.

The CEK (or the CAEK) is used to encrypt the content for all recipients.

The recipient obtains the CEK (or the CAEK) using these steps:

The recipient's private key and the ciphertext are used with the KEM Decapsulate() function
to obtain a pairwise ss.
The key derivation function is used to derive a pairwise symmetric KEK, from the pairwise ss
and other data that is optionally sent in the ukm field.
The KEK is used to decrypt the CEK (or the CAEK).
The CEK (or the CAEK) is used to decrypt the content.

◦

3.

1.

2.

3.
4.

3. KEM Recipient Information
This document defines KEMRecipientInfo for use with KEM algorithms. As specified in

, recipient information for additional key management techniques is
represented in the OtherRecipientInfo type. Each key management technique is identified by a
unique ASN.1 object identifier.

The object identifier associated with KEMRecipientInfo is:

The KEMRecipientInfo type is:

The fields of the KEMRecipientInfo type have the following meanings:

version is the syntax version number. The version be 0. The CMSVersion type is
described in .

Section
6.2.5 of [RFC5652]

 id-ori OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840)
 rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) 13 }

 id-ori-kem OBJECT IDENTIFIER ::= { id-ori 3 }

 KEMRecipientInfo ::= SEQUENCE {
 version CMSVersion, -- always set to 0
 rid RecipientIdentifier,
 kem KEMAlgorithmIdentifier,
 kemct OCTET STRING,
 kdf KeyDerivationAlgorithmIdentifier,
 kekLength INTEGER (1..65535),
 ukm [0] EXPLICIT UserKeyingMaterial OPTIONAL,
 wrap KeyEncryptionAlgorithmIdentifier,
 encryptedKey EncryptedKey }

MUST
Section 10.2.5 of [RFC5652]

RFC 9629 CMS KEMRecipientInfo August 2024

Housley, et al. Standards Track Page 5

https://rfc-editor.org/rfc/rfc5652#section-6.2.5
https://rfc-editor.org/rfc/rfc5652#section-6.2.5
https://rfc-editor.org/rfc/rfc5652#section-10.2.5

rid specifies the recipient's certificate or key that was used by the originator with the KEM
Encapsulate() function. The RecipientIdentifier provides two alternatives for specifying the
recipient's certificate , and thereby the recipient's public key. The recipient's
certificate contain a KEM public key. Therefore, a recipient X.509 version 3 certificate
that contains a key usage extension assert the keyEncipherment bit. The
issuerAndSerialNumber alternative identifies the recipient's certificate by the issuer's
distinguished name and the certificate serial number; the subjectKeyIdentifier alternative
identifies the recipient's certificate by a key identifier. When an X.509 certificate is referenced,
the key identifier matches the X.509 subjectKeyIdentifier extension value. When other
certificate formats are referenced, the documents that specify the certificate format and their
use with the CMS must include details on matching the key identifier to the appropriate
certificate field. For recipient processing, implementations support both of these
alternatives for specifying the recipient's certificate. For originator processing,
implementations support at least one of these alternatives.

kem identifies the KEM algorithm, and any associated parameters, used by the originator. The
KEMAlgorithmIdentifier is described in Section 4.

kemct is the ciphertext produced by the KEM Encapsulate() function for this recipient.

kdf identifies the key derivation function, and any associated parameters, used by the
originator to generate the KEK. The KeyDerivationAlgorithmIdentifier is described in

.

kekLength is the size of the KEK in octets. This value is one of the inputs to the key derivation
function. The upper bound on the integer value is provided to make it clear to implementers
that support for very large integer values is not needed. Implementations confirm that
the value provided is consistent with the key-encryption algorithm identified in the wrap field
below.

ukm is optional user keying material. When the ukm value is provided, it is used as part of the
info structure described in Section 5 to provide a context input to the key derivation function.
For example, the ukm value could include a nonce, application-specific context information,
or an identifier for the originator. A KEM algorithm may place requirements on the ukm
value. Implementations that do not support the ukm field gracefully discontinue
processing when the ukm field is present. Note that this requirement expands the original
purpose of the ukm described in ; it is not limited to being used
with key agreement algorithms.

wrap identifies a key-encryption algorithm used to encrypt the CEK. The
KeyEncryptionAlgorithmIdentifier is described in .

encryptedKey is the result of encrypting the CEK or the CAEK (the content-authenticated-
encryption key, as discussed in) with the KEK. EncryptedKey is an OCTET STRING.

[RFC5280]
MUST

MUST

MUST

MUST

Section
10.1.6 of [RFC5652]

MUST

SHOULD

Section 10.2.6 of [RFC5652]

Section 10.1.3 of [RFC5652]

[RFC5083]

RFC 9629 CMS KEMRecipientInfo August 2024

Housley, et al. Standards Track Page 6

https://rfc-editor.org/rfc/rfc5652#section-10.1.6
https://rfc-editor.org/rfc/rfc5652#section-10.1.6
https://rfc-editor.org/rfc/rfc5652#section-10.2.6
https://rfc-editor.org/rfc/rfc5652#section-10.1.3

4. KEM Algorithm Identifier
The KEMAlgorithmIdentifier type identifies a KEM algorithm used to establish a pairwise ss. The
details of establishment depend on the KEM algorithm used. A key derivation function is used to
transform the pairwise ss value into a KEK.

 KEMAlgorithmIdentifier ::= AlgorithmIdentifier{ KEM-ALGORITHM, {...} }

5. Key Derivation
This section describes the conventions of using the KDF to compute the KEK for
KEMRecipientInfo. For simplicity, the terminology used in the HKDF specification is
used here.

Many KDFs internally employ a one-way hash function. When this is the case, the hash function
that is used is indirectly indicated by the KeyDerivationAlgorithmIdentifier. Other KDFs
internally employ an encryption algorithm. When this is the case, the encryption that is used is
indirectly indicated by the KeyDerivationAlgorithmIdentifier.

The KDF inputs are as follows:

IKM is the input keying material. It is a symmetric secret input to the KDF. The KDF may use a
hash function or an encryption algorithm to generate a pseudorandom key. The algorithm
used to derive the IKM is dependent on the algorithm identified in the
KeyDerivationAlgorithmIdentifier.

L is the length of the output keying material in octets. L is identified in the kekLength of the
KEMRecipientInfo. The value is dependent on the key-encryption algorithm used; the key-
encryption algorithm is identified in the KeyEncryptionAlgorithmIdentifier.

info is contextual input to the KDF. The DER-encoded CMSORIforKEMOtherInfo structure is
created from elements of the KEMRecipientInfo structure. CMSORIforKEMOtherInfo is
defined as:

The CMSORIforKEMOtherInfo structure contains the following:

wrap identifies a key-encryption algorithm; the output of the key derivation function will be
used as a key for this algorithm.

[RFC5869]

 CMSORIforKEMOtherInfo ::= SEQUENCE {
 wrap KeyEncryptionAlgorithmIdentifier,
 kekLength INTEGER (1..65535),
 ukm [0] EXPLICIT UserKeyingMaterial OPTIONAL }

RFC 9629 CMS KEMRecipientInfo August 2024

Housley, et al. Standards Track Page 7

kekLength is the length of the KEK in octets; the output of the key derivation function will be
exactly this size.

ukm is optional user keying material; see Section 3.

The KDF output is as follows:

OKM is the output keying material with the exact length of L octets. The OKM is the KEK that
is used to encrypt the CEK or the CAEK.

An acceptable KDF accept an IKM, L, and info as inputs. An acceptable KDF also
accept a salt input value, which is carried as a parameter to the
KeyDerivationAlgorithmIdentifier if present. All of these inputs influence the output of the
KDF.

MUST MAY

MUST

6. ASN.1 Modules
This section provides two ASN.1 modules . The first ASN.1 module is an extension to the
AlgorithmInformation-2009 module discussed in ; it defines the KEM-ALGORITHM
CLASS. The second ASN.1 module defines the structures needed to use KEM algorithms with CMS

.

The first ASN.1 module uses EXPLICIT tagging, and the second ASN.1 module uses IMPLICIT
tagging.

Both ASN.1 modules follow the conventions established in , , and .

[X.680]
[RFC5912]

[RFC5652]

[RFC5911] [RFC5912] [RFC6268]

6.1. KEMAlgorithmInformation-2023 ASN.1 Module

<CODE BEGINS>
 KEMAlgorithmInformation-2023
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-kemAlgorithmInformation-2023(109) }

 DEFINITIONS EXPLICIT TAGS ::=
 BEGIN
 -- EXPORTS ALL;
 IMPORTS
 ParamOptions, PUBLIC-KEY, SMIME-CAPS
 FROM AlgorithmInformation-2009
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-algorithmInformation-02(58) } ;

 -- KEM-ALGORITHM
 --
 -- Describes the basic properties of a KEM algorithm
 --
 -- Suggested prefix for KEM algorithm objects is: kema-
 --

RFC 9629 CMS KEMRecipientInfo August 2024

Housley, et al. Standards Track Page 8

 -- &id - contains the OID identifying the KEM algorithm
 -- &Value - if present, contains a type definition for the kemct;
 -- if absent, implies that no ASN.1 encoding is
 -- performed on the kemct value
 -- &Params - if present, contains the type for the algorithm
 -- parameters; if absent, implies no parameters
 -- ¶mPresence - parameter presence requirement
 -- &PublicKeySet - specifies which public keys are used with
 -- this algorithm
 -- &Ukm - if absent, type for user keying material
 -- &ukmPresence - specifies the requirements to define the UKM
 -- field
 -- &smimeCaps - contains the object describing how the S/MIME
 -- capabilities are presented.
 --
 -- Example:
 -- kema-kem-rsa KEM-ALGORITHM ::= {
 -- IDENTIFIER id-kem-rsa
 -- PARAMS TYPE RsaKemParameters ARE optional
 -- PUBLIC-KEYS { pk-rsa | pk-rsa-kem }
 -- UKM ARE optional
 -- SMIME-CAPS { TYPE GenericHybridParameters
 -- IDENTIFIED BY id-rsa-kem }
 -- }

 KEM-ALGORITHM ::= CLASS {
 &id OBJECT IDENTIFIER UNIQUE,
 &Value OPTIONAL,
 &Params OPTIONAL,
 ¶mPresence ParamOptions DEFAULT absent,
 &PublicKeySet PUBLIC-KEY OPTIONAL,
 &Ukm OPTIONAL,
 &ukmPresence ParamOptions DEFAULT absent,
 &smimeCaps SMIME-CAPS OPTIONAL
 } WITH SYNTAX {
 IDENTIFIER &id
 [VALUE &Value]
 [PARAMS [TYPE &Params] ARE ¶mPresence]
 [PUBLIC-KEYS &PublicKeySet]
 [UKM [TYPE &Ukm] ARE &ukmPresence]
 [SMIME-CAPS &smimeCaps]
 }

 END

<CODE ENDS>

6.2. CMS-KEMRecipientInfo-2023 ASN.1 Module

<CODE BEGINS>
 CMS-KEMRecipientInfo-2023
 { iso(1) member-body(2) us(840) rsadsi(113549)
 pkcs(1) pkcs-9(9) smime(16) modules(0)
 id-mod-cms-kemri-2023(77) }

 DEFINITIONS IMPLICIT TAGS ::=

RFC 9629 CMS KEMRecipientInfo August 2024

Housley, et al. Standards Track Page 9

 BEGIN
 -- EXPORTS ALL;
 IMPORTS
 OTHER-RECIPIENT, CMSVersion, RecipientIdentifier,
 EncryptedKey, KeyDerivationAlgorithmIdentifier,
 KeyEncryptionAlgorithmIdentifier, UserKeyingMaterial
 FROM CryptographicMessageSyntax-2010 -- RFC 6268
 { iso(1) member-body(2) us(840) rsadsi(113549)
 pkcs(1) pkcs-9(9) smime(16) modules(0)
 id-mod-cms-2009(58) }
 KEM-ALGORITHM
 FROM KEMAlgorithmInformation-2023 -- RFC 9629
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-kemAlgorithmInformation-2023(109) }
 AlgorithmIdentifier{}
 FROM AlgorithmInformation-2009 -- RFC 5912
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-algorithmInformation-02(58) } ;

 --
 -- OtherRecipientInfo Types (ori-)
 --

 SupportedOtherRecipInfo OTHER-RECIPIENT ::= { ori-KEM, ... }

 ori-KEM OTHER-RECIPIENT ::= {
 KEMRecipientInfo IDENTIFIED BY id-ori-kem }

 id-ori OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840)
 rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) 13 }

 id-ori-kem OBJECT IDENTIFIER ::= { id-ori 3 }

 --
 -- KEMRecipientInfo
 --

 KEMRecipientInfo ::= SEQUENCE {
 version CMSVersion, -- always set to 0
 rid RecipientIdentifier,
 kem KEMAlgorithmIdentifier,
 kemct OCTET STRING,
 kdf KeyDerivationAlgorithmIdentifier,
 kekLength INTEGER (1..65535),
 ukm [0] EXPLICIT UserKeyingMaterial OPTIONAL,
 wrap KeyEncryptionAlgorithmIdentifier,
 encryptedKey EncryptedKey }

 KEMAlgSet KEM-ALGORITHM ::= { ... }

 KEMAlgorithmIdentifier ::=
 AlgorithmIdentifier{ KEM-ALGORITHM, {KEMAlgSet} }

 --
 -- CMSORIforKEMOtherInfo
 --

RFC 9629 CMS KEMRecipientInfo August 2024

Housley, et al. Standards Track Page 10

 CMSORIforKEMOtherInfo ::= SEQUENCE {
 wrap KeyEncryptionAlgorithmIdentifier,
 kekLength INTEGER (1..65535),
 ukm [0] EXPLICIT UserKeyingMaterial OPTIONAL }

 END

<CODE ENDS>

7. Security Considerations
The security considerations discussed in are applicable to this document.

To be appropriate for use with this specification, the KEM algorithm explicitly be designed
to be secure when the public key is used many times. For example, a KEM algorithm with a
single-use public key is not appropriate, because the public key is expected to be carried in a
long-lived certificate and used over and over. Thus, KEM algorithms that offer
indistinguishability under adaptive chosen ciphertext attack (IND-CCA2) security are
appropriate. A common design pattern for obtaining IND-CCA2 security with public key reuse is
to apply the Fujisaki-Okamoto (FO) transform or a variant of the FO transform .

The KDF offer at least the security level of the KEM.

The choice of the key-encryption algorithm and the size of the KEK be made based on
the security level provided by the KEM. The key-encryption algorithm and the KEK offer
at least the security level of the KEM.

KEM algorithms do not provide data origin authentication; therefore, when a KEM algorithm is
used with the authenticated-data content type, the contents are delivered with integrity from an
unknown source.

Implementations protect the KEM private key, the KEK, and the CEK (or the CAEK).
Compromise of the KEM private key may result in the disclosure of all contents protected with
that KEM private key. However, compromise of the KEK, the CEK, or the CAEK may result in
disclosure of the encrypted content of a single message.

The KEM produces the IKM input value for the KDF. This IKM value be reused for any
other purpose. Likewise, any random value used by the KEM algorithm to produce the shared
secret or its encapsulation be reused for any other purpose. That is, the originator

 generate a fresh KEM shared secret for each recipient in the KEMRecipientInfo structure,
including any random value used by the KEM algorithm to produce the KEM shared secret. In
addition, the originator discard the KEM shared secret, including any random value used
by the KEM algorithm to produce the KEM shared secret, after constructing the entry in the
KEMRecipientInfo structure for the corresponding recipient. Similarly, the recipient
discard the KEM shared secret, including any random value used by the KEM algorithm to
produce the KEM shared secret, after constructing the KEK from the KEMRecipientInfo structure.

[RFC5652]

MUST

[RFC5280]

[FO] [HHK]

SHOULD

SHOULD
SHOULD

MUST

MUST NOT

MUST NOT
MUST

MUST

MUST

RFC 9629 CMS KEMRecipientInfo August 2024

Housley, et al. Standards Track Page 11

Implementations randomly generate content-encryption keys, content-authenticated-
encryption keys, and message-authentication keys. Also, the generation of KEM key pairs relies
on random numbers. The use of inadequate pseudorandom number generators (PRNGs) to
generate these keys can result in little or no security. An attacker may find it much easier to
reproduce the PRNG environment that produced the keys, searching the resulting small set of
possibilities, rather than brute-force searching the whole key space. The generation of quality
random numbers is difficult. offers important guidance in this area.

If the cipher and key sizes used for the key-encryption algorithm and the content-encryption
algorithm are different, the effective security is determined by the weaker of the two algorithms.
If, for example, the content is encrypted with AES-CBC using a 128-bit CEK and the CEK is
wrapped with AES-KEYWRAP using a 256-bit KEK, then at most 128 bits of protection is provided.

If the cipher and key sizes used for the key-encryption algorithm and the content-authenticated-
encryption algorithm are different, the effective security is determined by the weaker of the two
algorithms. If, for example, the content is encrypted with AES-GCM using a 128-bit CAEK and the
CAEK is wrapped with AES-KEYWRAP using a 192-bit KEK, then at most 128 bits of protection is
provided.

If the cipher and key sizes used for the key-encryption algorithm and the message-authentication
algorithm are different, the effective security is determined by the weaker of the two algorithms.
If, for example, the content is authenticated with HMAC-SHA256 using a 512-bit message-
authentication key and the message-authentication key is wrapped with AES-KEYWRAP using a
256-bit KEK, then at most 256 bits of protection is provided.

Implementers should be aware that cryptographic algorithms, including KEM algorithms,
become weaker with time. As new cryptoanalysis techniques are developed and computing
capabilities advance, the work factor to break a particular cryptographic algorithm will be
reduced. As a result, cryptographic algorithm implementations should be modular, allowing new
algorithms to be readily inserted. That is, implementers should be prepared for the set of
supported algorithms to change over time.

MUST

[RFC4086]

8. IANA Considerations
For KEMRecipientInfo as defined in Section 3, IANA has assigned the following OID in the "SMI
Security for S/MIME Other Recipient Info Identifiers (1.2.840.113549.1.9.16.13)" registry:

For the ASN.1 module defined in Section 6.1, IANA has assigned the following OID in the "SMI
Security for PKIX Module Identifier" registry (1.3.6.1.5.5.7.0):

Decimal Description References

3 id-ori-kem RFC 9629

Table 1

RFC 9629 CMS KEMRecipientInfo August 2024

Housley, et al. Standards Track Page 12

9. References

For the ASN.1 module defined in Section 6.2, IANA has assigned the following OID in the "SMI
Security for S/MIME Module Identifier (1.2.840.113549.1.9.16.0)" registry:

Decimal Description References

109 id-mod-kemAlgorithmInformation-2023 RFC 9629

Table 2

Decimal Description References

77 id-mod-cms-kemri-2023 RFC 9629

Table 3

[RFC2119]

[RFC5083]

[RFC5280]

[RFC5652]

[RFC5911]

[RFC5912]

[RFC8174]

9.1. Normative References

, , ,
, , March 1997,
.

,
, , , November 2007,

.

, , , , , and ,

, , , May 2008,
.

, , , ,
, September 2009, .

 and ,
, , , June 2010,

.

 and ,
, , , June 2010,

.

, ,
, , , May 2017,

.

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Housley, R. "Cryptographic Message Syntax (CMS) Authenticated-Enveloped-
Data Content Type" RFC 5083 DOI 10.17487/RFC5083 <https://
www.rfc-editor.org/info/rfc5083>

Cooper, D. Santesson, S. Farrell, S. Boeyen, S. Housley, R. W. Polk
"Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile" RFC 5280 DOI 10.17487/RFC5280 <https://www.rfc-
editor.org/info/rfc5280>

Housley, R. "Cryptographic Message Syntax (CMS)" STD 70 RFC 5652 DOI
10.17487/RFC5652 <https://www.rfc-editor.org/info/rfc5652>

Hoffman, P. J. Schaad "New ASN.1 Modules for Cryptographic Message
Syntax (CMS) and S/MIME" RFC 5911 DOI 10.17487/RFC5911 <https://
www.rfc-editor.org/info/rfc5911>

Hoffman, P. J. Schaad "New ASN.1 Modules for the Public Key
Infrastructure Using X.509 (PKIX)" RFC 5912 DOI 10.17487/RFC5912
<https://www.rfc-editor.org/info/rfc5912>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

RFC 9629 CMS KEMRecipientInfo August 2024

Housley, et al. Standards Track Page 13

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc5083
https://www.rfc-editor.org/info/rfc5083
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc5652
https://www.rfc-editor.org/info/rfc5911
https://www.rfc-editor.org/info/rfc5911
https://www.rfc-editor.org/info/rfc5912
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174

[X.680]

[X.690]

,
, ,

, February 2021, .

,

, , ,
February 2021, .

ITU-T "Information technology - Abstract Syntax Notation One (ASN.1):
Specification of basic notation" ITU-T Recommendation X.680 ISO/IEC
8824-1:2021 <https://www.itu.int/rec/T-REC-X.680>

ITU-T "Information technology - ASN.1 encoding rules: Specification of Basic
Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished
Encoding Rules (DER)" ITU-T Recommendation X.690 ISO/IEC 8825-1:2021

<https://www.itu.int/rec/T-REC-X.690>

[FO]

[HHK]

[RFC4086]

[RFC5869]

[RFC6268]

9.2. Informative References

 and ,
, ,

, , December
2011, .

, , and ,
, ,

, ,
, November 2017,

.

, , and ,
, , , , June 2005,

.

 and ,
, , , May 2010,

.

 and ,
,

, , July 2011,
.

Fujisaki, E. T. Okamoto "Secure Integration of Asymmetric and Symmetric
Encryption Schemes" Springer Science and Business Media LLC Journal of
Cryptology, vol. 26, no. 1, pp. 80-101 DOI 10.1007/s00145-011-9114-1

<https://doi.org/10.1007/s00145-011-9114-1>

Hofheinz, D. Hövelmanns, K. E. Kiltz "A Modular Analysis of the Fujisaki-
Okamoto Transformation" Springer International Publishing Theory of
Cryptography, TCC 2017, Lecture Notes in Computer Science, vol. 10677, pp.
341-371 Print ISBN 9783319704999, Online ISBN 9783319705002 DOI
10.1007/978-3-319-70500-2_12 <https://doi.org/
10.1007/978-3-319-70500-2_12>

Eastlake 3rd, D. Schiller, J. S. Crocker "Randomness Requirements for
Security" BCP 106 RFC 4086 DOI 10.17487/RFC4086 <https://
www.rfc-editor.org/info/rfc4086>

Krawczyk, H. P. Eronen "HMAC-based Extract-and-Expand Key Derivation
Function (HKDF)" RFC 5869 DOI 10.17487/RFC5869 <https://www.rfc-
editor.org/info/rfc5869>

Schaad, J. S. Turner "Additional New ASN.1 Modules for the Cryptographic
Message Syntax (CMS) and the Public Key Infrastructure Using X.509 (PKIX)"
RFC 6268 DOI 10.17487/RFC6268 <https://www.rfc-editor.org/info/
rfc6268>

Acknowledgements
Our thanks to for his guidance and design review.

Our thanks to for his careful review of the ASN.1 modules.

Our thanks to , , , ,
, and for their careful reviews and thoughtful comments.

Burt Kaliski

Carl Wallace

Hendrik Brockhaus Jonathan Hammell Mike Jenkins David von Oheimb Francois
Rousseau Linda Dunbar

RFC 9629 CMS KEMRecipientInfo August 2024

Housley, et al. Standards Track Page 14

https://www.itu.int/rec/T-REC-X.680
https://www.itu.int/rec/T-REC-X.690
https://doi.org/10.1007/s00145-011-9114-1
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
https://www.rfc-editor.org/info/rfc4086
https://www.rfc-editor.org/info/rfc4086
https://www.rfc-editor.org/info/rfc5869
https://www.rfc-editor.org/info/rfc5869
https://www.rfc-editor.org/info/rfc6268
https://www.rfc-editor.org/info/rfc6268

Authors' Addresses
Russ Housley
Vigil Security, LLC

, Herndon VA
United States of America

housley@vigilsec.comEmail:

John Gray
Entrust

, Minneapolis MN
United States of America

john.gray@entrust.comEmail:

Tomofumi Okubo
Penguin Securities Pte. Ltd.
Singapore

tomofumi.okubo+ietf@gmail.comEmail:

Additional contact information:
大久保　智史
Penguin Securities Pte. Ltd.
Singapore

RFC 9629 CMS KEMRecipientInfo August 2024

Housley, et al. Standards Track Page 15

mailto:housley@vigilsec.com
mailto:john.gray@entrust.com
mailto:tomofumi.okubo+ietf@gmail.com

	RFC 9629
	Using Key Encapsulation Mechanism (KEM) Algorithms in the Cryptographic Message Syntax (CMS)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology
	1.2. ASN.1
	1.3. CMS Version Numbers

	2. KEM Processing Overview
	3. KEM Recipient Information
	4. KEM Algorithm Identifier
	5. Key Derivation
	6. ASN.1 Modules
	6.1. KEMAlgorithmInformation-2023 ASN.1 Module
	6.2. CMS-KEMRecipientInfo-2023 ASN.1 Module

	7. Security Considerations
	8. IANA Considerations
	9. References
	9.1. Normative References
	9.2. Informative References

	Acknowledgements
	Authors' Addresses

 Using Key Encapsulation Mechanism (KEM) Algorithms in the Cryptographic Message Syntax (CMS)

 Vigil Security, LLC

 Herndon
 VA
 United States of America

 housley@vigilsec.com

 Entrust

 Minneapolis
 MN
 United States of America

 john.gray@entrust.com

 Penguin Securities Pte. Ltd.

 Singapore

 tomofumi.okubo+ietf@gmail.com

 SEC
 lamps
 kemri
 KEMRecipientInfo

 The Cryptographic Message Syntax (CMS) supports key transport and
key agreement algorithms. In recent years, cryptographers have been
specifying Key Encapsulation Mechanism (KEM) algorithms, including
quantum-secure KEM algorithms. This document defines conventions for
the use of KEM algorithms by the originator and recipients to encrypt
and decrypt CMS content. This document updates RFC 5652.

 Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further
 information on Internet Standards is available in Section 2 of
 RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Revised BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Revised BSD License.

 Table of Contents

 . Introduction

 . Terminology

 . ASN.1

 . CMS Version Numbers

 . KEM Processing Overview

 . KEM Recipient Information

 . KEM Algorithm Identifier

 . Key Derivation

 . ASN.1 Modules

 . KEMAlgorithmInformation-2023 ASN.1 Module

 . CMS-KEMRecipientInfo-2023 ASN.1 Module

 . Security Considerations

 . IANA Considerations

 . References

 . Normative References

 . Informative References

 Acknowledgements

 Authors' Addresses

 Introduction
 This document updates " " .
 The CMS enveloped-data content type
 and the CMS authenticated-enveloped-data content type
 support both key transport and key agreement algorithms to
establish the key used to encrypt and decrypt the content. In recent
years, cryptographers have been specifying Key Encapsulation Mechanism
(KEM) algorithms, including quantum-secure KEM algorithms. This document
defines conventions for the use of KEM algorithms for the CMS
enveloped-data content type and the CMS authenticated-enveloped-data
content type.
 A KEM algorithm is a one-pass (store-and-forward) mechanism for
transporting random keying material to a recipient using the recipient's
public key. This means that the originator and the recipients do not need
to be online at the same time. The recipient's private key is needed to
recover the random keying material, which is then treated as a pairwise
shared secret (ss) between the originator and recipient.
 The KEMRecipientInfo structure defined in this document uses the pairwise
shared secret as an input to a key derivation function (KDF) to produce a
pairwise key-encryption key (KEK). Then, the pairwise KEK is used to encrypt a
content-encryption key (CEK) or a content-authenticated-encryption key (CAEK)
for that recipient. All of the recipients receive the same CEK or CAEK.
 In this environment, security depends on three things. First, the KEM algorithm
must be secure against adaptive chosen ciphertext attacks. Second, the
key-encryption algorithm must provide confidentiality and integrity protection. Third,
the choices of the KDF and the key-encryption algorithm need to provide the same
level of security as the KEM algorithm.
 A KEM algorithm provides three functions:

 KeyGen() -> (pk, sk):
 Generate the public key (pk) and a private key (sk).
 Encapsulate(pk) -> (ct, ss):
 Given the recipient's public key (pk), produce a ciphertext (ct) to be
passed to the recipient and shared secret (ss) for the originator.
 Decapsulate(sk, ct) -> ss:
 Given the private key (sk) and the ciphertext (ct), produce the
shared secret (ss) for the recipient.

 To support a particular KEM algorithm, the CMS originator MUST implement
the KEM Encapsulate() function.
 To support a particular KEM algorithm, the CMS recipient MUST implement the KEM
KeyGen() function and the KEM Decapsulate() function. The recipient's public key
is usually carried in a certificate .

 Terminology
 The key words " MUST", " MUST NOT",
 " REQUIRED", " SHALL",
 " SHALL NOT", " SHOULD",
 " SHOULD NOT",
 " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document
 are to be interpreted as described in BCP 14
 when, and only
 when, they appear in all capitals, as shown here.

 ASN.1
 CMS values are generated using ASN.1 , which uses the Basic
Encoding Rules (BER) and the Distinguished Encoding Rules (DER) .

 CMS Version Numbers
 As described in , the major data structures
include a version number as the first item in
the data structure. The version number is intended to avoid ASN.1 decode
errors. Some implementations do not check the version number prior to
attempting a decode, and then if a decode error occurs, the version
number is checked as part of the error-handling routine. This is a
reasonable approach; it places error processing outside of the fast path.
This approach is also forgiving when an incorrect version number is used
by the originator.
 Whenever the structure is updated, a higher version number will be
assigned. However, to ensure maximum interoperability, the higher
version number is only used when the new syntax feature is employed. That
is, the lowest version number that supports the generated syntax is used.

 KEM Processing Overview
 KEM algorithms can be used with three CMS content types: the
enveloped-data content type , the authenticated-data
content type , or the authenticated-enveloped-data
content type . For simplicity, the terminology associated
with the enveloped-data content type will be used in this overview.
 The originator randomly generates the CEK (or the CAEK), and then
all recipients obtain that key as an encrypted object within the KEMRecipientInfo
encryptedKey field explained in . All recipients use
the originator-generated symmetric key to decrypt the CMS message.
 A KEM algorithm and a key derivation function are used to securely
establish a pairwise symmetric KEK, which is used to encrypt
the originator-generated CEK (or the CAEK).
 In advance, each recipient uses the KEM KeyGen() function to create a key pair.
The recipient will often obtain a certificate that includes the newly
generated public key. Whether the public key is certified or not, the newly
generated public key is made available to potential originators.
 The originator establishes the CEK (or the CAEK) using these steps:

 The CEK (or the CAEK) is generated at random.

 For each recipient:

 The recipient's public key is used with the KEM Encapsulate() function to obtain a pairwise shared secret (ss) and the ciphertext for the recipient.

 The key derivation function is used to derive a pairwise symmetric KEK, from the pairwise ss and other data that is optionally sent in the ukm field.

 The KEK is used to encrypt the CEK for this recipient.

 The CEK (or the CAEK) is used to encrypt the content for all recipients.

 The recipient obtains the CEK (or the CAEK) using these steps:

 The recipient's private key and the ciphertext are used with the KEM Decapsulate() function to obtain a pairwise ss.

 The key derivation function is used to derive a pairwise symmetric KEK, from the pairwise ss and other data that is optionally sent in the ukm field.

 The KEK is used to decrypt the CEK (or the CAEK).

 The CEK (or the CAEK) is used to decrypt the content.

 KEM Recipient Information
 This document defines KEMRecipientInfo for use with KEM algorithms.
As specified in ,
recipient information for
additional key management techniques is represented in the
OtherRecipientInfo type. Each key management technique is identified by a unique
ASN.1 object identifier.
 The object identifier associated with KEMRecipientInfo is:

 id-ori OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840)
 rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) 13 }

 id-ori-kem OBJECT IDENTIFIER ::= { id-ori 3 }

 The KEMRecipientInfo type is:

 KEMRecipientInfo ::= SEQUENCE {
 version CMSVersion, -- always set to 0
 rid RecipientIdentifier,
 kem KEMAlgorithmIdentifier,
 kemct OCTET STRING,
 kdf KeyDerivationAlgorithmIdentifier,
 kekLength INTEGER (1..65535),
 ukm [0] EXPLICIT UserKeyingMaterial OPTIONAL,
 wrap KeyEncryptionAlgorithmIdentifier,
 encryptedKey EncryptedKey }

 The fields of the KEMRecipientInfo type have the following meanings:
 version is the syntax version number. The version MUST be 0. The
CMSVersion type is described in .
 rid specifies the recipient's certificate or key that was used by
the originator with the KEM Encapsulate() function. The
RecipientIdentifier provides two alternatives for specifying the
recipient's certificate , and thereby the recipient's public
key. The recipient's certificate MUST contain a KEM public key. Therefore,
a recipient X.509 version 3 certificate that contains a key usage
extension MUST assert the keyEncipherment bit. The issuerAndSerialNumber
alternative identifies the recipient's certificate by the issuer's
distinguished name and the certificate serial number; the
subjectKeyIdentifier alternative identifies the recipient's certificate by a key
identifier. When an X.509 certificate is referenced, the key identifier
matches the X.509 subjectKeyIdentifier extension value. When other
certificate formats are referenced, the documents that specify the certificate
format and their use with the CMS must include details on matching
the key identifier to the appropriate certificate field. For recipient
processing, implementations MUST support both of these alternatives for
specifying the recipient's certificate. For originator processing,
implementations MUST support at least one of these alternatives.
 kem identifies the KEM algorithm, and any associated parameters, used
by the originator. The KEMAlgorithmIdentifier is described in .
 kemct is the ciphertext produced by the KEM Encapsulate() function for
this recipient.
 kdf identifies the key derivation function, and any associated parameters,
used by the originator to generate the KEK. The
KeyDerivationAlgorithmIdentifier is described in .
 kekLength is the size of the KEK in octets. This value is one
of the inputs to the key derivation function. The upper bound on the integer
value is provided to make it clear to implementers that support for very
large integer values is not needed. Implementations MUST confirm that
the value provided is consistent with the key-encryption algorithm
identified in the wrap field below.
 ukm is optional user keying material. When the ukm value is provided,
it is used as part of the info structure described in to
provide a context input to the key derivation function. For example, the
ukm value could include a nonce, application-specific context information,
or an identifier for the originator. A KEM algorithm may place
requirements on the ukm value. Implementations that do not support the
ukm field SHOULD gracefully discontinue processing when the ukm field is
present. Note that this requirement expands the original purpose of the
ukm described in ; it is not limited to being
used with key agreement algorithms.
 wrap identifies a key-encryption algorithm used to encrypt the
CEK. The KeyEncryptionAlgorithmIdentifier
is described in .
 encryptedKey is the result of encrypting the CEK or the
CAEK (the content-authenticated-encryption key, as discussed in) with the KEK.
EncryptedKey is an OCTET STRING.

 KEM Algorithm Identifier
 The KEMAlgorithmIdentifier type identifies a KEM algorithm used to
establish a pairwise ss. The details of establishment depend on
the KEM algorithm used. A key derivation function is used to transform
the pairwise ss value into a KEK.

 KEMAlgorithmIdentifier ::= AlgorithmIdentifier{ KEM-ALGORITHM, {...} }

 Key Derivation
 This section describes the conventions of using the KDF to compute the
KEK for KEMRecipientInfo. For simplicity, the
terminology used in the HKDF specification is used here.
 Many KDFs internally employ a one-way hash function. When this is
the case, the hash function that is used is indirectly indicated by
the KeyDerivationAlgorithmIdentifier. Other KDFs internally employ an
encryption algorithm. When this is the case, the encryption that is
used is indirectly indicated by the KeyDerivationAlgorithmIdentifier.
 The KDF inputs are as follows:
 IKM is the input keying material. It is a symmetric secret input to
the KDF. The KDF may use a hash function or an encryption algorithm
to generate a pseudorandom key. The algorithm used to derive the
IKM is dependent on the algorithm identified in the
KeyDerivationAlgorithmIdentifier.
 L is the length of the output keying material in octets. L is
identified in the kekLength of the KEMRecipientInfo. The
value is dependent on the key-encryption algorithm used;
the key-encryption algorithm is identified in the KeyEncryptionAlgorithmIdentifier.
 info is contextual input to the KDF. The DER-encoded
CMSORIforKEMOtherInfo structure is created from elements of the
KEMRecipientInfo structure. CMSORIforKEMOtherInfo is defined as:

 CMSORIforKEMOtherInfo ::= SEQUENCE {
 wrap KeyEncryptionAlgorithmIdentifier,
 kekLength INTEGER (1..65535),
 ukm [0] EXPLICIT UserKeyingMaterial OPTIONAL }

 The CMSORIforKEMOtherInfo structure contains the following:
 wrap identifies a key-encryption algorithm; the output of the
key derivation function will be used as a key for this algorithm.
 kekLength is the length of the KEK in octets; the
output of the key derivation function will be exactly this size.
 ukm is optional user keying material; see .
 The KDF output is as follows:
 OKM is the output keying material with the exact length of L octets.
The OKM is the KEK that is used to encrypt the CEK or the CAEK.
 An acceptable KDF MUST accept an IKM, L, and info as inputs. An acceptable
KDF MAY also accept a salt input value, which is carried as a parameter to
the KeyDerivationAlgorithmIdentifier if present. All of these
inputs MUST influence the output of the KDF.

 ASN.1 Modules
 This section provides two ASN.1 modules . The first ASN.1
module is an extension to the AlgorithmInformation-2009 module discussed in
 ; it defines the KEM-ALGORITHM CLASS. The second
ASN.1 module defines the structures needed to use KEM algorithms
with CMS .
 The first ASN.1 module uses EXPLICIT tagging, and the second
ASN.1 module uses IMPLICIT tagging.
 Both ASN.1 modules follow the conventions established in
 , , and .

 KEMAlgorithmInformation-2023 ASN.1 Module

 KEMAlgorithmInformation-2023
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-kemAlgorithmInformation-2023(109) }

 DEFINITIONS EXPLICIT TAGS ::=
 BEGIN
 -- EXPORTS ALL;
 IMPORTS
 ParamOptions, PUBLIC-KEY, SMIME-CAPS
 FROM AlgorithmInformation-2009
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-algorithmInformation-02(58) } ;

 -- KEM-ALGORITHM
 --
 -- Describes the basic properties of a KEM algorithm
 --
 -- Suggested prefix for KEM algorithm objects is: kema-
 --
 -- &id - contains the OID identifying the KEM algorithm
 -- &Value - if present, contains a type definition for the kemct;
 -- if absent, implies that no ASN.1 encoding is
 -- performed on the kemct value
 -- &Params - if present, contains the type for the algorithm
 -- parameters; if absent, implies no parameters
 -- ¶mPresence - parameter presence requirement
 -- &PublicKeySet - specifies which public keys are used with
 -- this algorithm
 -- &Ukm - if absent, type for user keying material
 -- &ukmPresence - specifies the requirements to define the UKM
 -- field
 -- &smimeCaps - contains the object describing how the S/MIME
 -- capabilities are presented.
 --
 -- Example:
 -- kema-kem-rsa KEM-ALGORITHM ::= {
 -- IDENTIFIER id-kem-rsa
 -- PARAMS TYPE RsaKemParameters ARE optional
 -- PUBLIC-KEYS { pk-rsa | pk-rsa-kem }
 -- UKM ARE optional
 -- SMIME-CAPS { TYPE GenericHybridParameters
 -- IDENTIFIED BY id-rsa-kem }
 -- }

 KEM-ALGORITHM ::= CLASS {
 &id OBJECT IDENTIFIER UNIQUE,
 &Value OPTIONAL,
 &Params OPTIONAL,
 ¶mPresence ParamOptions DEFAULT absent,
 &PublicKeySet PUBLIC-KEY OPTIONAL,
 &Ukm OPTIONAL,
 &ukmPresence ParamOptions DEFAULT absent,
 &smimeCaps SMIME-CAPS OPTIONAL
 } WITH SYNTAX {
 IDENTIFIER &id
 [VALUE &Value]
 [PARAMS [TYPE &Params] ARE ¶mPresence]
 [PUBLIC-KEYS &PublicKeySet]
 [UKM [TYPE &Ukm] ARE &ukmPresence]
 [SMIME-CAPS &smimeCaps]
 }

 END

 CMS-KEMRecipientInfo-2023 ASN.1 Module

 CMS-KEMRecipientInfo-2023
 { iso(1) member-body(2) us(840) rsadsi(113549)
 pkcs(1) pkcs-9(9) smime(16) modules(0)
 id-mod-cms-kemri-2023(77) }

 DEFINITIONS IMPLICIT TAGS ::=
 BEGIN
 -- EXPORTS ALL;
 IMPORTS
 OTHER-RECIPIENT, CMSVersion, RecipientIdentifier,
 EncryptedKey, KeyDerivationAlgorithmIdentifier,
 KeyEncryptionAlgorithmIdentifier, UserKeyingMaterial
 FROM CryptographicMessageSyntax-2010 -- RFC 6268
 { iso(1) member-body(2) us(840) rsadsi(113549)
 pkcs(1) pkcs-9(9) smime(16) modules(0)
 id-mod-cms-2009(58) }
 KEM-ALGORITHM
 FROM KEMAlgorithmInformation-2023 -- RFC 9629
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-kemAlgorithmInformation-2023(109) }
 AlgorithmIdentifier{}
 FROM AlgorithmInformation-2009 -- RFC 5912
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-algorithmInformation-02(58) } ;

 --
 -- OtherRecipientInfo Types (ori-)
 --

 SupportedOtherRecipInfo OTHER-RECIPIENT ::= { ori-KEM, ... }

 ori-KEM OTHER-RECIPIENT ::= {
 KEMRecipientInfo IDENTIFIED BY id-ori-kem }

 id-ori OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840)
 rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) 13 }

 id-ori-kem OBJECT IDENTIFIER ::= { id-ori 3 }

 --
 -- KEMRecipientInfo
 --

 KEMRecipientInfo ::= SEQUENCE {
 version CMSVersion, -- always set to 0
 rid RecipientIdentifier,
 kem KEMAlgorithmIdentifier,
 kemct OCTET STRING,
 kdf KeyDerivationAlgorithmIdentifier,
 kekLength INTEGER (1..65535),
 ukm [0] EXPLICIT UserKeyingMaterial OPTIONAL,
 wrap KeyEncryptionAlgorithmIdentifier,
 encryptedKey EncryptedKey }

 KEMAlgSet KEM-ALGORITHM ::= { ... }

 KEMAlgorithmIdentifier ::=
 AlgorithmIdentifier{ KEM-ALGORITHM, {KEMAlgSet} }

 --
 -- CMSORIforKEMOtherInfo
 --

 CMSORIforKEMOtherInfo ::= SEQUENCE {
 wrap KeyEncryptionAlgorithmIdentifier,
 kekLength INTEGER (1..65535),
 ukm [0] EXPLICIT UserKeyingMaterial OPTIONAL }

 END

 Security Considerations
 The security considerations discussed in are applicable to this document.
 To be appropriate for use with this specification, the KEM algorithm MUST
explicitly be designed to be secure when the public key is used many
times. For example, a KEM algorithm with a single-use public key is not
appropriate, because the public key is expected to be carried in a
long-lived certificate and used over and over. Thus, KEM
algorithms that offer indistinguishability under adaptive chosen ciphertext
attack (IND-CCA2) security are appropriate. A common design pattern for
obtaining IND-CCA2 security with public key reuse is to apply the
Fujisaki-Okamoto (FO) transform or a variant of the FO
transform .
 The KDF SHOULD offer at least the security level of the KEM.
 The choice of the key-encryption algorithm and the size of the
KEK SHOULD be made based on the security level
provided by the KEM. The key-encryption algorithm and the
KEK SHOULD offer at least the security level of
the KEM.
 KEM algorithms do not provide data origin authentication; therefore, when
a KEM algorithm is used with the authenticated-data content type, the
contents are delivered with integrity from an unknown source.
 Implementations MUST protect the KEM private key, the KEK, and the CEK (or the
CAEK). Compromise of the KEM private key may
result in the disclosure of all contents protected with that KEM private key.
However, compromise of the KEK, the CEK, or the CAEK may result in disclosure
of the encrypted content of a single message.
 The KEM produces the IKM input value for the KDF. This IKM value MUST NOT
be reused for any other purpose. Likewise, any random value used by
the KEM algorithm to produce the shared secret or its encapsulation MUST NOT
be reused for any other purpose. That is, the originator MUST generate a
fresh KEM shared secret for each recipient in the KEMRecipientInfo
structure, including any random value used by the KEM algorithm to produce
the KEM shared secret. In addition, the originator MUST discard the KEM shared
secret, including any random value used by the KEM algorithm to produce
the KEM shared secret, after constructing the entry in the KEMRecipientInfo
structure for the corresponding recipient. Similarly, the recipient MUST
discard the KEM shared secret, including any random value used by the KEM
algorithm to produce the KEM shared secret, after constructing the
KEK from the KEMRecipientInfo structure.
 Implementations MUST randomly generate content-encryption keys,
content-authenticated-encryption keys, and message-authentication keys.
Also, the generation of KEM key pairs relies on random numbers. The use
of inadequate pseudorandom number generators (PRNGs) to generate these
keys can result in little or no security. An attacker may find it much
easier to reproduce the PRNG environment that produced the keys,
searching the resulting small set of possibilities, rather than brute-force searching the whole key space. The generation of quality random
numbers is difficult. offers important guidance in this area.
 If the cipher and key sizes used for the key-encryption algorithm and the
content-encryption algorithm are different, the effective security is
determined by the weaker of the two algorithms. If, for example, the
content is encrypted with AES-CBC using a 128-bit CEK and the CEK is
wrapped with AES-KEYWRAP using a 256-bit KEK, then at most 128 bits of
protection is provided.
 If the cipher and key sizes used for the key-encryption algorithm and the
content-authenticated-encryption algorithm are different, the effective
security is determined by the weaker of the two algorithms. If, for example,
the content is encrypted with AES-GCM using a 128-bit
CAEK and the CAEK is wrapped with AES-KEYWRAP using a 192-bit KEK, then at
most 128 bits of protection is provided.
 If the cipher and key sizes used for the key-encryption algorithm and the
message-authentication algorithm are different, the effective security is
determined by the weaker of the two algorithms. If, for example, the
content is authenticated with HMAC-SHA256 using a 512-bit
message-authentication key and the message-authentication key is wrapped
with AES-KEYWRAP using a 256-bit KEK, then at most 256 bits of
protection is provided.
 Implementers should be aware that cryptographic algorithms, including KEM
algorithms, become weaker with time. As new cryptoanalysis techniques are
developed and computing capabilities advance, the work factor to break a
particular cryptographic algorithm will be reduced. As a result,
cryptographic algorithm implementations should be modular, allowing new
algorithms to be readily inserted. That is, implementers should be prepared
for the set of supported algorithms to change over time.

 IANA Considerations
 For KEMRecipientInfo as defined in , IANA has
 assigned the following OID in the "SMI Security for
 S/MIME Other Recipient Info Identifiers (1.2.840.113549.1.9.16.13)"
 registry:

 Decimal
 Description
 References

 3
 id-ori-kem
 RFC 9629

 For the ASN.1 module defined in , IANA has
 assigned the following OID in the "SMI Security for PKIX Module
 Identifier" registry (1.3.6.1.5.5.7.0):

 Decimal
 Description
 References

 109
 id-mod-kemAlgorithmInformation-2023
 RFC 9629

 For the ASN.1 module defined in , IANA has
 assigned the following OID in the "SMI Security for S/MIME Module
 Identifier (1.2.840.113549.1.9.16.0)" registry:

 Decimal
 Description
 References

 77
 id-mod-cms-kemri-2023
 RFC 9629

 References

 Normative References

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Cryptographic Message Syntax (CMS) Authenticated-Enveloped-Data Content Type

 This document describes an additional content type for the Cryptographic Message Syntax (CMS). The authenticated-enveloped-data content type is intended for use with authenticated encryption modes. All of the various key management techniques that are supported in the CMS enveloped-data content type are also supported by the CMS authenticated-enveloped-data content type. [STANDARDS-TRACK]

 Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile

 This memo profiles the X.509 v3 certificate and X.509 v2 certificate revocation list (CRL) for use in the Internet. An overview of this approach and model is provided as an introduction. The X.509 v3 certificate format is described in detail, with additional information regarding the format and semantics of Internet name forms. Standard certificate extensions are described and two Internet-specific extensions are defined. A set of required certificate extensions is specified. The X.509 v2 CRL format is described in detail along with standard and Internet-specific extensions. An algorithm for X.509 certification path validation is described. An ASN.1 module and examples are provided in the appendices. [STANDARDS-TRACK]

 Cryptographic Message Syntax (CMS)

 This document describes the Cryptographic Message Syntax (CMS). This syntax is used to digitally sign, digest, authenticate, or encrypt arbitrary message content. [STANDARDS-TRACK]

 New ASN.1 Modules for Cryptographic Message Syntax (CMS) and S/MIME

 The Cryptographic Message Syntax (CMS) format, and many associated formats, are expressed using ASN.1. The current ASN.1 modules conform to the 1988 version of ASN.1. This document updates those ASN.1 modules to conform to the 2002 version of ASN.1. There are no bits-on-the-wire changes to any of the formats; this is simply a change to the syntax. This document is not an Internet Standards Track specification; it is published for informational purposes.

 New ASN.1 Modules for the Public Key Infrastructure Using X.509 (PKIX)

 The Public Key Infrastructure using X.509 (PKIX) certificate format, and many associated formats, are expressed using ASN.1. The current ASN.1 modules conform to the 1988 version of ASN.1. This document updates those ASN.1 modules to conform to the 2002 version of ASN.1. There are no bits-on-the-wire changes to any of the formats; this is simply a change to the syntax. This document is not an Internet Standards Track specification; it is published for informational purposes.

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 Information technology - Abstract Syntax Notation One (ASN.1): Specification of basic notation

 ITU-T

 Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER)

 ITU-T

 Informative References

 Secure Integration of Asymmetric and Symmetric Encryption Schemes

 Springer Science and Business Media LLC
 Journal of Cryptology, vol. 26, no. 1, pp. 80-101

 A Modular Analysis of the Fujisaki-Okamoto Transformation

 Springer International Publishing
 Theory of Cryptography, TCC 2017, Lecture Notes in Computer Science, vol. 10677, pp. 341-371
 Print ISBN 9783319704999, Online ISBN 9783319705002

 Randomness Requirements for Security

 Security systems are built on strong cryptographic algorithms that foil pattern analysis attempts. However, the security of these systems is dependent on generating secret quantities for passwords, cryptographic keys, and similar quantities. The use of pseudo-random processes to generate secret quantities can result in pseudo-security. A sophisticated attacker may find it easier to reproduce the environment that produced the secret quantities and to search the resulting small set of possibilities than to locate the quantities in the whole of the potential number space.
 Choosing random quantities to foil a resourceful and motivated adversary is surprisingly difficult. This document points out many pitfalls in using poor entropy sources or traditional pseudo-random number generation techniques for generating such quantities. It recommends the use of truly random hardware techniques and shows that the existing hardware on many systems can be used for this purpose. It provides suggestions to ameliorate the problem when a hardware solution is not available, and it gives examples of how large such quantities need to be for some applications. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 HMAC-based Extract-and-Expand Key Derivation Function (HKDF)

 This document specifies a simple Hashed Message Authentication Code (HMAC)-based key derivation function (HKDF), which can be used as a building block in various protocols and applications. The key derivation function (KDF) is intended to support a wide range of applications and requirements, and is conservative in its use of cryptographic hash functions. This document is not an Internet Standards Track specification; it is published for informational purposes.

 Additional New ASN.1 Modules for the Cryptographic Message Syntax (CMS) and the Public Key Infrastructure Using X.509 (PKIX)

 The Cryptographic Message Syntax (CMS) format, and many associated formats, are expressed using ASN.1. The current ASN.1 modules conform to the 1988 version of ASN.1. This document updates some auxiliary ASN.1 modules to conform to the 2008 version of ASN.1; the 1988 ASN.1 modules remain the normative version. There are no bits- on-the-wire changes to any of the formats; this is simply a change to the syntax. This document is not an Internet Standards Track specification; it is published for informational purposes.

 Acknowledgements
 Our thanks to for his guidance and design review.
 Our thanks to for his careful review of the ASN.1 modules.
 Our thanks to
 ,
 ,
 ,
 ,
 , and

for their careful reviews and thoughtful comments.

 Authors' Addresses

 Vigil Security, LLC

 Herndon
 VA
 United States of America

 housley@vigilsec.com

 Entrust

 Minneapolis
 MN
 United States of America

 john.gray@entrust.com

 Penguin Securities Pte. Ltd.

 Singapore

 tomofumi.okubo+ietf@gmail.com

