
RFC 9761
Manufacturer Usage Description (MUD) for TLS and
DTLS Profiles for Internet of Things (IoT) Devices

Abstract
This memo extends the Manufacturer Usage Description (MUD) specification to allow
manufacturers to define TLS and DTLS profile parameters. This allows a network security
service to identify unexpected (D)TLS usage, which can indicate the presence of unauthorized
software, malware, or security policy-violating traffic on an endpoint.

Stream: Internet Engineering Task Force (IETF)
RFC: 9761
Category: Standards Track
Published: April 2025
ISSN: 2070-1721
Authors: T. Reddy.K

Nokia
D. Wing
Citrix

B. Anderson
Cisco

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9761

Copyright Notice
Copyright (c) 2025 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Reddy.K, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9761
https://www.rfc-editor.org/info/rfc9761
https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

2. Terminology

3. Overview of MUD (D)TLS Profiles for IoT devices

4. (D)TLS 1.3 Handshake

4.1. Full (D)TLS 1.3 Handshake Inspection

4.2. Encrypted DNS

5. (D)TLS Profile of an IoT device

5.1. Tree Structure of the (D)TLS Profile Extension to the ACL YANG Module

5.2. The (D)TLS Profile Extension to the ACL YANG Module

5.3. IANA (D)TLS Profile YANG Module

5.4. MUD (D)TLS Profile Extension

6. Processing of the MUD (D)TLS Profile

7. MUD File Example

8. Software-Based ACLs and ACLs Within a (D)TLS 1.3 Proxy

9. Security Considerations

9.1. Challenges in Mimicking (D)TLS 1.2 Handshakes for IoT Devices

9.2. Considerations for the "iana-tls-profile" Module

9.3. Considerations for the "ietf-acl-tls" Module

9.4. Considerations for the "ietf-mud-tls" Module

10. Privacy Considerations

11. IANA Considerations

11.1. (D)TLS Profile YANG Modules

11.2. Considerations for the iana-tls-profile Module

11.3. ACL TLS Version Registry

11.4. ACL DTLS Version Registry

11.5. ACL (D)TLS Parameters Registry

11.6. MUD Extensions Registry

3

5

5

6

6

7

7

8

9

13

16

18

19

20

21

22

22

22

23

24

25

25

26

27

27

27

28

RFC 9761 MUD (D)TLS Profile for IoT Devices April 2025

Reddy.K, et al. Standards Track Page 2

12. References

12.1. Normative References

12.2. Informative References

Acknowledgments

Authors' Addresses

28

28

30

32

32

1. Introduction
Encryption is necessary to enhance the privacy of end users using Internet of Things (IoT)
devices. TLS and DTLS are the dominant protocols (counting all (D)TLS
versions) that provide encryption for IoT device traffic. Unfortunately, in conjunction with IoT
applications' rise of encryption, malware authors are also using encryption that thwarts
network-based analysis, such as deep packet inspection (DPI). Thus, other mechanisms are
needed to help detect malware running on an IoT device.

Malware often reuses certain libraries, and there are notable differences in how malware uses
encryption compared to software that is not malware. Several common patterns in the use of
(D)TLS by malware include:

Use of older and weaker cryptographic parameters.
TLS server name indication (SNI) extension and server certificates are composed
of subjects with characteristics of a domain generation algorithm (DGA) (e.g., "www.
33mhwt2j.net").
Higher use of self-signed certificates compared with typical legitimate software using
certificates from a certificate authority (CA) trusted by the device.
Discrepancies in the SNI TLS extension and the DNS names in the SubjectAltName (SAN) X.
509 extension in the server Certificate message.
Discrepancies in the key exchange algorithm and the client public key length in comparison
with legitimate flows. As a reminder, the Client Key Exchange message has been removed
from TLS 1.3.
Lower diversity in extensions advertised by TLS clients compared to legitimate clients.
Using privacy enhancing technologies like Tor, Psiphon, Ultrasurf (see),
and evasion techniques such as ClientHello randomization.
Using an alternative DNS server (via encrypted transport) to avoid detection by malware
DNS filtering services . Specifically, malware may not use the Do53 or
encrypted DNS server provided by the local network (DHCP, Discovery of Network-
designated Resolvers (DNR) , or Discovery of Designated Resolvers (DDR)

).

[RFC8446] [RFC9147]

•
• [RFC6066]

•

•

•

•
• [MALWARE-TLS]

•
[MALWARE-DOH]

[RFC9463]
[RFC9462]

RFC 9761 MUD (D)TLS Profile for IoT Devices April 2025

Reddy.K, et al. Standards Track Page 3

If (D)TLS profile parameters are defined, the following functions that have a positive impact on
the local network security are possible:

Permit intended DTLS or TLS use, and block malicious DTLS or TLS use. This is superior to
the Access Control Lists (ACLs) of Layers 3 and 4 in "Manufacturer Usage Description
Specification" , which are not suitable for broad communication patterns. The goal
of this document is to enhance and complement the existing MUD specifications rather than
undermine them.
Ensure TLS certificates are valid. Several TLS deployments have been vulnerable to active
Man-In-The-Middle (MITM) attacks because of the lack of certificate validation or
vulnerability in the certificate validation function (see). By
observing (D)TLS profile parameters, a network element can detect when the TLS SNI
mismatches the SubjectAltName and when the server's certificate is invalid. In (D)TLS 1.2

, the ClientHello, ServerHello, and Certificate messages are all sent in
cleartext. This check is not possible with (D)TLS 1.3, which encrypts the Certificate message
and therefore hides the server identity from any intermediary. In (D)TLS 1.3, the server
certificate validation functions should be executed within an on-path (D)TLS proxy if such a
proxy exists.
Support new communication patterns. An IoT device can learn a new capability, and the
new capability can change the way the IoT device communicates with other devices located
in the local network and the Internet. There would be an inaccurate policy if an IoT device
rapidly changes the IP addresses and domain names it communicates with while the MUD
ACLs were slower to update (see). In such a case, observable (D)TLS profile
parameters can be used to permit intended use and block malicious behavior from the IoT
device.

The YANG module specified in Section 5.2 of this document is an extension of "YANG Data Model
for Network Access Control Lists (ACLs)" to enhance MUD to model
observable (D)TLS profile parameters. Using these (D)TLS profile parameters, an active MUD-
enforcing network security service (e.g., firewall) can identify MUD non-compliant (D)TLS
behavior indicating outdated cryptography or malware. This detection can prevent malware
downloads, block access to malicious domains, enforce use of strong ciphers, stop data
exfiltration, etc. In addition, organizations may have policies around acceptable ciphers and
certificates for the websites the IoT devices connect to. Examples include no use of old and less
secure versions of TLS, no use of self-signed certificates, deny-list or accept-list of Certificate
Authorities, valid certificate expiration time, etc. These policies can be enforced by observing the
(D)TLS profile parameters. Network security services can use the IoT device's (D)TLS profile
parameters to identify legitimate flows by observing (D)TLS sessions, and can make inferences
to permit legitimate flows and block malicious or insecure flows. Additionally, it supports
network communications adherence to security policies by ensuring that TLS certificates are
valid and deprecated cipher suites are avoided. The proposed technique is also suitable in
deployments where decryption techniques are not ideal due to privacy concerns, non-
cooperating endpoints, and expense.

•

[RFC8520]

•

[CRYPTO-VULNERABILITY]

[RFC5246] [RFC6347]

•

[CLEAR-AS-MUD]

[RFC8519] [RFC8520]

RFC 9761 MUD (D)TLS Profile for IoT Devices April 2025

Reddy.K, et al. Standards Track Page 4

3. Overview of MUD (D)TLS Profiles for IoT devices
In Enterprise networks, protection and detection are typically done both on end hosts and in the
network. Endpoint security agents have deep visibility on the devices where they are installed,
whereas the network has broader visibility. Installing endpoint security agents may not be a
viable option on IoT devices, and network security service is an efficient means to protect such
IoT devices. If the IoT device supports a MUD (D)TLS profile, the (D)TLS profile parameters of the
IoT device can be used by a middlebox to detect and block malware communication, while at the
same time preserving the privacy of legitimate uses of encryption. In addition, it enforces
organizational security policies, ensuring that devices comply. By monitoring (D)TLS
parameters, network administrators can identify and mitigate the use of outdated TLS versions,
cryptographic algorithms, and non-compliant certificates. The middlebox need not proxy (D)TLS,
but can passively observe the parameters of (D)TLS handshakes from IoT devices and gain
visibility into TLS 1.2 parameters and partial visibility into TLS 1.3 parameters.

Malicious agents can try to use the (D)TLS profile parameters of legitimate agents to evade
detection, but it becomes a challenge to mimic the behavior of various IoT device types and IoT
device models from several manufacturers. In other words, malware developers will have to
develop malicious agents per IoT device type, manufacturer and model, infect the device with
the tailored malware agent, and will have keep up with updates to the device's (D)TLS profile
parameters over time. Furthermore, the malware's command and control server certificates

(D)TLS:

DoH/DoT:

Middlebox:

Endpoint Security Agent:

Network Security Service:

2. Terminology
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

Used for statements that apply to both Transport Layer Security and
Datagram Transport Layer Security . Specific terms "TLS" and "DTLS" are used for
any statement that applies to either protocol alone.

Refers to DNS-over-HTTPS and/or DNS-over-TLS .

A middlebox that interacts with TLS traffic can either act as a TLS proxy,
intercepting and decrypting the traffic for inspection, or inspect the traffic between TLS peers
without terminating the TLS session.

An Endpoint Security Agent is a software installed on endpoint
devices that protects them from security threats. It provides features such as malware
protection, firewall, and intrusion prevention to ensure the device's security and integrity.

A Network Security Service refers to a set of mechanisms designed
to protect network communications and resources from attacks.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

[RFC8446]
[RFC6347]

[RFC8484] [RFC7858]

RFC 9761 MUD (D)TLS Profile for IoT Devices April 2025

Reddy.K, et al. Standards Track Page 5

need to be signed by the same certifying authorities trusted by the IoT devices. Typically, IoT
devices have an infrastructure that supports a rapid deployment of updates, and malware
agents will have a near-impossible task of similarly deploying updates and continuing to mimic
the TLS behavior of the IoT device it has infected.

However, if the IoT device has reached end-of-life (EOL) and the IoT manufacturer will not issue
a firmware or software update to the IoT device or will not update the MUD file, the "is-
supported" attribute defined in can be used by the MUD manager to
indicate that the IoT manufacturer no longer supports the device. The EOL of a device, where
the IoT manufacturer no longer supports it, does not necessarily mean the device is defective.
Instead, it signifies that the device is no longer receiving updates, support, or security patches,
which necessitates replacement and upgrading to next-generation devices to ensure continued
functionality, security, and compatibility with modern networks. The network security service
will have to rely on other techniques discussed in Section 9 to identify malicious connections
until the device is replaced.

Compromised IoT devices are typically used for launching DDoS attacks ().
For example, DDoS attacks like Slowloris and Transport Layer Security (TLS) re-
negotiation can be blocked if the victim's server certificate is not be signed by the same
certifying authorities trusted by the IoT device.

4. (D)TLS 1.3 Handshake
In (D)TLS 1.3, full (D)TLS handshake inspection is not possible since all (D)TLS handshake
messages excluding the ClientHello message are encrypted. (D)TLS 1.3 has introduced new
extensions in the handshake record layers called Encrypted Extensions. When using these
extensions, handshake messages will be encrypted and network security services (such as a
firewall) are incapable of deciphering the handshake, and thus cannot view the server
certificate. However, the ClientHello and ServerHello still have some fields visible, such as the
list of supported versions, named groups, cipher suites, signature algorithms, extensions in
ClientHello, and the chosen cipher in the ServerHello. For instance, if the malware uses evasion
techniques like ClientHello randomization, the observable list of cipher suites and extensions
offered by the malware agent in the ClientHello message will not match the list of cipher suites
and extensions offered by the legitimate client in the ClientHello message, and the middlebox
can block malicious flows without acting as a (D)TLS 1.3 proxy.

Section 3.6 of [RFC8520]

Section 3 of [RFC8576]
[SLOWLORIS]

4.1. Full (D)TLS 1.3 Handshake Inspection
To obtain more visibility into negotiated TLS 1.3 parameters, a middlebox can act as a (D)TLS 1.3
proxy. A middlebox can act as a (D)TLS proxy for the IoT devices owned and managed by the IT
team in the Enterprise network and the (D)TLS proxy must meet the security and privacy
requirements of the organization. In other words, the scope of a middlebox acting as a (D)TLS
proxy is restricted to the Enterprise network owning and managing the IoT devices. The
middlebox would have to follow the behavior detailed in to act as a
compliant (D)TLS 1.3 proxy.

Section 9.3 of [RFC8446]

RFC 9761 MUD (D)TLS Profile for IoT Devices April 2025

Reddy.K, et al. Standards Track Page 6

https://rfc-editor.org/rfc/rfc8520#section-3.6
https://rfc-editor.org/rfc/rfc8576#section-3
https://rfc-editor.org/rfc/rfc8446#section-9.3

4.2. Encrypted DNS
A common usage pattern for certain types of IoT devices (e.g., light bulb) is for it to "call home"
to a service that resides on the public Internet, where that service is referenced through a
domain name (A or AAAA record). As discussed in "Manufacturer Usage Description
Specification" , these devices tend to require access to very few sites. Thus, all other
access should be considered suspect. This technique complements MUD policy enforcement at
the TLS level by ensuring that DNS queries are monitored and filtered, thereby enhancing
overall security. If an IoT device is pre-configured to use a DNS resolver not signaled by the
network, the MUD policy enforcement point is moved to that resolver, which cannot enforce the
MUD policy based on domain names (). If the DNS query is not accessible
for inspection, it becomes quite difficult for the infrastructure to detect any issues. Therefore,
the use of a DNS resolver that is not signaled by the network is generally incompatible with
MUD. A network-designated DoH/DoT server is necessary to allow MUD policy enforcement on
the local network, for example, using the techniques specified in DNR and DDR

.

To further increase privacy, the Encrypted Client Hello (ECH) extension prevents
passive observation of the TLS Server Name Indication extension and other potentially sensitive
fields, such as the Application-Layer Protocol Negotiation (ALPN) . To effectively
provide that privacy protection, the ECH extension needs to be used in conjunction with DNS
encryption (e.g., DoH). A middlebox (e.g., firewall) passively inspecting the ECH extension cannot
observe the encrypted SNI nor observe the encrypted DNS traffic. The middlebox acting as a
(D)TLS 1.3 proxy that does not support the ECH extension will act as if it is connecting to the
public name and follows the behavior discussed in to securely signal
the client to disable ECH.

[TLS-ESNI]

[RFC7301]

Section 6.1.6 of [TLS-ESNI]

[RFC8520]

Section 8 of [RFC8520]

[RFC9463]
[RFC9462]

5. (D)TLS Profile of an IoT device
This document specifies a YANG module that represents the (D)TLS profile. This YANG module
provides a means to characterize the (D)TLS traffic profile of a device. Network security services
can use these profiles to permit conformant traffic or to deny traffic from devices that deviates
from it. This module uses the cryptographic types defined in . See for (D)TLS
1.2 and for DTLS 1.3 recommendations related to IoT devices, and for
additional (D)TLS 1.2 recommendations.

A companion YANG module is defined to include a collection of (D)TLS parameters and (D)TLS
versions maintained by IANA: "iana-tls-profile" (Section 5.3).

The (D)TLS parameters in each (D)TLS profile include the following:

Profile name
(D)TLS versions supported by the IoT device.
List of supported cipher suites (). For (D)TLS 1.2,
recommends Authenticated Encryption with Associated Data (AEAD) ciphers for IoT devices.
List of supported extension types.

[RFC9640] [RFC7925]
[IoT-PROFILE] [RFC9325]

•
•
• Section 11 of [RFC8446] [RFC7925]

•

RFC 9761 MUD (D)TLS Profile for IoT Devices April 2025

Reddy.K, et al. Standards Track Page 7

https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-24#section-6.1.6
https://rfc-editor.org/rfc/rfc8520#section-8
https://rfc-editor.org/rfc/rfc8446#section-11

List of trust anchor certificates used by the IoT device. If the server certificate is signed by
one of the trust anchors, the middlebox continues with the connection as normal.
Otherwise, the middlebox will react as if the server certificate validation has failed and
takes appropriate action (e.g, blocks the (D)TLS session). An IoT device can use a private
trust anchor to validate a server's certificate (e.g., the private trust anchor can be preloaded
at manufacturing time on the IoT device and the IoT device fetches the firmware image
from the firmware server whose certificate is signed by the private CA). This empowers the
middlebox to reject TLS sessions to servers that the IoT device does not trust.
List of pre-shared key exchange modes.
List of named groups (DHE or ECDHE) supported by the client.
List of signature algorithms the client can validate in X.509 server certificates.
List of signature algorithms the client is willing to accept for the CertificateVerify message
(). For example, a TLS client implementation can support different
sets of algorithms for certificates, and it can signal the capabilities in the
"signature_algorithms_cert" and "signature_algorithms" extensions.
List of supported application protocols (e.g., h3, h2, http/1.1 etc.).
List of certificate compression algorithms (defined in).
List of the distinguished names of acceptable certificate authorities, represented in
DER-encoded format (defined in).

 defines a mechanism for TLS peers to send random values on TLS
parameters to ensure future extensibility of TLS extensions. Similar random values might be
extended to other TLS parameters. Thus, the (D)TLS profile parameters defined in the YANG
module by this document include the GREASE values for extension types, named
groups, signature algorithms, (D)TLS versions, pre-shared key exchange modes, cipher suites,
and any other TLS parameters defined in future RFCs.

The (D)TLS profile does not include parameters like compression methods for data compression.
 recommends disabling TLS-level compression to prevent compression-related attacks.

In TLS 1.3, only the "null" compression method is allowed ().

5.1. Tree Structure of the (D)TLS Profile Extension to the ACL YANG Module
This document augments the "ietf-acl" ACL YANG module defined in for signaling the
IoT device (D)TLS profile. This document defines the YANG module "ietf-acl-tls". The meaning of
the symbols in the YANG tree diagram are defined in and it has the following tree
structure:

•

•
•
•
•

Section 4.2.3 of [RFC8446]

•
• [RFC8879]
• [X501]

[X690] Section 4.2.4 of [RFC8446]

GREASE [RFC8701]

MUST NOT

[RFC9325]
Section 4.1.2 of [RFC8446]

[RFC8519]

[RFC8340]

RFC 9761 MUD (D)TLS Profile for IoT Devices April 2025

Reddy.K, et al. Standards Track Page 8

https://rfc-editor.org/rfc/rfc8446#section-4.2.3
https://rfc-editor.org/rfc/rfc8446#section-4.2.4
https://rfc-editor.org/rfc/rfc8446#section-4.1.2

module: ietf-acl-tls
 augment /acl:acls/acl:acl/acl:aces/acl:ace/acl:matches:
 +--rw client-profiles {match-on-tls-dtls}?
 +--rw tls-dtls-profile* [name]
 +--rw name string
 +--rw supported-tls-version* ianatp:tls-version
 +--rw supported-dtls-version* ianatp:dtls-version
 +--rw cipher-suite* ianatp:cipher-algorithm
 +--rw extension-type*
 | ianatp:extension-type
 +--rw accept-list-ta-cert*
 | ct:trust-anchor-cert-cms
 +--rw psk-key-exchange-mode*
 | ianatp:psk-key-exchange-mode
 | {tls13 or dtls13}?
 +--rw supported-groups*
 | ianatp:supported-group
 +--rw signature-algorithm-cert*
 | ianatp:signature-algorithm
 | {tls13 or dtls13}?
 +--rw signature-algorithm*
 | ianatp:signature-algorithm
 +--rw application-protocol*
 | ianatp:application-protocol
 +--rw cert-compression-algorithm*
 | ianatp:cert-compression-algorithm
 | {tls13 or dtls13}?
 +--rw certificate-authorities*
 certificate-authority
 {tls13 or dtls13}?

5.2. The (D)TLS Profile Extension to the ACL YANG Module

<CODE BEGINS> file "ietf-acl-tls@2025-04-18.yang"

module ietf-acl-tls {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-acl-tls";
 prefix acl-tls;

 import iana-tls-profile {
 prefix ianatp;
 reference
 "RFC 9761: Manufacturer Usage Description (MUD) for TLS and
 DTLS Profiles for Internet of Things (IoT) Devices";
 }
 import ietf-crypto-types {
 prefix ct;
 reference
 "RFC 9640: YANG Data Types and Groupings for Cryptography";
 }
 import ietf-access-control-list {
 prefix acl;
 reference
 "RFC 8519: YANG Data Model for Network Access

RFC 9761 MUD (D)TLS Profile for IoT Devices April 2025

Reddy.K, et al. Standards Track Page 9

 Control Lists (ACLs)";
 }

 organization
 "IETF OPSAWG (Operations and Management Area Working Group)";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/opsawg/>
 WG List: opsawg@ietf.org

 Author: Tirumaleswar Reddy.K
 kondtir@gmail.com

 Author: Dan Wing
 danwing@gmail.com

 Author: Blake Anderson
 blake.anderson@cisco.com

 ";
 description
 "This YANG module defines a component that augments the
 IETF description of an access list to allow (D)TLS profiles
 as matching criteria.

 Copyright (c) 2025 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Revised BSD License
 set forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC 9761; see
 the RFC itself for full legal notices.";

 revision 2025-04-18 {
 description
 "Initial revision.";
 reference
 "RFC 9761: Manufacturer Usage Description (MUD) for TLS and
 DTLS Profiles for Internet of Things (IoT) Devices";
 }

 feature tls12 {
 description
 "TLS Protocol Version 1.2 is supported.";
 reference
 "RFC 5246: The Transport Layer Security (TLS) Protocol
 Version 1.2";
 }

 feature tls13 {
 description
 "TLS Protocol Version 1.3 is supported.";
 reference
 "RFC 8446: The Transport Layer Security (TLS) Protocol

RFC 9761 MUD (D)TLS Profile for IoT Devices April 2025

Reddy.K, et al. Standards Track Page 10

 Version 1.3";
 }

 feature dtls12 {
 description
 "DTLS Protocol Version 1.2 is supported.";
 reference
 "RFC 6347: Datagram Transport Layer Security
 Version 1.2";
 }

 feature dtls13 {
 description
 "DTLS Protocol Version 1.3 is supported.";
 reference
 "RFC 9147: Datagram Transport Layer Security 1.3";
 }

 feature match-on-tls-dtls {
 description
 "The networking device can support matching on
 (D)TLS parameters.";
 }

 typedef spki-pin-set {
 type binary;
 description
 "Subject Public Key Info pin set as discussed in
 Section 2.4 of RFC 7469.";
 }

 typedef certificate-authority {
 type string;
 description
 "Distinguished Name of Certificate authority as discussed
 in Section 4.2.4 of RFC 8446.";
 }

 augment "/acl:acls/acl:acl/acl:aces/acl:ace/acl:matches" {
 if-feature "match-on-tls-dtls";
 description
 "(D)TLS specific matches.";
 container client-profiles {
 description
 "A grouping for (D)TLS profiles.";
 list tls-dtls-profile {
 key "name";
 description
 "A list of (D)TLS version profiles supported by
 the client.";
 leaf name {
 type string {
 length "1..64";
 }
 description
 "The name of (D)TLS profile; space and special
 characters are not allowed.";
 }

RFC 9761 MUD (D)TLS Profile for IoT Devices April 2025

Reddy.K, et al. Standards Track Page 11

 leaf-list supported-tls-version {
 type ianatp:tls-version;
 description
 "TLS versions supported by the client.";
 }
 leaf-list supported-dtls-version {
 type ianatp:dtls-version;
 description
 "DTLS versions supported by the client.";
 }
 leaf-list cipher-suite {
 type ianatp:cipher-algorithm;
 description
 "A list of cipher suites supported by the client.";
 }
 leaf-list extension-type {
 type ianatp:extension-type;
 description
 "A list of Extension Types supported by the client.";
 }
 leaf-list accept-list-ta-cert {
 type ct:trust-anchor-cert-cms;
 description
 "A list of trust anchor certificates used by the
 client.";
 }
 leaf-list psk-key-exchange-mode {
 if-feature "tls13 or dtls13";
 type ianatp:psk-key-exchange-mode;
 description
 "pre-shared key exchange modes.";
 }
 leaf-list supported-group {
 type ianatp:supported-group;
 description
 "A list of named groups supported by the client.";
 }
 leaf-list signature-algorithm-cert {
 if-feature "tls13 or dtls13";
 type ianatp:signature-algorithm;
 description
 "A list signature algorithms the client can validate
 in X.509 certificates.";
 }
 leaf-list signature-algorithm {
 type ianatp:signature-algorithm;
 description
 "A list signature algorithms the client can validate
 in the CertificateVerify message.";
 }
 leaf-list application-protocol {
 type ianatp:application-protocol;
 description
 "A list application protocols supported by the client.";
 }
 leaf-list cert-compression-algorithm {
 if-feature "tls13 or dtls13";
 type ianatp:cert-compression-algorithm;

RFC 9761 MUD (D)TLS Profile for IoT Devices April 2025

Reddy.K, et al. Standards Track Page 12

 description
 "A list certificate compression algorithms
 supported by the client.";
 }
 leaf-list certificate-authorities {
 if-feature "tls13 or dtls13";
 type certificate-authority;
 description
 "A list of the distinguished names of certificate
 authorities acceptable to the client.";
 }
 }
 }
 }
}

<CODE ENDS>

5.3. IANA (D)TLS Profile YANG Module
The TLS and DTLS IANA registries are available from

 and . Changes to TLS-
and DTLS-related IANA registries are discussed in .

The values for all the parameters in the "iana-tls-profile" YANG module are defined in the TLS
and DTLS IANA registries excluding the tls-version, dtls-version, spki-pin-set, and certificate-
authority parameters. The values of spki-pin-set and certificate-authority parameters will be
specific to the IoT device.

The TLS and DTLS IANA registries do not maintain (D)TLS version numbers. In (D)TLS 1.2 and
below, the "legacy_version" field in the ClientHello message is used for version negotiation.
However, in (D)TLS 1.3, the "supported_versions" extension is used by the client to indicate
which versions of (D)TLS it supports. TLS 1.3 ClientHello messages are identified as having a
"legacy_version" of 0x0303 and a "supported_versions" extension present with 0x0304 as the
highest version. DTLS 1.3 ClientHello messages are identified as having a "legacy_version" of
0xfefd and a "supported_versions" extension present with 0x0304 as the highest version.

In order to ease updating the "iana-tls-profile" YANG module with future (D)TLS versions, new
(D)TLS version registries are defined in Section 11.3 and Section 11.4. Whenever a new (D)TLS
protocol version is defined, the registry will be updated using expert review; the "iana-tls-
profile" YANG module will be automatically updated by IANA.

Implementers or users of this specification must refer to the IANA-maintained "iana-tls-profile"
YANG module available at .

The initial version of the "iana-tls-profile" YANG module is defined as follows:

<https://www.iana.org/assignments/tls-
parameters> <https://www.iana.org/assignments/tls-extensiontype-values>

[RFC8447]

<https://www.iana.org/assignments/yang-parameters>

<CODE BEGINS> file "iana-tls-profile@2025-04-18.yang"

module iana-tls-profile {

RFC 9761 MUD (D)TLS Profile for IoT Devices April 2025

Reddy.K, et al. Standards Track Page 13

https://www.iana.org/assignments/tls-parameters
https://www.iana.org/assignments/tls-parameters
https://www.iana.org/assignments/tls-extensiontype-values
https://www.iana.org/assignments/yang-parameters

 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:iana-tls-profile";
 prefix ianatp;

 organization
 "IANA";
 contact
 " Internet Assigned Numbers Authority

 Postal: ICANN
 12025 Waterfront Drive, Suite 300
 Los Angeles, CA 90094-2536
 United States

 Tel: +1 310 301 5800
 Email: iana@iana.org>";
 description
 "This module contains the YANG definition for the (D)TLS profile.

 Copyright (c) 2025 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Revised BSD License
 set forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 All revisions of IETF and IANA published modules can be found
 at the YANG Parameters registry
 (https://www.iana.org/assignments/yang-parameters).

 The initial version of this YANG module is part of RFC 9761;
 see the RFC itself for full legal notices.

 The latest version of this YANG module is available at
 https://www.iana.org/assignments/yang-parameters.";

 revision 2025-04-18 {
 description
 "Initial revision.";
 reference
 "RFC 9761: Manufacturer Usage Description (MUD) for TLS and
 DTLS Profiles for Internet of Things (IoT) Devices";
 }

 typedef extension-type {
 type uint16;
 description
 "Extension type in the TLS ExtensionType Values registry as
 defined in Section 7 of RFC 8447.";
 }

 typedef supported-group {
 type uint16;
 description
 "Supported Group in the TLS Supported Groups registry as

RFC 9761 MUD (D)TLS Profile for IoT Devices April 2025

Reddy.K, et al. Standards Track Page 14

 defined in Section 9 of RFC 8447.";
 }

 typedef signature-algorithm {
 type uint16;
 description
 "Signature algorithm in the TLS SignatureScheme registry as
 defined in Section 11 of RFC 8446.";
 }

 typedef psk-key-exchange-mode {
 type uint8;
 description
 "Pre-shared key exchange mode in the TLS PskKeyExchangeMode
 registry as defined in Section 11 of RFC 8446.";
 }

 typedef application-protocol {
 type string;
 description
 "Application-Layer Protocol Negotiation (ALPN) Protocol ID
 registry as defined in Section 6 of RFC 7301.";
 }

 typedef cert-compression-algorithm {
 type uint16;
 description
 "Certificate compression algorithm in TLS Certificate
 Compression Algorithm IDs registry as defined in
 Section 7.3 of RFC 8879.";
 }

 typedef cipher-algorithm {
 type uint16;
 description
 "Cipher suite in TLS Cipher Suites registry
 as discussed in Section 11 of RFC 8446.";
 }

 typedef tls-version {
 type enumeration {
 enum tls12 {
 value 1;
 description
 "TLS Protocol Version 1.2.

 TLS 1.2 ClientHello contains
 0x0303 in 'legacy_version'.";
 reference
 "RFC 5246: The Transport Layer Security (TLS) Protocol
 Version 1.2";
 }
 enum tls13 {
 value 2;
 description
 "TLS Protocol Version 1.3.

 TLS 1.3 ClientHello contains a

RFC 9761 MUD (D)TLS Profile for IoT Devices April 2025

Reddy.K, et al. Standards Track Page 15

 supported_versions extension with 0x0304
 contained in its body and the ClientHello contains
 0x0303 in 'legacy_version'.";
 reference
 "RFC 8446: The Transport Layer Security (TLS) Protocol
 Version 1.3";
 }
 }
 description
 "Indicates the TLS version.";
 }

 typedef dtls-version {
 type enumeration {
 enum dtls12 {
 value 1;
 description
 "DTLS Protocol Version 1.2.

 DTLS 1.2 ClientHello contains
 0xfefd in 'legacy_version'.";
 reference
 "RFC 6347: Datagram Transport Layer Security 1.2";
 }
 enum dtls13 {
 value 2;
 description
 "DTLS Protocol Version 1.3.

 DTLS 1.3 ClientHello contains a
 supported_versions extension with 0x0304
 contained in its body and the ClientHello contains
 0xfefd in 'legacy_version'.";
 reference
 "RFC 9147: Datagram Transport Layer Security 1.3";
 }
 }
 description
 "Indicates the DTLS version.";
 }
}

<CODE ENDS>

5.4. MUD (D)TLS Profile Extension
This document augments the "ietf-mud" MUD YANG module to indicate whether the device
supports (D)TLS profile. If the "ietf-mud-tls" extension is supported by the device, MUD file is
assumed to implement the "match-on-tls-dtls" ACL model feature defined in this specification.
Furthermore, only "accept" or "drop" actions be included with the (D)TLS profile similar
to the actions allowed in .

This document defines the YANG module "ietf-mud-tls", which has the following tree structure:

SHOULD
Section 2 of [RFC8520]

RFC 9761 MUD (D)TLS Profile for IoT Devices April 2025

Reddy.K, et al. Standards Track Page 16

https://rfc-editor.org/rfc/rfc8520#section-2

The model is defined as follows:

module: ietf-mud-tls
 augment /ietf-mud:mud:
 +--rw is-tls-dtls-profile-supported? boolean

<CODE BEGINS> file "ietf-mud-tls@2025-04-18.yang"

module ietf-mud-tls {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-mud-tls";
 prefix ietf-mud-tls;

 import ietf-mud {
 prefix ietf-mud;
 reference
 "RFC 8520: Manufacturer Usage Description Specification";
 }

 organization
 "IETF OPSAWG (Operations and Management Area Working Group)";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/opsawg/>
 WG List: opsawg@ietf.org

 Author: Tirumaleswar Reddy.K
 kondtir@gmail.com

 Author: Dan Wing
 danwing@gmail.com

 Author: Blake Anderson
 blake.anderson@cisco.com

 ";
 description
 "Extension to a MUD module to indicate (D)TLS
 profile support.

 Copyright (c) 2025 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Revised BSD License
 set forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC 9761; see
 the RFC itself for full legal notices.";

 revision 2025-04-18 {
 description
 "Initial revision.";

RFC 9761 MUD (D)TLS Profile for IoT Devices April 2025

Reddy.K, et al. Standards Track Page 17

 reference
 "RFC 9761: Manufacturer Usage Description (MUD) for TLS and
 DTLS Profiles for Internet of Things (IoT)
 Devices";
 }

 augment "/ietf-mud:mud" {
 description
 "This adds an extension for a manufacturer
 to indicate whether the (D)TLS profile is
 supported by a device.";
 leaf is-tls-dtls-profile-supported {
 type boolean;
 default "false";
 description
 "This value will equal 'true' if a device supports
 (D)TLS profile.";
 }
 }
}

<CODE ENDS>

6. Processing of the MUD (D)TLS Profile
The following text outlines the rules for a network security service (e.g., firewall) to follow to
process the MUD (D)TLS Profile so as to avoid ossification:

If the (D)TLS parameter observed in a (D)TLS session is not specified in the MUD (D)TLS
profile and the parameter is recognized by the firewall, it can identify unexpected (D)TLS
usage, which can indicate the presence of unauthorized software or malware on an
endpoint. The firewall can take several actions, such as blocking the (D)TLS session or raising
an alert to quarantine and remediate the compromised device. For example, if the cipher
suite TLS_RSA_WITH_AES_128_CBC_SHA in the ClientHello message is not specified in the
MUD (D)TLS profile and the cipher suite is recognized by the firewall, it can identify
unexpected TLS usage.
If the (D)TLS parameter observed in a (D)TLS session is not specified in the MUD (D)TLS
profile and the (D)TLS parameter is not recognized by the firewall, it can ignore the
unrecognized parameter and the correct behavior is not to block the (D)TLS session. The
behavior is functionally equivalent to the compliant TLS middlebox description in

 to ignore all unrecognized cipher suites, extensions, and other parameters.
For example, if the cipher suite TLS_CHACHA20_POLY1305_SHA256 in the ClientHello
message is not specified in the MUD (D)TLS profile and the cipher suite is not recognized by
the firewall, it can ignore the unrecognized cipher suite. This rule also ensures that the
network security service will ignore the GREASE values advertised by TLS peers and
interoperate with the implementations advertising GREASE values.
Deployments update at different rates, so an updated MUD (D)TLS profile may support
newer parameters. If the firewall does not recognize the newer parameters, an alert should
be triggered to the firewall vendor and the IoT device owner or administrator. A firewall

•

•

Section
9.3 of [RFC8446]

•

RFC 9761 MUD (D)TLS Profile for IoT Devices April 2025

Reddy.K, et al. Standards Track Page 18

https://rfc-editor.org/rfc/rfc8446#section-9.3
https://rfc-editor.org/rfc/rfc8446#section-9.3

must be readily updatable so that when new parameters in the MUD (D)TLS profile are
discovered that are not recognized by the firewall, it can be updated quickly. Most
importantly, if the firewall is not readily updatable, its protection efficacy to identify
emerging malware will decrease with time. For example, if the cipher suite
TLS_AES_128_CCM_8_SHA256 specified in the MUD (D)TLS profile is not recognized by the
firewall, an alert will be triggered. Similarly, if the (D)TLS version specified in the MUD file is
not recognized by the firewall, an alert will be triggered.
If the MUD (D)TLS profile includes any parameters that are susceptible to attacks (e.g.,
weaker cryptographic parameters), an alert be triggered to the firewall vendor and
the IoT device owner or administrator.

•
MUST

7. MUD File Example
The example below contains (D)TLS profile parameters for an IoT device used to reach servers
listening on port 443 using TCP transport. JSON encoding of YANG-modeled data is
used to illustrate the example.

[RFC7951]

{
 "ietf-mud:mud": {
 "mud-version": 1,
 "mud-url": "https://example.com/IoTDevice",
 "last-update": "2024-08-05T03:56:40.105+10:00",
 "cache-validity": 100,
 "extensions": [
 "ietf-mud-tls"
],
 "ietf-mud-tls:is-tls-dtls-profile-supported": "true",
 "is-supported": true,
 "systeminfo": "IoT device name",
 "from-device-policy": {
 "access-lists": {
 "access-list": [
 {
 "name": "mud-7500-profile"
 }
]
 }
 },
 "ietf-access-control-list:acls": {
 "acl": [
 {
 "name": "mud-7500-profile",
 "type": "ipv6-acl-type",
 "aces": {
 "ace": [
 {
 "name": "cl0-frdev",
 "matches": {
 "ipv6": {
 "protocol": 6
 },
 "tcp": {

RFC 9761 MUD (D)TLS Profile for IoT Devices April 2025

Reddy.K, et al. Standards Track Page 19

The following illustrates the example scenarios for processing the above profile:

If the extension type "encrypt_then_mac" (code point 22) in the ClientHello
message is recognized by the firewall, it can identify unexpected TLS usage.
If the extension type "token_binding" (code point 24) in the MUD (D)TLS profile is
not recognized by the firewall, it can ignore the unrecognized extension. Because the
extension type "token_binding" is specified in the profile, an alert will be triggered to the
firewall vendor and the IoT device owner or administrator to notify the firewall is not up-to-
date.
The two-byte values assigned by IANA for the cipher suites TLS_AES_128_GCM_SHA256 and
TLS_AES_256_GCM_SHA384 are represented in decimal format.

 "ietf-mud:direction-initiated": "from-device",
 "destination-port": {
 "operator": "eq",
 "port": 443
 }
 },
 "ietf-acl-tls:client-profile" : {
 "tls-dtls-profiles" : [
 {
 "name" : "profile1",
 "supported-tls-versions" : ["tls13"],
 "cipher-suite" : [4865, 4866],
 "extension-types" : [10,11,13,16,24],
 "supported-groups" : [29]
 }
]
 },
 "actions": {
 "forwarding": "accept"
 }
 }
 }
]
 }
 }
]
 }
 }
}

• [RFC7366]

• [RFC8472]

•

8. Software-Based ACLs and ACLs Within a (D)TLS 1.3 Proxy
While ACL technology is traditionally associated with fixed-length bit matching in hardware
implementations, such as those found in Ternary Content-Addressable Memory (TCAM), the use
of ACLs in software, like with iptables, allows for more flexible matching criteria, including
string matching. In the context of MUD (D)TLS profiles, the ability to match binary data and
strings is a deliberate choice made to leverage the capabilities of software-based ACLs. This

RFC 9761 MUD (D)TLS Profile for IoT Devices April 2025

Reddy.K, et al. Standards Track Page 20

enables more dynamic and context-sensitive access control, which is essential for the intended
application of MUD. The DNS extension added to ACL in the MUD specification also
requires software-based ACLs.

Regarding the use of MUD (D)TLS ACL in a (D)TLS 1.3 proxy, the goal is for the proxy to intercept
the (D)TLS handshake before applying any ACL rules. This implies that MUD (D)TLS ACL
matching would need to occur after decrypting the encrypted TLS handshake messages within
the proxy. The proxy would inspect the handshake fields according to the MUD profile. ACL
matching would be performed in two stages: first, by filtering clear-text TLS handshake message
and second, by filtering after decrypting the TLS handshake messages.

[RFC8520]

9. Security Considerations
Security considerations in need to be taken into consideration. The middlebox
adhere to the invariants discussed in to act as a compliant proxy.

Although it is challenging for malware to mimic the TLS behavior of various IoT device types
and models from different manufacturers, there is still a potential for malicious agents to use
similar (D)TLS profile parameters as legitimate devices to evade detection. This difficulty arises
because IoT devices often have distinct (D)TLS profiles between models and especially between
manufacturers. While malware may find it hard to perfectly replicate the TLS behavior across
such diverse devices, it is not impossible. Malicious agents might manage to use (D)TLS profile
parameters that resemble those of legitimate devices. The feasibility of this depends on the
nature of the profile parameters; for instance, parameters like certificate authorities are complex
to mimic, while others, such as signature algorithms, may be easier to replicate. The difficulty in
mimicking these profiles correlates with the specificity of the profiles and the variability in
parameters used by different devices.

Network security services should also rely on contextual network data (e.g., domain name, IP
address, etc.) to detect false negatives. For example, network security services filter malicious
domain names and destination IP addresses with a bad reputation score. Furthermore, in order
to detect such malicious flows, anomaly detection (deep learning techniques on network data)
can be used to detect malicious agents using the same (D)TLS profile parameters as the
legitimate agent on the IoT device. In anomaly detection, the main idea is to maintain rigorous
learning of "normal" behavior and where an "anomaly" (or an attack) is identified and
categorized based on the knowledge about the normal behavior and a deviation from this
normal behavior. Network security vendors leverage TLS parameters and contextual network
data to identify malware (for example, see).

The efficacy of identifying malware in (D)TLS 1.3 flows will be significantly reduced without
leveraging contextual network data or acting as a proxy, as the encryption in (D)TLS 1.3 obscures
many of the handshake details that could otherwise be used for detection.

[RFC8520] MUST
Section 9.3 of [RFC8446]

[EVE]

RFC 9761 MUD (D)TLS Profile for IoT Devices April 2025

Reddy.K, et al. Standards Track Page 21

https://rfc-editor.org/rfc/rfc8446#section-9.3

9.1. Challenges in Mimicking (D)TLS 1.2 Handshakes for IoT Devices
(D)TLS 1.2 generally does not require a proxy, as all fields in the (D)TLS profile are transmitted in
cleartext during the handshake. While it is technically possible for an attacker to observe and
mimic the handshake, an attacker would need to use a domain name and destination IP address
with a good reputation, obtain certificates from the same CAs used by the IoT devices, and evade
traffic analysis techniques (e.g., , which detects malicious patterns in encrypted traffic
without decryption). This task is particularly challenging because IoT devices often have distinct
(D)TLS profiles that vary between models and manufacturers. Unlike the developers of
legitimate applications, malware authors are under additional constraints, such as avoiding any
noticeable differences on the infected devices and the potential for take-down requests
impacting their server infrastructure (e.g., certificate revocation by a CA upon reporting).

9.2. Considerations for the "iana-tls-profile" Module
This section follows the template defined in .

The "iana-tls-profile" YANG module defines a data model that is designed to be accessed via
YANG-based management protocols, such as NETCONF and RESTCONF .
These protocols have to use a secure transport layer (e.g., SSH , TLS , and
QUIC) and have to use mutual authentication.

The Network Configuration Access Control Model (NACM) provides the means to
restrict access for particular NETCONF or RESTCONF users to a preconfigured subset of all
available NETCONF or RESTCONF protocol operations and content.

There are no particularly sensitive writable data nodes.

There are no particularly sensitive readable data nodes.

This YANG module defines YANG enumerations for a public IANA- maintained registry.

YANG enumerations are not security-sensitive, as they are statically defined in the publicly
accessible YANG module. IANA deprecate and/or obsolete enumerations over time as
needed to address security issues.

There are no particularly sensitive RPC or action operations.

The YANG module defines a set of identities, types, and groupings. These nodes are intended to
be reused by other YANG modules. The module by itself does not expose any data nodes that are
writable, data nodes that contain read-only state, or RPCs. As such, there are no additional
security issues related to the YANG module that need to be considered.

9.3. Considerations for the "ietf-acl-tls" Module
This section follows the template defined in .

[EVE]

Section 3.7.1 of [YANG-GUIDELINES]

[RFC6241] [RFC8040]
[RFC4252] [RFC8446]

[RFC9000]

[RFC8341]

MAY

Section 3.7.1 of [YANG-GUIDELINES]

RFC 9761 MUD (D)TLS Profile for IoT Devices April 2025

Reddy.K, et al. Standards Track Page 22

https://datatracker.ietf.org/doc/html/draft-ietf-netmod-rfc8407bis-23#section-3.7.1
https://datatracker.ietf.org/doc/html/draft-ietf-netmod-rfc8407bis-23#section-3.7.1

The "ietf-acl-tls" YANG module defines a data model that is designed to be accessed via YANG-
based management protocols, such as NETCONF and RESTCONF . These
protocols have to use a secure transport layer (e.g., SSH , TLS , and QUIC

) and have to use mutual authentication.

The Network Configuration Access Control Model (NACM) provides the means to
restrict access for particular NETCONF or RESTCONF users to a preconfigured subset of all
available NETCONF or RESTCONF protocol operations and content.

There are a number of data nodes defined in this YANG module that are writable/creatable/
deletable (i.e., "config true", which is the default). All writable data nodes are likely to be
reasonably sensitive or vulnerable in some network environments. Write operations (e.g., edit-
config) and delete operations to these data nodes without proper protection or authentication
can have a negative effect on network operations. For instance, the addition or removal of
references to trusted anchors, (D)TLS versions, cipher suites, etc., can dramatically alter the
implemented security policy. For this reason, the NACM extension "default-deny-write" has been
set for all data nodes defined in this module.

Some of the readable data nodes defined in this YANG module may be considered sensitive or
vulnerable in some network environments. It is thus important to control read access (e.g., via
get, get-config, or notification) to these data nodes. The YANG module will provide insights into
(D)TLS profiles of the IoT devices, and the privacy considerations discussed in Section 10 need to
be taken into account.

There are no particularly sensitive RPC or action operations.

This YANG module uses groupings from other YANG modules that define nodes that may be
considered sensitive or vulnerable in network environments. Refer to the Security
Considerations for dependent YANG modules for information as to which nodes may be
considered sensitive or vulnerable in network environments.

9.4. Considerations for the "ietf-mud-tls" Module
This section follows the template defined in .

The "ietf-mud-tls" YANG module defines a data model that is designed to be accessed via YANG-
based management protocols, such as NETCONF and RESTCONF . These
protocols have to use a secure transport layer (e.g., SSH , TLS , and QUIC

) and have to use mutual authentication.

The Network Configuration Access Control Model (NACM) provides the means to
restrict access for particular NETCONF or RESTCONF users to a preconfigured subset of all
available NETCONF or RESTCONF protocol operations and content.

There are a number of data nodes defined in this YANG module that are writable/creatable/
deletable (i.e., "config true", which is the default). All writable data nodes are likely to be
reasonably sensitive or vulnerable in some network environments. Write operations (e.g., edit-
config) and delete operations to these data nodes without proper protection or authentication

[RFC6241] [RFC8040]
[RFC4252] [RFC8446]

[RFC9000]

[RFC8341]

Section 3.7.1 of [YANG-GUIDELINES]

[RFC6241] [RFC8040]
[RFC4252] [RFC8446]

[RFC9000]

[RFC8341]

RFC 9761 MUD (D)TLS Profile for IoT Devices April 2025

Reddy.K, et al. Standards Track Page 23

https://datatracker.ietf.org/doc/html/draft-ietf-netmod-rfc8407bis-23#section-3.7.1

can have a negative effect on network operations. For instance, update that the device does not
support (D)TLS profile can dramatically alter the implemented security policy. For this reason,
the NACM extension "default-deny-write" has been set for all data nodes defined in this module.

There are no particularly sensitive RPC or action operations.

This YANG module uses groupings from other YANG modules that define nodes that may be
considered sensitive or vulnerable in network environments. Refer to the Security
Considerations for dependent YANG modules for information as to which nodes may be
considered sensitive or vulnerable in network environments.

10. Privacy Considerations
Privacy considerations discussed in to not reveal the MUD URL to an
attacker need to be taken into consideration. The MUD URL can be stored in a Trusted Execution
Environment (TEE) for secure operation, enhanced data security, and prevention of exposure to
unauthorized software. The MUD URL be encrypted and shared only with the authorized
components in the network (see Sections 1.5 and 1.8 of) so that an on-path attacker
cannot read the MUD URL and identify the IoT device. Otherwise, it provides the attacker with
guidance on what vulnerabilities may be present on the IoT device. Note that while protecting
the MUD URL is valuable as described above, a compromised IoT device may be susceptible to
malware performing vulnerability analysis (and version mapping) of the legitimate software
located in memory or on non-volatile storage (e.g., disk, NVRAM). However, the malware on the
IoT device is intended to be blocked from establishing a (D)TLS connection with the C&C server
to reveal this information because the connection would be blocked by the network security
service supporting this specification.

Full handshake inspection (Section 4.1) requires a (D)TLS proxy device that needs to decrypt
traffic between the IoT device and its server(s). There is a tradeoff between privacy of the data
carried inside (D)TLS (for example, personally identifiable information and protected health
information especially) and efficacy of endpoint security. The use of (D)TLS proxies is

 whenever possible. For example, an enterprise firewall administrator can
configure the middlebox to bypass (D)TLS proxy functionality or payload inspection for
connections destined to specific well-known services. Alternatively, an IoT device could be
configured to reject all sessions that involve proxy servers to specific well-known services. In
addition, mechanisms based on object security can be used by IoT devices to enable end-to-end
security and the middlebox will not have any access to the packet data. For example, Object
Security for Constrained RESTful Environments (OSCORE) is a proposal that protects
Constrained Application Protocol (CoAP) messages by wrapping them in the CBOR Object Signing
and Encryption (COSE) format .

Section 16 of [RFC8520]

MUST
[RFC8520]

NOT
RECOMMENDED

[RFC8613]

[RFC9052]

RFC 9761 MUD (D)TLS Profile for IoT Devices April 2025

Reddy.K, et al. Standards Track Page 24

https://rfc-editor.org/rfc/rfc8520#section-16
https://rfc-editor.org/rfc/rfc8520#section-1.5
https://rfc-editor.org/rfc/rfc8520#section-1.8

URI:
Registrant Contact:
XML:

URI:
Registrant Contact:
XML:

URI:
Registrant Contact:
XML:

Name:
Namespace:
Maintained by IANA:
Prefix:
Reference:

Name:
Namespace:
Maintained by IANA:
Prefix:
Reference:

Name:
Namespace:
Maintained by IANA:
Prefix:

11. IANA Considerations

11.1. (D)TLS Profile YANG Modules
IANA has registered the following URIs in the "ns" subregistry within the "IETF XML Registry"

:

urn:ietf:params:xml:ns:yang:iana-tls-profile
IANA.

N/A; the requested URI is an XML namespace.

urn:ietf:params:xml:ns:yang:ietf-acl-tls
IESG.

N/A; the requested URI is an XML namespace.

urn:ietf:params:xml:ns:yang:ietf-mud-tls
IESG.

N/A; the requested URI is an XML namespace.

IANA has created an IANA-maintained YANG module called "iana-tls-profile" based on the
contents of Section 5.3, which allows for new (D)TLS parameters and (D)TLS versions to be
added to "client-profile".

IANA has registered the following YANG modules in the "YANG Module Names" registry
 of the "YANG Parameters" registry group.

iana-tls-profile
urn:ietf:params:xml:ns:yang:iana-tls-profile

Y
ianatp

RFC 9761

ietf-acl-tls
urn:ietf:params:xml:ns:yang:ietf-acl-tls

N
ietf-acl-tls

RFC 9761

ietf-mud-tls
urn:ietf:params:xml:ns:yang:ietf-mud-tls

N
ietf-mud-tls

[RFC3688]

[RFC6020]

RFC 9761 MUD (D)TLS Profile for IoT Devices April 2025

Reddy.K, et al. Standards Track Page 25

Reference: RFC 9761

"enum":

"value":

"description":

"reference":

"derived type":

"built-in type":

"description":

11.2. Considerations for the iana-tls-profile Module
IANA has created the initial version of the IANA-maintained YANG module called "iana-tls-
profile" based on the contents of Section 5.3, which will allow for new (D)TLS parameters and
(D)TLS versions to be added. IANA is requested to add this note:

tls-version and dtls-version values must not be directly added to the iana-tls-profile YANG
module. Instead, they must be added to the "ACL TLS Version Codes" and "ACL DTLS Version
Codes" registries (respectively), provided the new (D)TLS version has been standardized by
the IETF. It allows a new (D)TLS version to be added to the "iana-tls-profile" YANG module.
(D)TLS parameters must not be directly added to the iana-tls-profile YANG module. They
must instead be added to the "ACL (D)TLS Parameters" registry if the new (D)TLS parameters
can be used by a middlebox to identify a MUD non-compliant (D)TLS behavior. It allows new
(D)TLS parameters to be added to the "iana-tls-profile" YANG module.

When a "tls-version" or "dtls-version" value is added to the "ACL TLS Version Codes" or "ACL
DTLS Version Codes" registry (respectively), a new "enum" statement must be added to the iana-
tls-profile YANG module. The following "enum" statement, and substatements thereof, should be
defined:

Replicates the label from the registry.

Contains the IANA-assigned value corresponding to the "tls-version" or "dtls-
version".

Replicates the description from the registry.

RFC YYYY: <Title of the RFC>, where YYYY is the RFC that added the "tls-version"
or "dtls-version".

When a (D)TLS parameter is added to the "ACL (D)TLS Parameters" registry, a new "type"
statement must be added to the iana-tls-profile YANG module. The following "type" statement,
and substatements thereof, should be defined:

Replicates the parameter name from the registry.

Contains the built-in YANG type.

Replicates the description from the registry.

When the iana-tls-profile YANG module is updated, a new "revision" statement must be added in
front of the existing revision statements.

IANA has added this note to "ACL TLS Version Codes", "ACL DTLS Version Codes", and "ACL
(D)TLS Parameters" registries:

•

•

RFC 9761 MUD (D)TLS Profile for IoT Devices April 2025

Reddy.K, et al. Standards Track Page 26

11.5. ACL (D)TLS Parameters Registry
IANA has created a new registry titled "ACL (D)TLS Parameters".

The values for all the (D)TLS parameters in the registry are defined in the TLS and DTLS IANA
registries (and

) excluding the tls-version and dtls-version parameters.
Further assignments are to be made through Expert Review . Experts must ensure that
the (D)TLS parameter in a new registration is one that has been standardized by the IETF. The
registry is expected to be updated periodically, primarily when a new (D)TLS parameter is
standardized by the IETF. The registry has been populated with the following initial parameters:

When this registry is modified, the YANG module "iana-tls-profile" must be updated as
defined in [RFC9761].

11.3. ACL TLS Version Registry
IANA has created a new registry titled "ACL TLS Version Codes". Codes in this registry are used as
valid values of "tls-version" parameter. Further assignments are to be made through Expert
Review . Experts must ensure that the TLS protocol version in a new registration is
one that has been standardized by the IETF. It is expected that the registry will be updated
infrequently, primarily when a new TLS version is standardized by the IETF.

Value Label Description Reference

1 tls12 TLS Version 1.2

2 tls13 TLS Version 1.3

Table 1

[RFC8126]

[RFC5246]

[RFC8446]

11.4. ACL DTLS Version Registry
IANA has created a new registry titled "ACL DTLS Version Codes". Codes in this registry are used
as valid values of "dtls-version" parameter. Further assignments are to be made through Expert
Review . Experts must ensure that the DTLS protocol version in a new registration is
one that has been standardized by the IETF. It is expected that the registry will be updated
infrequently, primarily when a new DTLS version is standardized by the IETF.

Value Label Description Reference

1 dtls12 DTLS Version 1.2

2 dtls13 DTLS Version 1.3

Table 2

[RFC8126]

[RFC6347]

[RFC9147]

https://www.iana.org/assignments/tls-parameters/ https://www.iana.org/
assignments/tls-extensiontype-values/

[RFC8126]

RFC 9761 MUD (D)TLS Profile for IoT Devices April 2025

Reddy.K, et al. Standards Track Page 27

https://www.iana.org/assignments/tls-parameters/
https://www.iana.org/assignments/tls-extensiontype-values/
https://www.iana.org/assignments/tls-extensiontype-values/

[RFC2119]

[RFC3688]

[RFC4252]

[RFC5246]

12. References

12.1. Normative References

, , ,
, , March 1997,
.

, , , , ,
January 2004, .

 and , ,
, , January 2006,
.

 and ,
, , , August 2008,

.

Parameter Name YANG Type JSON
Type

Description

extension-type uint16 Number Extension type

supported-group uint16 Number Supported group

signature-algorithm uint16 Number Signature algorithm

psk-key-exchange-mode uint8 Number Pre-shared key exchange mode

application-protocol string String Application protocol

cert-compression-
algorithm

uint16 Number Certificate compression
algorithm

cipher-algorithm uint16 Number Cipher suite

tls-version enumeration String TLS version

dtls-version enumeration String DTLS version

Table 3

11.6. MUD Extensions Registry
IANA has created a new MUD Extension Name "ietf-mud-tls" in the "MUD Extensions" IANA
registry .<https://www.iana.org/assignments/mud>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Mealling, M. "The IETF XML Registry" BCP 81 RFC 3688 DOI 10.17487/RFC3688
<https://www.rfc-editor.org/info/rfc3688>

Ylonen, T. C. Lonvick, Ed. "The Secure Shell (SSH) Authentication Protocol"
RFC 4252 DOI 10.17487/RFC4252 <https://www.rfc-editor.org/info/
rfc4252>

Dierks, T. E. Rescorla "The Transport Layer Security (TLS) Protocol Version
1.2" RFC 5246 DOI 10.17487/RFC5246 <https://www.rfc-editor.org/
info/rfc5246>

RFC 9761 MUD (D)TLS Profile for IoT Devices April 2025

Reddy.K, et al. Standards Track Page 28

https://www.iana.org/assignments/mud
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc4252
https://www.rfc-editor.org/info/rfc4252
https://www.rfc-editor.org/info/rfc5246
https://www.rfc-editor.org/info/rfc5246

[RFC6241]

[RFC6347]

[RFC8040]

[RFC8174]

[RFC8341]

[RFC8446]

[RFC8519]

[RFC8520]

[RFC8701]

[RFC8879]

[RFC9000]

[RFC9147]

[RFC9640]

, , , and ,
, , ,

June 2011, .

 and , ,
, , January 2012,
.

, , and , , ,
, January 2017, .

, ,
, , , May 2017,

.

 and , ,
, , , March 2018,

.

, , ,
, August 2018, .

, , , and ,
, , , March

2019, .

, , and ,
, , , March 2019,

.

,
, , , January 2020,

.

 and , , ,
, December 2020, .

 and ,
, , , May 2021,

.

, , and ,
, , , April

2022, .

, , ,
, October 2024, .

Enns, R., Ed. Bjorklund, M., Ed. Schoenwaelder, J., Ed. A. Bierman, Ed.
"Network Configuration Protocol (NETCONF)" RFC 6241 DOI 10.17487/RFC6241

<https://www.rfc-editor.org/info/rfc6241>

Rescorla, E. N. Modadugu "Datagram Transport Layer Security Version 1.2"
RFC 6347 DOI 10.17487/RFC6347 <https://www.rfc-editor.org/info/
rfc6347>

Bierman, A. Bjorklund, M. K. Watsen "RESTCONF Protocol" RFC 8040 DOI
10.17487/RFC8040 <https://www.rfc-editor.org/info/rfc8040>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Bierman, A. M. Bjorklund "Network Configuration Access Control Model"
STD 91 RFC 8341 DOI 10.17487/RFC8341 <https://www.rfc-
editor.org/info/rfc8341>

Rescorla, E. "The Transport Layer Security (TLS) Protocol Version 1.3" RFC 8446
DOI 10.17487/RFC8446 <https://www.rfc-editor.org/info/rfc8446>

Jethanandani, M. Agarwal, S. Huang, L. D. Blair "YANG Data Model for
Network Access Control Lists (ACLs)" RFC 8519 DOI 10.17487/RFC8519

<https://www.rfc-editor.org/info/rfc8519>

Lear, E. Droms, R. D. Romascanu "Manufacturer Usage Description
Specification" RFC 8520 DOI 10.17487/RFC8520 <https://www.rfc-
editor.org/info/rfc8520>

Benjamin, D. "Applying Generate Random Extensions And Sustain Extensibility
(GREASE) to TLS Extensibility" RFC 8701 DOI 10.17487/RFC8701
<https://www.rfc-editor.org/info/rfc8701>

Ghedini, A. V. Vasiliev "TLS Certificate Compression" RFC 8879 DOI
10.17487/RFC8879 <https://www.rfc-editor.org/info/rfc8879>

Iyengar, J., Ed. M. Thomson, Ed. "QUIC: A UDP-Based Multiplexed and
Secure Transport" RFC 9000 DOI 10.17487/RFC9000 <https://
www.rfc-editor.org/info/rfc9000>

Rescorla, E. Tschofenig, H. N. Modadugu "The Datagram Transport Layer
Security (DTLS) Protocol Version 1.3" RFC 9147 DOI 10.17487/RFC9147

<https://www.rfc-editor.org/info/rfc9147>

Watsen, K. "YANG Data Types and Groupings for Cryptography" RFC 9640 DOI
10.17487/RFC9640 <https://www.rfc-editor.org/info/rfc9640>

RFC 9761 MUD (D)TLS Profile for IoT Devices April 2025

Reddy.K, et al. Standards Track Page 29

https://www.rfc-editor.org/info/rfc6241
https://www.rfc-editor.org/info/rfc6347
https://www.rfc-editor.org/info/rfc6347
https://www.rfc-editor.org/info/rfc8040
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8341
https://www.rfc-editor.org/info/rfc8341
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8519
https://www.rfc-editor.org/info/rfc8520
https://www.rfc-editor.org/info/rfc8520
https://www.rfc-editor.org/info/rfc8701
https://www.rfc-editor.org/info/rfc8879
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9147
https://www.rfc-editor.org/info/rfc9640

[X690]

[CLEAR-AS-MUD]

[CRYPTO-VULNERABILITY]

[EVE]

[IoT-PROFILE]

[MALWARE-DOH]

[MALWARE-TLS]

[RFC6020]

[RFC6066]

[RFC7301]

[RFC7366]

,

, , 2021,
.

12.2. Informative References

, , , , and
,

, , ,
April 2018, .

, ,
January 2020,

.

, , ,
.

, , and ,
, ,

, 3 March 2025,
.

,
, , July 2019,

.

 and ,
,

,
, October 2019,

.

,
, , , October

2010, .

,
, , , January 2011,

.

, , , and ,
, ,

, July 2014, .

,
, , ,

September 2014, .

ITU-T "Information technology - ASN.1 encoding Rules: Specification of Basic
Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished
Encoding Rules (DER)" ITU-T Recommendation X.690 <https://www.itu.int/
rec/T-REC-X.690-202102-I/en>

Hamza, A. Ranathunga, D. Gharakheili, H. H. Roughan, M. V.
Sivaraman "Clear as MUD: Generating, Validating and Applying IoT Behaviorial
Profiles (Technical Report)" arXiv:1804.04358 DOI 10.48550/arXiv.1804.04358

<https://arxiv.org/pdf/1804.04358.pdf>

Perez, B. "Exploiting the Windows CryptoAPI Vulnerability"
<https://securityboulevard.com/2020/01/exploiting-the-windows-

cryptoapi-vulnerability/>

Cisco "Encrypted Visibility Engine" Cisco Secure Firewall documentation
<https://secure.cisco.com/secure-firewall/docs/encrypted-visibility-engine>

Tschofenig, H. Fossati, T. M. Richardson "TLS/DTLS 1.3 Profiles for the
Internet of Things" Work in Progress Internet-Draft, draft-ietf-uta-tls13-iot-
profile-13 <https://datatracker.ietf.org/doc/html/draft-ietf-uta-
tls13-iot-profile-13>

Cimpanu, C. "First-ever malware strain spotted abusing new DoH (DNS
over HTTPS) protocol" ZDNET <https://www.zdnet.com/article/first-
ever-malware-strain-spotted-abusing-new-doh-dns-over-https-protocol/>

Anderson, B. D. McGrew "TLS Beyond the Browser: Combining End Host
and Network Data to Understand Application Behavior" IMC '19: Proceedings of
the Internet Measurement Conference, pp. 379-392 DOI
10.1145/3355369.3355601 <https://dl.acm.org/citation.cfm?
id=3355601>

Bjorklund, M., Ed. "YANG - A Data Modeling Language for the Network
Configuration Protocol (NETCONF)" RFC 6020 DOI 10.17487/RFC6020

<https://www.rfc-editor.org/info/rfc6020>

Eastlake 3rd, D. "Transport Layer Security (TLS) Extensions: Extension
Definitions" RFC 6066 DOI 10.17487/RFC6066 <https://www.rfc-
editor.org/info/rfc6066>

Friedl, S. Popov, A. Langley, A. E. Stephan "Transport Layer Security (TLS)
Application-Layer Protocol Negotiation Extension" RFC 7301 DOI 10.17487/
RFC7301 <https://www.rfc-editor.org/info/rfc7301>

Gutmann, P. "Encrypt-then-MAC for Transport Layer Security (TLS) and
Datagram Transport Layer Security (DTLS)" RFC 7366 DOI 10.17487/RFC7366

<https://www.rfc-editor.org/info/rfc7366>

RFC 9761 MUD (D)TLS Profile for IoT Devices April 2025

Reddy.K, et al. Standards Track Page 30

https://www.itu.int/rec/T-REC-X.690-202102-I/en
https://www.itu.int/rec/T-REC-X.690-202102-I/en
https://arxiv.org/pdf/1804.04358.pdf
https://securityboulevard.com/2020/01/exploiting-the-windows-cryptoapi-vulnerability/
https://securityboulevard.com/2020/01/exploiting-the-windows-cryptoapi-vulnerability/
https://secure.cisco.com/secure-firewall/docs/encrypted-visibility-engine
https://datatracker.ietf.org/doc/html/draft-ietf-uta-tls13-iot-profile-13
https://datatracker.ietf.org/doc/html/draft-ietf-uta-tls13-iot-profile-13
https://www.zdnet.com/article/first-ever-malware-strain-spotted-abusing-new-doh-dns-over-https-protocol/
https://www.zdnet.com/article/first-ever-malware-strain-spotted-abusing-new-doh-dns-over-https-protocol/
https://dl.acm.org/citation.cfm?id=3355601
https://dl.acm.org/citation.cfm?id=3355601
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc6066
https://www.rfc-editor.org/info/rfc6066
https://www.rfc-editor.org/info/rfc7301
https://www.rfc-editor.org/info/rfc7366

[RFC7858]

[RFC7925]

[RFC7951]

[RFC8126]

[RFC8340]

[RFC8447]

[RFC8472]

[RFC8484]

[RFC8576]

[RFC8613]

[RFC9052]

[RFC9325]

[RFC9462]

, , , , , and ,
, ,

, May 2016, .

 and ,
, ,

, July 2016, .

, , ,
, August 2016, .

, , and ,
, , , , June

2017, .

 and , , , ,
, March 2018, .

 and , , ,
, August 2018, .

, , and ,
, ,

, October 2018, .

 and , , ,
, October 2018, .

, , and ,
, , , April 2019,

.

, , , and ,
, ,

, July 2019, .

,
, , , , August 2022,

.

, , and ,
,

, , , November 2022,
.

, , , , and ,
, , , November 2023,

.

Hu, Z. Zhu, L. Heidemann, J. Mankin, A. Wessels, D. P. Hoffman
"Specification for DNS over Transport Layer Security (TLS)" RFC 7858 DOI
10.17487/RFC7858 <https://www.rfc-editor.org/info/rfc7858>

Tschofenig, H., Ed. T. Fossati "Transport Layer Security (TLS) / Datagram
Transport Layer Security (DTLS) Profiles for the Internet of Things" RFC 7925
DOI 10.17487/RFC7925 <https://www.rfc-editor.org/info/rfc7925>

Lhotka, L. "JSON Encoding of Data Modeled with YANG" RFC 7951 DOI
10.17487/RFC7951 <https://www.rfc-editor.org/info/rfc7951>

Cotton, M. Leiba, B. T. Narten "Guidelines for Writing an IANA
Considerations Section in RFCs" BCP 26 RFC 8126 DOI 10.17487/RFC8126

<https://www.rfc-editor.org/info/rfc8126>

Bjorklund, M. L. Berger, Ed. "YANG Tree Diagrams" BCP 215 RFC 8340 DOI
10.17487/RFC8340 <https://www.rfc-editor.org/info/rfc8340>

Salowey, J. S. Turner "IANA Registry Updates for TLS and DTLS" RFC 8447
DOI 10.17487/RFC8447 <https://www.rfc-editor.org/info/rfc8447>

Popov, A., Ed. Nystroem, M. D. Balfanz "Transport Layer Security (TLS)
Extension for Token Binding Protocol Negotiation" RFC 8472 DOI 10.17487/
RFC8472 <https://www.rfc-editor.org/info/rfc8472>

Hoffman, P. P. McManus "DNS Queries over HTTPS (DoH)" RFC 8484 DOI
10.17487/RFC8484 <https://www.rfc-editor.org/info/rfc8484>

Garcia-Morchon, O. Kumar, S. M. Sethi "Internet of Things (IoT) Security:
State of the Art and Challenges" RFC 8576 DOI 10.17487/RFC8576
<https://www.rfc-editor.org/info/rfc8576>

Selander, G. Mattsson, J. Palombini, F. L. Seitz "Object Security for
Constrained RESTful Environments (OSCORE)" RFC 8613 DOI 10.17487/
RFC8613 <https://www.rfc-editor.org/info/rfc8613>

Schaad, J. "CBOR Object Signing and Encryption (COSE): Structures and
Process" STD 96 RFC 9052 DOI 10.17487/RFC9052 <https://
www.rfc-editor.org/info/rfc9052>

Sheffer, Y. Saint-Andre, P. T. Fossati "Recommendations for Secure Use of
Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)"
BCP 195 RFC 9325 DOI 10.17487/RFC9325 <https://www.rfc-
editor.org/info/rfc9325>

Pauly, T. Kinnear, E. Wood, C. A. McManus, P. T. Jensen "Discovery of
Designated Resolvers" RFC 9462 DOI 10.17487/RFC9462
<https://www.rfc-editor.org/info/rfc9462>

RFC 9761 MUD (D)TLS Profile for IoT Devices April 2025

Reddy.K, et al. Standards Track Page 31

https://www.rfc-editor.org/info/rfc7858
https://www.rfc-editor.org/info/rfc7925
https://www.rfc-editor.org/info/rfc7951
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8340
https://www.rfc-editor.org/info/rfc8447
https://www.rfc-editor.org/info/rfc8472
https://www.rfc-editor.org/info/rfc8484
https://www.rfc-editor.org/info/rfc8576
https://www.rfc-editor.org/info/rfc8613
https://www.rfc-editor.org/info/rfc9052
https://www.rfc-editor.org/info/rfc9052
https://www.rfc-editor.org/info/rfc9325
https://www.rfc-editor.org/info/rfc9325
https://www.rfc-editor.org/info/rfc9462

[RFC9463]

[SLOWLORIS]

[TLS-ESNI]

[X501]

[YANG-GUIDELINES]

, , , , and ,

, , , November 2023,
.

, , December 2024,
.

, , , and , ,
, , 20 March 2025,

.

, , October 2019,
.

, , and ,
, ,

, 15 April 2025,
.

Boucadair, M., Ed. Reddy.K, T., Ed. Wing, D. Cook, N. T. Jensen "DHCP and
Router Advertisement Options for the Discovery of Network-designated
Resolvers (DNR)" RFC 9463 DOI 10.17487/RFC9463 <https://
www.rfc-editor.org/info/rfc9463>

Wikipedia "Slowloris (cyber attack)" <https://en.wikipedia.org/
w/index.php?title=Slowloris_(cyber_attack)&oldid=1263305193>

Rescorla, E. Oku, K. Sullivan, N. C. A. Wood "TLS Encrypted Client Hello"
Work in Progress Internet-Draft, draft-ietf-tls-esni-24 <https://
datatracker.ietf.org/doc/html/draft-ietf-tls-esni-24>

"Information Technology - Open Systems Interconnection - The Directory:
Models" ITU-T Recommendation X.501 <https://www.itu.int/rec/T-
REC-X.501-201910-I/en>

Bierman, A. Boucadair, M. Q. Wu "Guidelines for Authors and
Reviewers of Documents Containing YANG Data Models" Work in Progress
Internet-Draft, draft-ietf-netmod-rfc8407bis-23 <https://
datatracker.ietf.org/doc/html/draft-ietf-netmod-rfc8407bis-23>

Acknowledgments
Thanks to , , , , ,

, , , , , ,
, , , , and for the discussion and

comments.

Thanks to for YANGDOCTOR review. Thanks to for SECDIR review.
Thanks to for OPSDIR review. Thanks to for DNSDIR review.

Thanks to , , , , ,
, and for the IESG review.

Flemming Andreasen Shashank Jain Michael Richardson Piyush Joshi Eliot Lear
Harsha Joshi Qin Wu Mohamed Boucadair Ben Schwartz Eric Rescorla Panwei William Nick
Lamb Tom Petch Paul Wouters Thomas Fossati Nick Harper

Xufeng Liu Linda Dunbar
Qin Wu R. Gieben

Roman Danyliw Orie Steele Éric Vyncke Mahesh Jethanandani Murray Kucherawy
Zaheduzzaman Sarker Deb Cooley

Authors' Addresses
Tirumaleswar Reddy.K
Nokia
India

kondtir@gmail.comEmail:

Dan Wing
Citrix Systems, Inc.
4988 Great America Pkwy

, Santa Clara CA 95054
United States of America

danwing@gmail.comEmail:

RFC 9761 MUD (D)TLS Profile for IoT Devices April 2025

Reddy.K, et al. Standards Track Page 32

https://www.rfc-editor.org/info/rfc9463
https://www.rfc-editor.org/info/rfc9463
https://en.wikipedia.org/w/index.php?title=Slowloris_(cyber_attack)&oldid=1263305193
https://en.wikipedia.org/w/index.php?title=Slowloris_(cyber_attack)&oldid=1263305193
https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-24
https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-24
https://www.itu.int/rec/T-REC-X.501-201910-I/en
https://www.itu.int/rec/T-REC-X.501-201910-I/en
https://datatracker.ietf.org/doc/html/draft-ietf-netmod-rfc8407bis-23
https://datatracker.ietf.org/doc/html/draft-ietf-netmod-rfc8407bis-23
mailto:kondtir@gmail.com
mailto:danwing@gmail.com

Blake Anderson
Cisco Systems, Inc.
170 West Tasman Dr

, San Jose CA 95134
United States of America

blake.anderson@cisco.comEmail:

RFC 9761 MUD (D)TLS Profile for IoT Devices April 2025

Reddy.K, et al. Standards Track Page 33

mailto:blake.anderson@cisco.com

	RFC 9761
	Manufacturer Usage Description (MUD) for TLS and DTLS Profiles for Internet of Things (IoT) Devices
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Overview of MUD (D)TLS Profiles for IoT devices
	4. (D)TLS 1.3 Handshake
	4.1. Full (D)TLS 1.3 Handshake Inspection
	4.2. Encrypted DNS

	5. (D)TLS Profile of an IoT device
	5.1. Tree Structure of the (D)TLS Profile Extension to the ACL YANG Module
	5.2. The (D)TLS Profile Extension to the ACL YANG Module
	5.3. IANA (D)TLS Profile YANG Module
	5.4. MUD (D)TLS Profile Extension

	6. Processing of the MUD (D)TLS Profile
	7. MUD File Example
	8. Software-Based ACLs and ACLs Within a (D)TLS 1.3 Proxy
	9. Security Considerations
	9.1. Challenges in Mimicking (D)TLS 1.2 Handshakes for IoT Devices
	9.2. Considerations for the "iana-tls-profile" Module
	9.3. Considerations for the "ietf-acl-tls" Module
	9.4. Considerations for the "ietf-mud-tls" Module

	10. Privacy Considerations
	11. IANA Considerations
	11.1. (D)TLS Profile YANG Modules
	11.2. Considerations for the iana-tls-profile Module
	11.3. ACL TLS Version Registry
	11.4. ACL DTLS Version Registry
	11.5. ACL (D)TLS Parameters Registry
	11.6. MUD Extensions Registry

	12. References
	12.1. Normative References
	12.2. Informative References

	Acknowledgments
	Authors' Addresses

 Manufacturer Usage Description (MUD) for TLS and DTLS Profiles for Internet of Things (IoT) Devices

 Nokia

 India

 kondtir@gmail.com

 Citrix Systems, Inc.

 4988 Great America Pkwy
 Santa Clara
 CA
 95054
 United States of America

 danwing@gmail.com

 Cisco Systems, Inc.

 170 West Tasman Dr
 San Jose
 CA
 95134
 United States of America

 blake.anderson@cisco.com

 OPS
 opsawg
 Network Security Access Control Lists (ACLs)
 Firewall Policies
 Certificate Validation
 Unauthorized Software Detection
 Malware Detection

 This memo extends the Manufacturer Usage Description (MUD)
 specification to allow manufacturers to define TLS and DTLS profile
 parameters. This allows a network security service to identify
 unexpected (D)TLS usage, which can indicate the presence of unauthorized
 software, malware, or security policy-violating traffic on an
 endpoint.

 Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further
 information on Internet Standards is available in Section 2 of
 RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2025 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Revised BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Revised BSD License.

 Table of Contents

 . Introduction

 . Terminology

 . Overview of MUD (D)TLS Profiles for IoT devices

 . (D)TLS 1.3 Handshake

 . Full (D)TLS 1.3 Handshake Inspection

 . Encrypted DNS

 . (D)TLS Profile of an IoT device

 . Tree Structure of the (D)TLS Profile Extension to the ACL YANG Module

 . The (D)TLS Profile Extension to the ACL YANG Module

 . IANA (D)TLS Profile YANG Module

 . MUD (D)TLS Profile Extension

 . Processing of the MUD (D)TLS Profile

 . MUD File Example

 . Software-Based ACLs and ACLs Within a (D)TLS 1.3 Proxy

 . Security Considerations

 . Challenges in Mimicking (D)TLS 1.2 Handshakes for IoT Devices

 . Considerations for the "iana-tls-profile" Module

 . Considerations for the "ietf-acl-tls" Module

 . Considerations for the "ietf-mud-tls" Module

 . Privacy Considerations

 . IANA Considerations

 . (D)TLS Profile YANG Modules

 . Considerations for the iana-tls-profile Module

 . ACL TLS Version Registry

 . ACL DTLS Version Registry

 . ACL (D)TLS Parameters Registry

 . MUD Extensions Registry

 . References

 . Normative References

 . Informative References

 Acknowledgments

 Authors' Addresses

 Introduction
 Encryption is necessary to enhance the privacy of end users using Internet of Things (IoT)
 devices. TLS and DTLS are the dominant protocols (counting all (D)TLS
 versions) that provide encryption for IoT device traffic. Unfortunately, in
 conjunction with IoT applications' rise of encryption, malware authors
 are also using encryption that thwarts network-based analysis, such as
 deep packet inspection (DPI). Thus, other mechanisms are needed to help
 detect malware running on an IoT device.
 Malware often reuses certain libraries, and there are notable
 differences in how malware uses encryption compared to software that is not malware.
 Several common patterns in the use of (D)TLS by malware include:

 Use of older and weaker cryptographic parameters.

 TLS server name indication (SNI) extension and server certificates are composed of
 subjects with characteristics of a domain generation algorithm (DGA)
 (e.g., "www.33mhwt2j.net").

 Higher use of self-signed certificates compared with typical
 legitimate software using certificates from a certificate authority (CA) trusted by the
 device.

 Discrepancies in the SNI TLS extension and the DNS names in the
 SubjectAltName (SAN) X.509 extension in the server Certificate
 message.

 Discrepancies in the key exchange algorithm and the client public
 key length in comparison with legitimate flows. As a reminder, the
 Client Key Exchange message has been removed from TLS 1.3.

 Lower diversity in extensions advertised by TLS clients compared to
 legitimate clients.

 Using privacy enhancing technologies like Tor, Psiphon, Ultrasurf
 (see), and evasion techniques
 such as ClientHello randomization.

 Using an alternative DNS server (via encrypted transport) to
 avoid detection by malware DNS filtering services . Specifically, malware may not use the
 Do53 or encrypted DNS server provided by the local network (DHCP,
 Discovery of Network-designated Resolvers (DNR) , or Discovery of Designated Resolvers (DDR)).

 If (D)TLS profile parameters are defined, the following functions that have a positive impact on the local network security are possible:

 Permit intended DTLS or TLS use, and block malicious DTLS or
 TLS use.

This is superior to the Access Control Lists
 (ACLs) of Layers 3 and 4 in "Manufacturer Usage Description Specification" , which are not suitable for broad
 communication patterns. The goal of this document is to enhance and
 complement the existing MUD specifications rather than undermine
 them.

 Ensure TLS certificates are valid. Several TLS deployments have
 been vulnerable to active Man-In-The-Middle (MITM) attacks because
 of the lack of certificate validation or vulnerability in the
 certificate validation function (see). By observing (D)TLS profile
 parameters, a network element can detect when the TLS SNI mismatches
 the SubjectAltName and when the server's certificate is invalid. In
 (D)TLS 1.2 , the ClientHello, ServerHello, and
 Certificate messages are all sent in cleartext. This check is not
 possible with (D)TLS 1.3, which encrypts the Certificate message and
 therefore hides the server identity from any intermediary. In (D)TLS
 1.3, the server certificate validation functions should be executed
 within an on-path (D)TLS proxy if such a proxy exists.

 Support new communication patterns. An IoT device can learn a new
 capability, and the new capability can change the way the IoT device
 communicates with other devices located in the local network and the
 Internet. There would be an inaccurate policy if an IoT device
 rapidly changes the IP addresses and domain names it communicates
 with while the MUD ACLs were slower to update (see). In such a case, observable (D)TLS
 profile parameters can be used to permit intended use and block
 malicious behavior from the IoT device.

 The YANG module specified in of this
 document is an extension of "YANG Data Model for Network Access Control
 Lists (ACLs)" to enhance MUD to model observable (D)TLS profile parameters.
 Using these (D)TLS profile parameters, an active MUD-enforcing network
 security service (e.g., firewall) can identify MUD non-compliant (D)TLS
 behavior indicating outdated cryptography or malware. This detection can
 prevent malware downloads, block access to malicious domains, enforce
 use of strong ciphers, stop data exfiltration, etc. In addition,
 organizations may have policies around acceptable ciphers and
 certificates for the websites the IoT devices connect to. Examples
 include no use of old and less secure versions of TLS, no use of
 self-signed certificates, deny-list or accept-list of Certificate
 Authorities, valid certificate expiration time, etc. These policies can
 be enforced by observing the (D)TLS profile parameters. Network security
 services can use the IoT device's (D)TLS profile parameters to identify
 legitimate flows by observing (D)TLS sessions, and can make inferences
 to permit legitimate flows and block malicious or insecure flows.
 Additionally, it supports network communications adherence to security
 policies by ensuring that TLS certificates are valid and deprecated
 cipher suites are avoided. The proposed technique is also suitable in
 deployments where decryption techniques are not ideal due to privacy
 concerns, non-cooperating endpoints, and expense.

 Terminology

 The key words " MUST", " MUST NOT", " REQUIRED", " SHALL", " SHALL NOT", " SHOULD", " SHOULD NOT", " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are to be interpreted as
 described in BCP 14
 when, and only when, they appear in all capitals, as shown here.

 (D)TLS:
 Used for statements that apply to both
	 Transport Layer Security
	 and Datagram Transport Layer Security . Specific terms "TLS" and "DTLS" are used for any
	 statement that applies to either protocol alone.
 DoH/DoT:
 Refers to DNS-over-HTTPS and/or DNS-over-TLS .
 Middlebox:
 A middlebox that interacts with TLS traffic
	 can either act as a TLS proxy, intercepting and decrypting the
	 traffic for inspection, or inspect the traffic between TLS peers
	 without terminating the TLS session.
 Endpoint Security Agent:
 An Endpoint Security Agent is a
	 software installed on endpoint devices that protects them from
	 security threats. It provides features such as malware protection,
	 firewall, and intrusion prevention to ensure the device's security
	 and integrity.
 Network Security Service:
 A Network Security Service
	 refers to a set of mechanisms designed to protect network
	 communications and resources from attacks.

 Overview of MUD (D)TLS Profiles for IoT devices
 In Enterprise networks, protection and detection are typically done
 both on end hosts and in the network. Endpoint security agents have deep
 visibility on the devices where they are installed, whereas the network
 has broader visibility. Installing endpoint security agents may not be a
 viable option on IoT devices, and network security service is an
 efficient means to protect such IoT devices. If the IoT device supports
 a MUD (D)TLS profile, the (D)TLS profile parameters of the IoT device
 can be used by a middlebox to detect and block malware communication,
 while at the same time preserving the privacy of legitimate uses of
 encryption. In addition, it enforces organizational security policies,
 ensuring that devices comply. By monitoring (D)TLS parameters, network
 administrators can identify and mitigate the use of outdated TLS
 versions, cryptographic algorithms, and non-compliant certificates. The
 middlebox need not proxy (D)TLS, but can passively observe the parameters
 of (D)TLS handshakes from IoT devices and gain visibility into TLS 1.2
 parameters and partial visibility into TLS 1.3 parameters.
 Malicious agents can try to use the (D)TLS profile parameters of
 legitimate agents to evade detection, but it becomes a challenge to
 mimic the behavior of various IoT device types and IoT device models
 from several manufacturers. In other words, malware developers will have
 to develop malicious agents per IoT device type, manufacturer and model,
 infect the device with the tailored malware agent, and will have keep up
 with updates to the device's (D)TLS profile parameters over time.
 Furthermore, the malware's command and control server certificates need
 to be signed by the same certifying authorities trusted by the IoT
 devices. Typically, IoT devices have an infrastructure that supports a
 rapid deployment of updates, and malware agents will have a
 near-impossible task of similarly deploying updates and continuing to
 mimic the TLS behavior of the IoT device it has infected.
 However, if the IoT device has reached end-of-life (EOL) and the IoT
manufacturer will not issue a firmware or software update to the IoT device or
will not update the MUD file, the "is-supported" attribute defined in can be used by the MUD manager to indicate that the IoT
manufacturer no longer supports the device. The EOL of a device, where the IoT
manufacturer no longer supports it, does not necessarily mean the device is
defective. Instead, it signifies that the device is no longer receiving
updates, support, or security patches, which necessitates replacement and
upgrading to next-generation devices to ensure continued functionality,
security, and compatibility with modern networks. The network security service
will have to rely on other techniques discussed in to identify malicious connections until the device is
replaced.
 Compromised IoT devices are typically used for launching DDoS
attacks (). For
example, DDoS attacks like Slowloris and Transport Layer Security (TLS) re-negotiation can be
blocked if the victim's server certificate is not be signed by the same
certifying authorities trusted by the IoT device.

 (D)TLS 1.3 Handshake
 In (D)TLS 1.3, full (D)TLS handshake inspection is not possible since
 all (D)TLS handshake messages excluding the ClientHello message are
 encrypted. (D)TLS 1.3 has introduced new extensions in the handshake
 record layers called Encrypted Extensions. When using these extensions,
 handshake messages will be encrypted and network security services (such
 as a firewall) are incapable of deciphering the handshake, and thus
 cannot view the server certificate. However, the ClientHello and
 ServerHello still have some fields visible, such as the list of
 supported versions, named groups, cipher suites, signature algorithms,
 extensions in ClientHello, and the chosen cipher in the ServerHello. For
 instance, if the malware uses evasion techniques like ClientHello
 randomization, the observable list of cipher suites and extensions
 offered by the malware agent in the ClientHello message will not match
 the list of cipher suites and extensions offered by the legitimate
 client in the ClientHello message, and the middlebox can block malicious
 flows without acting as a (D)TLS 1.3 proxy.

 Full (D)TLS 1.3 Handshake Inspection
 To obtain more visibility into negotiated TLS 1.3 parameters, a
 middlebox can act as a (D)TLS 1.3 proxy. A middlebox can act as a
 (D)TLS proxy for the IoT devices owned and managed by the IT team in
 the Enterprise network and the (D)TLS proxy must meet the security and
 privacy requirements of the organization. In other words, the scope of
 a middlebox acting as a (D)TLS proxy is restricted to the Enterprise network
 owning and managing the IoT devices. The middlebox would have to
 follow the behavior detailed in to act as a compliant (D)TLS 1.3 proxy.
 To further increase privacy, the Encrypted Client Hello (ECH) extension
 prevents passive observation
 of the TLS Server Name Indication extension and other potentially
 sensitive fields, such as the Application-Layer Protocol Negotiation (ALPN) . To
 effectively provide that privacy protection, the ECH extension needs to be
 used in conjunction with DNS encryption (e.g., DoH). A middlebox
 (e.g., firewall) passively inspecting the ECH extension cannot observe the
 encrypted SNI nor observe the encrypted DNS traffic. The middlebox
 acting as a (D)TLS 1.3 proxy that does not support the ECH extension will
 act as if it is connecting to the public name and follows the behavior
 discussed in
 to securely signal the client to disable ECH.

 Encrypted DNS
 A common usage pattern for certain types of IoT devices (e.g.,
 light bulb) is for it to "call home" to a service that resides on the
 public Internet, where that service is referenced through a domain
 name (A or AAAA record). As discussed in "Manufacturer Usage
 Description Specification" ,
 these devices tend to require access to very few sites. Thus, all
 other access should be considered suspect. This technique complements
 MUD policy enforcement at the TLS level by ensuring that DNS queries
 are monitored and filtered, thereby enhancing overall security. If an
 IoT device is pre-configured to use a DNS resolver not signaled by the
 network, the MUD policy enforcement point is moved to that resolver,
 which cannot enforce the MUD policy based on domain names (). If the DNS query
 is not accessible for inspection, it becomes quite difficult for the
 infrastructure to detect any issues. Therefore, the use of a DNS
 resolver that is not signaled by the network is generally incompatible
 with MUD. A network-designated DoH/DoT server is necessary to allow
 MUD policy enforcement on the local network, for example, using the
 techniques specified in DNR
 and DDR .

 (D)TLS Profile of an IoT device
 This document specifies a YANG module that represents the (D)TLS
 profile. This YANG module provides a means to characterize the (D)TLS
 traffic profile of a device. Network security services can use these
 profiles to permit conformant traffic or to deny traffic from devices
 that deviates from it. This module uses the cryptographic types defined
 in . See for (D)TLS 1.2 and for DTLS 1.3
 recommendations related to IoT devices, and for additional (D)TLS 1.2 recommendations.
 A companion YANG module is defined to include a collection of (D)TLS
 parameters and (D)TLS versions maintained by IANA: "iana-tls-profile"
 ().
 The (D)TLS parameters in each (D)TLS profile include the
 following:

 Profile name

 (D)TLS versions supported by the IoT device.

 List of supported cipher suites (). For (D)TLS 1.2, recommends Authenticated Encryption with Associated Data (AEAD) ciphers for IoT
 devices.

 List of supported extension types.

 List of trust anchor certificates used by the IoT device. If the
 server certificate is signed by one of the trust anchors, the
 middlebox continues with the connection as normal. Otherwise, the
 middlebox will react as if the server certificate validation has
 failed and takes appropriate action (e.g, blocks the (D)TLS session).
 An IoT device can use a private trust anchor to validate a server's
 certificate (e.g., the private trust anchor can be preloaded at
 manufacturing time on the IoT device and the IoT device fetches the
 firmware image from the firmware server whose certificate is signed
 by the private CA). This empowers the middlebox to reject TLS
 sessions to servers that the IoT device does not trust.

 List of pre-shared key exchange modes.

 List of named groups (DHE or ECDHE) supported by the client.

 List of signature algorithms the client can validate in X.509
 server certificates.

 List of signature algorithms the client is willing to accept for
 the CertificateVerify message (). For example, a TLS client
 implementation can support different sets of algorithms for
 certificates, and it can signal the capabilities in the
 "signature_algorithms_cert" and "signature_algorithms"
 extensions.

 List of supported application protocols (e.g., h3, h2, http/1.1
 etc.).

 List of certificate compression algorithms (defined in).

 List of the distinguished names of
 acceptable certificate authorities, represented in DER-encoded
 format (defined in).

 GREASE defines a mechanism for TLS
 peers to send random values on TLS parameters to ensure future
 extensibility of TLS extensions. Similar random values might be extended
 to other TLS parameters. Thus, the (D)TLS profile parameters defined in
 the YANG module by this document MUST NOT include the GREASE values for
 extension types, named groups, signature algorithms, (D)TLS versions,
 pre-shared key exchange modes, cipher suites, and any other TLS
 parameters defined in future RFCs.
 The (D)TLS profile does not include parameters like compression
 methods for data compression. recommends
 disabling TLS-level compression to prevent compression-related attacks.
 In TLS 1.3, only the "null" compression method is allowed ().

 Tree Structure of the (D)TLS Profile Extension to the ACL YANG Module
 This document augments the "ietf-acl" ACL YANG module defined in
 for signaling the IoT device (D)TLS
 profile. This document defines the YANG module "ietf-acl-tls". The
 meaning of the symbols in the YANG tree diagram are defined in and it has the following tree structure:

module: ietf-acl-tls
 augment /acl:acls/acl:acl/acl:aces/acl:ace/acl:matches:
 +--rw client-profiles {match-on-tls-dtls}?
 +--rw tls-dtls-profile* [name]
 +--rw name string
 +--rw supported-tls-version* ianatp:tls-version
 +--rw supported-dtls-version* ianatp:dtls-version
 +--rw cipher-suite* ianatp:cipher-algorithm
 +--rw extension-type*
 | ianatp:extension-type
 +--rw accept-list-ta-cert*
 | ct:trust-anchor-cert-cms
 +--rw psk-key-exchange-mode*
 | ianatp:psk-key-exchange-mode
 | {tls13 or dtls13}?
 +--rw supported-groups*
 | ianatp:supported-group
 +--rw signature-algorithm-cert*
 | ianatp:signature-algorithm
 | {tls13 or dtls13}?
 +--rw signature-algorithm*
 | ianatp:signature-algorithm
 +--rw application-protocol*
 | ianatp:application-protocol
 +--rw cert-compression-algorithm*
 | ianatp:cert-compression-algorithm
 | {tls13 or dtls13}?
 +--rw certificate-authorities*
 certificate-authority
 {tls13 or dtls13}?

 The (D)TLS Profile Extension to the ACL YANG Module

module ietf-acl-tls {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-acl-tls";
 prefix acl-tls;

 import iana-tls-profile {
 prefix ianatp;
 reference
 "RFC 9761: Manufacturer Usage Description (MUD) for TLS and
 DTLS Profiles for Internet of Things (IoT) Devices";
 }
 import ietf-crypto-types {
 prefix ct;
 reference
 "RFC 9640: YANG Data Types and Groupings for Cryptography";
 }
 import ietf-access-control-list {
 prefix acl;
 reference
 "RFC 8519: YANG Data Model for Network Access
 Control Lists (ACLs)";
 }

 organization
 "IETF OPSAWG (Operations and Management Area Working Group)";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/opsawg/>
 WG List: opsawg@ietf.org

 Author: Tirumaleswar Reddy.K
 kondtir@gmail.com

 Author: Dan Wing
 danwing@gmail.com

 Author: Blake Anderson
 blake.anderson@cisco.com

 ";
 description
 "This YANG module defines a component that augments the
 IETF description of an access list to allow (D)TLS profiles
 as matching criteria.

 Copyright (c) 2025 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Revised BSD License
 set forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC 9761; see
 the RFC itself for full legal notices.";

 revision 2025-04-18 {
 description
 "Initial revision.";
 reference
 "RFC 9761: Manufacturer Usage Description (MUD) for TLS and
 DTLS Profiles for Internet of Things (IoT) Devices";
 }

 feature tls12 {
 description
 "TLS Protocol Version 1.2 is supported.";
 reference
 "RFC 5246: The Transport Layer Security (TLS) Protocol
 Version 1.2";
 }

 feature tls13 {
 description
 "TLS Protocol Version 1.3 is supported.";
 reference
 "RFC 8446: The Transport Layer Security (TLS) Protocol
 Version 1.3";
 }

 feature dtls12 {
 description
 "DTLS Protocol Version 1.2 is supported.";
 reference
 "RFC 6347: Datagram Transport Layer Security
 Version 1.2";
 }

 feature dtls13 {
 description
 "DTLS Protocol Version 1.3 is supported.";
 reference
 "RFC 9147: Datagram Transport Layer Security 1.3";
 }

 feature match-on-tls-dtls {
 description
 "The networking device can support matching on
 (D)TLS parameters.";
 }

 typedef spki-pin-set {
 type binary;
 description
 "Subject Public Key Info pin set as discussed in
 Section 2.4 of RFC 7469.";
 }

 typedef certificate-authority {
 type string;
 description
 "Distinguished Name of Certificate authority as discussed
 in Section 4.2.4 of RFC 8446.";
 }

 augment "/acl:acls/acl:acl/acl:aces/acl:ace/acl:matches" {
 if-feature "match-on-tls-dtls";
 description
 "(D)TLS specific matches.";
 container client-profiles {
 description
 "A grouping for (D)TLS profiles.";
 list tls-dtls-profile {
 key "name";
 description
 "A list of (D)TLS version profiles supported by
 the client.";
 leaf name {
 type string {
 length "1..64";
 }
 description
 "The name of (D)TLS profile; space and special
 characters are not allowed.";
 }
 leaf-list supported-tls-version {
 type ianatp:tls-version;
 description
 "TLS versions supported by the client.";
 }
 leaf-list supported-dtls-version {
 type ianatp:dtls-version;
 description
 "DTLS versions supported by the client.";
 }
 leaf-list cipher-suite {
 type ianatp:cipher-algorithm;
 description
 "A list of cipher suites supported by the client.";
 }
 leaf-list extension-type {
 type ianatp:extension-type;
 description
 "A list of Extension Types supported by the client.";
 }
 leaf-list accept-list-ta-cert {
 type ct:trust-anchor-cert-cms;
 description
 "A list of trust anchor certificates used by the
 client.";
 }
 leaf-list psk-key-exchange-mode {
 if-feature "tls13 or dtls13";
 type ianatp:psk-key-exchange-mode;
 description
 "pre-shared key exchange modes.";
 }
 leaf-list supported-group {
 type ianatp:supported-group;
 description
 "A list of named groups supported by the client.";
 }
 leaf-list signature-algorithm-cert {
 if-feature "tls13 or dtls13";
 type ianatp:signature-algorithm;
 description
 "A list signature algorithms the client can validate
 in X.509 certificates.";
 }
 leaf-list signature-algorithm {
 type ianatp:signature-algorithm;
 description
 "A list signature algorithms the client can validate
 in the CertificateVerify message.";
 }
 leaf-list application-protocol {
 type ianatp:application-protocol;
 description
 "A list application protocols supported by the client.";
 }
 leaf-list cert-compression-algorithm {
 if-feature "tls13 or dtls13";
 type ianatp:cert-compression-algorithm;
 description
 "A list certificate compression algorithms
 supported by the client.";
 }
 leaf-list certificate-authorities {
 if-feature "tls13 or dtls13";
 type certificate-authority;
 description
 "A list of the distinguished names of certificate
 authorities acceptable to the client.";
 }
 }
 }
 }
}

 IANA (D)TLS Profile YANG Module
 The TLS and DTLS IANA registries are available from
 and .
 Changes to TLS- and DTLS-related IANA registries are discussed in .
 The values for all the parameters in the "iana-tls-profile" YANG
 module are defined in the TLS and DTLS IANA registries excluding the
 tls-version, dtls-version, spki-pin-set, and certificate-authority
 parameters. The values of spki-pin-set and certificate-authority
 parameters will be specific to the IoT device.
 The TLS and DTLS IANA registries do not maintain (D)TLS version
 numbers. In (D)TLS 1.2 and below, the "legacy_version" field in the
 ClientHello message is used for version negotiation. However, in
 (D)TLS 1.3, the "supported_versions" extension is used by the client
 to indicate which versions of (D)TLS it supports. TLS 1.3 ClientHello
 messages are identified as having a "legacy_version" of 0x0303 and a
 "supported_versions" extension present with 0x0304 as the highest
 version. DTLS 1.3 ClientHello messages are identified as having a
 "legacy_version" of 0xfefd and a "supported_versions" extension
 present with 0x0304 as the highest version.
 In order to ease updating the "iana-tls-profile" YANG module with
 future (D)TLS versions, new (D)TLS version registries are defined in
 and . Whenever a new (D)TLS protocol version
 is defined, the registry will be updated using expert review; the
 "iana-tls-profile" YANG module will be automatically updated by
 IANA.
 Implementers or users of this specification must refer to the
 IANA-maintained "iana-tls-profile" YANG module available at .
 The initial version of the "iana-tls-profile" YANG module is
 defined as follows:

module iana-tls-profile {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:iana-tls-profile";
 prefix ianatp;

 organization
 "IANA";
 contact
 " Internet Assigned Numbers Authority

 Postal: ICANN
 12025 Waterfront Drive, Suite 300
 Los Angeles, CA 90094-2536
 United States

 Tel: +1 310 301 5800
 Email: iana@iana.org>";
 description
 "This module contains the YANG definition for the (D)TLS profile.

 Copyright (c) 2025 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Revised BSD License
 set forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 All revisions of IETF and IANA published modules can be found
 at the YANG Parameters registry
 (https://www.iana.org/assignments/yang-parameters).

 The initial version of this YANG module is part of RFC 9761;
 see the RFC itself for full legal notices.

 The latest version of this YANG module is available at
 https://www.iana.org/assignments/yang-parameters.";

 revision 2025-04-18 {
 description
 "Initial revision.";
 reference
 "RFC 9761: Manufacturer Usage Description (MUD) for TLS and
 DTLS Profiles for Internet of Things (IoT) Devices";
 }

 typedef extension-type {
 type uint16;
 description
 "Extension type in the TLS ExtensionType Values registry as
 defined in Section 7 of RFC 8447.";
 }

 typedef supported-group {
 type uint16;
 description
 "Supported Group in the TLS Supported Groups registry as
 defined in Section 9 of RFC 8447.";
 }

 typedef signature-algorithm {
 type uint16;
 description
 "Signature algorithm in the TLS SignatureScheme registry as
 defined in Section 11 of RFC 8446.";
 }

 typedef psk-key-exchange-mode {
 type uint8;
 description
 "Pre-shared key exchange mode in the TLS PskKeyExchangeMode
 registry as defined in Section 11 of RFC 8446.";
 }

 typedef application-protocol {
 type string;
 description
 "Application-Layer Protocol Negotiation (ALPN) Protocol ID
 registry as defined in Section 6 of RFC 7301.";
 }

 typedef cert-compression-algorithm {
 type uint16;
 description
 "Certificate compression algorithm in TLS Certificate
 Compression Algorithm IDs registry as defined in
 Section 7.3 of RFC 8879.";
 }

 typedef cipher-algorithm {
 type uint16;
 description
 "Cipher suite in TLS Cipher Suites registry
 as discussed in Section 11 of RFC 8446.";
 }

 typedef tls-version {
 type enumeration {
 enum tls12 {
 value 1;
 description
 "TLS Protocol Version 1.2.

 TLS 1.2 ClientHello contains
 0x0303 in 'legacy_version'.";
 reference
 "RFC 5246: The Transport Layer Security (TLS) Protocol
 Version 1.2";
 }
 enum tls13 {
 value 2;
 description
 "TLS Protocol Version 1.3.

 TLS 1.3 ClientHello contains a
 supported_versions extension with 0x0304
 contained in its body and the ClientHello contains
 0x0303 in 'legacy_version'.";
 reference
 "RFC 8446: The Transport Layer Security (TLS) Protocol
 Version 1.3";
 }
 }
 description
 "Indicates the TLS version.";
 }

 typedef dtls-version {
 type enumeration {
 enum dtls12 {
 value 1;
 description
 "DTLS Protocol Version 1.2.

 DTLS 1.2 ClientHello contains
 0xfefd in 'legacy_version'.";
 reference
 "RFC 6347: Datagram Transport Layer Security 1.2";
 }
 enum dtls13 {
 value 2;
 description
 "DTLS Protocol Version 1.3.

 DTLS 1.3 ClientHello contains a
 supported_versions extension with 0x0304
 contained in its body and the ClientHello contains
 0xfefd in 'legacy_version'.";
 reference
 "RFC 9147: Datagram Transport Layer Security 1.3";
 }
 }
 description
 "Indicates the DTLS version.";
 }
}

 MUD (D)TLS Profile Extension
 This document augments the "ietf-mud" MUD YANG module to indicate
 whether the device supports (D)TLS profile. If the "ietf-mud-tls"
 extension is supported by the device, MUD file is assumed to implement
 the "match-on-tls-dtls" ACL model feature defined in this
 specification. Furthermore, only "accept" or "drop" actions SHOULD be
 included with the (D)TLS profile similar to the actions allowed in
 .
 This document defines the YANG module "ietf-mud-tls", which has the
 following tree structure:

module: ietf-mud-tls
 augment /ietf-mud:mud:
 +--rw is-tls-dtls-profile-supported? boolean

 The model is defined as follows:

module ietf-mud-tls {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-mud-tls";
 prefix ietf-mud-tls;

 import ietf-mud {
 prefix ietf-mud;
 reference
 "RFC 8520: Manufacturer Usage Description Specification";
 }

 organization
 "IETF OPSAWG (Operations and Management Area Working Group)";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/opsawg/>
 WG List: opsawg@ietf.org

 Author: Tirumaleswar Reddy.K
 kondtir@gmail.com

 Author: Dan Wing
 danwing@gmail.com

 Author: Blake Anderson
 blake.anderson@cisco.com

 ";
 description
 "Extension to a MUD module to indicate (D)TLS
 profile support.

 Copyright (c) 2025 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Revised BSD License
 set forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC 9761; see
 the RFC itself for full legal notices.";

 revision 2025-04-18 {
 description
 "Initial revision.";
 reference
 "RFC 9761: Manufacturer Usage Description (MUD) for TLS and
 DTLS Profiles for Internet of Things (IoT)
 Devices";
 }

 augment "/ietf-mud:mud" {
 description
 "This adds an extension for a manufacturer
 to indicate whether the (D)TLS profile is
 supported by a device.";
 leaf is-tls-dtls-profile-supported {
 type boolean;
 default "false";
 description
 "This value will equal 'true' if a device supports
 (D)TLS profile.";
 }
 }
}

 Processing of the MUD (D)TLS Profile
 The following text outlines the rules for a network security service
 (e.g., firewall) to follow to process the MUD (D)TLS Profile so as to
 avoid ossification:

 If the (D)TLS parameter observed in a (D)TLS session is not
 specified in the MUD (D)TLS profile and the parameter is recognized
 by the firewall, it can identify unexpected (D)TLS usage, which can
 indicate the presence of unauthorized software or malware on an
 endpoint. The firewall can take several actions, such as blocking the
 (D)TLS session or raising an alert to quarantine and remediate the
 compromised device. For example, if the cipher suite
 TLS_RSA_WITH_AES_128_CBC_SHA in the ClientHello message is not
 specified in the MUD (D)TLS profile and the cipher suite is
 recognized by the firewall, it can identify unexpected TLS
 usage.

 If the (D)TLS parameter observed in a (D)TLS session is not
 specified in the MUD (D)TLS profile and the (D)TLS parameter is not
 recognized by the firewall, it can ignore the unrecognized parameter
 and the correct behavior is not to block the (D)TLS session. The
 behavior is functionally equivalent to the compliant TLS middlebox
 description in to
 ignore all unrecognized cipher suites, extensions, and other
 parameters. For example, if the cipher suite
 TLS_CHACHA20_POLY1305_SHA256 in the ClientHello message is not
 specified in the MUD (D)TLS profile and the cipher suite is not
 recognized by the firewall, it can ignore the unrecognized cipher
 suite. This rule also ensures that the network security service will
 ignore the GREASE values advertised by TLS peers and interoperate
 with the implementations advertising GREASE values.

 Deployments update at different rates, so an updated MUD (D)TLS
 profile may support newer parameters. If the firewall does not
 recognize the newer parameters, an alert should be triggered to the
 firewall vendor and the IoT device owner or administrator. A
 firewall must be readily updatable so that when new parameters in
 the MUD (D)TLS profile are discovered that are not recognized by the
 firewall, it can be updated quickly. Most importantly, if the
 firewall is not readily updatable, its protection efficacy to
 identify emerging malware will decrease with time. For example, if
 the cipher suite TLS_AES_128_CCM_8_SHA256 specified in the MUD
 (D)TLS profile is not recognized by the firewall, an alert will be
 triggered. Similarly, if the (D)TLS version specified in the MUD
 file is not recognized by the firewall, an alert will be
 triggered.

 If the MUD (D)TLS profile includes any parameters that are
 susceptible to attacks (e.g., weaker cryptographic parameters), an
 alert MUST be triggered to the firewall vendor and the IoT device
 owner or administrator.

 MUD File Example
 The example below contains (D)TLS profile parameters for an IoT device
 used to reach servers listening on port 443 using TCP transport. JSON
 encoding of YANG-modeled data is used to
 illustrate the example.
 {
 "ietf-mud:mud": {
 "mud-version": 1,
 "mud-url": "https://example.com/IoTDevice",
 "last-update": "2024-08-05T03:56:40.105+10:00",
 "cache-validity": 100,
 "extensions": [
 "ietf-mud-tls"
],
 "ietf-mud-tls:is-tls-dtls-profile-supported": "true",
 "is-supported": true,
 "systeminfo": "IoT device name",
 "from-device-policy": {
 "access-lists": {
 "access-list": [
 {
 "name": "mud-7500-profile"
 }
]
 }
 },
 "ietf-access-control-list:acls": {
 "acl": [
 {
 "name": "mud-7500-profile",
 "type": "ipv6-acl-type",
 "aces": {
 "ace": [
 {
 "name": "cl0-frdev",
 "matches": {
 "ipv6": {
 "protocol": 6
 },
 "tcp": {
 "ietf-mud:direction-initiated": "from-device",
 "destination-port": {
 "operator": "eq",
 "port": 443
 }
 },
 "ietf-acl-tls:client-profile" : {
 "tls-dtls-profiles" : [
 {
 "name" : "profile1",
 "supported-tls-versions" : ["tls13"],
 "cipher-suite" : [4865, 4866],
 "extension-types" : [10,11,13,16,24],
 "supported-groups" : [29]
 }
]
 },
 "actions": {
 "forwarding": "accept"
 }
 }
 }
]
 }
 }
]
 }
 }
}

 The following illustrates the example scenarios for processing the
 above profile:

 If the extension type "encrypt_then_mac" (code point 22) in the ClientHello message is recognized by
 the firewall, it can identify unexpected TLS usage.

 If the extension type "token_binding" (code point 24) in the MUD (D)TLS profile is not recognized
 by the firewall, it can ignore the unrecognized extension. Because
 the extension type "token_binding" is specified in the profile, an
 alert will be triggered to the firewall vendor and the IoT device
 owner or administrator to notify the firewall is not up-to-date.

 The two-byte values assigned by IANA for the cipher suites
 TLS_AES_128_GCM_SHA256 and TLS_AES_256_GCM_SHA384 are represented in
 decimal format.

 Software-Based ACLs and ACLs Within a (D)TLS 1.3 Proxy
 While ACL technology is traditionally associated with fixed-length
 bit matching in hardware implementations, such as those found in Ternary Content-Addressable Memory (TCAM),
 the use of ACLs in software, like with iptables, allows for more
 flexible matching criteria, including string matching. In the context of
 MUD (D)TLS profiles, the ability to match binary data and strings is a
 deliberate choice made to leverage the capabilities of software-based
 ACLs. This enables more dynamic and context-sensitive access control,
 which is essential for the intended application of MUD. The DNS
 extension added to ACL in the MUD specification also requires software-based ACLs.
 Regarding the use of MUD (D)TLS ACL in a (D)TLS 1.3 proxy, the goal
 is for the proxy to intercept the (D)TLS handshake before applying any
 ACL rules. This implies that MUD (D)TLS ACL matching would need to occur
 after decrypting the encrypted TLS handshake messages within the proxy.
 The proxy would inspect the handshake fields according to the MUD
 profile.

ACL matching would be performed in two stages: first, by filtering clear-text
TLS handshake message and second, by filtering after decrypting the TLS
handshake messages.

 Security Considerations
 Security considerations in need to be
 taken into consideration. The middlebox MUST adhere to the invariants
 discussed in to act as a
 compliant proxy.
 Although it is challenging for malware to mimic the TLS behavior of
 various IoT device types and models from different manufacturers, there
 is still a potential for malicious agents to use similar (D)TLS profile
 parameters as legitimate devices to evade detection. This difficulty
 arises because IoT devices often have distinct (D)TLS profiles between
 models and especially between manufacturers. While malware may find it
 hard to perfectly replicate the TLS behavior across such diverse
 devices, it is not impossible. Malicious agents might manage to use
 (D)TLS profile parameters that resemble those of legitimate devices. The
 feasibility of this depends on the nature of the profile parameters; for
 instance, parameters like certificate authorities are complex to mimic,
 while others, such as signature algorithms, may be easier to replicate.
 The difficulty in mimicking these profiles correlates with the
 specificity of the profiles and the variability in parameters used by
 different devices.
 Network security services should also rely on contextual network data
 (e.g., domain name, IP address, etc.) to detect false negatives. For
 example, network security services filter malicious domain names and
 destination IP addresses with a bad reputation score. Furthermore, in order to
 detect such malicious flows, anomaly detection (deep learning techniques
 on network data) can be used to detect malicious agents using the same
 (D)TLS profile parameters as the legitimate agent on the IoT device. In
 anomaly detection, the main idea is to maintain rigorous learning of
 "normal" behavior and where an "anomaly" (or an attack) is identified
 and categorized based on the knowledge about the normal behavior and a
 deviation from this normal behavior. Network security vendors leverage
 TLS parameters and contextual network data to identify malware (for
 example, see).
 The efficacy of identifying malware in (D)TLS 1.3 flows will be
 significantly reduced without leveraging contextual network data or
 acting as a proxy, as the encryption in (D)TLS 1.3 obscures many of the
 handshake details that could otherwise be used for detection.

 Challenges in Mimicking (D)TLS 1.2 Handshakes for IoT Devices
 (D)TLS 1.2 generally does not require a proxy, as all fields in the
 (D)TLS profile are transmitted in cleartext during the handshake.
 While it is technically possible for an attacker to observe and mimic
 the handshake, an attacker would need to use a domain name and
 destination IP address with a good reputation, obtain certificates
 from the same CAs used by the IoT devices, and evade traffic analysis
 techniques (e.g., , which detects
 malicious patterns in encrypted traffic without decryption). This task
 is particularly challenging because IoT devices often have distinct
 (D)TLS profiles that vary between models and manufacturers. Unlike the
 developers of legitimate applications, malware authors are under
 additional constraints, such as avoiding any noticeable differences on
 the infected devices and the potential for take-down requests
 impacting their server infrastructure (e.g., certificate revocation by
 a CA upon reporting).

 Considerations for the "iana-tls-profile" Module
 This section follows the template defined in .
 The "iana-tls-profile" YANG module defines a data model that is designed to
be accessed via YANG-based management protocols, such as NETCONF and RESTCONF . These protocols have
to use a secure transport layer (e.g., SSH , TLS , and QUIC) and have to use mutual
authentication.
 The Network Configuration Access Control Model (NACM)
provides the means to restrict access for particular NETCONF or
RESTCONF users to a preconfigured subset of all available NETCONF or
RESTCONF protocol operations and content.
 There are no particularly sensitive writable data nodes.
 There are no particularly sensitive readable data nodes.
 This YANG module defines YANG enumerations for a public IANA-
 maintained registry.
 YANG enumerations are not security-sensitive, as they are
 statically defined in the publicly accessible YANG module. IANA MAY
 deprecate and/or obsolete enumerations over time as needed to address
 security issues.
 There are no particularly sensitive RPC or action operations.
 The YANG module defines a set of identities, types, and
groupings. These nodes are intended to be reused by other YANG
modules. The module by itself does not expose any data nodes that
are writable, data nodes that contain read-only state, or RPCs.
As such, there are no additional security issues related to
the YANG module that need to be considered.

 Considerations for the "ietf-acl-tls" Module
 This section follows the template defined in .
 The "ietf-acl-tls" YANG module defines a data model that is designed to be
accessed via YANG-based management protocols, such as NETCONF and RESTCONF . These protocols have
to use a secure transport layer (e.g., SSH , TLS , and QUIC) and have to use mutual
authentication.
 The Network Configuration Access Control Model (NACM) provides the means to restrict access for particular
NETCONF or RESTCONF users to a preconfigured subset of all available NETCONF
or RESTCONF protocol operations and content.
 There are a number of data nodes defined in this YANG module that are
writable/creatable/deletable (i.e., "config true", which is the
default). All writable data nodes are likely to be reasonably sensitive or
 vulnerable in some network environments. Write
operations (e.g., edit-config) and delete operations to these data
nodes without proper protection or authentication can have a negative
effect on network operations. For instance, the addition or
 removal of references to trusted anchors, (D)TLS versions, cipher
 suites, etc., can dramatically alter the implemented security
 policy. For this reason, the NACM extension "default-deny-write" has
 been set for all data nodes defined in this module.
 Some of the readable data nodes defined in this YANG module may be
 considered sensitive or vulnerable in some network environments. It is
 thus important to control read access (e.g., via get, get-config, or
 notification) to these data nodes. The YANG module will provide
 insights into (D)TLS profiles of the IoT devices, and the privacy
 considerations discussed in need to be
 taken into account.
 There are no particularly sensitive RPC or action operations.
 This YANG module uses groupings from other YANG modules that define nodes
that may be considered sensitive or vulnerable in network environments. Refer
to the Security Considerations for dependent YANG modules for information as
to which nodes may be considered sensitive or vulnerable in network
environments.

 Considerations for the "ietf-mud-tls" Module
 This section follows the template defined in .
 The "ietf-mud-tls" YANG module defines a data model that is designed to be
 accessed via YANG-based management protocols, such as NETCONF and RESTCONF . These protocols
 have to use a secure transport layer (e.g., SSH , TLS
 , and QUIC) and have to use
 mutual authentication.
 The Network Configuration Access Control Model (NACM) provides the means to restrict access for particular
NETCONF or RESTCONF users to a preconfigured subset of all available NETCONF
or RESTCONF protocol operations and content.
 There are a number of data nodes defined in this YANG module that are
writable/creatable/deletable (i.e., "config true", which is the
default). All writable data nodes are likely to be reasonably sensitive or
 vulnerable in some network environments. Write
operations (e.g., edit-config) and delete operations to these data
nodes without proper protection or authentication can have a negative
effect on network operations. For instance, update that the
 device does not support (D)TLS profile can dramatically alter the
 implemented security policy. For this reason, the NACM extension
 "default-deny-write" has been set for all data nodes defined in this
 module.
 There are no particularly sensitive RPC or action operations.
 This YANG module uses groupings from other YANG modules that define nodes
that may be considered sensitive or vulnerable in network environments. Refer
to the Security Considerations for dependent YANG modules for information as
to which nodes may be considered sensitive or vulnerable in network
environments.

 Privacy Considerations
 Privacy considerations discussed in to not reveal the MUD URL to an attacker need
 to be taken into consideration. The MUD URL can be stored in a Trusted
 Execution Environment (TEE) for secure operation, enhanced data
 security, and prevention of exposure to unauthorized software. The MUD URL
 MUST be encrypted and shared only with the authorized components in the
 network (see Sections and of) so that an
 on-path attacker cannot read the MUD URL and identify the IoT device.
 Otherwise, it provides the attacker with guidance on what
 vulnerabilities may be present on the IoT device. Note that while
 protecting the MUD URL is valuable as described above, a compromised IoT
 device may be susceptible to malware performing vulnerability analysis
 (and version mapping) of the legitimate software located in memory or on
 non-volatile storage (e.g., disk, NVRAM). However, the malware on the
 IoT device is intended to be blocked from establishing a (D)TLS
 connection with the C&C server to reveal this information because
 the connection would be blocked by the network security service
 supporting this specification.
 Full handshake inspection () requires a
 (D)TLS proxy device that needs to decrypt traffic between the IoT
 device and its server(s). There is a tradeoff between privacy of the
 data carried inside (D)TLS (for example, personally identifiable
 information and protected health information especially) and efficacy of endpoint
 security. The use of (D)TLS proxies is NOT RECOMMENDED whenever
 possible. For example, an enterprise firewall administrator can
 configure the middlebox to bypass (D)TLS proxy functionality or payload
 inspection for connections destined to specific well-known services.
 Alternatively, an IoT device could be configured to reject all sessions
 that involve proxy servers to specific well-known services. In addition,
 mechanisms based on object security can be used by IoT devices to enable
 end-to-end security and the middlebox will not have any access to the
 packet data. For example, Object Security for Constrained RESTful
 Environments (OSCORE) is a proposal that
 protects Constrained Application Protocol (CoAP) messages by wrapping them in the CBOR Object Signing and Encryption (COSE) format .

 IANA Considerations

 (D)TLS Profile YANG Modules
 IANA has registered the following URIs in the
 "ns" subregistry within the "IETF XML Registry" :

 URI:
 urn:ietf:params:xml:ns:yang:iana-tls-profile
 Registrant Contact:
 IANA.
 XML:
 N/A; the requested URI is an XML namespace.

 URI:
 urn:ietf:params:xml:ns:yang:ietf-acl-tls
 Registrant Contact:
 IESG.
 XML:
 N/A; the requested URI is an XML namespace.

 URI:
 urn:ietf:params:xml:ns:yang:ietf-mud-tls
 Registrant Contact:
 IESG.
 XML:
 N/A; the requested URI is an XML namespace.

 IANA has created an IANA-maintained YANG module called
 "iana-tls-profile" based on the contents of , which allows for new (D)TLS parameters
 and (D)TLS versions to be added to "client-profile".
 IANA has registered the following YANG modules
 in the "YANG Module Names" registry
 of the "YANG Parameters" registry group.

 Name:
 iana-tls-profile
 Namespace:
 urn:ietf:params:xml:ns:yang:iana-tls-profile
 Maintained by IANA:
 Y
 Prefix:
 ianatp
 Reference:
 RFC 9761

 Name:
 ietf-acl-tls
 Namespace:
 urn:ietf:params:xml:ns:yang:ietf-acl-tls
 Maintained by IANA:
 N
 Prefix:
 ietf-acl-tls
 Reference:
 RFC 9761

 Name:
 ietf-mud-tls
 Namespace:
 urn:ietf:params:xml:ns:yang:ietf-mud-tls
 Maintained by IANA:
 N
 Prefix:
 ietf-mud-tls
 Reference:
 RFC 9761

 Considerations for the iana-tls-profile Module
 IANA has created the initial version of the
 IANA-maintained YANG module called "iana-tls-profile" based on the
 contents of , which will allow for new
 (D)TLS parameters and (D)TLS versions to be added. IANA is requested
 to add this note:

 tls-version and dtls-version values must not be directly added
 to the iana-tls-profile YANG module. Instead, they must be
 added to the "ACL TLS Version Codes" and "ACL DTLS
 Version Codes" registries (respectively), provided the new (D)TLS version has been
 standardized by the IETF. It allows a new (D)TLS version to be added
 to the "iana-tls-profile" YANG module.

 (D)TLS parameters must not be directly added to the
 iana-tls-profile YANG module. They must instead be added to the
 "ACL (D)TLS Parameters" registry if the new (D)TLS parameters can
 be used by a middlebox to identify a MUD non-compliant (D)TLS
 behavior. It allows new (D)TLS parameters to be added to the
 "iana-tls-profile" YANG module.

 When a "tls-version" or "dtls-version" value is added
 to the "ACL TLS Version Codes" or "ACL DTLS Version Codes" registry (respectively), a
 new "enum" statement must be added to the iana-tls-profile YANG
 module. The following "enum" statement, and substatements thereof,
 should be defined:

 "enum":
 Replicates the label from the
 registry.
 "value":
 Contains the IANA-assigned value
 corresponding to the "tls-version" or "dtls-version".
 "description":
 Replicates the description
 from the registry.
 "reference":
 RFC YYYY: <Title of the
 RFC>, where YYYY is the RFC that added the
 "tls-version" or "dtls-version".

 When a (D)TLS parameter is added to the "ACL (D)TLS Parameters"
 registry, a new "type" statement must be added to the iana-tls-profile
 YANG module. The following "type" statement, and substatements
 thereof, should be defined:

 "derived type":
 Replicates the parameter
 name from the registry.
 "built-in type":
 Contains the built-in
 YANG type.
 "description":
 Replicates the description
 from the registry.

 When the iana-tls-profile YANG module is updated, a new "revision"
 statement must be added in front of the existing revision
 statements.
 IANA has added this note to "ACL TLS Version Codes", "ACL
 DTLS Version Codes", and "ACL (D)TLS Parameters" registries:
 When this registry is modified, the YANG module
 "iana-tls-profile" must be updated as defined in [RFC9761].

 ACL TLS Version Registry
 IANA has created a new registry titled "ACL TLS Version
 Codes". Codes in this registry are used as valid values of
 "tls-version" parameter. Further assignments are to be made through
 Expert Review . Experts must ensure that
 the TLS protocol version in a new registration is one that has been
 standardized by the IETF. It is expected that the registry will be
 updated infrequently, primarily when a new TLS version is standardized
 by the IETF.

 Value
 Label
 Description
 Reference

 1
 tls12
 TLS Version 1.2

 2
 tls13
 TLS Version 1.3

 ACL DTLS Version Registry
 IANA has created a new registry titled "ACL DTLS Version
 Codes". Codes in this registry are used as valid values of
 "dtls-version" parameter. Further assignments are to be made through
 Expert Review . Experts must ensure that
 the DTLS protocol version in a new registration is one that has been
 standardized by the IETF. It is expected that the registry will be
 updated infrequently, primarily when a new DTLS version is
 standardized by the IETF.

 Value
 Label
 Description
 Reference

 1
 dtls12
 DTLS Version 1.2

 2
 dtls13
 DTLS Version 1.3

 ACL (D)TLS Parameters Registry
 IANA has created a new registry titled "ACL (D)TLS
 Parameters".
 The values for all the (D)TLS parameters in the registry are
 defined in the TLS and DTLS IANA registries (
 and)
 excluding the tls-version and dtls-version parameters. Further
 assignments are to be made through Expert Review . Experts must ensure that the (D)TLS
 parameter in a new registration is one that has been standardized by
 the IETF. The registry is expected to be updated periodically,
 primarily when a new (D)TLS parameter is standardized by the IETF. The
 registry has been populated with the following initial parameters:

 Parameter Name
 YANG Type
 JSON Type
 Description

 extension-type
 uint16
 Number
 Extension type

 supported-group
 uint16
 Number
 Supported group

 signature-algorithm
 uint16
 Number
 Signature algorithm

 psk-key-exchange-mode
 uint8
 Number
 Pre-shared key exchange mode

 application-protocol
 string
 String
 Application protocol

 cert-compression-algorithm
 uint16
 Number
 Certificate compression algorithm

 cipher-algorithm
 uint16
 Number
 Cipher suite

 tls-version
 enumeration
 String
 TLS version

 dtls-version
 enumeration
 String
 DTLS version

 MUD Extensions Registry
 IANA has created a new MUD Extension Name "ietf-mud-tls"
 in the "MUD Extensions" IANA registry .

 References

 Normative References

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 The IETF XML Registry

 This document describes an IANA maintained registry for IETF standards which use Extensible Markup Language (XML) related items such as Namespaces, Document Type Declarations (DTDs), Schemas, and Resource Description Framework (RDF) Schemas.

 The Secure Shell (SSH) Authentication Protocol

 The Secure Shell Protocol (SSH) is a protocol for secure remote login and other secure network services over an insecure network. This document describes the SSH authentication protocol framework and public key, password, and host-based client authentication methods. Additional authentication methods are described in separate documents. The SSH authentication protocol runs on top of the SSH transport layer protocol and provides a single authenticated tunnel for the SSH connection protocol. [STANDARDS-TRACK]

 The Transport Layer Security (TLS) Protocol Version 1.2

 This document specifies Version 1.2 of the Transport Layer Security (TLS) protocol. The TLS protocol provides communications security over the Internet. The protocol allows client/server applications to communicate in a way that is designed to prevent eavesdropping, tampering, or message forgery. [STANDARDS-TRACK]

 Network Configuration Protocol (NETCONF)

 The Network Configuration Protocol (NETCONF) defined in this document provides mechanisms to install, manipulate, and delete the configuration of network devices. It uses an Extensible Markup Language (XML)-based data encoding for the configuration data as well as the protocol messages. The NETCONF protocol operations are realized as remote procedure calls (RPCs). This document obsoletes RFC 4741. [STANDARDS-TRACK]

 Datagram Transport Layer Security Version 1.2

 This document specifies version 1.2 of the Datagram Transport Layer Security (DTLS) protocol. The DTLS protocol provides communications privacy for datagram protocols. The protocol allows client/server applications to communicate in a way that is designed to prevent eavesdropping, tampering, or message forgery. The DTLS protocol is based on the Transport Layer Security (TLS) protocol and provides equivalent security guarantees. Datagram semantics of the underlying transport are preserved by the DTLS protocol. This document updates DTLS 1.0 to work with TLS version 1.2. [STANDARDS-TRACK]

 RESTCONF Protocol

 This document describes an HTTP-based protocol that provides a programmatic interface for accessing data defined in YANG, using the datastore concepts defined in the Network Configuration Protocol (NETCONF).

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 Network Configuration Access Control Model

 The standardization of network configuration interfaces for use with the Network Configuration Protocol (NETCONF) or the RESTCONF protocol requires a structured and secure operating environment that promotes human usability and multi-vendor interoperability. There is a need for standard mechanisms to restrict NETCONF or RESTCONF protocol access for particular users to a preconfigured subset of all available NETCONF or RESTCONF protocol operations and content. This document defines such an access control model.
 This document obsoletes RFC 6536.

 The Transport Layer Security (TLS) Protocol Version 1.3

 This document specifies version 1.3 of the Transport Layer Security (TLS) protocol. TLS allows client/server applications to communicate over the Internet in a way that is designed to prevent eavesdropping, tampering, and message forgery.
 This document updates RFCs 5705 and 6066, and obsoletes RFCs 5077, 5246, and 6961. This document also specifies new requirements for TLS 1.2 implementations.

 YANG Data Model for Network Access Control Lists (ACLs)

 This document defines a data model for Access Control Lists (ACLs). An ACL is a user-ordered set of rules used to configure the forwarding behavior in a device. Each rule is used to find a match on a packet and define actions that will be performed on the packet.

 Manufacturer Usage Description Specification

 This memo specifies a component-based architecture for Manufacturer Usage Descriptions (MUDs). The goal of MUD is to provide a means for end devices to signal to the network what sort of access and network functionality they require to properly function. The initial focus is on access control. Later work can delve into other aspects.
 This memo specifies two YANG modules, IPv4 and IPv6 DHCP options, a Link Layer Discovery Protocol (LLDP) TLV, a URL, an X.509 certificate extension, and a means to sign and verify the descriptions.

 Applying Generate Random Extensions And Sustain Extensibility (GREASE) to TLS Extensibility

 This document describes GREASE (Generate Random Extensions And Sustain Extensibility), a mechanism to prevent extensibility failures in the TLS ecosystem. It reserves a set of TLS protocol values that may be advertised to ensure peers correctly handle unknown values.

 TLS Certificate Compression

 In TLS handshakes, certificate chains often take up the majority of the bytes transmitted.
 This document describes how certificate chains can be compressed to reduce the amount of data transmitted and avoid some round trips.

 QUIC: A UDP-Based Multiplexed and Secure Transport

 This document defines the core of the QUIC transport protocol. QUIC provides applications with flow-controlled streams for structured communication, low-latency connection establishment, and network path migration. QUIC includes security measures that ensure confidentiality, integrity, and availability in a range of deployment circumstances. Accompanying documents describe the integration of TLS for key negotiation, loss detection, and an exemplary congestion control algorithm.

 The Datagram Transport Layer Security (DTLS) Protocol Version 1.3

 This document specifies version 1.3 of the Datagram Transport Layer Security (DTLS) protocol. DTLS 1.3 allows client/server applications to communicate over the Internet in a way that is designed to prevent eavesdropping, tampering, and message forgery.
 The DTLS 1.3 protocol is based on the Transport Layer Security (TLS) 1.3 protocol and provides equivalent security guarantees with the exception of order protection / non-replayability. Datagram semantics of the underlying transport are preserved by the DTLS protocol.
 This document obsoletes RFC 6347.

 YANG Data Types and Groupings for Cryptography

 This document presents a YANG 1.1 (RFC 7950) module defining identities, typedefs, and groupings useful to cryptographic applications.

 Information technology - ASN.1 encoding Rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER)

 ITU-T

 Informative References

 Clear as MUD: Generating, Validating and Applying IoT Behaviorial Profiles (Technical Report)

 arXiv:1804.04358

 Exploiting the Windows CryptoAPI Vulnerability

 Cisco

 Encrypted Visibility Engine

 Cisco

 Cisco Secure Firewall documentation

 TLS/DTLS 1.3 Profiles for the Internet of Things

 University of Applied Sciences Bonn-Rhein-Sieg

 Linaro

 Sandelman Software Works

 RFC 7925 offers guidance to developers on using TLS/DTLS 1.2 for
 Internet of Things (IoT) devices with resource constraints. This
 document is a companion to RFC 7925, defining TLS/DTLS 1.3 profiles
 for IoT devices. Additionally, it updates RFC 7925 with respect to
 the X.509 certificate profile and ciphersuite requirements.

Discussion Venues

 This note is to be removed before publishing as an RFC.

 Source for this draft and an issue tracker can be found at
 https://github.com/thomas-fossati/draft-tls13-iot.

 Work in Progress

 First-ever malware strain spotted abusing new DoH (DNS over HTTPS) protocol

 ZDNET

 TLS Beyond the Browser: Combining End Host and Network Data to Understand Application Behavior

 Cisco

 Cisco

 IMC '19: Proceedings of the Internet Measurement Conference, pp. 379-392

 YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF)

 YANG is a data modeling language used to model configuration and state data manipulated by the Network Configuration Protocol (NETCONF), NETCONF remote procedure calls, and NETCONF notifications. [STANDARDS-TRACK]

 Transport Layer Security (TLS) Extensions: Extension Definitions

 This document provides specifications for existing TLS extensions. It is a companion document for RFC 5246, "The Transport Layer Security (TLS) Protocol Version 1.2". The extensions specified are server_name, max_fragment_length, client_certificate_url, trusted_ca_keys, truncated_hmac, and status_request. [STANDARDS-TRACK]

 Transport Layer Security (TLS) Application-Layer Protocol Negotiation Extension

 This document describes a Transport Layer Security (TLS) extension for application-layer protocol negotiation within the TLS handshake. For instances in which multiple application protocols are supported on the same TCP or UDP port, this extension allows the application layer to negotiate which protocol will be used within the TLS connection.

 Encrypt-then-MAC for Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)

 This document describes a means of negotiating the use of the encrypt-then-MAC security mechanism in place of the existing MAC-then-encrypt mechanism in Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS). The MAC-then-encrypt mechanism has been the subject of a number of security vulnerabilities over a period of many years.

 Specification for DNS over Transport Layer Security (TLS)

 This document describes the use of Transport Layer Security (TLS) to provide privacy for DNS. Encryption provided by TLS eliminates opportunities for eavesdropping and on-path tampering with DNS queries in the network, such as discussed in RFC 7626. In addition, this document specifies two usage profiles for DNS over TLS and provides advice on performance considerations to minimize overhead from using TCP and TLS with DNS.
 This document focuses on securing stub-to-recursive traffic, as per the charter of the DPRIVE Working Group. It does not prevent future applications of the protocol to recursive-to-authoritative traffic.

 Transport Layer Security (TLS) / Datagram Transport Layer Security (DTLS) Profiles for the Internet of Things

 A common design pattern in Internet of Things (IoT) deployments is the use of a constrained device that collects data via sensors or controls actuators for use in home automation, industrial control systems, smart cities, and other IoT deployments.
 This document defines a Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS) 1.2 profile that offers communications security for this data exchange thereby preventing eavesdropping, tampering, and message forgery. The lack of communication security is a common vulnerability in IoT products that can easily be solved by using these well-researched and widely deployed Internet security protocols.

 JSON Encoding of Data Modeled with YANG

 This document defines encoding rules for representing configuration data, state data, parameters of Remote Procedure Call (RPC) operations or actions, and notifications defined using YANG as JavaScript Object Notation (JSON) text.

 Guidelines for Writing an IANA Considerations Section in RFCs

 Many protocols make use of points of extensibility that use constants to identify various protocol parameters. To ensure that the values in these fields do not have conflicting uses and to promote interoperability, their allocations are often coordinated by a central record keeper. For IETF protocols, that role is filled by the Internet Assigned Numbers Authority (IANA).
 To make assignments in a given registry prudently, guidance describing the conditions under which new values should be assigned, as well as when and how modifications to existing values can be made, is needed. This document defines a framework for the documentation of these guidelines by specification authors, in order to assure that the provided guidance for the IANA Considerations is clear and addresses the various issues that are likely in the operation of a registry.
 This is the third edition of this document; it obsoletes RFC 5226.

 YANG Tree Diagrams

 This document captures the current syntax used in YANG module tree diagrams. The purpose of this document is to provide a single location for this definition. This syntax may be updated from time to time based on the evolution of the YANG language.

 IANA Registry Updates for TLS and DTLS

 This document describes a number of changes to TLS and DTLS IANA registries that range from adding notes to the registry all the way to changing the registration policy. These changes were mostly motivated by WG review of the TLS- and DTLS-related registries undertaken as part of the TLS 1.3 development process.
 This document updates the following RFCs: 3749, 5077, 4680, 5246, 5705, 5878, 6520, and 7301.

 Transport Layer Security (TLS) Extension for Token Binding Protocol Negotiation

 This document specifies a Transport Layer Security (TLS) extension for the negotiation of Token Binding protocol version and key parameters. Negotiation of Token Binding in TLS 1.3 and later versions is beyond the scope of this document.

 DNS Queries over HTTPS (DoH)

 This document defines a protocol for sending DNS queries and getting DNS responses over HTTPS. Each DNS query-response pair is mapped into an HTTP exchange.

 Internet of Things (IoT) Security: State of the Art and Challenges

 The Internet of Things (IoT) concept refers to the usage of standard Internet protocols to allow for human-to-thing and thing-to-thing communication. The security needs for IoT systems are well recognized, and many standardization steps to provide security have been taken -- for example, the specification of the Constrained Application Protocol (CoAP) secured with Datagram Transport Layer Security (DTLS). However, security challenges still exist, not only because there are some use cases that lack a suitable solution, but also because many IoT devices and systems have been designed and deployed with very limited security capabilities. In this document, we first discuss the various stages in the lifecycle of a thing. Next, we document the security threats to a thing and the challenges that one might face to protect against these threats. Lastly, we discuss the next steps needed to facilitate the deployment of secure IoT systems. This document can be used by implementers and authors of IoT specifications as a reference for details about security considerations while documenting their specific security challenges, threat models, and mitigations.
 This document is a product of the IRTF Thing-to-Thing Research Group (T2TRG).

 Object Security for Constrained RESTful Environments (OSCORE)

 This document defines Object Security for Constrained RESTful Environments (OSCORE), a method for application-layer protection of the Constrained Application Protocol (CoAP), using CBOR Object Signing and Encryption (COSE). OSCORE provides end-to-end protection between endpoints communicating using CoAP or CoAP-mappable HTTP. OSCORE is designed for constrained nodes and networks supporting a range of proxy operations, including translation between different transport protocols.
 Although an optional functionality of CoAP, OSCORE alters CoAP options processing and IANA registration. Therefore, this document updates RFC 7252.

 CBOR Object Signing and Encryption (COSE): Structures and Process

 Concise Binary Object Representation (CBOR) is a data format designed for small code size and small message size. There is a need to be able to define basic security services for this data format. This document defines the CBOR Object Signing and Encryption (COSE) protocol. This specification describes how to create and process signatures, message authentication codes, and encryption using CBOR for serialization. This specification additionally describes how to represent cryptographic keys using CBOR.
 This document, along with RFC 9053, obsoletes RFC 8152.

 Recommendations for Secure Use of Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)

 Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS) are used to protect data exchanged over a wide range of application protocols and can also form the basis for secure transport protocols. Over the years, the industry has witnessed several serious attacks on TLS and DTLS, including attacks on the most commonly used cipher suites and their modes of operation. This document provides the latest recommendations for ensuring the security of deployed services that use TLS and DTLS. These recommendations are applicable to the majority of use cases.
 RFC 7525, an earlier version of the TLS recommendations, was published when the industry was transitioning to TLS 1.2. Years later, this transition is largely complete, and TLS 1.3 is widely available. This document updates the guidance given the new environment and obsoletes RFC 7525. In addition, this document updates RFCs 5288 and 6066 in view of recent attacks.

 Discovery of Designated Resolvers

 This document defines Discovery of Designated Resolvers (DDR), a set of mechanisms for DNS clients to use DNS records to discover a resolver's encrypted DNS configuration. An Encrypted DNS Resolver discovered in this manner is referred to as a "Designated Resolver". These mechanisms can be used to move from unencrypted DNS to encrypted DNS when only the IP address of a resolver is known. These mechanisms are designed to be limited to cases where Unencrypted DNS Resolvers and their Designated Resolvers are operated by the same entity or cooperating entities. It can also be used to discover support for encrypted DNS protocols when the name of an Encrypted DNS Resolver is known.

 DHCP and Router Advertisement Options for the Discovery of Network-designated Resolvers (DNR)

 This document specifies new DHCP and IPv6 Router Advertisement options to discover encrypted DNS resolvers (e.g., DNS over HTTPS, DNS over TLS, and DNS over QUIC). Particularly, it allows a host to learn an Authentication Domain Name together with a list of IP addresses and a set of service parameters to reach such encrypted DNS resolvers.

 Slowloris (cyber attack)

 Wikipedia

 TLS Encrypted Client Hello

 Independent

 Fastly

 Cryptography Consulting LLC

 Cloudflare

 This document describes a mechanism in Transport Layer Security (TLS)
 for encrypting a ClientHello message under a server public key.

Discussion Venues

 This note is to be removed before publishing as an RFC.

 Source for this draft and an issue tracker can be found at
 https://github.com/tlswg/draft-ietf-tls-esni
 (https://github.com/tlswg/draft-ietf-tls-esni).

 Work in Progress

 Information Technology - Open Systems Interconnection - The Directory: Models

 Guidelines for Authors and Reviewers of Documents Containing YANG Data Models

 YumaWorks

 Orange

 Huawei

 This memo provides guidelines for authors and reviewers of
 specifications containing YANG modules, including IANA-maintained
 modules. Recommendations and procedures are defined, which are
 intended to increase interoperability and usability of Network
 Configuration Protocol (NETCONF) and RESTCONF protocol
 implementations that utilize YANG modules. This document obsoletes
 RFC 8407.

 Also, this document updates RFC 8126 by providing additional
 guidelines for writing the IANA considerations for RFCs that specify
 IANA-maintained modules. The document also updates RFC 6020 by
 clarifying how modules and their revisions are handled by IANA.

 Work in Progress

 Acknowledgments
 Thanks to , , , ,
 , ,
 , ,
 , ,
 , ,
 , ,
 , and for the discussion and comments.
 Thanks to for YANGDOCTOR review. Thanks to for SECDIR review. Thanks to for OPSDIR review. Thanks to for DNSDIR review.
 Thanks to , , , , , ,
 and for the IESG review.

 Authors' Addresses

 Nokia

 India

 kondtir@gmail.com

 Citrix Systems, Inc.

 4988 Great America Pkwy
 Santa Clara
 CA
 95054
 United States of America

 danwing@gmail.com

 Cisco Systems, Inc.

 170 West Tasman Dr
 San Jose
 CA
 95134
 United States of America

 blake.anderson@cisco.com

