
RFC 9766
Extensions for Weak Cache Consistency in NFSv4.2's
Flexible File Layout

Abstract
This document specifies extensions to NFSv4.2 for improving Weak Cache Consistency (WCC).
These extensions introduce mechanisms that ensure partial writes performed under a Parallel
NFS (pNFS) layout remain coherent and correctly tracked. The solution addresses concurrency
and data integrity concerns that may arise when multiple clients write to the same file through
separate data servers. By defining additional interactions among clients, metadata servers, and
data servers, this specification enhances the reliability of NFSv4 in parallel-access environments
and ensures consistency across diverse deployment scenarios.

Stream: Internet Engineering Task Force (IETF)
RFC: 9766
Category: Standards Track
Published: April 2025
ISSN: 2070-1721
Authors: T. Haynes

Hammerspace
T. Myklebust
Hammerspace

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9766

Copyright Notice
Copyright (c) 2025 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions

https://trustee.ietf.org/license-info

Haynes & Myklebust Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9766
https://www.rfc-editor.org/info/rfc9766
https://trustee.ietf.org/license-info

with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

Table of Contents
1. Introduction

1.1. Definitions

1.2. Requirements Language

2. Weak Cache Consistency (WCC)

3. Operation 77: LAYOUT_WCC - Layout Weak Cache Consistency

3.1. ARGUMENT

3.2. RESULT

3.3. DESCRIPTION

3.4. Implementation

3.4.1. Examples of When to Use LAYOUT_WCC

3.4.2. Examples of What to Send in LAYOUT_WCC

3.5. Allowed Errors

3.6. Extension of Existing Implementations

3.7. Flexible File Layout Type

4. Extraction of XDR

5. Security Considerations

6. IANA Considerations

7. References

7.1. Normative References

7.2. Informative References

Acknowledgments

Authors' Addresses

3

3

3

4

5

5

5

6

6

6

7

7

8

8

9

10

10

10

10

11

11

11

RFC 9766 WCC in NFSv4.2's Flexible File Layout April 2025

Haynes & Myklebust Standards Track Page 2

1. Introduction
In the Parallel NFS (pNFS) flexible file layout (see), there is no mechanism for the data
servers to update the metadata servers when the data portion of the file is modified. The
metadata server needs this knowledge to correspondingly update the metadata portion of the
file. If the client is using NFSv3 as the protocol with the data server, it can leverage Weak Cache
Consistency (WCC) to update the metadata server of the attribute changes. In this document, we
introduce a new operation called LAYOUT_WCC to NFSv4.2, which allows the client to
periodically report the attributes of the data files to the metadata server.

Using the process detailed in , the revisions in this document become an extension of
NFSv4.2 . They are built on top of the External Data Representation (XDR)
generated from .

1.2. Requirements Language
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

[RFC8435]

[RFC8178]
[RFC7862] [RFC4506]

[RFC7863]

(file) data:

data server (DS):

(file) metadata:

metadata server (MDS):

storage device:

weak cache consistency (WCC):

1.1. Definitions
For a more comprehensive set of definitions, see .

that part of the file system object that contains the data to be read or written. It is
the contents of the object rather than the attributes of the object.

a pNFS server that provides the file's data when the file system object is
accessed over a file-based protocol.

the part of the file system object that contains various descriptive data relevant
to the file object, as opposed to the file data itself. This could include the time of last
modification, access time, EOF position, etc.

the pNFS server that provides metadata information for a file system
object.

the target to which clients may direct I/O requests when they hold an
appropriate layout. Note that each data server is a storage device but that some storage
device are not data servers. (See for a discussion on the difference
between a data server and a storage device.)

the mechanism in NFSv3 that allows the client to check for file
attribute changes before and after an operation (see).

Section 1.1 of [RFC8435]

Section 2.1 of [RFC8434]

Section 2.6 of [RFC1813]

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

RFC 9766 WCC in NFSv4.2's Flexible File Layout April 2025

Haynes & Myklebust Standards Track Page 3

https://rfc-editor.org/rfc/rfc8435#section-1.1
https://rfc-editor.org/rfc/rfc8434#section-2.1
https://rfc-editor.org/rfc/rfc1813#section-2.6

2. Weak Cache Consistency (WCC)
A pNFS layout type enables the metadata server to inform the client of both the storage protocol
and the locations of the data that the client should use when communicating with the storage
devices. The flexible file layout type, as specified in , describes how data servers using
NFSv3 can be accessed. The client is restricted to performing the following NFSv3 operations on
the filehandles provided in the layout: READ, WRITE, and COMMIT (see Sections 3.3.6, 3.3.7, and
3.3.21 of , respectively). In other words, the client may only use NFSv3 operations that
act directly on the data portion of the file.

Because there is no control protocol (see) possible with all data servers, NFSv3 is used
as the control protocol. As such, the following NFSv3 operations are commonly used by the
metadata server: CREATE, GETATTR, and SETATTR (see Sections 3.3.8, 3.3.1, and 3.3.2 of

, respectively). That is, the metadata server is only allowed to use NFSv3 operations
that directly act on the metadata portion of the data file. GETATTR allows the metadata server to
mainly retrieve the mtime (modify time), ctime (change time), and atime (access time). The
metadata server can use this information to determine if the client modified the file whilst it
held an iomode of LAYOUTIOMODE4_RW (see). Then it can
determine the following for the metadata file: time_modify, time_metadata, and time_access (see
Sections 5.8.2.43, 5.8.2.42, and 5.8.2.37 of , respectively). That is, it can determine the
information to return to clients in an NFSv4.2 GETATTR response.

For example, the metadata server might issue an NFSv3 GETATTR operation to the data server,
which is typically triggered by a client's NFSv4 GETATTR request to the metadata server. In
addition to the cost of each individual GETATTR operation, the data server can be overwhelmed
by a large volume of such requests. NFSv3 addressed a similar challenge by including a post-
operation attribute in the READ and WRITE operations to report WCC data (see

).

Each NFSv3 operation entails a single round trip between the client and server. Consequently,
issuing a WRITE followed by a GETATTR would require two round trips. In that situation, the
retrieved attribute information is regarded as having strict server-client consistency. By
contrast, NFSv4 enables a WRITE and GETATTR to be combined within a compound operation,
which requires only one round trip. This combined approach is likewise considered to have
strict server-client consistency. Essentially, NFSv4 READ and WRITE operations omit post-
operation attributes, allowing the client to determine whether it requires that information.

Whilst NFSv4 got rid of the requirement for WCC information to be supplied by the WRITE or
READ operations, the introduction of pNFS reintroduces the same problem. The metadata server
has to communicate with the data server in order to get the data that could be provided by a
WCC model.

[RFC8435]

[RFC1813]

[RFC8434]

[RFC1813]

Section 3.3.20 of [RFC8881]

[RFC8881]

Section 2.6 of
[RFC1813]

RFC 9766 WCC in NFSv4.2's Flexible File Layout April 2025

Haynes & Myklebust Standards Track Page 4

https://rfc-editor.org/rfc/rfc1813#section-3.3.6
https://rfc-editor.org/rfc/rfc1813#section-3.3.7
https://rfc-editor.org/rfc/rfc1813#section-3.3.21
https://rfc-editor.org/rfc/rfc1813#section-3.3.8
https://rfc-editor.org/rfc/rfc1813#section-3.3.1
https://rfc-editor.org/rfc/rfc1813#section-3.3.2
https://rfc-editor.org/rfc/rfc8881#section-3.3.20
https://rfc-editor.org/rfc/rfc8881#section-5.8.2.43
https://rfc-editor.org/rfc/rfc8881#section-5.8.2.42
https://rfc-editor.org/rfc/rfc8881#section-5.8.2.37
https://rfc-editor.org/rfc/rfc1813#section-2.6

With the flexible file layout type, the client can leverage the NFSv3 WCC to service the proxying
of times (see), but the granularity of this data is limited. With client-side
mirroring (see), the client has to aggregate the N mirrored files in order to
send one piece of information instead of N pieces of information. Also, the client is limited to
sending that information only when it returns the delegation.

This document introduces a new NFSv4.2 operation, LAYOUT_WCC, which enables the client to
provide the metadata server with information obtained from the data server. The client is
responsible for gathering the NFSv3 WCC data, returned by the three permissible NFSv3
operations, and conveying it back to the metadata server as part of NFSv4.2 attributes. The
metadata server therefore avoid issuing costly NFSv3 GETATTR calls to the data servers.
Because this approach relies on a weak model, the metadata server still perform these calls
if it chooses to strengthen the model.

Section 5 of [RFC9754]
Section 8 of [RFC8435]

MAY
MAY

3. Operation 77: LAYOUT_WCC - Layout Weak Cache
Consistency

3.1. ARGUMENT

stateid4 is defined in . layouttype4 is defined in
.

<CODE BEGINS>
/// struct LAYOUT_WCC4args {
/// stateid4 lowa_stateid;
/// layouttype4 lowa_type;
/// opaque lowa_body<>;
/// };

<CODE ENDS>

Section 3.3.12 of [RFC8881] Section 3.3.13 of
[RFC8881]

3.2. RESULT

nfsstat4 is defined in .

<CODE BEGINS>
/// struct LAYOUT_WCC4res {
/// nfsstat4 lowr_status;
/// };

<CODE ENDS>

Section 3.2 of [RFC8881]

RFC 9766 WCC in NFSv4.2's Flexible File Layout April 2025

Haynes & Myklebust Standards Track Page 5

https://rfc-editor.org/rfc/rfc9754#section-5
https://rfc-editor.org/rfc/rfc8435#section-8
https://rfc-editor.org/rfc/rfc8881#section-3.3.12
https://rfc-editor.org/rfc/rfc8881#section-3.3.13
https://rfc-editor.org/rfc/rfc8881#section-3.2

3.3. DESCRIPTION
The current filehandle and the lowa_stateid identify the specific layout for the LAYOUT_WCC
operation. The lowa_type indicates how to interpret the layout-type-specific payload contained
in the lowa_body field. The lowa_type is the corresponding value from the "pNFS Layout Types"
IANA registry for the layout type being used.

The lowa_body contains the data file attributes. The client is responsible for mapping NFSv3 post-
operation attributes to the fattr4 representation. Similar to the behavior of post-operation
attributes, the client may ignore these attributes, and the server may also choose to ignore any
attributes included in LAYOUT_WCC. However, the server can use these attributes to avoid
querying the data server for data file attributes. Because these attributes are optional and the
client has no recourse if the server opts to disregard them, there is no requirement to return a
bitmap4 indicating which attributes have been accepted in the LAYOUT_WCC result.

3.4. Implementation

3.4.1. Examples of When to Use LAYOUT_WCC

The only way for the metadata server to detect modifications to the data file is to probe the data
servers via a GETATTR. It can compare the mtime results across multiple calls to detect an NFSv3
WRITE operation by the client. Likewise, the atime results indicate the client having issued an
NFSv3 READ operation. As such, the client can leverage the LAYOUT_WCC operation whenever it
has the belief that the metadata server would need to refresh the attributes of the data files.
While the client can send a LAYOUT_WCC at any time, there are times it will want to do this
operation in order to avoid having the metadata server issue NFSv3 GETATTR requests to the
data servers:

Whenever it sends a GETATTR for any of the following attributes:

size (see)
space_used (see)
change (see)
time_access (see)
time_metadata (see)
time_modify (see)

Whenever it sends an NFS4ERR_ACCESS error via LAYOUTRETURN or LAYOUTERROR. It
could have already gotten the NFSv3 uid and gid values back in the WCC of the WRITE,
READ, or COMMIT operation that got the error. Thus, it could report that information back
to the metadata server, saving it from querying that information via an NFSv3 GETATTR.
Whenever it sends a SETATTR to refresh the proxied times (see). The
metadata server will correlate these times in order to detect later modification to the data
file.

•

◦ Section 5.8.1.5 of [RFC8881]
◦ Section 5.8.2.35 of [RFC8881]
◦ Section 5.8.1.4 of [RFC8881]
◦ Section 5.8.2.37 of [RFC8881]
◦ Section 5.8.2.42 of [RFC8881]
◦ Section 5.8.2.43 of [RFC8881]

•

• Section 5 of [RFC9754]

RFC 9766 WCC in NFSv4.2's Flexible File Layout April 2025

Haynes & Myklebust Standards Track Page 6

https://rfc-editor.org/rfc/rfc8881#section-5.8.1.5
https://rfc-editor.org/rfc/rfc8881#section-5.8.2.35
https://rfc-editor.org/rfc/rfc8881#section-5.8.1.4
https://rfc-editor.org/rfc/rfc8881#section-5.8.2.37
https://rfc-editor.org/rfc/rfc8881#section-5.8.2.42
https://rfc-editor.org/rfc/rfc8881#section-5.8.2.43
https://rfc-editor.org/rfc/rfc9754#section-5

3.4.2. Examples of What to Send in LAYOUT_WCC

The NFSv3 attributes returned in the WCC of WRITE, READ, and COMMIT operations are a
smaller subset of what can be transmitted as an NFSv4 attribute. The mapping of NFSv3 to
NFSv4 attributes is shown in Table 1. The LAYOUT_WCC provide all of these attributes to
the metadata server. Both the uid and gid are stringified into their respective attributes of owner
and owner_group. In the case of NFS4ERR_ACCESS, the reason to provide these two attributes is
that the metadata server can compare what it expects the values of the uid and gid of the data
file to be versus the actual values. It can then repair the permissions as needed or modify the
expected values it has cached.

MUST

NFSv3 Attribute NFSv4.2 Attribute

size size

used space_used

mode mode

uid owner

gid owner_group

atime time_access

mtime time_modify

ctime time_metadata

Table 1: NFSv3 to NFSv4.2 Attribute
Mappings

3.5. Allowed Errors
The LAYOUT_WCC operation can raise the errors listed in Table 2. When an error is encountered,
the metadata server can decide to ignore the entire operation, or depending on the layout-type-
specific payload, it could decide to apply a portion of the payload. Note that there are no new
errors introduced for the LAYOUT_WCC operation and the errors in Table 2 are each defined in

. Table 2 can be considered as an extension of .Section 15.1 of [RFC8881] Section 15.2 of [RFC8881]

RFC 9766 WCC in NFSv4.2's Flexible File Layout April 2025

Haynes & Myklebust Standards Track Page 7

https://rfc-editor.org/rfc/rfc8881#section-15.1
https://rfc-editor.org/rfc/rfc8881#section-15.2

Operation Errors

LAYOUT_WCC NFS4ERR_ADMIN_REVOKED, NFS4ERR_BADXDR, NFS4ERR_BAD_STATEID,
NFS4ERR_DEADSESSION, NFS4ERR_DELAY, NFS4ERR_DELEG_REVOKED,
NFS4ERR_EXPIRED, NFS4ERR_FHEXPIRED, NFS4ERR_GRACE,
NFS4ERR_INVAL, NFS4ERR_ISDIR, NFS4ERR_MOVED,
NFS4ERR_NOFILEHANDLE, NFS4ERR_NOTSUPP, NFS4ERR_NO_GRACE,
NFS4ERR_OLD_STATEID, NFS4ERR_OP_NOT_IN_SESSION,
NFS4ERR_REP_TOO_BIG, NFS4ERR_REP_TOO_BIG_TO_CACHE,
NFS4ERR_REQ_TOO_BIG, NFS4ERR_RETRY_UNCACHED_REP,
NFS4ERR_SERVERFAULT, NFS4ERR_STALE, NFS4ERR_TOO_MANY_OPS,
NFS4ERR_UNKNOWN_LAYOUTTYPE, NFS4ERR_WRONG_CRED,
NFS4ERR_WRONG_TYPE

Table 2: Operations and Their Valid Errors

3.6. Extension of Existing Implementations
The new LAYOUT_WCC operation is for both NFSv4.2 and the flexible file
layout type .

OPTIONAL [RFC7863]
[RFC8435]

3.7. Flexible File Layout Type

The results specific to the flexible file layout type correspond to the ff_layout4 data
structure as defined in . There be a one-to-one correspondence
between the following:

ff_data_server4 -> ff_data_server_wcc4
ff_mirror4 -> ff_mirror_wcc4
ff_layout4 -> ff_layout_wcc4

<CODE BEGINS>
/// struct ff_data_server_wcc4 {
/// deviceid4 ffdsw_deviceid;
/// stateid4 ffdsw_stateid;
/// nfs_fh4 ffdsw_fh_vers<>;
/// fattr4 ffdsw_attributes;
/// };
///
/// struct ff_mirror_wcc4 {
/// ff_data_server_wcc4 ffmw_data_servers<>;
/// };
///
/// struct ff_layout_wcc4 {
/// ff_mirror_wcc4 fflw_mirrors<>;
/// };

<CODE ENDS>

MUST
Section 5.1 of [RFC8435] MUST

•
•
•

RFC 9766 WCC in NFSv4.2's Flexible File Layout April 2025

Haynes & Myklebust Standards Track Page 8

https://rfc-editor.org/rfc/rfc8435#section-5.1

Each ff_layout4 has an array of ff_mirror4, which has an array of ff_data_server4. Based on the
current filehandle and the lowa_stateid, the server can match the reported attributes.

But the positional correspondence between the elements is not sufficient to determine the
attributes to update. Consider the case where a layout has three mirrors and two of them have
updated attributes but the third does not. A client could decide to present all three mirrors, with
one mirror having an attribute mask with no attributes present. Or it could decide to present
only the two mirrors that had been changed.

In either case, the combination of ffdsw_deviceid, ffdsw_stateid, and ffdsw_fh_vers will uniquely
identify the attributes to be updated. All three arguments are required. A layout might have
multiple data files on the same storage device, in which case the ffdsw_deviceid and
ffdsw_stateid would match, but the ffdsw_fh_vers would not.

The ffdsw_attributes are processed similar to the obj_attributes in the SETATTR arguments (see
).Section 18.30 of [RFC8881]

4. Extraction of XDR
This document contains the XDR description of the new NFSv4.2 operation
LAYOUT_WCC. The XDR description is embedded in this document in a way that makes it simple
for the reader to extract into a ready-to-compile form. The reader can feed this document into
the following shell script to produce the machine-readable XDR description of the new NFSv4.2
operation LAYOUT_WCC.

That is, if the above script is stored in a file called 'extract.sh', and this document is in a file called
'spec.txt', then the reader can do:

The effect of the script is to remove leading blank space from each line, plus a sentinel sequence
of '///'. XDR descriptions with the sentinel sequence are embedded throughout the document.

Note that the XDR code contained in this document depends on types from the NFSv4.2
nfs4_prot.x file (generated from). This includes both nfs types that end with a 4 (such
as offset4 and length4) as well as more generic types (such as uint32_t and uint64_t).

[RFC4506]

<CODE BEGINS>
#!/bin/sh
grep '^ *///' $* | sed 's?^ */// ??' | sed 's?^ *///$??'

<CODE ENDS>

<CODE BEGINS>
sh extract.sh < spec.txt > layout_wcc.x

<CODE ENDS>

[RFC7863]

RFC 9766 WCC in NFSv4.2's Flexible File Layout April 2025

Haynes & Myklebust Standards Track Page 9

https://rfc-editor.org/rfc/rfc8881#section-18.30

[RFC2119]

[RFC4506]

[RFC7862]

[RFC7863]

[RFC8174]

[RFC8178]

[RFC8434]

[RFC8435]

[RFC8881]

7. References

7.1. Normative References

, , ,
, , March 1997,
.

, , , ,
, May 2006, .

, ,
, , November 2016,

.

,
, , ,

November 2016, .

, ,
, , , May 2017,

.

, , ,
, July 2017, .

, , ,
, August 2018, .

 and , , ,
, August 2018, .

 and ,
, , , August 2020,

.

While the XDR can be appended to that from , the various code snippets belong in
their respective areas of that XDR.

[RFC7863]

5. Security Considerations
There are no new security considerations beyond those in .[RFC8435]

6. IANA Considerations
This document has no IANA actions.

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Eisler, M., Ed. "XDR: External Data Representation Standard" STD 67 RFC 4506
DOI 10.17487/RFC4506 <https://www.rfc-editor.org/info/rfc4506>

Haynes, T. "Network File System (NFS) Version 4 Minor Version 2 Protocol" RFC
7862 DOI 10.17487/RFC7862 <https://www.rfc-editor.org/info/
rfc7862>

Haynes, T. "Network File System (NFS) Version 4 Minor Version 2 External Data
Representation Standard (XDR) Description" RFC 7863 DOI 10.17487/RFC7863

<https://www.rfc-editor.org/info/rfc7863>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Noveck, D. "Rules for NFSv4 Extensions and Minor Versions" RFC 8178 DOI
10.17487/RFC8178 <https://www.rfc-editor.org/info/rfc8178>

Haynes, T. "Requirements for Parallel NFS (pNFS) Layout Types" RFC 8434 DOI
10.17487/RFC8434 <https://www.rfc-editor.org/info/rfc8434>

Halevy, B. T. Haynes "Parallel NFS (pNFS) Flexible File Layout" RFC 8435
DOI 10.17487/RFC8435 <https://www.rfc-editor.org/info/rfc8435>

Noveck, D., Ed. C. Lever "Network File System (NFS) Version 4 Minor
Version 1 Protocol" RFC 8881 DOI 10.17487/RFC8881 <https://
www.rfc-editor.org/info/rfc8881>

RFC 9766 WCC in NFSv4.2's Flexible File Layout April 2025

Haynes & Myklebust Standards Track Page 10

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc4506
https://www.rfc-editor.org/info/rfc7862
https://www.rfc-editor.org/info/rfc7862
https://www.rfc-editor.org/info/rfc7863
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8178
https://www.rfc-editor.org/info/rfc8434
https://www.rfc-editor.org/info/rfc8435
https://www.rfc-editor.org/info/rfc8881
https://www.rfc-editor.org/info/rfc8881

[RFC9754]

[RFC1813]

 and ,
, , , March 2025,

.

7.2. Informative References

, , and ,
, , , June 1995,

.

Acknowledgments
, , and provided reviews of the document.

Haynes, T. T. Myklebust "Extensions for Opening and Delegating Files in
NFSv4.2" RFC 9754 DOI 10.17487/RFC9754 <https://www.rfc-
editor.org/info/rfc9754>

Callaghan, B. Pawlowski, B. P. Staubach "NFS Version 3 Protocol
Specification" RFC 1813 DOI 10.17487/RFC1813 <https://www.rfc-
editor.org/info/rfc1813>

Dave Noveck Tigran Mkrtchyan Rick Macklem

Authors' Addresses
Thomas Haynes
Hammerspace

loghyr@gmail.comEmail:

Trond Myklebust
Hammerspace

trondmy@hammerspace.comEmail:

RFC 9766 WCC in NFSv4.2's Flexible File Layout April 2025

Haynes & Myklebust Standards Track Page 11

https://www.rfc-editor.org/info/rfc9754
https://www.rfc-editor.org/info/rfc9754
https://www.rfc-editor.org/info/rfc1813
https://www.rfc-editor.org/info/rfc1813
mailto:loghyr@gmail.com
mailto:trondmy@hammerspace.com

	RFC 9766
	Extensions for Weak Cache Consistency in NFSv4.2's Flexible File Layout
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Definitions
	1.2. Requirements Language

	2. Weak Cache Consistency (WCC)
	3. Operation 77: LAYOUT_WCC - Layout Weak Cache Consistency
	3.1. ARGUMENT
	3.2. RESULT
	3.3. DESCRIPTION
	3.4. Implementation
	3.4.1. Examples of When to Use LAYOUT_WCC
	3.4.2. Examples of What to Send in LAYOUT_WCC

	3.5. Allowed Errors
	3.6. Extension of Existing Implementations
	3.7. Flexible File Layout Type

	4. Extraction of XDR
	5. Security Considerations
	6. IANA Considerations
	7. References
	7.1. Normative References
	7.2. Informative References

	Acknowledgments
	Authors' Addresses

 Extensions for Weak Cache Consistency in NFSv4.2's Flexible File Layout

 Hammerspace

 loghyr@gmail.com

 Hammerspace

 trondmy@hammerspace.com

 WIT
 nfsv4

 This document specifies extensions to NFSv4.2 for improving Weak Cache
 Consistency (WCC). These extensions introduce mechanisms that ensure
 partial writes performed under a Parallel NFS (pNFS) layout remain
 coherent and correctly tracked. The solution addresses concurrency and
 data integrity concerns that may arise when multiple clients write to
 the same file through separate data servers. By defining additional
 interactions among clients, metadata servers, and data servers, this
 specification enhances the reliability of NFSv4 in parallel-access
 environments and ensures consistency across diverse deployment
 scenarios.

 Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further
 information on Internet Standards is available in Section 2 of
 RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2025 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Revised BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Revised BSD License.

 Table of Contents

 . Introduction

 . Definitions

 . Requirements Language

 . Weak Cache Consistency (WCC)

 . Operation 77: LAYOUT_WCC - Layout Weak Cache Consistency

 . ARGUMENT

 . RESULT

 . DESCRIPTION

 . Implementation

 . Examples of When to Use LAYOUT_WCC

 . Examples of What to Send in LAYOUT_WCC

 . Allowed Errors

 . Extension of Existing Implementations

 . Flexible File Layout Type

 . Extraction of XDR

 . Security Considerations

 . IANA Considerations

 . References

 . Normative References

 . Informative References

 Acknowledgments

 Authors' Addresses

 Introduction

 In the Parallel NFS (pNFS)
 flexible file layout (see), there is no mechanism for the data servers to
 update the metadata servers when the data portion of the file is
 modified. The metadata server needs this knowledge to correspondingly
 update the metadata portion of the file. If the client is using NFSv3 as
 the protocol with the data server, it can leverage Weak Cache Consistency
 (WCC) to update the metadata server of the attribute changes. In this
 document, we introduce a new operation called LAYOUT_WCC to NFSv4.2, which
 allows the client to periodically report the attributes of the data files
 to the metadata server.

 Using the process detailed in , the revisions in this document become an
 extension of NFSv4.2 . They are built on top of the External Data
 Representation (XDR) generated from .

 Definitions

 For a more comprehensive set of definitions, see .

 (file) data:

 that part of the file system object that contains the
 data to be read or written. It is the contents of the object
 rather than the attributes of the object.

 data server (DS):

 a pNFS server that provides the file's data when
 the file system object is accessed over a file-based protocol.

 (file) metadata:

 the part of the file system object that contains
 various descriptive data relevant to the file object, as opposed
 to the file data itself. This could include the time of last
 modification, access time, EOF position, etc.

 metadata server (MDS):

 the pNFS server that provides metadata
 information for a file system object.

 storage device:

 the target to which clients may direct I/O requests
 when they hold an appropriate layout. Note that each data server
 is a storage device but that some storage device are not data
 servers. (See
 for a discussion on the difference between a data server
 and a storage device.)

 weak cache consistency (WCC):

 the mechanism in NFSv3 that allows the client to check for file attribute changes
 before and after an operation (see).

 Requirements Language

 The key words " MUST", " MUST NOT", " REQUIRED", " SHALL", " SHALL NOT", " SHOULD", " SHOULD NOT", " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are to be interpreted as
 described in BCP 14
 when, and only when, they appear in all capitals, as shown here.

 Weak Cache Consistency (WCC)

 A pNFS layout type enables the metadata server to inform the client of
 both the storage protocol and the locations of the data that the client
 should use when communicating with the storage devices. The flexible
 file layout type, as specified in , describes
 how data servers using NFSv3 can be accessed. The client is restricted
 to performing the following NFSv3 operations on the filehandles
 provided in the layout: READ, WRITE, and COMMIT (see Sections , , and of , respectively). In other words, the client may only use NFSv3
 operations that act directly on the data portion of the file.

 Because there is no control protocol (see) possible with all data servers,
 NFSv3 is used as the control protocol. As such, the following NFSv3
 operations are commonly used by the metadata server: CREATE, GETATTR,
 and SETATTR (see Sections , , and of , respectively). That
 is, the metadata server is only allowed to use NFSv3 operations that
 directly act on the metadata portion of the data file. GETATTR allows
 the metadata server to mainly retrieve the mtime (modify time), ctime
 (change time), and atime (access time). The metadata server can use
 this information to determine if the client modified the file whilst it
 held an iomode of LAYOUTIOMODE4_RW (see). Then it can determine the
 following for the metadata file: time_modify, time_metadata, and
 time_access (see Sections , , and of , respectively). That
 is, it can determine the information to return to clients in an NFSv4.2
 GETATTR response.

 For example, the metadata server might issue an NFSv3 GETATTR operation
 to the data server, which is typically triggered by a client's NFSv4
 GETATTR request to the metadata server. In addition to the cost of each
 individual GETATTR operation, the data server can be overwhelmed by a
 large volume of such requests. NFSv3 addressed a similar challenge by
 including a post-operation attribute in the READ and WRITE operations
 to report WCC data (see).

 Each NFSv3 operation entails a single round trip between the
 client and server. Consequently, issuing a WRITE followed by
 a GETATTR would require two round trips. In that situation, the
 retrieved attribute information is regarded as having strict server-client
 consistency. By contrast, NFSv4 enables a WRITE and GETATTR to
 be combined within a compound operation, which requires only
 one round trip. This combined approach is likewise considered to have
 strict server-client consistency. Essentially, NFSv4 READ and
 WRITE operations omit post-operation attributes, allowing the
 client to determine whether it requires that information.

 Whilst NFSv4 got rid of the requirement for WCC information to
 be supplied by the WRITE or READ operations, the introduction
 of pNFS reintroduces the same problem. The metadata server
 has to communicate with the data server in order to get
 the data that could be provided by a WCC model.

 With the flexible file layout type, the client can leverage
 the NFSv3 WCC to service the proxying of times (see),
 but the granularity of this data is limited. With client-side
 mirroring (see), the client has to aggregate the N mirrored
 files in order to send one piece of information instead of N
 pieces of information. Also, the client is limited to sending
 that information only when it returns the delegation.

 This document introduces a new NFSv4.2 operation, LAYOUT_WCC,
 which enables the client to provide the metadata server with
 information obtained from the data server. The client is
 responsible for gathering the NFSv3 WCC data, returned by the
 three permissible NFSv3 operations, and conveying it back to
 the metadata server as part of NFSv4.2 attributes. The metadata
 server MAY therefore avoid issuing costly NFSv3
 GETATTR calls to the data servers. Because this approach relies
 on a weak model, the metadata server MAY still
 perform these calls if it chooses to strengthen the model.

 Operation 77: LAYOUT_WCC - Layout Weak Cache Consistency

 ARGUMENT

/// struct LAYOUT_WCC4args {
/// stateid4 lowa_stateid;
/// layouttype4 lowa_type;
/// opaque lowa_body<>;
/// };

 stateid4 is defined in . layouttype4 is defined in .

 RESULT

/// struct LAYOUT_WCC4res {
/// nfsstat4 lowr_status;
/// };

 nfsstat4 is defined in .

 DESCRIPTION

 The current filehandle and the lowa_stateid identify the specific
 layout for the LAYOUT_WCC operation. The lowa_type indicates how
 to interpret the layout-type-specific payload contained in the
 lowa_body field. The lowa_type is the corresponding value
 from the "pNFS Layout Types" IANA registry for the layout
 type being used.

 The lowa_body contains the data file attributes. The client is
 responsible for mapping NFSv3 post-operation attributes to the
 fattr4 representation. Similar to the behavior of post-operation
 attributes, the client may ignore these attributes, and the
 server may also choose to ignore any attributes included in
 LAYOUT_WCC. However, the server can use these attributes to avoid
 querying the data server for data file attributes. Because these
 attributes are optional and the client has no recourse if the
 server opts to disregard them, there is no requirement to return
 a bitmap4 indicating which attributes have been accepted in the
 LAYOUT_WCC result.

 Implementation

 Examples of When to Use LAYOUT_WCC

 The only way for the metadata server to detect modifications
 to the data file is to probe the data servers via a GETATTR. It
 can compare the mtime results across multiple calls to detect an
 NFSv3 WRITE operation by the client. Likewise, the atime results
 indicate the client having issued an NFSv3 READ operation. As such,
 the client can leverage the LAYOUT_WCC operation whenever it
 has the belief that the metadata server would need to refresh
 the attributes of the data files. While the client can send a
 LAYOUT_WCC at any time, there are times it will want to do this
 operation in order to avoid having the metadata server issue
 NFSv3 GETATTR requests to the data servers:

 Whenever it sends a GETATTR for any of the following attributes:

 size (see)
 space_used (see)
 change (see)
 time_access (see)
 time_metadata (see)
 time_modify (see
)

 Whenever it sends an NFS4ERR_ACCESS error via LAYOUTRETURN or LAYOUTERROR. It could
 have already gotten the NFSv3 uid and gid values back in the WCC of the WRITE,
 READ, or COMMIT operation that got the error. Thus, it could report that information
 back to the metadata server, saving it from querying that information via an NFSv3 GETATTR.

 Whenever it sends a SETATTR to refresh the proxied times (see). The metadata server will
 correlate these times in order to detect later modification to
 the data file.

 Examples of What to Send in LAYOUT_WCC

 The NFSv3 attributes returned in the WCC of WRITE, READ, and COMMIT operations are a smaller subset
 of what can be transmitted as an NFSv4 attribute. The mapping of NFSv3 to NFSv4 attributes
 is shown in .
 The LAYOUT_WCC MUST provide all of these attributes to the metadata server.
 Both the uid and gid are stringified into their respective attributes of owner and owner_group.
 In the case of NFS4ERR_ACCESS, the reason to provide these two attributes is that the metadata
 server can compare what it expects the values of the uid and gid of the data file
 to be versus the actual values. It can then repair the permissions as needed or
 modify the expected values it has cached.

 NFSv3 to NFSv4.2 Attribute Mappings

 NFSv3 Attribute
 NFSv4.2 Attribute

 size
 size

 used
 space_used

 mode
 mode

 uid
 owner

 gid
 owner_group

 atime
 time_access

 mtime
 time_modify

 ctime
 time_metadata

 Allowed Errors

 The LAYOUT_WCC operation can raise the errors listed in . When an error is
 encountered, the metadata server can decide to ignore the entire
 operation, or depending on the layout-type-specific payload, it could
 decide to apply a portion of the payload. Note that there are no new
 errors introduced for the LAYOUT_WCC operation and the errors in are each defined in
 . can be considered as an
 extension of .

 Operations and Their Valid Errors

 Operation
 Errors

 LAYOUT_WCC

 NFS4ERR_ADMIN_REVOKED,
 NFS4ERR_BADXDR,
 NFS4ERR_BAD_STATEID,
 NFS4ERR_DEADSESSION,
 NFS4ERR_DELAY,
 NFS4ERR_DELEG_REVOKED,
 NFS4ERR_EXPIRED,
 NFS4ERR_FHEXPIRED,
 NFS4ERR_GRACE,
 NFS4ERR_INVAL,
 NFS4ERR_ISDIR,
 NFS4ERR_MOVED,
 NFS4ERR_NOFILEHANDLE,
 NFS4ERR_NOTSUPP,
 NFS4ERR_NO_GRACE,
 NFS4ERR_OLD_STATEID,
 NFS4ERR_OP_NOT_IN_SESSION,
 NFS4ERR_REP_TOO_BIG,
 NFS4ERR_REP_TOO_BIG_TO_CACHE,
 NFS4ERR_REQ_TOO_BIG,
 NFS4ERR_RETRY_UNCACHED_REP,
 NFS4ERR_SERVERFAULT,
 NFS4ERR_STALE,
 NFS4ERR_TOO_MANY_OPS,
 NFS4ERR_UNKNOWN_LAYOUTTYPE,
 NFS4ERR_WRONG_CRED,
 NFS4ERR_WRONG_TYPE

 Extension of Existing Implementations

 The new LAYOUT_WCC operation is OPTIONAL for both
 NFSv4.2
 and the flexible file layout type .

 Flexible File Layout Type

/// struct ff_data_server_wcc4 {
/// deviceid4 ffdsw_deviceid;
/// stateid4 ffdsw_stateid;
/// nfs_fh4 ffdsw_fh_vers<>;
/// fattr4 ffdsw_attributes;
/// };
///
/// struct ff_mirror_wcc4 {
/// ff_data_server_wcc4 ffmw_data_servers<>;
/// };
///
/// struct ff_layout_wcc4 {
/// ff_mirror_wcc4 fflw_mirrors<>;
/// };

 The results specific to the flexible file layout type MUST
 correspond to the ff_layout4 data structure as defined in . There
 MUST be a one-to-one correspondence between the following:

 ff_data_server4 -> ff_data_server_wcc4

 ff_mirror4 -> ff_mirror_wcc4

 ff_layout4 -> ff_layout_wcc4

 Each ff_layout4 has an array of ff_mirror4, which has an array of ff_data_server4.
 Based on the current filehandle and the lowa_stateid, the server can match the
 reported attributes.

 But the positional correspondence between the elements is not
 sufficient to determine the attributes to update. Consider the
 case where a layout has three mirrors and two of them have updated
 attributes but the third does not. A client could decide to present
 all three mirrors, with one mirror having an attribute mask with
 no attributes present. Or it could decide to present only the
 two mirrors that had been changed.

 In either case, the combination of ffdsw_deviceid, ffdsw_stateid, and
 ffdsw_fh_vers will uniquely identify the attributes to be updated.
 All three arguments are required. A layout might have multiple data
 files on the same storage device, in which case the ffdsw_deviceid and
 ffdsw_stateid would match, but the ffdsw_fh_vers would not.

 The ffdsw_attributes are processed similar to the obj_attributes in
 the SETATTR arguments (see).

 Extraction of XDR

 This document contains the XDR
 description of the new NFSv4.2 operation LAYOUT_WCC.
 The XDR description is embedded in this
 document in a way that makes it simple for the reader to extract
 into a ready-to-compile form. The reader can feed this document
 into the following shell script to produce the machine-readable
 XDR description of the new NFSv4.2 operation LAYOUT_WCC.

#!/bin/sh
grep '^ *///' $* | sed 's?^ */// ??' | sed 's?^ *///$??'

 That is, if the above script is stored in a file called 'extract.sh', and
 this document is in a file called 'spec.txt', then the reader can do:

sh extract.sh < spec.txt > layout_wcc.x

 The effect of the script is to remove leading blank space from each
 line, plus a sentinel sequence of '///'. XDR descriptions with the
 sentinel sequence are embedded throughout the document.

 Note that the XDR code contained in this document depends on types
 from the NFSv4.2 nfs4_prot.x file (generated from).
 This includes both nfs types that end with a 4 (such as offset4 and
 length4) as well as more generic types (such as uint32_t and
 uint64_t).

 While the XDR can be appended to that from ,
 the various code snippets belong in their respective areas of
 that XDR.

 Security Considerations

 There are no new security considerations beyond those in
 .

 IANA Considerations
 This document has no IANA actions.

 References

 Normative References

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 XDR: External Data Representation Standard

 This document describes the External Data Representation Standard (XDR) protocol as it is currently deployed and accepted. This document obsoletes RFC 1832. [STANDARDS-TRACK]

 Network File System (NFS) Version 4 Minor Version 2 Protocol

 This document describes NFS version 4 minor version 2; it describes the protocol extensions made from NFS version 4 minor version 1. Major extensions introduced in NFS version 4 minor version 2 include the following: Server-Side Copy, Application Input/Output (I/O) Advise, Space Reservations, Sparse Files, Application Data Blocks, and Labeled NFS.

 Network File System (NFS) Version 4 Minor Version 2 External Data Representation Standard (XDR) Description

 This document provides the External Data Representation (XDR) description for NFS version 4 minor version 2.

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 Rules for NFSv4 Extensions and Minor Versions

 This document describes the rules relating to the extension of the NFSv4 family of protocols. It covers the creation of minor versions, the addition of optional features to existing minor versions, and the correction of flaws in features already published as Proposed Standards. The rules relating to the construction of minor versions and the interaction of minor version implementations that appear in this document supersede the minor versioning rules in RFC 5661 and other RFCs defining minor versions.

 Requirements for Parallel NFS (pNFS) Layout Types

 This document defines the requirements that individual Parallel NFS (pNFS) layout types need to meet in order to work within the pNFS framework as defined in RFC 5661. In so doing, this document aims to clearly distinguish between requirements for pNFS as a whole and those specifically directed to the pNFS file layout. The lack of a clear separation between the two sets of requirements has been troublesome for those specifying and evaluating new layout types. In this regard, this document updates RFC 5661.

 Parallel NFS (pNFS) Flexible File Layout

 Parallel NFS (pNFS) allows a separation between the metadata (onto a metadata server) and data (onto a storage device) for a file. The flexible file layout type is defined in this document as an extension to pNFS that allows the use of storage devices that require only a limited degree of interaction with the metadata server and use already-existing protocols. Client-side mirroring is also added to provide replication of files.

 Network File System (NFS) Version 4 Minor Version 1 Protocol

 This document describes the Network File System (NFS) version 4 minor version 1, including features retained from the base protocol (NFS version 4 minor version 0, which is specified in RFC 7530) and protocol extensions made subsequently. The later minor version has no dependencies on NFS version 4 minor version 0, and is considered a separate protocol.
 This document obsoletes RFC 5661. It substantially revises the treatment of features relating to multi-server namespace, superseding the description of those features appearing in RFC 5661.

 Extensions for Opening and Delegating Files in NFSv4.2

 The Network File System v4 (NFSv4) allows a client to both open a file and be granted a delegation of that file. This delegation provides the client the right to authoritatively cache metadata on the file locally. This document presents several extensions for both opening the file and delegating it to the client. This document extends NFSv4.2 (see RFC 7863).

 Informative References

 NFS Version 3 Protocol Specification

 This paper describes the NFS version 3 protocol. This paper is provided so that people can write compatible implementations. This memo provides information for the Internet community. This memo does not specify an Internet standard of any kind.

 Acknowledgments
 , , and provided reviews of
 the document.

 Authors' Addresses

 Hammerspace

 loghyr@gmail.com

 Hammerspace

 trondmy@hammerspace.com

