
RFC 9783
Arm's Platform Security Architecture (PSA)
Attestation Token

Abstract
Arm's Platform Security Architecture (PSA) is a family of hardware and firmware security
specifications, along with open-source reference implementations, aimed at helping device
makers and chip manufacturers integrate best-practice security into their products. Devices that
comply with PSA can generate attestation tokens as described in this document, which serve as
the foundation for various protocols, including secure provisioning and network access control.
This document specifies the structure and semantics of the PSA attestation token.

The PSA attestation token is a profile of the Entity Attestation Token (EAT). This specification
describes the claims used in an attestation token generated by PSA-compliant systems, how these
claims are serialized for transmission, and how they are cryptographically protected.

This Informational document is published as an Independent Submission to improve
interoperability with Arm's architecture. It is not a standard nor a product of the IETF.

Stream: Independent Submission
RFC: 9783
Category: Informational
Published: June 2025
ISSN: 2070-1721
Authors: H. Tschofenig

H-BRS
S. Frost
Arm Limited

M. Brossard
Arm Limited

A. Shaw
HP Labs

T. Fossati
Linaro

Status of This Memo
This document is not an Internet Standards Track specification; it is published for informational
purposes.

This is a contribution to the RFC Series, independently of any other RFC stream. The RFC Editor
has chosen to publish this document at its discretion and makes no statement about its value for
implementation or deployment. Documents approved for publication by the RFC Editor are not
candidates for any level of Internet Standard; see Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9783

Tschofenig, et al. Informational Page 1

https://www.rfc-editor.org/rfc/rfc9783
https://www.rfc-editor.org/info/rfc9783

Copyright Notice
Copyright (c) 2025 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document.

https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

2. Conventions and Definitions

3. PSA Attester Model

4. PSA Claims

4.1. Caller Claims

4.1.1. Nonce

4.1.2. Client ID

4.2. Target Identification Claims

4.2.1. Instance ID

4.2.2. Implementation ID

4.2.3. Certification Reference

4.3. Target State Claims

4.3.1. Security Lifecycle

4.3.2. Boot Seed

4.4. Software Inventory Claims

4.4.1. Software Components

4.5. Verification Claims

4.5.1. Verification Service Indicator

4.5.2. Profile Definition

4.6. Backwards Compatibility Considerations

4

4

5

8

9

9

9

10

10

10

11

11

11

13

14

14

15

16

16

17

RFC 9783 Arm's PSA Attestation Token June 2025

Tschofenig, et al. Informational Page 2

https://trustee.ietf.org/license-info

5. Profiles

5.1. Baseline Profile

5.1.1. Token Encoding and Signing

5.1.2. Freshness Model

5.1.3. Synopsis

5.2. Profile TFM

6. Collated CDDL

7. Scalability Considerations

8. PSA Token Verification

8.1. AR4SI Trustworthiness Claims Mappings

8.2. Endorsements, Reference Values, and Verification Key Material

9. Security and Privacy Considerations

10. IANA Considerations

10.1. CBOR Web Token Claims Registration

10.1.1. Client ID Claim

10.1.2. Security Lifecycle Claim

10.1.3. Implementation ID Claim

10.1.4. Certification Reference Claim

10.1.5. Software Components Claim

10.1.6. Verification Service Indicator Claim

10.2. Media Types

10.3. CoAP Content-Formats Registration

10.3.1. Registry Contents

11. References

11.1. Normative References

11.2. Informative References

Appendix A. Examples

A.1. COSE Sign1 Token

A.2. COSE Mac0 Token

Acknowledgments

18

18

18

19

19

20

21

23

23

24

25

25

26

26

26

26

26

26

27

27

27

27

27

28

28

29

31

32

34

35

RFC 9783 Arm's PSA Attestation Token June 2025

Tschofenig, et al. Informational Page 3

Contributors

Authors' Addresses

35

36

1. Introduction
The Platform Security Architecture (PSA) is a set of hardware and firmware specifications
backed by reference implementations and a security certification program . The
security specifications have been published by Arm, while the certification program and
reference implementations are the result of a collaborative effort by companies from multiple
sectors, including evaluation laboratories, IP semiconductor vendors, and security
consultancies. The main objective of the PSA initiative is to assist device manufacturers and chip
makers in incorporating best-practice security measures into their products.

Many devices now have Trusted Execution Environments (TEEs) that provide a safe space for
security-sensitive code, such as cryptography, secure boot, secure storage, and other essential
security functions. These security functions are typically exposed through a narrow and well-
defined interface, and can be used by operating system libraries and applications.

As outlined in the Remote ATtestation procedureS (RATS) Architecture , an Attester
produces a signed collection of Claims that constitutes Evidence about its Target Environment.
This document focuses on the output provided by PSA's Initial Attestation API . This
output corresponds to Evidence in and, as a design decision, the PSA attestation token
is a profile of the Entity Attestation Token (EAT) . Note that there are other profiles of EAT
available for use with different use cases and by different attestation technologies, such as

 and .

Since the PSA tokens are also consumed by services outside the device, there is an actual need to
ensure interoperability. Interoperability needs are addressed here by describing the exact
syntax and semantics of the attestation claims, and defining the way these claims are encoded
and cryptographically protected.

Further details on concepts expressed below can be found in the PSA Security Model
documentation .

As mentioned in the abstract, this memo documents a vendor extension to the RATS architecture
and is not a standard.

[PSA]
[PSACertified]

[RFC9334]

[PSA-API]
[RFC9334]

[EAT]
[RATS-

TDX] [RATS-QWESTOKEN]

[PSA-SM]

2. Conventions and Definitions
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

RFC 9783 Arm's PSA Attestation Token June 2025

Tschofenig, et al. Informational Page 4

The terms Attester, Relying Party, Verifier, Attestation Result, Target Environment, Attesting
Environment, and Evidence are defined in . We use the term "receiver" to refer to
Relying Parties and Verifiers.

We use the terms Evidence, "PSA attestation token", and "PSA token" interchangeably. The terms
"sender" and Attester are used interchangeably. Likewise, we use the terms Verifier and
"verification service" interchangeably.

Root of Trust (RoT):
The minimal set of software, hardware, and data that has to be implicitly trusted in the
platform; there is no software or hardware at a deeper level that can verify that the RoT is
authentic and unmodified. An example of RoT is an initial bootloader in ROM, which contains
cryptographic functions and credentials, running on a specific hardware platform.

Secure Processing Environment (SPE):
A platform's processing environment for software that provides confidentiality and integrity
for its runtime state, from software and hardware, outside of the SPE. Contains trusted code
and trusted hardware. (Equivalent to a TEE, "secure world", or "secure enclave".)

Non-Secure Processing Environment (NSPE):
The security domain (Application domain) outside of the SPE that typically contains the
application firmware, real-time operating systems, applications, and general hardware.
(Equivalent to Rich Execution Environment (REE), or "normal world".)

In this document, the structure of data is specified in Concise Data Definition Language (CDDL)
.

[RFC9334]

[RFC8610]

3. PSA Attester Model
Figure 1 outlines the structure of the PSA Attester according to the conceptual model described in

.Section 3.1 of [RFC9334]

RFC 9783 Arm's PSA Attestation Token June 2025

Tschofenig, et al. Informational Page 5

https://rfc-editor.org/rfc/rfc9334#section-3.1

The PSA Attester is a relatively straightforward embodiment of the RATS Attester with exactly
one Attesting Environment and one or more Target Environments.

The Attesting Environment is responsible for collecting the information to be represented in PSA
claims and to assemble them into Evidence. The Attesting Environment is made of two
cooperating components:

Executing at boot-time, the Main Bootloader measures the Target Environments (i.e., loaded
software components and all the relevant PSA RoT parameters) and stores the recorded
information in secure memory (Main Boot State). See Figure 2.

Figure 1: PSA Attester

Verifier

PSA Token

Attesting Environment

Main Main Initial
Bootloader Boot Attestation

W State R Service

Updateable Application Application PSA RoT
PSA RoT RoT Loader Parameters

Target Environment

Legend:
read write measure

R W

•

RFC 9783 Arm's PSA Attestation Token June 2025

Tschofenig, et al. Informational Page 6

The Initial Attestation Service (executing at run-time in SPE) answers requests coming from
NSPE via the PSA attestation API , collects and formats the claims from Main Boot
State, and uses the Initial Attestation Key (IAK) to sign them and produce Evidence. See
Figure 3.

The word "Initial" in "Initial Attestation Service" refers to a limited set of Target Environments,
namely those representing the first foundational stages establishing the chain of trust of a PSA
device. Collecting measurements from Target Environments after this initial phase is outside the
scope of this specification. Extensions of this specification could collect up-to-date measurements
from additional Target Environments and define additional claims for use within those
environments, but these are, by definition, custom.

Figure 2: PSA Attester Boot Phase

i-th Target Main Boot Main Boot
Environment Loader State

loop i
measure

write
measurement

•
[PSA-API]

RFC 9783 Arm's PSA Attestation Token June 2025

Tschofenig, et al. Informational Page 7

The Target Environments can be of four types, some of which may or may not be present
depending on the device architecture:

(A subset of) the PSA RoT parameters, including Instance and Implementation IDs.
The updateable PSA RoT, including the Secure Partition Manager and all PSA RoT services.
The (optional) Application RoT, that is any application-defined security service possibly
making use of the PSA RoT services.
The loader of the application software running in NSPE.

A reference implementation of the PSA Attester is provided by .

Figure 3: PSA Attester Run-Time Phase

Initial
Main Boot Attestation

State Service Verifier

loop i read
measurement of
i-th Target
Environment

sign

PSA Token

•
•
•

•

[TF-M]

4. PSA Claims
This section describes the claims to be used in a PSA attestation token. A more comprehensive
treatment of the EAT profiles defined by PSA is found in Section 5.

CDDL along with text descriptions is used to define each claim independent of
encoding. The following CDDL types are reused by different claims:

Two conventions are used to encode the Right-Hand-Side (RHS) of a claim. The postfix -label is
used for EAT-defined claims and the postfix -key is used for PSA-originated claims.

[RFC8610]

psa-hash-type = bytes .size 32 / bytes .size 48 / bytes .size 64

RFC 9783 Arm's PSA Attestation Token June 2025

Tschofenig, et al. Informational Page 8

4.1. Caller Claims

4.1.1. Nonce

The EAT "nonce" (claim key 10) is used to carry the challenge provided by the caller to
demonstrate freshness of the generated token.

Since the EAT nonce claim offers flexibility for different attestation technologies, this
specification applies the following constraints to the nonce-type:

The length be either 32, 48, or 64 bytes.
Only a single nonce value is conveyed. The array notation be used for encoding
the nonce value.

This claim be present in a PSA attestation token.

[EAT]

• MUST

• MUST NOT

MUST

psa-nonce = (
 nonce-label => psa-hash-type
)

4.1.2. Client ID

The Client ID claim represents the security domain of the caller.

In PSA, a security domain is represented by a signed integer whereby negative values represent
callers from the NSPE and where positive IDs represent callers from the SPE. The value 0 is not
permitted.

For an example definition of client IDs, see the PSA Firmware Framework .

It is essential that this claim is checked in the verification process to ensure that a security
domain, i.e., an attestation endpoint, cannot spoof a report from another security domain.

This claim be present in a PSA attestation token.

[PSA-FF]

MUST

psa-client-id-nspe-type = -2147483648...0
psa-client-id-spe-type = 1..2147483647

psa-client-id-type = psa-client-id-nspe-type / psa-client-id-spe-type

psa-client-id = (
 psa-client-id-key => psa-client-id-type
)

RFC 9783 Arm's PSA Attestation Token June 2025

Tschofenig, et al. Informational Page 9

4.2. Target Identification Claims

4.2.1. Instance ID

The Instance ID claim represents the unique identifier of the IAK. The full definition is in
.

The EAT ueid (claim key 256) of type RAND is used. The following constraints apply to the ueid-
type:

The length be 33 bytes.
The first byte be 0x01 (RAND) followed by the 32-byte unique identifier of the IAK.

 provides implementation options for deriving the IAK unique identifier from the
IAK itself.

This claim be present in a PSA attestation token.

[PSA-
SM]

• MUST

• MUST
[PSA-API]

MUST

psa-instance-id-type = bytes .size 33

psa-instance-id = (
 ueid-label => psa-instance-id-type
)

4.2.2. Implementation ID

The Implementation ID claim uniquely identifies the hardware assembly of the immutable PSA
RoT. A verification service uses this claim to locate the details of the PSA RoT implementation
from an Endorser or manufacturer. Such details are used by a verification service to determine
the security properties or certification status of the PSA RoT implementation.

The value and format of the ID is decided by the manufacturer or a particular certification
scheme. For example, the ID could take the form of a product serial number, database ID, or
other appropriate identifier.

This claim be present in a PSA attestation token.

Note that this identifies the PSA RoT implementation, not a particular instance. To uniquely
identify an instance, see the Instance ID claim Section 4.2.1.

MUST

psa-implementation-id-type = bytes .size 32

psa-implementation-id = (
 psa-implementation-id-key => psa-implementation-id-type
)

RFC 9783 Arm's PSA Attestation Token June 2025

Tschofenig, et al. Informational Page 10

4.2.3. Certification Reference

The Certification Reference claim is used to link the class of chip and PSA RoT of the attesting
device to an associated entry in the PSA Certification database. The Certification Reference claim

 be represented as a string made of nineteen numeric characters: a thirteen-digit EAN-13
 followed by a dash "-" and the five-digit versioning information described in

.

Linking to the PSA Certification entry can still be achieved if this claim is not present in the
token by making an association at a Verifier between the reference value and other token claim
values, for example, the Implementation ID.

This claim be present in a PSA attestation token.

MUST
[EAN-13] [PSA-Cert-
Guide]

MAY

psa-certification-reference-type = text .regexp "[0-9]{13}-[0-9]{5}"

psa-certification-reference = (
 ? psa-certification-reference-key =>
 psa-certification-reference-type
)

4.3. Target State Claims

4.3.1. Security Lifecycle

The Security Lifecycle claim represents the current lifecycle state of the PSA RoT. The state is
represented by an integer that is divided to convey a major state and a minor state. A major
state is mandatory and defined by . A minor state is optional and 'IMPLEMENTATION
DEFINED'. The PSA security lifecycle state and implementation state are encoded as follows:

major[15:8] - PSA security lifecycle state, and
minor[7:0] - IMPLEMENTATION DEFINED state.

The PSA lifecycle states are illustrated in Figure 4. For PSA, a Verifier can only trust reports from
the PSA RoT when it is in SECURED or NON_PSA_ROT_DEBUG major states.

This claim be present in a PSA attestation token.

[PSA-SM]

•
•

MUST

RFC 9783 Arm's PSA Attestation Token June 2025

Tschofenig, et al. Informational Page 11

The CDDL representation is shown below. Table 1 provides the mappings between Figure 4 and
the data model.

Figure 4: PSA Lifecycle States

Device Assembly and Test

Device
Lockdown

PSA RoT Provisioning

Provisioning
Lockdown

Secured

Debug
Debug

Recoverable Recoverable

(Non-Recoverable) Recoverable
Non-PSA RoT Debug PSA RoT Debug

Terminate Non-Recoverable PSA RoT Compromised

Decommissioned

RFC 9783 Arm's PSA Attestation Token June 2025

Tschofenig, et al. Informational Page 12

psa-lifecycle-unknown-type is not shown in Figure 4; it represents an invalid state that must
not occur in a system.

psa-lifecycle-unknown-type = 0x0000..0x00ff
psa-lifecycle-assembly-and-test-type = 0x1000..0x10ff
psa-lifecycle-psa-rot-provisioning-type = 0x2000..0x20ff
psa-lifecycle-secured-type = 0x3000..0x30ff
psa-lifecycle-non-psa-rot-debug-type = 0x4000..0x40ff
psa-lifecycle-recoverable-psa-rot-debug-type = 0x5000..0x50ff
psa-lifecycle-decommissioned-type = 0x6000..0x60ff

psa-lifecycle-type =
 psa-lifecycle-unknown-type /
 psa-lifecycle-assembly-and-test-type /
 psa-lifecycle-psa-rot-provisioning-type /
 psa-lifecycle-secured-type /
 psa-lifecycle-non-psa-rot-debug-type /
 psa-lifecycle-recoverable-psa-rot-debug-type /
 psa-lifecycle-decommissioned-type

psa-lifecycle = (
 psa-lifecycle-key => psa-lifecycle-type
)

CDDL Lifecycle States

psa-lifecycle-unknown-type

psa-lifecycle-assembly-and-test-type Assembly and Test

psa-lifecycle-psa-rot-provisioning-type PSA RoT Provisioning

psa-lifecycle-secured-type Secured

psa-lifecycle-non-psa-rot-debug-type Non-Recoverable PSA RoT Debug

psa-lifecycle-recoverable-psa-rot-debug-type Recoverable PSA RoT Debug

psa-lifecycle-decommissioned-type Decommissioned

Table 1: Lifecycle States Mappings

4.3.2. Boot Seed

The "bootseed" claim contains a value created at system boot time that allows differentiation of
attestation reports from different boot sessions of a particular entity (i.e., a certain Instance ID).

The EAT "bootseed" (claim key 268) is used. The following constraints apply to the binary-data
type:

The length be between 8 and 32 bytes. • MUST

RFC 9783 Arm's PSA Attestation Token June 2025

Tschofenig, et al. Informational Page 13

This claim be present in a PSA attestation token.MAY

psa-boot-seed-type = bytes .size (8..32)

psa-boot-seed = (
 boot-seed-label => psa-boot-seed-type
)

4.4. Software Inventory Claims

4.4.1. Software Components

The Software Components claim is a list of software components that includes all the software
(both code and configuration) loaded by the PSA RoT. This claim be included in attestation
tokens produced by an implementation conformant with .

Each entry in the Software Components list describes one software component using the
attributes described in the following subsections. Unless explicitly stated, the presence of an
attribute is .

Note that a Relying Party will typically see the result of the appraisal process from the Verifier in
form of an Attestation Result rather than the PSA token from the attesting endpoint as described
in . Therefore, a Relying Party is not expected to understand the Software Components
claim. Instead, it is for the Verifier to check this claim against the available Reference Values and
provide an answer in form of a "high-level" Attestation Result, which may or may not include
the original Software Components claim.

MUST
[PSA-SM]

OPTIONAL

[RFC9334]

psa-software-component = {
 ? &(measurement-type: 1) => text
 &(measurement-value: 2) => psa-hash-type
 ? &(version: 4) => text
 &(signer-id: 5) => psa-hash-type
 ? &(measurement-desc: 6) => text
}

psa-software-components = (
 psa-software-components-key => [+ psa-software-component]
)

"BL":

"PRoT":

4.4.1.1. Measurement Type
The Measurement Type attribute (key=1) is a short string representing the role of this software
component.

The following measurement types be used for code measurements:

a Boot Loader

a component of the PSA Root of Trust

MAY

RFC 9783 Arm's PSA Attestation Token June 2025

Tschofenig, et al. Informational Page 14

"ARoT":

"App":

"TS":

a component of the Application Root of Trust

a component of the NSPE application

a component of a Trusted Subsystem

The same labels with a "_CONFIG" postfix (e.g., "PRoT_CONFIG") be used for configuration
measurements.

This attribute be present in a PSA software component unless there is a very good
reason to leave it out, for example, in networks with severely constrained bandwidth where
sparing a few bytes really makes a difference.

MAY

SHOULD

4.4.1.2. Measurement Value
The Measurement Value attribute (key=2) represents a hash of the invariant software
component in memory at startup time. The value be a cryptographic hash of 256 bits or
stronger.

This attribute be present in a PSA software component.

MUST

MUST

4.4.1.3. Version
The Version attribute (key=4) is the issued software version in the form of a text string. The
value of this attribute will correspond to the entry in the original signed manifest of the
component.

4.4.1.4. Signer ID
The Signer ID attribute (key=5) uniquely identifies the signer of the software component. The
identification is typically accomplished by hashing the signer's public key. The value of this
attribute will correspond to the entry in the original manifest for the component. This can be
used by a Verifier to ensure the components were signed by an expected trusted source.

This attribute be present in a PSA software component to be compliant with .MUST [PSA-SM]

4.4.1.5. Measurement Description
The Measurement Description attribute (key=6) contains a string identifying the hash algorithm
used to compute the corresponding Measurement Value. The string be encoded
according to "Hash Name String" in the "Named Information Hash Algorithm Registry"

.

SHOULD
[NAMED-

INFO]

4.5. Verification Claims
The following claims, although part of Evidence, do not reflect the internal state of the Attester.
Instead, they aim to help receivers, including Relying Parties, in processing the received
attestation Evidence.

RFC 9783 Arm's PSA Attestation Token June 2025

Tschofenig, et al. Informational Page 15

4.5.1. Verification Service Indicator

The Verification Service Indicator claim is a hint used by a Relying Party to locate a verification
service for the token. The value is a text string that can be used to locate the service (typically, a
URL specifying the address of the verification service API). A Relying Party may choose to ignore
this claim in favor of other information.

It is assumed that the Relying Party is pre-configured with a list of trusted verification services
and that the contents of this hint can be used to look up the correct one. Under no circumstances
must the Relying Party be tricked into contacting an unknown and untrusted verification service
since the returned Attestation Result cannot be relied on.

Note: This hint requires the Relying Party to parse the content of the PSA token. Since the Relying
Party may not be in possession of a trust anchor to verify the digital signature, it uses the hint in
the same way as it would treat any other information provided by an external party, which
includes attacker-provided data.

psa-verification-service-indicator-type = text

psa-verification-service-indicator = (
 ? psa-verification-service-indicator-key =>
 psa-verification-service-indicator-type
)

4.5.2. Profile Definition

The Profile Definition claim encodes the unique identifier that corresponds to the EAT profile
described by this document. This allows a receiver to assign the intended semantics to the rest of
the claims found in the token.

The EAT eat_profile (claim key 265) is used.

The URI encoding be used.

The value be tag:psacertified.org,2023:psa#tfm for the profile defined in Section 5.2.

Future profiles derived from the baseline PSA profile create their unique value as
described in Section 4.5.2.1.

This claim be present in a PSA attestation token.

See Section 4.6 for considerations about backwards compatibility with previous versions of the
PSA attestation token format.

MUST

MUST

SHALL

MUST

RFC 9783 Arm's PSA Attestation Token June 2025

Tschofenig, et al. Informational Page 16

psa-profile-type = "tag:psacertified.org,2023:psa#tfm"

psa-profile = (
 profile-label => psa-profile-type
)

4.5.2.1. URI Structure for the Derived Profile Identifiers
A new profile is associated with a unique string.

The string use the URI fragment syntax defined in .

The string be short to avoid unnecessary overhead.

To avoid collisions, profile authors communicate their intent upfront to use a certain
string that uses the inquiry form on the website .

To derive the value to be used for the eat_profile claim, the string is added as a fragment to the
tag:psacertified.org,2023:psa tag URI .

For example, a hypothetical profile using only COSE_Mac0 with the AES Message Authentication
Code (AES-MAC) may decide to use the string "aes-mac". The eat_profile value would then be
tag:psacertified.org,2023:psa#aes-mac.

MUST Section 3.5 of [RFC3986]

SHOULD

SHOULD
[PSACertified]

[RFC4151]

4.6. Backwards Compatibility Considerations
An earlier draft of this document identified by the PSA_IOT_PROFILE_1 profile, used
claim key values from the "private use range" of the CWT Claims registry. These claim keys have
now been deprecated.

Table 2 provides the mappings between the deprecated and new claim keys.

[PSA-OLD]

PSA_IOT_PROFILE_1 tag:psacertified.org,2023:psa#tfm

Nonce -75008 10 (EAT nonce)

Instance ID -75009 256 (EAT euid)

Profile Definition -75000 265 (EAT eat_profile)

Client ID -75001 2394

Security Lifecycle -75002 2395

Implementation ID -75003 2396

Boot Seed -75004 268 (EAT bootseed)

Certification Reference -75005 2398

RFC 9783 Arm's PSA Attestation Token June 2025

Tschofenig, et al. Informational Page 17

https://rfc-editor.org/rfc/rfc3986#section-3.5

The new profile introduces three further changes:

The "bootseed" claim is now optional and of variable length (see Section 4.3.2).
The "No Software Measurements" claim has been retired.
The "Certification Reference" claim syntax changed from EAN-13 to EAN-13+5 (see Section
4.2.3).

To simplify the transition to the token format described in this document, it is
that Verifiers accept tokens encoded according to the old profile (PSA_IOT_PROFILE_1) as well as
to the profile defined in this document (tag:psacertified.org,2023:psa#tfm), at least for the
time needed to their devices to upgrade.

PSA_IOT_PROFILE_1 tag:psacertified.org,2023:psa#tfm

Software Components -75006 2399

Verification Service Indicator -75010 2400

Table 2: Claim Key Mappings

•
•
•

RECOMMENDED

5. Profiles
This document defines a baseline with common requirements that all PSA profiles must satisfy.
(Note that this does not apply to .)

This document also defines a "TFM" profile (Section 5.2) that builds on the baseline while
constraining the use of COSE algorithms to improve interoperability between Attesters and
Verifiers.

Baseline and TFM are what the EAT calls a "partial" and "full" profile, respectively. See
 for further details regarding profiles.

[PSA-OLD]

Section 6.2
of [EAT]

5.1. Baseline Profile

5.1.1. Token Encoding and Signing

The PSA attestation token is encoded in CBOR format. The CBOR representation of a PSA
token be "valid" according to the definition in Section 1.2 of RFC 8949 . Besides,
only definite-length string, arrays, and maps are allowed. Given that a PSA Attester is typically
found in a constrained device, it NOT emit CBOR preferred serializations (Section 4.1 of RFC
8949). Therefore, the Verifier be a variation-tolerant CBOR decoder.

Cryptographic protection is obtained by wrapping the psa-token claims set in a COSE Web
Token (CWT) . For asymmetric key algorithms, the signature structure be a
tagged (18) COSE_Sign1. For symmetric key algorithms, the signature structure be a tagged
(17) COSE_Mac0.

[STD94]
MUST [STD94]

MAY
[STD94] MUST

[RFC8392] MUST
MUST

RFC 9783 Arm's PSA Attestation Token June 2025

Tschofenig, et al. Informational Page 18

https://rfc-editor.org/rfc/rfc9711#section-6.2
https://rfc-editor.org/rfc/rfc8949#section-1.2
https://rfc-editor.org/rfc/rfc8949#section-4.1

Acknowledging the variety of markets, regulations, and use cases in which the PSA attestation
token can be used, the baseline profile does not impose any strong requirement on the
cryptographic algorithms that need to be supported by Attesters and Verifiers. The flexibility
provided by the COSE format should be sufficient to deal with the level of cryptographic agility
needed to adapt to specific use cases. It is that commonly adopted algorithms
are used, such as those discussed in . It is expected that receivers will accept a
wider range of algorithms while Attesters would produce PSA tokens using only one such
algorithm.

The CWT CBOR tag (61) is not used. An application that needs to exchange PSA attestation tokens
can wrap the serialized COSE_Sign1 or COSE_Mac0 in the media type defined in Section 10.2 or
the CoAP Content-Format defined in Section 10.3.

A PSA token is always directly signed by the PSA RoT. Therefore, a PSA-token claims set (Section
4) is never carried in a Detached EAT bundle ().

RECOMMENDED
[COSE-ALGS]

Section 5 of [EAT]

5.1.2. Freshness Model

The PSA token supports the freshness models for attestation Evidence based on nonces and
epoch handles (Section 10.2 and Section 10.3 of) using the "nonce" claim to convey the
nonce or epoch handle supplied by the Verifier. No further assumption on the specific remote
attestation protocol is made.

Note that use of epoch handles is constrained by the type restrictions imposed by the eat_nonce
syntax. For use in PSA tokens, it must be possible to encode the epoch handle as an opaque
binary string between 8 and 64 octets.

[RFC9334]

5.1.3. Synopsis

Table 3 presents a concise view of the requirements described in the preceding sections.

Issue Profile Definition

CBOR/JSON CBOR be used.

CBOR Encoding Definite length maps and arrays be used.

CBOR Encoding Definite length strings be used.

CBOR Serialization Variant serialization be used.

COSE Protection COSE_Sign1 and/or COSE_Mac0 be used.

Algorithms be used.

Detached EAT Bundle
Usage

Detached EAT bundles be sent.

MUST

MUST

MUST

MAY

MUST

[COSE-ALGS] SHOULD

MUST NOT

RFC 9783 Arm's PSA Attestation Token June 2025

Tschofenig, et al. Informational Page 19

https://rfc-editor.org/rfc/rfc9711#section-5
https://rfc-editor.org/rfc/rfc9334#section-10.2
https://rfc-editor.org/rfc/rfc9334#section-10.3

Issue Profile Definition

Verification Key
Identification

Any identification method listed in .

Endorsements See Section 8.2.

Freshness Nonce or epoch ID-based.

Claims Those defined in Section 4. As per general EAT rules, the receiver
 error out on claims it does not understand.

Table 3: Baseline Profile

Appendix F.1 of [EAT]

MUST NOT

5.2. Profile TFM
The TFM profile is appropriate for the code base implemented in and should apply for
most derivative implementations. If an implementation changes the requirements described
below, then a different profile value should be used (Section 4.5.2.1) to ensure interoperability.
This includes a restriction of the profile to a subset of the COSE Protection scheme requirements.

Table 4 presents a concise view of the requirements.

The value of the eat_profile be tag:psacertified.org,2023:psa#tfm.

[TF-M]

MUST

Issue Profile Definition

CBOR/JSON See Section 5.1.

CBOR Encoding See Section 5.1.

CBOR Encoding See Section 5.1.

CBOR Serialization See Section 5.1.

COSE Protection COSE_Sign1 or COSE_Mac0 be used.

Algorithms The receiver accept ES256, ES384, and ES512 with COSE_Sign1
and HMAC256/256, HMAC384/384, and HMAC512/512 with
COSE_Mac0; the sender send one of these.

Detached EAT
Bundle Usage

See Section 5.1.

Verification Key
Identification

Claim-Based Key Identification () using
Instance ID.

Endorsements See Section 8.2.

MUST

MUST

MUST

Appendix F.1.4 of [EAT]

RFC 9783 Arm's PSA Attestation Token June 2025

Tschofenig, et al. Informational Page 20

https://rfc-editor.org/rfc/rfc9711#appendix-F.1
https://rfc-editor.org/rfc/rfc9711#appendix-F.1.4

Issue Profile Definition

Freshness See Section 5.1.

Claims See Section 5.1.

Table 4: TF-M Profile

6. Collated CDDL

psa-token = {
 psa-nonce
 psa-instance-id
 psa-verification-service-indicator
 psa-profile
 psa-implementation-id
 psa-client-id
 psa-lifecycle
 psa-certification-reference
 ? psa-boot-seed
 psa-software-components
}

psa-client-id-key = 2394
psa-lifecycle-key = 2395
psa-implementation-id-key = 2396
psa-certification-reference-key = 2398
psa-software-components-key = 2399
psa-verification-service-indicator-key = 2400

nonce-label = 10
ueid-label = 256
boot-seed-label = 268
profile-label = 265

psa-hash-type = bytes .size 32 / bytes .size 48 / bytes .size 64

psa-boot-seed-type = bytes .size (8..32)

psa-boot-seed = (
 boot-seed-label => psa-boot-seed-type
)

psa-client-id-nspe-type = -2147483648...0
psa-client-id-spe-type = 1..2147483647

psa-client-id-type = psa-client-id-nspe-type / psa-client-id-spe-type

psa-client-id = (
 psa-client-id-key => psa-client-id-type
)

psa-certification-reference-type = text .regexp "[0-9]{13}-[0-9]{5}"

psa-certification-reference = (

RFC 9783 Arm's PSA Attestation Token June 2025

Tschofenig, et al. Informational Page 21

 ? psa-certification-reference-key =>
 psa-certification-reference-type
)

psa-implementation-id-type = bytes .size 32

psa-implementation-id = (
 psa-implementation-id-key => psa-implementation-id-type
)

psa-instance-id-type = bytes .size 33

psa-instance-id = (
 ueid-label => psa-instance-id-type
)

psa-nonce = (
 nonce-label => psa-hash-type
)

psa-profile-type = "tag:psacertified.org,2023:psa#tfm"

psa-profile = (
 profile-label => psa-profile-type
)

psa-lifecycle-unknown-type = 0x0000..0x00ff
psa-lifecycle-assembly-and-test-type = 0x1000..0x10ff
psa-lifecycle-psa-rot-provisioning-type = 0x2000..0x20ff
psa-lifecycle-secured-type = 0x3000..0x30ff
psa-lifecycle-non-psa-rot-debug-type = 0x4000..0x40ff
psa-lifecycle-recoverable-psa-rot-debug-type = 0x5000..0x50ff
psa-lifecycle-decommissioned-type = 0x6000..0x60ff

psa-lifecycle-type =
 psa-lifecycle-unknown-type /
 psa-lifecycle-assembly-and-test-type /
 psa-lifecycle-psa-rot-provisioning-type /
 psa-lifecycle-secured-type /
 psa-lifecycle-non-psa-rot-debug-type /
 psa-lifecycle-recoverable-psa-rot-debug-type /
 psa-lifecycle-decommissioned-type

psa-lifecycle = (
 psa-lifecycle-key => psa-lifecycle-type
)

psa-software-component = {
 ? &(measurement-type: 1) => text
 &(measurement-value: 2) => psa-hash-type
 ? &(version: 4) => text
 &(signer-id: 5) => psa-hash-type
 ? &(measurement-desc: 6) => text
}

psa-software-components = (
 psa-software-components-key => [+ psa-software-component]
)

RFC 9783 Arm's PSA Attestation Token June 2025

Tschofenig, et al. Informational Page 22

psa-verification-service-indicator-type = text

psa-verification-service-indicator = (
 ? psa-verification-service-indicator-key =>
 psa-verification-service-indicator-type
)

7. Scalability Considerations
IAKs (see Section 3) can be either raw public keys or certified public keys.

Certified public keys require the manufacturer to run the certification authority (CA) that issues
X.509 certificates for the IAKs. (Note that operating a CA is a complex and expensive task that
may be unaffordable to certain manufacturers.)

Using certified public keys offers better scalability properties when compared to using raw
public keys, namely:

Storage requirements for the Verifier are minimized; the same manufacturer's trust anchor
is used for any number of devices.
The provisioning model is simpler and more robust since there is no need to notify the
Verifier about each newly manufactured device.

Furthermore, existing and well-understood revocation mechanisms can be readily used.

The IAK's X.509 certificates can be inlined in the PSA token using the x5chain COSE header
parameter at the cost of an increase in the PSA token size.
and provide guidance for profiling X.509 certificates used in IoT
deployments. Note that the exact split between pre-provisioned and inlined certificates may vary
depending on the specific deployment. In that respect, x5chain is quite flexible. It can contain
the end entity (EE) certification only, the EE and a partial chain, or the EE and the full chain up
to the trust anchor (see for the details). Constraints around network
bandwidth and computing resources available to endpoints, such as network buffers, may
dictate a reasonable split point.

•

•

[COSE-X509] Section 4.4 of [TLS12-IoT]
Section 15 of [TLS13-IoT]

Section 2 of [COSE-X509]

8. PSA Token Verification
To verify the token, the primary need is to check correct encoding and signing as detailed in
Section 5.1.1. The key used for verification is either supplied to the Verifier by an authorized
Endorser along with the corresponding Attester's Instance ID or inlined in the token using the
x5chain header parameter as described in Section 7. If the IAK is a raw public key and the
Instance ID claim is used to assist in locating the key used to verify the signature covering the
CWT token. If the IAK is a certified public key, X.509 path construction and validation (

) up to a trusted CA be successful before the key is used to verify the token
signature. This also includes revocation checking.

Section 6
of [X509] MUST

RFC 9783 Arm's PSA Attestation Token June 2025

Tschofenig, et al. Informational Page 23

https://rfc-editor.org/rfc/rfc7925#section-4.4
https://datatracker.ietf.org/doc/html/draft-ietf-uta-tls13-iot-profile-14#section-15
https://rfc-editor.org/rfc/rfc9360#section-2
https://rfc-editor.org/rfc/rfc5280#section-6

The Verifier typically has a policy where it compares some claims in this profile to reference
values registered with it for a given deployment. This verification process serves to confirm that
the device is endorsed by the manufacturer supply chain. The policy may require that the
relevant claims must have a match to a registered reference value. All claims may be worthy of
additional appraisal. It is likely that most deployments would include a policy with appraisal for
the following claims:

Implementation ID: The value of the Implementation ID can be used to identify the
verification requirements of the deployment.
Software Component, Measurement Value: This value can uniquely identify a firmware
release from the supply chain. In some cases, a Verifier may maintain a record for a series of
firmware releases being patches to an original baseline release. A verification policy may
then allow this value to match any point on that release sequence or expect some minimum
level of maturity related to the sequence.
Software Component, Signer ID: Where present in a deployment, this could allow a Verifier
to operate a more general policy than that for Measurement Value as above by allowing a
token to contain any firmware entries signed by a known Signer ID without checking for a
uniquely registered version.
Certification Reference: If present, this value could be used as a hint to locate security
certification information associated with the attesting device. An example could be a
reference to a certificate.

•

•

•

•

[PSACertified]

8.1. AR4SI Trustworthiness Claims Mappings
 defines an information model that Verifiers can employ to produce Attestation

Results. AR4SI provides a set of standardized appraisal categories and tiers that greatly
simplifies the task of writing Relying Party policies in Multi-Attester environments.

The contents of Table 5 are intended as guidance for implementing a PSA Verifier that computes
its results using AR4SI. The table describes which PSA Evidence claims (if any) are related to
which AR4SI trustworthiness claim, and therefore what the Verifier must consider when
deciding if and how to appraise a certain feature associated with the PSA Attester.

[RATS-AR4SI]

Trustworthiness
Vector claims

Related PSA claims

"configuration" Software Components (Section 4.4.1)

"executables" ditto

"file-system" N/A

"hardware" Implementation ID (Section 4.2.2)

"instance-identity" Instance ID (Section 4.2.1). The Security Lifecycle (Section 4.3.1) can
also impact the derived identity.

RFC 9783 Arm's PSA Attestation Token June 2025

Tschofenig, et al. Informational Page 24

This document does not prescribe what value must be chosen based on each possible situation.
When assigning specific Trustworthiness Claim values, an implementation is expected to follow
the algorithm described in .

Trustworthiness
Vector claims

Related PSA claims

"runtime-opaque" Indirectly derived from "executables", "hardware", and "instance-
identity". The Security Lifecycle (Section 4.3.1) can also be relevant,
e.g., any debug state will expose otherwise protected memory.

"sourced-data" N/A

"storage-opaque" Indirectly derived from "executables", "hardware", and "instance-
identity".

Table 5: AR4SI Claims mappings

Section 2.3.3 of [RATS-AR4SI]

8.2. Endorsements, Reference Values, and Verification Key Material
 defines a protocol based on the data model that can be used

to convey PSA Endorsements, Reference Values, and verification key material to the Verifier.
[PSA-Endorsements] [RATS-CoRIM]

9. Security and Privacy Considerations
This specification reuses the EAT specification and therefore the CWT specification. Hence, the
security and privacy considerations of those specifications apply here as well.

Since CWTs offer different ways to protect the token, this specification profiles those options and
allows signatures using public key cryptography as well as message authentication codes
(MACs). COSE_Sign1 is used for digital signatures and COSE_Mac0 for MACs as defined in the
COSE specification . Note, however, that the use of MAC authentication is

 due to the associated infrastructure costs for key management and protocol
complexities.

A PSA Attester provide Evidence to an untrusted challenger, as it may allow attackers
to interpose and trick the Verifier into believing the attacker is a legitimate Attester. This is
especially relevant to protocols that use PSA attestation tokens to authenticate the attester to a
Relying Party.

Attestation tokens contain information that may be unique to a device. Therefore, they may
allow to single out an individual device for tracking purposes. Deployments that have privacy
requirements must take appropriate measures to ensure that the token is only used to provision
anonymous/pseudonym keys.

[STD96] NOT
RECOMMENDED

MUST NOT

RFC 9783 Arm's PSA Attestation Token June 2025

Tschofenig, et al. Informational Page 25

https://datatracker.ietf.org/doc/html/draft-ietf-rats-ar4si-08#section-2.3.3

10. IANA Considerations

10.1. CBOR Web Token Claims Registration
IANA has registered the following claims in the "CBOR Web Token (CWT) Claims" registry .[CWT]

Claim Name:
Claim Description:
JWT Claim Name:
Claim Key:
Claim Value Type(s):
Change Controller:
Specification Document(s):

10.1.1. Client ID Claim

psa-client-id
PSA Client ID

N/A
2394

signed integer
Hannes Tschofenig

Section 4.1.2 of RFC 9783

Claim Name:
Claim Description:
JWT Claim Name:
Claim Key:
Claim Value Type(s):
Change Controller:
Specification Document(s):

10.1.2. Security Lifecycle Claim

psa-security-lifecycle
PSA Security Lifecycle

N/A
2395

unsigned integer
Hannes Tschofenig

Section 4.3.1 of RFC 9783

Claim Name:
Claim Description:
JWT Claim Name:
Claim Key:
Claim Value Type(s):
Change Controller:
Specification Document(s):

10.1.3. Implementation ID Claim

psa-implementation-id
PSA Implementation ID

N/A
2396

byte string
Hannes Tschofenig

Section 4.2.2 of RFC 9783

Claim Name:
Claim Description:
JWT Claim Name:
Claim Key:
Claim Value Type(s):
Change Controller:

10.1.4. Certification Reference Claim

psa-certification-reference
PSA Certification Reference

N/A
2398

text string
Hannes Tschofenig

RFC 9783 Arm's PSA Attestation Token June 2025

Tschofenig, et al. Informational Page 26

Specification Document(s): Section 4.2.3 of RFC 9783

Claim Name:
Claim Description:
JWT Claim Name:
Claim Key:
Claim Value Type(s):
Change Controller:
Specification Document(s):

10.1.5. Software Components Claim

psa-software-components
PSA Software Components

N/A
2399

array
Hannes Tschofenig

Section 4.4.1 of RFC 9783

Claim Name:
Claim Description:
JWT Claim Name:
Claim Key:
Claim Value Type(s):
Change Controller:
Specification Document(s):

10.1.6. Verification Service Indicator Claim

psa-verification-service-indicator
PSA Verification Service Indicator

N/A
2400

text string
Hannes Tschofenig

Section 4.5.1 of RFC 9783

10.2. Media Types
This document does not register any new media types. To indicate that the transmitted content is
a PSA attestation token, applications can use the application/eat+cwt media type defined in

 with the eat_profile parameter set to tag:psacertified.org,
2023:psa#tfm (or tag:psacertified.org,2019:psa#legacy if the token is encoded according
to the old profile; see Section 4.6).

[EAT-MEDIATYPES]

10.3. CoAP Content-Formats Registration
IANA has registered two CoAP Content-Format IDs in the First Come First Served range of the
"CoAP Content-Formats" registry :

One for the application/eat+cwt media type with the eat_profile parameter equal to
tag:psacertified.org,2023:psa#tfm.
Another for the application/eat+cwt media type with the eat_profile parameter equal to
tag:psacertified.org,2019:psa#legacy.

[Content-Formats]

•

•

Media Type:
Encoding:
ID:
Reference:

10.3.1. Registry Contents

application/eat+cwt; eat_profile="tag:psacertified.org,2023:psa#tfm"
-

10003
RFC 9783

RFC 9783 Arm's PSA Attestation Token June 2025

Tschofenig, et al. Informational Page 27

Media Type:

Encoding:
ID:
Reference:

application/eat+cwt; eat_profile="tag:psacertified.org,
2019:psa#legacy"

-
10004

RFC 9783

11. References

[COSE-ALGS]

[CWT]

[EAN-13]

[EAT]

[EAT-MEDIATYPES]

[NAMED-INFO]

[PSA-Cert-Guide]

[PSA-FF]

[PSA-SM]

[RFC2119]

[RFC3986]

11.1. Normative References

, ,
, , August 2022,

.

, ,
.

, , .

, , , and ,
, , , April 2025,

.

, , and ,
, , , May 2025,

.

, ,
.

, , April
2020,

.

, ,
.

, , December 2021,

.

, , ,
, , March 1997,
.

, , and ,
, , , , January 2005,

.

Schaad, J. "CBOR Object Signing and Encryption (COSE): Initial Algorithms" RFC
9053 DOI 10.17487/RFC9053 <https://www.rfc-editor.org/info/
rfc9053>

IANA "CBOR Web Token (CWT) Claims" <https://www.iana.org/assignments/
cwt>

GS1 "EAN/UPC barcodes" <https://www.gs1.org/standards/barcodes/ean-upc>

Lundblade, L. Mandyam, G. O'Donoghue, J. C. Wallace "The Entity
Attestation Token (EAT)" RFC 9711 DOI 10.17487/RFC9711 <https://
www.rfc-editor.org/info/rfc9711>

Lundblade, L. Birkholz, H. T. Fossati "Entity Attestation Token (EAT)
Media Types" RFC 9782 DOI 10.17487/RFC9782 <https://www.rfc-
editor.org/info/rfc9782>

IANA "Named Information Hash Algorithm Registry" <https://www.iana.org/
assignments/named-information>

PSA Certified "PSA Certified Level 2 Step by Step Guide Version 1.1"
<https://www.psacertified.org/app/uploads/2020/07/JSADEN011-

PSA_Certified_Level_2_Step-by-Step-1.1-20200403.pdf>

Arm "Arm PSA Firmware Framework 1.0" <https://developer.arm.com/
documentation/den0063/a>

Arm "Platform Security Model 1.1" <https://
www.psacertified.org/app/uploads/2021/12/
JSADEN014_PSA_Certified_SM_V1.1_BET0.pdf>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Berners-Lee, T. Fielding, R. L. Masinter "Uniform Resource Identifier
(URI): Generic Syntax" STD 66 RFC 3986 DOI 10.17487/RFC3986
<https://www.rfc-editor.org/info/rfc3986>

RFC 9783 Arm's PSA Attestation Token June 2025

Tschofenig, et al. Informational Page 28

https://www.rfc-editor.org/info/rfc9053
https://www.rfc-editor.org/info/rfc9053
https://www.iana.org/assignments/cwt
https://www.iana.org/assignments/cwt
https://www.gs1.org/standards/barcodes/ean-upc
https://www.rfc-editor.org/info/rfc9711
https://www.rfc-editor.org/info/rfc9711
https://www.rfc-editor.org/info/rfc9782
https://www.rfc-editor.org/info/rfc9782
https://www.iana.org/assignments/named-information
https://www.iana.org/assignments/named-information
https://www.psacertified.org/app/uploads/2020/07/JSADEN011-PSA_Certified_Level_2_Step-by-Step-1.1-20200403.pdf
https://www.psacertified.org/app/uploads/2020/07/JSADEN011-PSA_Certified_Level_2_Step-by-Step-1.1-20200403.pdf
https://developer.arm.com/documentation/den0063/a
https://developer.arm.com/documentation/den0063/a
https://www.psacertified.org/app/uploads/2021/12/JSADEN014_PSA_Certified_SM_V1.1_BET0.pdf
https://www.psacertified.org/app/uploads/2021/12/JSADEN014_PSA_Certified_SM_V1.1_BET0.pdf
https://www.psacertified.org/app/uploads/2021/12/JSADEN014_PSA_Certified_SM_V1.1_BET0.pdf
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3986

[RFC4151]

[RFC8174]

[RFC8392]

[RFC8610]

[STD94]

[STD96]

[X509]

 and , , ,
, October 2005, .

, ,
, , , May 2017,

.

, , , and ,
, , , May 2018,

.

, , and ,

, ,
, June 2019, .

, , , , , and ,

, , , May 2008,
.

Kindberg, T. S. Hawke "The 'tag' URI Scheme" RFC 4151 DOI 10.17487/
RFC4151 <https://www.rfc-editor.org/info/rfc4151>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Jones, M. Wahlstroem, E. Erdtman, S. H. Tschofenig "CBOR Web Token
(CWT)" RFC 8392 DOI 10.17487/RFC8392 <https://www.rfc-editor.org/
info/rfc8392>

Birkholz, H. Vigano, C. C. Bormann "Concise Data Definition Language
(CDDL): A Notational Convention to Express Concise Binary Object
Representation (CBOR) and JSON Data Structures" RFC 8610 DOI 10.17487/
RFC8610 <https://www.rfc-editor.org/info/rfc8610>

Internet Standard 94, .<https://www.rfc-editor.org/info/std94>
At the time of writing, this STD comprises the following:

 and , ,
, , , December 2020,

.

Bormann, C. P. Hoffman "Concise Binary Object Representation (CBOR)"
STD 94 RFC 8949 DOI 10.17487/RFC8949 <https://www.rfc-
editor.org/info/rfc8949>

Internet Standard 96, .<https://www.rfc-editor.org/info/std96>
At the time of writing, this STD comprises the following:

,
, , , , August 2022,

.

Schaad, J. "CBOR Object Signing and Encryption (COSE): Structures and
Process" STD 96 RFC 9052 DOI 10.17487/RFC9052 <https://
www.rfc-editor.org/info/rfc9052>

, ,
, , , December 2022,

.

Schaad, J. "CBOR Object Signing and Encryption (COSE): Countersignatures"
STD 96 RFC 9338 DOI 10.17487/RFC9338 <https://www.rfc-
editor.org/info/rfc9338>

Cooper, D. Santesson, S. Farrell, S. Boeyen, S. Housley, R. W. Polk
"Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile" RFC 5280 DOI 10.17487/RFC5280 <https://www.rfc-
editor.org/info/rfc5280>

[Content-Formats]

[COSE-X509]

11.2. Informative References

, ,
.

,
, , ,

February 2023, .

IANA "CoAP Content-Formats" <https://www.iana.org/assignments/core-
parameters>

Schaad, J. "CBOR Object Signing and Encryption (COSE): Header Parameters for
Carrying and Referencing X.509 Certificates" RFC 9360 DOI 10.17487/RFC9360

<https://www.rfc-editor.org/info/rfc9360>

RFC 9783 Arm's PSA Attestation Token June 2025

Tschofenig, et al. Informational Page 29

https://www.rfc-editor.org/info/rfc4151
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8392
https://www.rfc-editor.org/info/rfc8392
https://www.rfc-editor.org/info/rfc8610
https://www.rfc-editor.org/info/std94
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/std96
https://www.rfc-editor.org/info/rfc9052
https://www.rfc-editor.org/info/rfc9052
https://www.rfc-editor.org/info/rfc9338
https://www.rfc-editor.org/info/rfc9338
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc5280
https://www.iana.org/assignments/core-parameters
https://www.iana.org/assignments/core-parameters
https://www.rfc-editor.org/info/rfc9360

[IAT-VERIFIER]

[PSA]

[PSA-API]

[PSA-Endorsements]

[PSA-OLD]

[PSACertified]

[RATS-AR4SI]

[RATS-CoRIM]

[RATS-QWESTOKEN]

[RATS-TDX]

[RFC9334]

, ,
, 18 August 2023,

.

, ,
.

, , October 2022,

.

, , and ,
, ,

, 3 March 2025,
.

, , , , and ,
, ,

, 1 February 2021,
.

, ,
.

, , , , and ,
, ,

, 6 February 2025,
.

, , , , and ,
, ,

, 3 March 2025,
.

, , and ,
, ,

, 1 November 2019,
.

, , , , and ,
, ,

, 13 December 2024,
.

, , , , and ,
, , ,

January 2023, .

Trusted Firmware "iat-verifier" commit:
0b49b00195b7733d6fe74e8f42ed4d7b81242801 <https://
git.trustedfirmware.org/plugins/gitiles/TF-M/tf-m-tools/+/refs/heads/main/iat-
verifier/>

Arm "Security - Platform Security Architecture" <https://developer.arm.com/
documentation/101892/0100/Security---Platform-Security-Architecture?lang=en>

Arm "PSA Certified Attestation API 1.0" <https://arm-
software.github.io/psa-api/attestation/1.0/IHI0085-
PSA_Certified_Attestation_API-1.0.3.pdf>

Fossati, T. Deshpande, Y. H. Birkholz "A CoRIM Profile for Arm's
Platform Security Architecture (PSA)" Work in Progress Internet-Draft, draft-
fdb-rats-psa-endorsements-06 <https://datatracker.ietf.org/doc/
html/draft-fdb-rats-psa-endorsements-06>

Tschofenig, H. Frost, S. Brossard, M. Shaw, A. L. T. Fossati "Arm's Platform
Security Architecture (PSA) Attestation Token" Work in Progress Internet-Draft,
draft-tschofenig-rats-psa-token-07 <https://datatracker.ietf.org/
doc/html/draft-tschofenig-rats-psa-token-07>

PSA Certified "PSA Certified: IoT Security Framework and Certification"
<https://psacertified.org>

Voit, E. Birkholz, H. Hardjono, T. Fossati, T. V. Scarlata "Attestation Results
for Secure Interactions" Work in Progress Internet-Draft, draft-ietf-rats-
ar4si-08 <https://datatracker.ietf.org/doc/html/draft-ietf-rats-
ar4si-08>

Birkholz, H. Fossati, T. Deshpande, Y. Smith, N. W. Pan "Concise
Reference Integrity Manifest" Work in Progress Internet-Draft, draft-ietf-rats-
corim-07 <https://datatracker.ietf.org/doc/html/draft-ietf-rats-
corim-07>

Mandyam, G. Sekhar, V. S. Mohammed "The Qualcomm Wireless
Edge Services (QWES) Attestation Token" Work in Progress Internet-Draft,
draft-mandyam-rats-qwestoken-00 <https://
datatracker.ietf.org/doc/html/draft-mandyam-rats-qwestoken-00>

Kostal, G. Dittakavi, S. Yeluri, R. Xia, H. J. Yu "EAT profile for Intel(r) Trust
Domain Extensions (TDX) attestation result" Work in Progress Internet-Draft,
draft-kdyxy-rats-tdx-eat-profile-02 <https://
datatracker.ietf.org/doc/html/draft-kdyxy-rats-tdx-eat-profile-02>

Birkholz, H. Thaler, D. Richardson, M. Smith, N. W. Pan "Remote
ATtestation procedureS (RATS) Architecture" RFC 9334 DOI 10.17487/RFC9334

<https://www.rfc-editor.org/info/rfc9334>

RFC 9783 Arm's PSA Attestation Token June 2025

Tschofenig, et al. Informational Page 30

https://git.trustedfirmware.org/plugins/gitiles/TF-M/tf-m-tools/+/refs/heads/main/iat-verifier/
https://git.trustedfirmware.org/plugins/gitiles/TF-M/tf-m-tools/+/refs/heads/main/iat-verifier/
https://git.trustedfirmware.org/plugins/gitiles/TF-M/tf-m-tools/+/refs/heads/main/iat-verifier/
https://developer.arm.com/documentation/101892/0100/Security---Platform-Security-Architecture?lang=en
https://developer.arm.com/documentation/101892/0100/Security---Platform-Security-Architecture?lang=en
https://arm-software.github.io/psa-api/attestation/1.0/IHI0085-PSA_Certified_Attestation_API-1.0.3.pdf
https://arm-software.github.io/psa-api/attestation/1.0/IHI0085-PSA_Certified_Attestation_API-1.0.3.pdf
https://arm-software.github.io/psa-api/attestation/1.0/IHI0085-PSA_Certified_Attestation_API-1.0.3.pdf
https://datatracker.ietf.org/doc/html/draft-fdb-rats-psa-endorsements-06
https://datatracker.ietf.org/doc/html/draft-fdb-rats-psa-endorsements-06
https://datatracker.ietf.org/doc/html/draft-tschofenig-rats-psa-token-07
https://datatracker.ietf.org/doc/html/draft-tschofenig-rats-psa-token-07
https://psacertified.org
https://datatracker.ietf.org/doc/html/draft-ietf-rats-ar4si-08
https://datatracker.ietf.org/doc/html/draft-ietf-rats-ar4si-08
https://datatracker.ietf.org/doc/html/draft-ietf-rats-corim-07
https://datatracker.ietf.org/doc/html/draft-ietf-rats-corim-07
https://datatracker.ietf.org/doc/html/draft-mandyam-rats-qwestoken-00
https://datatracker.ietf.org/doc/html/draft-mandyam-rats-qwestoken-00
https://datatracker.ietf.org/doc/html/draft-kdyxy-rats-tdx-eat-profile-02
https://datatracker.ietf.org/doc/html/draft-kdyxy-rats-tdx-eat-profile-02
https://www.rfc-editor.org/info/rfc9334

[TF-M]

[TLS12-IoT]

[TLS13-IoT]

, ,
.

 and ,
, ,

, July 2016, .

, , and ,
, ,

, 5 May 2025,
.

Trusted Firmware "Trusted Firmware-M" <https://www.trustedfirmware.org/
projects/tf-m/>

Tschofenig, H., Ed. T. Fossati "Transport Layer Security (TLS) / Datagram
Transport Layer Security (DTLS) Profiles for the Internet of Things" RFC 7925
DOI 10.17487/RFC7925 <https://www.rfc-editor.org/info/rfc7925>

Tschofenig, H. Fossati, T. M. Richardson "TLS/DTLS 1.3 Profiles for the
Internet of Things" Work in Progress Internet-Draft, draft-ietf-uta-tls13-iot-
profile-14 <https://datatracker.ietf.org/doc/html/draft-ietf-uta-tls13-
iot-profile-14>

Appendix A. Examples
The following examples show PSA attestation tokens for a hypothetical system comprising a
single measured software component. The attesting device is in a lifecycle state (Section 4.3.1) of
SECURED. The attestation has been requested from a client residing in the SPE.

The example in Appendix A.1 illustrates the case where the IAK is an asymmetric key. A COSE
Sign1 envelope is used to wrap the PSA-token claims set.

Appendix A.2 illustrates the case where the IAK is a symmetric key and a COSE Mac0 envelope is
used instead.

The claims sets are identical, except for the Instance ID which is synthesized from the key
material.

The examples have been created using the iat-verifier tool .[IAT-VERIFIER]

RFC 9783 Arm's PSA Attestation Token June 2025

Tschofenig, et al. Informational Page 31

https://www.trustedfirmware.org/projects/tf-m/
https://www.trustedfirmware.org/projects/tf-m/
https://www.rfc-editor.org/info/rfc7925
https://datatracker.ietf.org/doc/html/draft-ietf-uta-tls13-iot-profile-14
https://datatracker.ietf.org/doc/html/draft-ietf-uta-tls13-iot-profile-14

A.1. COSE Sign1 Token

The JWK representation of the IAK used for creating the COSE Sign1 signature over the PSA
token is:

The resulting COSE object is:

{
 / ueid / 256: h'01020202020202020202020202
02',
 / psa-implementation-id / 2396: h'00000000000000000000000000
00000000000000000000000000000000000000',
 / eat_nonce / 10: h'01010101010101010101010101
01010101010101010101010101010101010101',
 / psa-client-id / 2394: 2147483647,
 / psa-security-lifecycle / 2395: 12288,
 / eat_profile / 265: "tag:psacertified.org,2023:psa#tfm",
 / bootseed / 268: h'0000000000000000',
 / psa-software-components / 2399: [
 {
 / signer ID / 5: h'0404040404040404040404040404040
404040404040404040404040404040404',
 / measurement value / 2: h'0303030303030303030303030303030
303030303030303030303030303030303',
 / measurement type / 1: "PRoT"
 }
]
}

{
 "kty": "EC",
 "crv": "P-256",
 "alg": "ES256",
 "x": "Tl4iCZ47zrRbRG0TVf0dw7VFlHtv18HInYhnmMNybo8",
 "y": "gNcLhAslaqw0pi7eEEM2TwRAlfADR0uR4Bggkq-xPy4",
 "d": "Q__-y5X4CFp8QOHT6nkL7063jN131YUDpkwWAPkbM-c"
}

RFC 9783 Arm's PSA Attestation Token June 2025

Tschofenig, et al. Informational Page 32

which has the following base16 encoding:

18([
 h'A10126',
 {},
 h'A819010058210102
02020202020202020219095C5820000000000000000000000000000000000000
00000000000000000000000000000A5820010101010101010101010101010101
010101010101010101010101010101010119095A1A7FFFFFFF19095B19300019
010978217461673A7073616365727469666965642E6F72672C323032333A7073
612374666D19010C48000000000000000019095F81A305582004040404040404
0402582003030303
0301645052
6F54',
 h'786E937A4C42667AF3847399319CA95C7E7DBABDC9B50FDB8DE3F6BFF4AB
82FF80C42140E2A488000219E3E10663193DA69C75F52B798EA10B2F7041A90E
8E5A'
])

d28443a10126a0590100a819010058210102020202020202020202020202
0202020202020202020202020202020202020219095c5820000000000000
000a582001
01
0119095a1a7fffffff19095b19300019010978217461673a707361636572
7469666965642e6f72672c323032333a7073612374666d19010c48000000
000000000019095f81a30558200404040404040404040404040404040404
040404040404040404040404040404025820030303030303030303030303
03016450526f545840786e
937a4c42667af3847399319ca95c7e7dbabdc9b50fdb8de3f6bff4ab82ff
80c42140e2a488000219e3e10663193da69c75f52b798ea10b2f7041a90e
8e5a

RFC 9783 Arm's PSA Attestation Token June 2025

Tschofenig, et al. Informational Page 33

A.2. COSE Mac0 Token

The JWK representation of the IAK used for creating the COSE Mac0 signature over the PSA
token is:

The resulting COSE object is:

{
 / ueid / 256: h'01C557BD4FADC83F756FCA2CD5
EA2DCC8B82159BB4E7453D6A744D4EECD6D0AC60',
 / psa-implementation-id / 2396: h'00000000000000000000000000
00000000000000000000000000000000000000',
 / eat_nonce / 10: h'01010101010101010101010101
01010101010101010101010101010101010101',
 / psa-client-id / 2394: 2147483647,
 / psa-security-lifecycle / 2395: 12288,
 / eat_profile / 265: "tag:psacertified.org,2023:psa#tfm",
 / psa-boot-seed / 268: h'0000000000000000',
 / psa-software-components / 2399: [
 {
 / signer ID / 5: h'0404040404040404040404040404040
404040404040404040404040404040404',
 / measurement value / 2: h'0303030303030303030303030303030
303030303030303030303030303030303',
 / measurement type / 1: "PRoT"
 }
]
}

========== NOTE: '\\' line wrapping per RFC 8792 ==========

{
 "kty": "oct",
 "alg": "HS256",
 "k": "3gOLNKyhJXaMXjNXq40Gs2e5qw1-i-Ek7cpH_gM6W7epPTB_8imqNv8k\
 \bBKVlk-s9xq3qm7E_WECt7OYMlWtkg"
}

RFC 9783 Arm's PSA Attestation Token June 2025

Tschofenig, et al. Informational Page 34

which has the following base16 encoding:

17([
 h'A10105',
 {},
 h'A8190100582101C557BD4FADC83F756FCA2CD5EA2DCC8B82159BB4E7453D
6A744D4EECD6D0AC6019095C5820000000000000000000000000000000000000
00000000000000000000000000000A5820010101010101010101010101010101
010101010101010101010101010101010119095A1A7FFFFFFF19095B19300019
010978217461673A7073616365727469666965642E6F72672C323032333A7073
612374666D19010C48000000000000000019095F81A305582004040404040404
0402582003030303
0301645052
6F54',
 h'CF88D330E7A5366A95CF744A4DBF0D50304D405EDD8B2530E243EDDBD317
7820'
])

d18443a10105a0590100a8190100582101c557bd4fadc83f756fca2cd5ea
2dcc8b82159bb4e7453d6a744d4eecd6d0ac6019095c5820000000000000
000a582001
01
0119095a1a7fffffff19095b19300019010978217461673a707361636572
7469666965642e6f72672c323032333a7073612374666d19010c48000000
000000000019095f81a30558200404040404040404040404040404040404
040404040404040404040404040404025820030303030303030303030303
03016450526f545820cf88
d330e7a5366a95cf744a4dbf0d50304d405edd8b2530e243eddbd3177820

Acknowledgments
Thank you for help with the CDDL. Thanks to , ,

, , and for ideas, comments, and suggestions.
Carsten Bormann Nicholas Wood Eliot Lear Yaron

Sheffer Kathleen Moriarty Ned Smith

Contributors
Laurence Lundblade
Security Theory LLC

lgl@securitytheory.comEmail:

Tamas Ban
Arm Limited

Tamas.Ban@arm.comEmail:

Sergei Trofimov
Arm Limited

Sergei.Trofimov@arm.comEmail:

RFC 9783 Arm's PSA Attestation Token June 2025

Tschofenig, et al. Informational Page 35

mailto:lgl@securitytheory.com
mailto:Tamas.Ban@arm.com
mailto:Sergei.Trofimov@arm.com

Authors' Addresses
Hannes Tschofenig
University of Applied Sciences Bonn-Rhein-Sieg
Germany

Hannes.Tschofenig@gmx.netEmail:

Simon Frost
Arm Limited

Simon.Frost@arm.comEmail:

Mathias Brossard
Arm Limited

Mathias.Brossard@arm.comEmail:

Adrian Shaw
HP Labs

adrianlshaw@acm.orgEmail:

Thomas Fossati
Linaro

thomas.fossati@linaro.orgEmail:

RFC 9783 Arm's PSA Attestation Token June 2025

Tschofenig, et al. Informational Page 36

mailto:Hannes.Tschofenig@gmx.net
mailto:Simon.Frost@arm.com
mailto:Mathias.Brossard@arm.com
mailto:adrianlshaw@acm.org
mailto:thomas.fossati@linaro.org

	RFC 9783
	Arm's Platform Security Architecture (PSA) Attestation Token
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions and Definitions
	3. PSA Attester Model
	4. PSA Claims
	4.1. Caller Claims
	4.1.1. Nonce
	4.1.2. Client ID

	4.2. Target Identification Claims
	4.2.1. Instance ID
	4.2.2. Implementation ID
	4.2.3. Certification Reference

	4.3. Target State Claims
	4.3.1. Security Lifecycle
	4.3.2. Boot Seed

	4.4. Software Inventory Claims
	4.4.1. Software Components
	4.4.1.1. Measurement Type
	4.4.1.2. Measurement Value
	4.4.1.3. Version
	4.4.1.4. Signer ID
	4.4.1.5. Measurement Description

	4.5. Verification Claims
	4.5.1. Verification Service Indicator
	4.5.2. Profile Definition
	4.5.2.1. URI Structure for the Derived Profile Identifiers

	4.6. Backwards Compatibility Considerations

	5. Profiles
	5.1. Baseline Profile
	5.1.1. Token Encoding and Signing
	5.1.2. Freshness Model
	5.1.3. Synopsis

	5.2. Profile TFM

	6. Collated CDDL
	7. Scalability Considerations
	8. PSA Token Verification
	8.1. AR4SI Trustworthiness Claims Mappings
	8.2. Endorsements, Reference Values, and Verification Key Material

	9. Security and Privacy Considerations
	10. IANA Considerations
	10.1. CBOR Web Token Claims Registration
	10.1.1. Client ID Claim
	10.1.2. Security Lifecycle Claim
	10.1.3. Implementation ID Claim
	10.1.4. Certification Reference Claim
	10.1.5. Software Components Claim
	10.1.6. Verification Service Indicator Claim

	10.2. Media Types
	10.3. CoAP Content-Formats Registration
	10.3.1. Registry Contents

	11. References
	11.1. Normative References
	11.2. Informative References

	Appendix A. Examples
	A.1. COSE Sign1 Token
	A.2. COSE Mac0 Token

	Acknowledgments
	Contributors
	Authors' Addresses

 Arm's Platform Security Architecture (PSA) Attestation Token

 University of Applied Sciences Bonn-Rhein-Sieg

 Germany

 Hannes.Tschofenig@gmx.net

 Arm Limited

 Simon.Frost@arm.com

 Arm Limited

 Mathias.Brossard@arm.com

 HP Labs

 adrianlshaw@acm.org

 Linaro

 thomas.fossati@linaro.org

 Remote Attestation
 EAT profile
 Evidence
 RATS
 IoT

 Arm's Platform Security Architecture (PSA) is a family of hardware and
firmware security specifications, along with open-source reference
implementations, aimed at helping device makers and chip manufacturers
integrate best-practice security into their products. Devices that
comply with PSA can generate attestation tokens as described in this
document, which serve as the foundation for various protocols, including
secure provisioning and network access control. This document specifies
the structure and semantics of the PSA attestation token.
 The PSA attestation token is a profile of the Entity Attestation Token
(EAT). This specification describes the claims used in an attestation
token generated by PSA-compliant systems, how these claims are
serialized for transmission, and how they are cryptographically
protected.
 This Informational document is published as an Independent Submission to improve
interoperability with Arm's architecture. It is not a standard nor
a product of the IETF.

 Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This is a contribution to the RFC Series, independently of any
 other RFC stream. The RFC Editor has chosen to publish this
 document at its discretion and makes no statement about its value
 for implementation or deployment. Documents approved for
 publication by the RFC Editor are not candidates for any level of
 Internet Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2025 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document.

 Table of Contents

 . Introduction

 . Conventions and Definitions

 . PSA Attester Model

 . PSA Claims

 . Caller Claims

 . Nonce

 . Client ID

 . Target Identification Claims

 . Instance ID

 . Implementation ID

 . Certification Reference

 . Target State Claims

 . Security Lifecycle

 . Boot Seed

 . Software Inventory Claims

 . Software Components

 . Verification Claims

 . Verification Service Indicator

 . Profile Definition

 . Backwards Compatibility Considerations

 . Profiles

 . Baseline Profile

 . Token Encoding and Signing

 . Freshness Model

 . Synopsis

 . Profile TFM

 . Collated CDDL

 . Scalability Considerations

 . PSA Token Verification

 . AR4SI Trustworthiness Claims Mappings

 . Endorsements, Reference Values, and Verification Key Material

 . Security and Privacy Considerations

 . IANA Considerations

 . CBOR Web Token Claims Registration

 . Client ID Claim

 . Security Lifecycle Claim

 . Implementation ID Claim

 . Certification Reference Claim

 . Software Components Claim

 . Verification Service Indicator Claim

 . Media Types

 . CoAP Content-Formats Registration

 . Registry Contents

 . References

 . Normative References

 . Informative References

 . Examples

 . COSE Sign1 Token

 . COSE Mac0 Token

 Acknowledgments

 Contributors

 Authors' Addresses

 Introduction
 The Platform Security Architecture (PSA) is a set of hardware and firmware
specifications backed by reference implementations and a security
certification program . The security specifications have been published by Arm,
while the certification program and reference implementations are the result of
a collaborative effort by companies from multiple sectors, including evaluation
laboratories, IP semiconductor vendors, and security consultancies. The main objective of
the PSA initiative is to assist device manufacturers and chip makers in
incorporating best-practice security measures into their products.
 Many devices now have Trusted Execution Environments (TEEs) that provide a safe
space for security-sensitive code, such as cryptography, secure boot, secure
storage, and other essential security functions. These security
functions are typically exposed through a narrow and well-defined interface,
and can be used by operating system libraries and applications.
 As outlined in the Remote ATtestation procedureS (RATS) Architecture
 , an Attester produces a signed collection of
 Claims that constitutes Evidence about its Target Environment. This
 document focuses on the output provided by PSA's Initial Attestation API
 . This output corresponds to Evidence in and, as a design decision, the PSA attestation token
 is a profile of the Entity Attestation Token (EAT) . Note that there are other profiles of EAT available
 for use with different use cases and by different attestation
 technologies, such as
 and .
 Since the PSA tokens are also consumed by services outside the device, there is an actual
need to ensure interoperability. Interoperability needs are addressed here by
describing the exact syntax and semantics of the attestation claims, and
defining the way these claims are encoded and cryptographically protected.
 Further details on concepts expressed below can be found in the PSA Security
Model documentation .
 As mentioned in the abstract, this memo documents a vendor extension
to the RATS architecture and is not a standard.

 Conventions and Definitions

 The key words " MUST", " MUST NOT", " REQUIRED", " SHALL", " SHALL NOT", " SHOULD", " SHOULD NOT", " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are to be interpreted as
 described in BCP 14
 when, and only when, they appear in all capitals, as shown here.

 The terms Attester, Relying Party, Verifier, Attestation Result, Target Environment, Attesting Environment, and Evidence
are defined in . We use the term "receiver" to refer to Relying Parties
and Verifiers.
 We use the terms Evidence, "PSA attestation token", and "PSA token" interchangeably.
The terms "sender" and Attester are used interchangeably. Likewise, we use the terms
Verifier and "verification service" interchangeably.

 Root of Trust (RoT):
 The minimal set of software, hardware, and data that has to be
 implicitly trusted in the platform; there is no software or hardware
 at a deeper level that can verify that the RoT is authentic and
 unmodified. An example of RoT is an initial bootloader in ROM, which
 contains cryptographic functions and credentials, running on a
 specific hardware platform.
 Secure Processing Environment (SPE):
 A platform's processing environment for software that provides
 confidentiality and integrity for its runtime state, from software and
 hardware, outside of the SPE. Contains trusted code and trusted
 hardware. (Equivalent to a TEE, "secure world", or "secure
 enclave".)
 Non-Secure Processing Environment (NSPE):
 The security domain (Application domain) outside of the SPE that typically contains the application firmware, real-time operating systems, applications, and general hardware. (Equivalent to Rich Execution Environment (REE), or "normal
 world".)

 In this document, the structure of data is specified in Concise Data Definition Language (CDDL) .

 PSA Attester Model
 outlines the structure of the PSA Attester according to
the conceptual model described in .

 PSA Attester

 Verifier
 PSA
 Token
 Attesting
 Environment
 Main
 Main
 Initial
 Bootloader
 Boot
 Attestation
 W
 State
 R
 Service
 Updateable
 Application
 Application
 PSA
 RoT
 PSA
 RoT
 RoT
 Loader
 Parameters
 Target
 Environment
 Legend:
 read
 write
 measure
 R
 W

 .----------.
 | Verifier |
 '----------'
 ^
 |
 PSA Token |
 |
.--|----------.
.--	--------.							
	Attesting Environment							
	.------------. .-----. .------+------.							
		Main		Main		Initial		
		Bootloader +--->	Boot	<---+ Attestation				
			W	State	R	Service		
	'-----+------' '-----' '-------------'							
'----------------------	--'							
.------------+--------------+---------------.								
.--------	-------------	--------------	----------------	--------.				
	.------o-----. .-----o-------. .----o--------. .-----o------.							
		Updateable		Application		Application		PSA RoT
		PSA RoT		RoT		Loader		Parameters
	'------------' '-------------' '-------------' '------------'							
	Target Environment							
'---'								
'---'
Legend:
 ---> read ---> write ---o measure
 R W

 The PSA Attester is a relatively straightforward embodiment of the RATS
Attester with exactly one Attesting Environment and one or more Target Environments.
 The Attesting Environment is responsible for collecting the
 information to be represented in PSA claims and to assemble them into
 Evidence. The Attesting Environment is made of two cooperating
 components:

 Executing at boot-time, the Main Bootloader measures the Target Environments (i.e., loaded software
components and all the relevant PSA RoT parameters) and stores the recorded
information in secure memory (Main Boot State). See .

 PSA Attester Boot Phase

 i-th
 Target
 Main
 Boot
 Main
 Boot
 Environment
 Loader
 State
 loop
 i
 measure
 write
 measurement

 i-th Target Main Boot Main Boot
 Environment Loader State
 | | |
.--------|-------------|-------------|----.
loop i			
	measure		
	o------------+		
		write	
		measurement	
	+------------>		
'--------|-------------|-------------|----'
 | | |

 The Initial Attestation Service (executing at run-time in SPE)
 answers requests coming from NSPE via the PSA attestation API , collects and formats the claims from Main Boot
 State, and uses the Initial Attestation Key (IAK) to sign them and
 produce Evidence. See .

 The word "Initial" in "Initial Attestation Service" refers to a limited set of
Target Environments, namely those representing the first foundational stages
establishing the chain of trust of a PSA device.
Collecting measurements from Target Environments after this initial phase is outside the scope of this specification. Extensions of this specification could collect up-to-date measurements from additional Target Environments and define additional claims for use within those environments, but these are, by definition, custom.

 PSA Attester Run-Time Phase

 Initial
 Main
 Boot
 Attestation
 State
 Service
 Verifier
 loop
 i
 read
 measurement
 of
 i-th
 Target
 Environment
 sign
 PSA
 Token

 Initial
 Main Boot Attestation
 State Service Verifier
 | | |
.--------|----------------|-----------|----.
loop i	read		
	measurement of		
	i-th Target		
	Environment		
	<---------------+		
'--------|----------------|-----------|----'
 | .---+ |
 | sign | | |
 | '-->| |
 | | PSA Token |
 | +---------->|
 | | |

 The Target Environments can be of four types, some of
which may or may not be present depending on the device architecture:

 (A subset of) the PSA RoT parameters, including Instance and
 Implementation IDs.
 The updateable PSA RoT, including the Secure Partition Manager and
 all PSA RoT services.
 The (optional) Application RoT, that is any application-defined
 security service possibly making use of the PSA RoT services.
 The loader of the application software running in NSPE.

 A reference implementation of the PSA Attester is provided by .

 PSA Claims
 This section describes the claims to be used in a PSA attestation token.
A more comprehensive treatment of the EAT profiles defined by PSA is found in .
 CDDL along with text descriptions is used to define each claim
independent of encoding. The following CDDL types are reused by different
claims:

psa-hash-type = bytes .size 32 / bytes .size 48 / bytes .size 64
 Two conventions are used to encode the Right-Hand-Side (RHS) of a claim. The postfix -label is used for EAT-defined claims and the postfix -key is used for PSA-originated claims.

 Caller Claims

 Nonce
 The EAT "nonce" (claim key 10) is used to carry the challenge provided by the caller to demonstrate freshness of the generated token.
 Since the EAT nonce claim offers flexibility for different
attestation technologies, this specification applies the following constraints
 to the nonce-type:

 The length MUST be either 32, 48, or 64 bytes.
 Only a single nonce value is conveyed. The array notation
 MUST NOT be used for encoding the nonce value.

 This claim MUST be present in a PSA attestation token.

psa-nonce = (
 nonce-label => psa-hash-type
)

 Client ID
 The Client ID claim represents the security domain of the caller.
 In PSA, a security domain is represented by a signed
integer whereby negative values represent callers from the NSPE and where
positive IDs represent callers from the SPE. The value 0 is not permitted.
 For an example definition of client IDs, see the PSA Firmware Framework .
 It is essential that this claim is checked in the verification process to
ensure that a security domain, i.e., an attestation endpoint, cannot spoof a
report from another security domain.
 This claim MUST be present in a PSA attestation token.

psa-client-id-nspe-type = -2147483648...0
psa-client-id-spe-type = 1..2147483647

psa-client-id-type = psa-client-id-nspe-type / psa-client-id-spe-type

psa-client-id = (
 psa-client-id-key => psa-client-id-type
)

 Target Identification Claims

 Instance ID
 The Instance ID claim represents the unique identifier of the IAK. The full definition is in .
 The EAT ueid (claim key 256) of type RAND is used. The following constraints
apply to the ueid-type:

 The length MUST be 33 bytes.
 The first byte MUST be 0x01 (RAND) followed by
 the 32-byte unique identifier of the IAK.
 provides implementation options for deriving the IAK unique
 identifier from the IAK itself.

 This claim MUST be present in a PSA attestation token.

psa-instance-id-type = bytes .size 33

psa-instance-id = (
 ueid-label => psa-instance-id-type
)

 Implementation ID
 The Implementation ID claim uniquely identifies the hardware assembly of the
immutable PSA RoT. A verification service uses this claim to locate the
details of the PSA RoT implementation from an Endorser or manufacturer.
Such details are used by a verification service to determine the security properties
or certification status of the PSA RoT implementation.
 The value and format of the ID is decided by
the manufacturer or a particular certification scheme. For example, the ID
could take the form of a product serial number,
database ID, or other appropriate identifier.
 This claim MUST be present in a PSA attestation token.
 Note that this identifies the PSA RoT implementation, not a particular instance.
To uniquely identify an instance, see the Instance ID claim .

psa-implementation-id-type = bytes .size 32

psa-implementation-id = (
 psa-implementation-id-key => psa-implementation-id-type
)

 Certification Reference
 The Certification Reference claim is used to link the class of chip and PSA RoT
of the attesting device to an associated entry in the PSA Certification
database.
The Certification Reference claim MUST be represented as a
string made of nineteen numeric characters: a thirteen-digit EAN-13 followed by a dash "-" and the five-digit versioning
information described in .
 Linking to the PSA Certification entry can still be achieved if this claim is
not present in the token by making an association at a Verifier between the
reference value and other token claim values, for example, the Implementation
ID.
 This claim MAY be present in a PSA attestation token.

psa-certification-reference-type = text .regexp "[0-9]{13}-[0-9]{5}"

psa-certification-reference = (
 ? psa-certification-reference-key =>
 psa-certification-reference-type
)

 Target State Claims

 Security Lifecycle
 The Security Lifecycle claim represents the current lifecycle state of the PSA
RoT. The state is represented by an integer that is divided to convey a major
state and a minor state. A major state is mandatory and defined by .
A minor state is optional and 'IMPLEMENTATION DEFINED'. The PSA security
lifecycle state and implementation state are encoded as follows:

 major[15:8] - PSA security lifecycle state, and
 minor[7:0] - IMPLEMENTATION DEFINED state.

 The PSA lifecycle states are illustrated in . For PSA,
a Verifier can only trust reports from the PSA RoT when it is in SECURED or
NON_PSA_ROT_DEBUG major states.
 This claim MUST be present in a PSA attestation token.

 PSA Lifecycle States

 Device
 Assembly
 and
 Test
 Device
 Lockdown
 PSA
 RoT
 Provisioning
 Provisioning
 Lockdown
 Secured
 Debug
 Debug
 Recoverable
 Recoverable
 (Non-Recoverable)
 Recoverable
 Non-PSA
 RoT
 Debug
 PSA
 RoT
 Debug
 Terminate
 Non-Recoverable
 PSA
 RoT
 Compromised
 Decommissioned

 .-------------------------.
 | Device Assembly and Test |
 '------------+------------'
 | Device
 | Lockdown
 v
 .----------------------.
 | PSA RoT Provisioning |
 '-----------+----------'
 |
 Provisioning | .------------------.
 Lockdown | | |
 v v |
 .----------------. |
 .-------------+ Secured +-------. |
'-+--------------'		
	^ Debug	
Debug		
	Recoverable	Recoverable
v	v	
.----------------+--. .----------+----.		
	(Non-Recoverable)	
	Non-PSA RoT Debug	
'---------+---------' '------+--------'		
Terminate Non-Recoverable PSA RoT Compromised		
v		
.----------------.		
 '------------>| Decommissioned |<--------'
 '----------------'

 The CDDL representation is shown below.
 provides the mappings between and the data model.

psa-lifecycle-unknown-type = 0x0000..0x00ff
psa-lifecycle-assembly-and-test-type = 0x1000..0x10ff
psa-lifecycle-psa-rot-provisioning-type = 0x2000..0x20ff
psa-lifecycle-secured-type = 0x3000..0x30ff
psa-lifecycle-non-psa-rot-debug-type = 0x4000..0x40ff
psa-lifecycle-recoverable-psa-rot-debug-type = 0x5000..0x50ff
psa-lifecycle-decommissioned-type = 0x6000..0x60ff

psa-lifecycle-type =
 psa-lifecycle-unknown-type /
 psa-lifecycle-assembly-and-test-type /
 psa-lifecycle-psa-rot-provisioning-type /
 psa-lifecycle-secured-type /
 psa-lifecycle-non-psa-rot-debug-type /
 psa-lifecycle-recoverable-psa-rot-debug-type /
 psa-lifecycle-decommissioned-type

psa-lifecycle = (
 psa-lifecycle-key => psa-lifecycle-type
)
 psa-lifecycle-unknown-type is not shown in ; it represents an invalid state that must not occur in a system.

 Lifecycle States Mappings

 CDDL
 Lifecycle States

 psa-lifecycle-unknown-type

 psa-lifecycle-assembly-and-test-type
 Assembly and Test

 psa-lifecycle-psa-rot-provisioning-type
 PSA RoT Provisioning

 psa-lifecycle-secured-type
 Secured

 psa-lifecycle-non-psa-rot-debug-type
 Non-Recoverable PSA RoT Debug

 psa-lifecycle-recoverable-psa-rot-debug-type
 Recoverable PSA RoT Debug

 psa-lifecycle-decommissioned-type
 Decommissioned

 Boot Seed
 The "bootseed" claim contains a value created at system boot time
that allows differentiation of attestation reports from different
boot sessions of a particular entity (i.e., a certain Instance ID).
 The EAT "bootseed" (claim key 268) is used.
The following constraints apply to the binary-data type:

 The length MUST be between 8 and 32 bytes.

 This claim MAY be present in a PSA attestation token.

psa-boot-seed-type = bytes .size (8..32)

psa-boot-seed = (
 boot-seed-label => psa-boot-seed-type
)

 Software Inventory Claims

 Software Components
 The Software Components claim is a list of software components that includes
all the software (both code and configuration) loaded by the PSA RoT. This
claim MUST be included in attestation tokens produced by an implementation
conformant with .
 Each entry in the Software Components list describes one software component
using the attributes described in the following subsections. Unless explicitly
stated, the presence of an attribute is OPTIONAL.
 Note that a Relying Party will typically see the
result of the appraisal process from the Verifier in form of an Attestation
Result rather than the PSA token from the attesting endpoint as described in .
Therefore, a Relying Party is not expected to understand the Software
Components claim. Instead, it is for the Verifier to check this claim against
the available Reference Values and provide an answer in form of a "high-level"
Attestation Result, which may or may not include the original Software
Components claim.

psa-software-component = {
 ? &(measurement-type: 1) => text
 &(measurement-value: 2) => psa-hash-type
 ? &(version: 4) => text
 &(signer-id: 5) => psa-hash-type
 ? &(measurement-desc: 6) => text
}

psa-software-components = (
 psa-software-components-key => [+ psa-software-component]
)

 Measurement Type
 The Measurement Type attribute (key=1) is a short string representing the role of
this software component.
 The following measurement types MAY be used for code measurements:

 "BL":
 a Boot Loader
 "PRoT":
 a component of the PSA Root of Trust
 "ARoT":
 a component of the Application Root of Trust
 "App":
 a component of the NSPE application
 "TS":
 a component of a Trusted Subsystem

 The same labels with a "_CONFIG" postfix (e.g., "PRoT_CONFIG") MAY be used for
configuration measurements.
 This attribute SHOULD be present in a PSA software component unless
there is a very good reason to leave it out, for example, in networks
with severely constrained bandwidth where sparing a few bytes really
makes a difference.

 Measurement Value
 The Measurement Value attribute (key=2) represents a hash of the invariant
software component in memory at startup time. The value MUST be a cryptographic
hash of 256 bits or stronger.
 This attribute MUST be present in a PSA software component.

 Version
 The Version attribute (key=4) is the issued software version in the form of a
text string. The value of this attribute will correspond to the entry in the
original signed manifest of the component.

 Signer ID
 The Signer ID attribute (key=5) uniquely identifies the signer of the software component. The identification is typically accomplished by hashing the signer's public key.
The value of this attribute will correspond to the
entry in the original manifest for the component. This can be used by a
Verifier to ensure the components were signed by an expected trusted source.
 This attribute MUST be present in a PSA software component to be compliant with
 .

 Measurement Description
 The Measurement Description attribute (key=6) contains a string identifying the
hash algorithm used to compute the corresponding Measurement Value. The string
 SHOULD be encoded according to "Hash Name String" in the "Named Information Hash Algorithm Registry" .

 Verification Claims
 The following claims, although part of Evidence, do not reflect the
 internal state of the Attester. Instead, they aim to help receivers,
 including Relying Parties, in processing the received attestation
 Evidence.

 Verification Service Indicator
 The Verification Service Indicator claim is a hint used by a Relying Party to
locate a verification service for the token. The value is a text string that
can be used to locate the service (typically, a URL specifying the address of
the verification service API). A Relying Party may choose to ignore this claim
in favor of other information.

psa-verification-service-indicator-type = text

psa-verification-service-indicator = (
 ? psa-verification-service-indicator-key =>
 psa-verification-service-indicator-type
)
 It is assumed that the Relying Party is pre-configured with a list of trusted
verification services and that the contents of this hint can be used to look
up the correct one. Under no circumstances must the Relying Party be tricked
into contacting an unknown and untrusted verification service since the
returned Attestation Result cannot be relied on.
 Note: This hint requires the Relying Party to parse the content of the
PSA token. Since the Relying Party may not be in possession of a trust
anchor to verify the digital signature, it uses the hint in the same way
as it would treat any other information provided by an external party,
which includes attacker-provided data.

 Profile Definition
 The Profile Definition claim encodes the unique identifier that corresponds to
the EAT profile described by this document. This allows a receiver to assign
the intended semantics to the rest of the claims found in the token.
 The EAT eat_profile (claim key 265) is used.
 The URI encoding MUST be used.
 The value MUST be tag:psacertified.org,2023:psa#tfm for the profile defined in .
 Future profiles derived from the baseline PSA profile SHALL create their unique value as described in .
 This claim MUST be present in a PSA attestation token.
 See for considerations about backwards compatibility
with previous versions of the PSA attestation token format.

psa-profile-type = "tag:psacertified.org,2023:psa#tfm"

psa-profile = (
 profile-label => psa-profile-type
)

 URI Structure for the Derived Profile Identifiers
 A new profile is associated with a unique string.
 The string MUST use the URI fragment syntax defined in .
 The string SHOULD be short to avoid unnecessary overhead.
 To avoid collisions, profile authors SHOULD communicate their intent upfront to use a certain string that uses the inquiry form on the website .
 To derive the value to be used for the eat_profile claim, the string is added as a fragment to the tag:psacertified.org,2023:psa tag URI .
 For example, a hypothetical profile using only COSE_Mac0 with the AES Message Authentication Code (AES-MAC) may decide to use the string "aes-mac". The eat_profile value would then be tag:psacertified.org,2023:psa#aes-mac.

 Backwards Compatibility Considerations
 An earlier draft of this document identified by the PSA_IOT_PROFILE_1
profile, used claim key values from the "private use range" of the CWT Claims
registry. These claim keys have now been deprecated.
 provides the mappings between the deprecated and new claim
keys.

 Claim Key Mappings

 PSA_IOT_PROFILE_1
 tag:psacertified.org,2023:psa#tfm

 Nonce
 -75008
 10 (EAT nonce)

 Instance ID
 -75009
 256 (EAT euid)

 Profile Definition
 -75000
 265 (EAT eat_profile)

 Client ID
 -75001
 2394

 Security Lifecycle
 -75002
 2395

 Implementation ID
 -75003
 2396

 Boot Seed
 -75004
 268 (EAT bootseed)

 Certification Reference
 -75005
 2398

 Software Components
 -75006
 2399

 Verification Service Indicator
 -75010
 2400

 The new profile introduces three further changes:

 The "bootseed" claim is now optional and of variable length
 (see).
 The "No Software Measurements" claim has been retired.
 The "Certification Reference" claim syntax changed from EAN-13
 to EAN-13+5 (see).

 To simplify the transition to the token format described in this
document, it is RECOMMENDED that Verifiers
accept tokens encoded according to the old profile (PSA_IOT_PROFILE_1) as well as
to the profile defined in this document (tag:psacertified.org,2023:psa#tfm), at least for the time needed to
their devices to upgrade.

 Profiles
 This document defines a baseline with common requirements that all PSA profiles must satisfy.
(Note that this does not apply to .)
 This document also defines a "TFM" profile () that builds on the baseline while constraining the use of COSE algorithms to improve interoperability between Attesters and Verifiers.
 Baseline and TFM are what the EAT calls a "partial" and "full" profile, respectively. See for further details regarding profiles.

 Baseline Profile

 Token Encoding and Signing
 The PSA attestation token is encoded in CBOR format.
The CBOR representation of a PSA token MUST be "valid" according to the definition in Section of RFC 8949 .
Besides, only definite-length string, arrays, and maps are allowed.
Given that a PSA Attester is typically found in a constrained device, it MAY
NOT emit CBOR preferred serializations (Section of RFC 8949).
Therefore, the Verifier MUST be a variation-tolerant CBOR decoder.
 Cryptographic protection is obtained by wrapping the psa-token claims set in a COSE
Web Token (CWT) . For asymmetric key algorithms, the signature
structure MUST be a tagged (18) COSE_Sign1. For symmetric key algorithms, the signature
structure MUST be a tagged (17) COSE_Mac0.
 Acknowledging the variety of markets, regulations, and use cases in which the
PSA attestation token can be used, the baseline profile does not impose any
strong requirement on the cryptographic algorithms that need to be supported by
Attesters and Verifiers. The flexibility provided by the COSE format should be
sufficient to deal with the level of cryptographic agility needed to adapt to
specific use cases. It is RECOMMENDED that commonly adopted algorithms are
used, such as those discussed in . It is expected that receivers
will accept a wider range of algorithms while Attesters would produce PSA tokens
using only one such algorithm.
 The CWT CBOR tag (61) is not used. An application that needs to exchange PSA
attestation tokens can wrap the serialized COSE_Sign1 or COSE_Mac0 in the media
type defined in or the CoAP Content-Format defined in
 .
 A PSA token is always directly signed by the PSA RoT. Therefore,
 a PSA-token claims set () is never
 carried in a Detached EAT bundle ().

 Freshness Model
 The PSA token supports the freshness models for attestation Evidence based on
nonces and epoch handles (Section and Section of) using
the "nonce" claim to convey the nonce or epoch handle supplied by the Verifier.
No further assumption on the specific remote attestation protocol is made.
 Note that use of epoch handles is constrained by the type restrictions imposed by the eat_nonce syntax.
For use in PSA tokens, it must be possible to encode the epoch handle as an opaque binary string between 8 and 64 octets.

 Synopsis
 presents a concise view of the requirements described in the preceding sections.

 Baseline Profile

 Issue
 Profile Definition

 CBOR/JSON
 CBOR MUST be used.

 CBOR Encoding
 Definite length maps and arrays MUST be used.

 CBOR Encoding
 Definite length strings MUST be used.

 CBOR Serialization
 Variant serialization MAY be used.

 COSE Protection
 COSE_Sign1 and/or COSE_Mac0 MUST be used.

 Algorithms

 SHOULD be used.

 Detached EAT Bundle Usage
 Detached EAT bundles MUST NOT be sent.

 Verification Key Identification
 Any identification method listed in .

 Endorsements
 See .

 Freshness
 Nonce or epoch ID-based.

 Claims
 Those defined in . As per general EAT rules, the receiver MUST NOT error out on claims it does not understand.

 Profile TFM
 The TFM profile is appropriate for the code base implemented in and should apply for most derivative implementations. If an implementation changes the requirements described below, then a different profile value should be used () to ensure interoperability. This includes a restriction of the profile to a subset of the COSE Protection scheme requirements.
 presents a concise view of the requirements.
 The value of the eat_profile MUST be tag:psacertified.org,2023:psa#tfm.

 TF-M Profile

 Issue
 Profile Definition

 CBOR/JSON
 See .

 CBOR Encoding
 See .

 CBOR Encoding
 See .

 CBOR Serialization
 See .

 COSE Protection
 COSE_Sign1 or COSE_Mac0 MUST be used.

 Algorithms
 The receiver MUST accept ES256, ES384, and ES512 with COSE_Sign1 and HMAC256/256, HMAC384/384, and HMAC512/512 with COSE_Mac0; the sender MUST send one of these.

 Detached EAT Bundle Usage
 See .

 Verification Key Identification
 Claim-Based Key Identification () using Instance ID.

 Endorsements
 See .

 Freshness
 See .

 Claims
 See .

 Collated CDDL

psa-token = {
 psa-nonce
 psa-instance-id
 psa-verification-service-indicator
 psa-profile
 psa-implementation-id
 psa-client-id
 psa-lifecycle
 psa-certification-reference
 ? psa-boot-seed
 psa-software-components
}

psa-client-id-key = 2394
psa-lifecycle-key = 2395
psa-implementation-id-key = 2396
psa-certification-reference-key = 2398
psa-software-components-key = 2399
psa-verification-service-indicator-key = 2400

nonce-label = 10
ueid-label = 256
boot-seed-label = 268
profile-label = 265

psa-hash-type = bytes .size 32 / bytes .size 48 / bytes .size 64

psa-boot-seed-type = bytes .size (8..32)

psa-boot-seed = (
 boot-seed-label => psa-boot-seed-type
)

psa-client-id-nspe-type = -2147483648...0
psa-client-id-spe-type = 1..2147483647

psa-client-id-type = psa-client-id-nspe-type / psa-client-id-spe-type

psa-client-id = (
 psa-client-id-key => psa-client-id-type
)

psa-certification-reference-type = text .regexp "[0-9]{13}-[0-9]{5}"

psa-certification-reference = (
 ? psa-certification-reference-key =>
 psa-certification-reference-type
)

psa-implementation-id-type = bytes .size 32

psa-implementation-id = (
 psa-implementation-id-key => psa-implementation-id-type
)

psa-instance-id-type = bytes .size 33

psa-instance-id = (
 ueid-label => psa-instance-id-type
)

psa-nonce = (
 nonce-label => psa-hash-type
)

psa-profile-type = "tag:psacertified.org,2023:psa#tfm"

psa-profile = (
 profile-label => psa-profile-type
)

psa-lifecycle-unknown-type = 0x0000..0x00ff
psa-lifecycle-assembly-and-test-type = 0x1000..0x10ff
psa-lifecycle-psa-rot-provisioning-type = 0x2000..0x20ff
psa-lifecycle-secured-type = 0x3000..0x30ff
psa-lifecycle-non-psa-rot-debug-type = 0x4000..0x40ff
psa-lifecycle-recoverable-psa-rot-debug-type = 0x5000..0x50ff
psa-lifecycle-decommissioned-type = 0x6000..0x60ff

psa-lifecycle-type =
 psa-lifecycle-unknown-type /
 psa-lifecycle-assembly-and-test-type /
 psa-lifecycle-psa-rot-provisioning-type /
 psa-lifecycle-secured-type /
 psa-lifecycle-non-psa-rot-debug-type /
 psa-lifecycle-recoverable-psa-rot-debug-type /
 psa-lifecycle-decommissioned-type

psa-lifecycle = (
 psa-lifecycle-key => psa-lifecycle-type
)

psa-software-component = {
 ? &(measurement-type: 1) => text
 &(measurement-value: 2) => psa-hash-type
 ? &(version: 4) => text
 &(signer-id: 5) => psa-hash-type
 ? &(measurement-desc: 6) => text
}

psa-software-components = (
 psa-software-components-key => [+ psa-software-component]
)

psa-verification-service-indicator-type = text

psa-verification-service-indicator = (
 ? psa-verification-service-indicator-key =>
 psa-verification-service-indicator-type
)

 Scalability Considerations
 IAKs (see) can be either raw public keys or certified public keys.
 Certified public keys require the manufacturer to run the certification
authority (CA) that issues X.509 certificates for the IAKs. (Note that operating a CA
is a complex and expensive task that may be unaffordable to certain
manufacturers.)
 Using certified public keys offers better scalability properties when compared to using raw public keys, namely:

 Storage requirements for the Verifier are minimized; the same
 manufacturer's trust anchor is used for any number of devices.
 The provisioning model is simpler and more robust since there is no
	need to notify the Verifier about each newly manufactured device.

 Furthermore, existing and well-understood revocation mechanisms can be readily used.
 The IAK's X.509 certificates can be inlined in the PSA token using the x5chain COSE
header parameter at the cost of an increase in the PSA token
size. and provide
guidance for profiling X.509 certificates used in IoT deployments.
Note that the exact split between pre-provisioned and inlined certificates may vary
depending on the specific deployment. In that respect, x5chain is quite
flexible. It can contain the end entity (EE) certification only, the EE and a partial
chain, or the EE and the full chain up to the trust anchor (see for the details).
Constraints around network bandwidth and computing resources available to endpoints, such as network buffers, may dictate a reasonable split point.

 PSA Token Verification
 To verify the token, the primary need is to check correct encoding and signing
as detailed in .
The key used for verification is either supplied to the Verifier by an
authorized Endorser along with the corresponding Attester's Instance ID or
inlined in the token using the x5chain header parameter as described in
 .
If the IAK is a raw public key and the Instance ID claim is
used to assist in
locating the key used to verify the signature covering the CWT token.
If the IAK is a certified public key, X.509 path construction and validation
() up to a trusted CA MUST be successful before the key is
used to verify the token signature. This also includes revocation checking.
 The Verifier typically has a policy where it compares some claims in
 this profile to reference values registered with it for a given
 deployment. This verification process serves to confirm that the
 device is endorsed by the manufacturer supply chain. The policy may require that the
relevant claims must have a match to a registered reference value. All claims
may be worthy of additional appraisal. It is likely that most deployments
would include a policy with appraisal for the following claims:

 Implementation ID: The value of the Implementation ID can be used
 to identify the verification requirements of the deployment.
 Software Component, Measurement Value: This value can uniquely
 identify a firmware release from the supply chain. In some cases, a
 Verifier may maintain a record for a series of firmware releases
 being patches to an original baseline release. A verification policy
 may then allow this value to match any point on that release sequence
 or expect some minimum level of maturity related to the sequence.
 Software Component, Signer ID: Where present in a deployment, this
 could allow a Verifier to operate a more general policy than that for
 Measurement Value as above by allowing a token to contain any
 firmware entries signed by a known Signer ID without checking for a
 uniquely registered version.
 Certification Reference: If present, this value could be used as a
 hint to locate security certification information associated with the
 attesting device. An example could be a reference to a certificate.

 AR4SI Trustworthiness Claims Mappings
 defines an information model that Verifiers can employ to
produce Attestation Results.
AR4SI provides a set of standardized appraisal categories and tiers that
greatly simplifies the task of writing Relying Party policies in Multi-Attester
environments.
 The contents of are intended as guidance for implementing a
PSA Verifier that computes its results using AR4SI.
The table describes which PSA Evidence claims (if any) are related to which
AR4SI trustworthiness claim, and therefore what the Verifier must consider when
deciding if and how to appraise a certain feature associated with the PSA
Attester.

 AR4SI Claims mappings

 Trustworthiness Vector claims
 Related PSA claims

 "configuration"
 Software Components ()

 "executables"
 ditto

 "file-system"
 N/A

 "hardware"
 Implementation ID ()

 "instance-identity"
 Instance ID (). The Security Lifecycle () can also impact the derived identity.

 "runtime-opaque"
 Indirectly derived from "executables", "hardware", and "instance-identity". The Security Lifecycle () can also be relevant, e.g., any debug state will expose otherwise protected memory.

 "sourced-data"
 N/A

 "storage-opaque"
 Indirectly derived from "executables", "hardware", and "instance-identity".

 This document does not prescribe what value must be chosen based on each
possible situation. When assigning specific Trustworthiness Claim values, an
implementation is expected to follow the algorithm described in .

 Endorsements, Reference Values, and Verification Key Material
 defines a protocol based on the data model
that can be used to convey PSA Endorsements, Reference Values, and verification
key material to the Verifier.

 Security and Privacy Considerations
 This specification reuses the EAT specification and therefore the CWT specification.
Hence, the security and privacy considerations of those specifications apply here as well.
 Since CWTs offer different ways to protect the token, this specification
profiles those options and allows signatures using public key cryptography as
well as message authentication codes (MACs). COSE_Sign1 is used for digital
signatures and COSE_Mac0 for MACs as defined in the COSE specification .
Note, however, that the use of MAC authentication is NOT RECOMMENDED due to the associated
infrastructure costs for key management and protocol complexities.
 A PSA Attester MUST NOT provide Evidence to an untrusted
challenger, as it may allow attackers to interpose and trick the Verifier into
believing the attacker is a legitimate Attester.
This is especially relevant to protocols that use PSA attestation tokens to authenticate the attester to a Relying Party.
 Attestation tokens contain information that may be unique to a device. Therefore, they may allow to single out an individual device for tracking
purposes. Deployments that have privacy requirements must take appropriate
measures to ensure that the token is only used to provision anonymous/pseudonym
keys.

 IANA Considerations

 CBOR Web Token Claims Registration
 IANA has registered the following claims
in the "CBOR Web Token (CWT) Claims" registry
 .

 Client ID Claim

 Claim Name:
 psa-client-id
 Claim Description:
 PSA Client ID
 JWT Claim Name:
 N/A
 Claim Key:
 2394
 Claim Value Type(s):
 signed integer
 Change Controller:
 Hannes Tschofenig
 Specification Document(s):

 of RFC 9783

 Security Lifecycle Claim

 Claim Name:
 psa-security-lifecycle
 Claim Description:
 PSA Security Lifecycle
 JWT Claim Name:
 N/A
 Claim Key:
 2395
 Claim Value Type(s):
 unsigned integer
 Change Controller:
 Hannes Tschofenig
 Specification Document(s):

 of RFC 9783

 Implementation ID Claim

 Claim Name:
 psa-implementation-id
 Claim Description:
 PSA Implementation ID
 JWT Claim Name:
 N/A
 Claim Key:
 2396
 Claim Value Type(s):
 byte string
 Change Controller:
 Hannes Tschofenig
 Specification Document(s):

 of RFC 9783

 Certification Reference Claim

 Claim Name:
 psa-certification-reference
 Claim Description:
 PSA Certification Reference
 JWT Claim Name:
 N/A
 Claim Key:
 2398
 Claim Value Type(s):
 text string
 Change Controller:
 Hannes Tschofenig
 Specification Document(s):

 of RFC 9783

 Software Components Claim

 Claim Name:
 psa-software-components
 Claim Description:
 PSA Software Components
 JWT Claim Name:
 N/A
 Claim Key:
 2399
 Claim Value Type(s):
 array
 Change Controller:
 Hannes Tschofenig
 Specification Document(s):

 of RFC 9783

 Verification Service Indicator Claim

 Claim Name:
 psa-verification-service-indicator
 Claim Description:
 PSA Verification Service Indicator
 JWT Claim Name:
 N/A
 Claim Key:
 2400
 Claim Value Type(s):
 text string
 Change Controller:
 Hannes Tschofenig
 Specification Document(s):

 of RFC 9783

 Media Types
 This document does not register any new media types.
To indicate that the transmitted content is a PSA attestation token,
applications can use the application/eat+cwt media type defined in
 with the eat_profile parameter set to
 tag:psacertified.org,2023:psa#tfm (or tag:psacertified.org,2019:psa#legacy if the token is encoded
according to the old profile; see).

 CoAP Content-Formats Registration
 IANA has registered two CoAP Content-Format IDs in the First Come First Served range of the "CoAP
Content-Formats" registry :

 One for the application/eat+cwt media type with the eat_profile parameter
	 equal to tag:psacertified.org,2023:psa#tfm.
 Another for the application/eat+cwt media type with the eat_profile
	 parameter equal to tag:psacertified.org,2019:psa#legacy.

 Registry Contents

 Media Type:

 application/eat+cwt; eat_profile="tag:psacertified.org,2023:psa#tfm"
 Encoding:
 -
 ID:
 10003
 Reference:
 RFC 9783

 Media Type:

 application/eat+cwt; eat_profile="tag:psacertified.org,2019:psa#legacy"
 Encoding:
 -
 ID:
 10004
 Reference:
 RFC 9783

 References

 Normative References

 CBOR Object Signing and Encryption (COSE): Initial Algorithms

 Concise Binary Object Representation (CBOR) is a data format designed for small code size and small message size. There is a need to be able to define basic security services for this data format. This document defines a set of algorithms that can be used with the CBOR Object Signing and Encryption (COSE) protocol (RFC 9052).
 This document, along with RFC 9052, obsoletes RFC 8152.

 CBOR Web Token (CWT) Claims

 IANA

 EAN/UPC barcodes

 GS1

 The Entity Attestation Token (EAT)

 An Entity Attestation Token (EAT) provides an attested claims set that describes the state and characteristics of an entity, a device such as a smartphone, an Internet of Things (IoT) device, network equipment, or such. This claims set is used by a relying party, server, or service to determine the type and degree of trust placed in the entity.
 An EAT is either a CBOR Web Token (CWT) or a JSON Web Token (JWT) with attestation-oriented claims.

 Entity Attestation Token (EAT) Media Types

 The payloads used in Remote ATtestation procedureS (RATS) may require an associated media type for their conveyance, for example, when the payloads are used in RESTful APIs.
 This memo defines media types to be used for Entity Attestation Tokens (EATs).

 Named Information Hash Algorithm Registry

 IANA

 PSA Certified Level 2 Step by Step Guide Version 1.1

 PSA Certified

 Arm PSA Firmware Framework 1.0

 Arm

 Platform Security Model 1.1

 Arm

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Uniform Resource Identifier (URI): Generic Syntax

 A Uniform Resource Identifier (URI) is a compact sequence of characters that identifies an abstract or physical resource. This specification defines the generic URI syntax and a process for resolving URI references that might be in relative form, along with guidelines and security considerations for the use of URIs on the Internet. The URI syntax defines a grammar that is a superset of all valid URIs, allowing an implementation to parse the common components of a URI reference without knowing the scheme-specific requirements of every possible identifier. This specification does not define a generative grammar for URIs; that task is performed by the individual specifications of each URI scheme. [STANDARDS-TRACK]

 The 'tag' URI Scheme

 This document describes the "tag" Uniform Resource Identifier (URI) scheme. Tag URIs (also known as "tags") are designed to be unique across space and time while being tractable to humans. They are distinct from most other URIs in that they have no authoritative resolution mechanism. A tag may be used purely as an entity identifier. Furthermore, using tags has some advantages over the common practice of using "http" URIs as identifiers for non-HTTP-accessible resources. This memo provides information for the Internet community.

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 CBOR Web Token (CWT)

 CBOR Web Token (CWT) is a compact means of representing claims to be transferred between two parties. The claims in a CWT are encoded in the Concise Binary Object Representation (CBOR), and CBOR Object Signing and Encryption (COSE) is used for added application-layer security protection. A claim is a piece of information asserted about a subject and is represented as a name/value pair consisting of a claim name and a claim value. CWT is derived from JSON Web Token (JWT) but uses CBOR rather than JSON.

 Concise Data Definition Language (CDDL): A Notational Convention to Express Concise Binary Object Representation (CBOR) and JSON Data Structures

 This document proposes a notational convention to express Concise Binary Object Representation (CBOR) data structures (RFC 7049). Its main goal is to provide an easy and unambiguous way to express structures for protocol messages and data formats that use CBOR or JSON.

 Concise Binary Object Representation (CBOR)

 The Concise Binary Object Representation (CBOR) is a data format whose design goals include the possibility of extremely small code size, fairly small message size, and extensibility without the need for version negotiation. These design goals make it different from earlier binary serializations such as ASN.1 and MessagePack.
 This document obsoletes RFC 7049, providing editorial improvements, new details, and errata fixes while keeping full compatibility with the interchange format of RFC 7049. It does not create a new version of the format.

 CBOR Object Signing and Encryption (COSE): Structures and Process

 Concise Binary Object Representation (CBOR) is a data format designed for small code size and small message size. There is a need to be able to define basic security services for this data format. This document defines the CBOR Object Signing and Encryption (COSE) protocol. This specification describes how to create and process signatures, message authentication codes, and encryption using CBOR for serialization. This specification additionally describes how to represent cryptographic keys using CBOR.
 This document, along with RFC 9053, obsoletes RFC 8152.

 CBOR Object Signing and Encryption (COSE): Countersignatures

 Concise Binary Object Representation (CBOR) is a data format designed for small code size and small message size. CBOR Object Signing and Encryption (COSE) defines a set of security services for CBOR. This document defines a countersignature algorithm along with the needed header parameters and CBOR tags for COSE. This document updates RFC 9052.

 Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile

 This memo profiles the X.509 v3 certificate and X.509 v2 certificate revocation list (CRL) for use in the Internet. An overview of this approach and model is provided as an introduction. The X.509 v3 certificate format is described in detail, with additional information regarding the format and semantics of Internet name forms. Standard certificate extensions are described and two Internet-specific extensions are defined. A set of required certificate extensions is specified. The X.509 v2 CRL format is described in detail along with standard and Internet-specific extensions. An algorithm for X.509 certification path validation is described. An ASN.1 module and examples are provided in the appendices. [STANDARDS-TRACK]

 Informative References

 CoAP Content-Formats

 IANA

 CBOR Object Signing and Encryption (COSE): Header Parameters for Carrying and Referencing X.509 Certificates

 The CBOR Object Signing and Encryption (COSE) message structure uses references to keys in general. For some algorithms, additional properties are defined that carry parameters relating to keys as needed. The COSE Key structure is used for transporting keys outside of COSE messages. This document extends the way that keys can be identified and transported by providing attributes that refer to or contain X.509 certificates.

 iat-verifier

 Trusted Firmware

 commit: 0b49b00195b7733d6fe74e8f42ed4d7b81242801

 Security - Platform Security Architecture

 Arm

 PSA Certified Attestation API 1.0

 Arm

 A CoRIM Profile for Arm's Platform Security Architecture (PSA)

 Arm Ltd

 Arm Ltd

 Fraunhofer SIT

 PSA Endorsements include reference values, endorsed values, cryptographic key material and certification status information that a Verifier may need in order to appraise attestation Evidence produced by a PSA device. This memo defines PSA Endorsements as a profile of the CoRIM data model.

 Work in Progress

 Arm's Platform Security Architecture (PSA) Attestation Token

 Work in Progress

 PSA Certified: IoT Security Framework and Certification

 PSA Certified

 Attestation Results for Secure Interactions

 Cisco Systems

 Fraunhofer SIT

 MIT

 Linaro

 Intel

 This document defines reusable Attestation Result information elements. When these elements are offered to Relying Parties as Evidence, different aspects of Attester trustworthiness can be evaluated. Additionally, where the Relying Party is interfacing with a heterogeneous mix of Attesting Environment and Verifier types, consistent policies can be applied to subsequent information exchange between each Attester and the Relying Party. This document also defines two serialisations of the proposed information model, utilising CBOR and JSON.

 Work in Progress

 Concise Reference Integrity Manifest

 Fraunhofer SIT

 Linaro

 arm

 Intel

 Huawei Technologies

 Remote Attestation Procedures (RATS) enable Relying Parties to assess the trustworthiness of a remote Attester and therefore to decide whether or not to engage in secure interactions with it. Evidence about trustworthiness can be rather complex and it is deemed unrealistic that every Relying Party is capable of the appraisal of Evidence. Therefore that burden is typically offloaded to a Verifier. In order to conduct Evidence appraisal, a Verifier requires not only fresh Evidence from an Attester, but also trusted Endorsements and Reference Values from Endorsers and Reference Value Providers, such as manufacturers, distributors, or device owners. This document specifies the information elements for representing Endorsements and Reference Values in CBOR format.

 Work in Progress

 The Qualcomm Wireless Edge Services (QWES) Attestation Token

 Qualcomm Technologies Inc.

 Qualcomm Technologies Inc.

 Qualcomm Technologies Inc.

 An attestation format based on the Entity Attestation Token (EAT) is described. The Qualcomm Wireless Edge Services (QWES) token is used in the context of device onboarding and authentication. It is verified in the same manner as any CBOR Web Token (CWT).

 Work in Progress

 EAT profile for Intel(r) Trust Domain Extensions (TDX) attestation result

 Microsoft

 Microsoft

 Intel

 Intel

 Intel

 Intel® Trust Domain Extensions (TDX) introduce architectural elements designed for the deployment of hardware-isolated virtual machines (VMs) known as trust domains (TDs). TDX is designed to provide a secure and isolated environment for running sensitive workloads or applications. This Entity Attestation Token (EAT) profile outlines claims for an Intel TDX attestation result which facilitate the establishment of trust between a relying party and the environment.

 Work in Progress

 Remote ATtestation procedureS (RATS) Architecture

 In network protocol exchanges, it is often useful for one end of a communication to know whether the other end is in an intended operating state. This document provides an architectural overview of the entities involved that make such tests possible through the process of generating, conveying, and evaluating evidentiary Claims. It provides a model that is neutral toward processor architectures, the content of Claims, and protocols.

 Trusted Firmware-M

 Trusted Firmware

 Transport Layer Security (TLS) / Datagram Transport Layer Security (DTLS) Profiles for the Internet of Things

 A common design pattern in Internet of Things (IoT) deployments is the use of a constrained device that collects data via sensors or controls actuators for use in home automation, industrial control systems, smart cities, and other IoT deployments.
 This document defines a Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS) 1.2 profile that offers communications security for this data exchange thereby preventing eavesdropping, tampering, and message forgery. The lack of communication security is a common vulnerability in IoT products that can easily be solved by using these well-researched and widely deployed Internet security protocols.

 TLS/DTLS 1.3 Profiles for the Internet of Things

 University of Applied Sciences Bonn-Rhein-Sieg

 Linaro

 Sandelman Software Works

 RFC 7925 offers guidance to developers on using TLS/DTLS 1.2 for Internet of Things (IoT) devices with resource constraints. This document is a companion to RFC 7925, defining TLS/DTLS 1.3 profiles for IoT devices. Additionally, it updates RFC 7925 with respect to the X.509 certificate profile and ciphersuite requirements. Discussion Venues This note is to be removed before publishing as an RFC. Source for this draft and an issue tracker can be found at https://github.com/thomas-fossati/draft-tls13-iot.

 Work in Progress

 Examples
 The following examples show PSA attestation tokens for a hypothetical system
comprising a single measured software component.
The attesting device is in a lifecycle state () of
SECURED. The attestation has been requested from a client residing in the
SPE.
 The example in illustrates the case where the IAK is an asymmetric key. A COSE Sign1 envelope is used to wrap the PSA-token claims set.
 illustrates the case where the IAK is a symmetric key and a COSE Mac0 envelope is used instead.
 The claims sets are identical, except for the Instance ID which is synthesized from the key material.
 The examples have been created using the iat-verifier tool .

 COSE Sign1 Token

{
 / ueid / 256: h'01020202020202020202020202
02',
 / psa-implementation-id / 2396: h'00000000000000000000000000
00000000000000000000000000000000000000',
 / eat_nonce / 10: h'01010101010101010101010101
01010101010101010101010101010101010101',
 / psa-client-id / 2394: 2147483647,
 / psa-security-lifecycle / 2395: 12288,
 / eat_profile / 265: "tag:psacertified.org,2023:psa#tfm",
 / bootseed / 268: h'0000000000000000',
 / psa-software-components / 2399: [
 {
 / signer ID / 5: h'0404040404040404040404040404040
404040404040404040404040404040404',
 / measurement value / 2: h'0303030303030303030303030303030
303030303030303030303030303030303',
 / measurement type / 1: "PRoT"
 }
]
}
 The JWK representation of the IAK used for creating the COSE Sign1 signature
over the PSA token is:

{
 "kty": "EC",
 "crv": "P-256",
 "alg": "ES256",
 "x": "Tl4iCZ47zrRbRG0TVf0dw7VFlHtv18HInYhnmMNybo8",
 "y": "gNcLhAslaqw0pi7eEEM2TwRAlfADR0uR4Bggkq-xPy4",
 "d": "Q__-y5X4CFp8QOHT6nkL7063jN131YUDpkwWAPkbM-c"
}
 The resulting COSE object is:

18([
 h'A10126',
 {},
 h'A819010058210102
02020202020202020219095C5820000000000000000000000000000000000000
00000000000000000000000000000A5820010101010101010101010101010101
010101010101010101010101010101010119095A1A7FFFFFFF19095B19300019
010978217461673A7073616365727469666965642E6F72672C323032333A7073
612374666D19010C48000000000000000019095F81A305582004040404040404
0402582003030303
0301645052
6F54',
 h'786E937A4C42667AF3847399319CA95C7E7DBABDC9B50FDB8DE3F6BFF4AB
82FF80C42140E2A488000219E3E10663193DA69C75F52B798EA10B2F7041A90E
8E5A'
])
 which has the following base16 encoding:

d28443a10126a0590100a819010058210102020202020202020202020202
0202020202020202020202020202020202020219095c5820000000000000
000a582001
01
0119095a1a7fffffff19095b19300019010978217461673a707361636572
7469666965642e6f72672c323032333a7073612374666d19010c48000000
000000000019095f81a30558200404040404040404040404040404040404
040404040404040404040404040404025820030303030303030303030303
03016450526f545840786e
937a4c42667af3847399319ca95c7e7dbabdc9b50fdb8de3f6bff4ab82ff
80c42140e2a488000219e3e10663193da69c75f52b798ea10b2f7041a90e
8e5a

 COSE Mac0 Token

{
 / ueid / 256: h'01C557BD4FADC83F756FCA2CD5
EA2DCC8B82159BB4E7453D6A744D4EECD6D0AC60',
 / psa-implementation-id / 2396: h'00000000000000000000000000
00000000000000000000000000000000000000',
 / eat_nonce / 10: h'01010101010101010101010101
01010101010101010101010101010101010101',
 / psa-client-id / 2394: 2147483647,
 / psa-security-lifecycle / 2395: 12288,
 / eat_profile / 265: "tag:psacertified.org,2023:psa#tfm",
 / psa-boot-seed / 268: h'0000000000000000',
 / psa-software-components / 2399: [
 {
 / signer ID / 5: h'0404040404040404040404040404040
404040404040404040404040404040404',
 / measurement value / 2: h'0303030303030303030303030303030
303030303030303030303030303030303',
 / measurement type / 1: "PRoT"
 }
]
}
 The JWK representation of the IAK used for creating the COSE Mac0 signature
over the PSA token is:

========== NOTE: '\\' line wrapping per RFC 8792 ==========

{
 "kty": "oct",
 "alg": "HS256",
 "k": "3gOLNKyhJXaMXjNXq40Gs2e5qw1-i-Ek7cpH_gM6W7epPTB_8imqNv8k\
 \bBKVlk-s9xq3qm7E_WECt7OYMlWtkg"
}
 The resulting COSE object is:

17([
 h'A10105',
 {},
 h'A8190100582101C557BD4FADC83F756FCA2CD5EA2DCC8B82159BB4E7453D
6A744D4EECD6D0AC6019095C5820000000000000000000000000000000000000
00000000000000000000000000000A5820010101010101010101010101010101
010101010101010101010101010101010119095A1A7FFFFFFF19095B19300019
010978217461673A7073616365727469666965642E6F72672C323032333A7073
612374666D19010C48000000000000000019095F81A305582004040404040404
0402582003030303
0301645052
6F54',
 h'CF88D330E7A5366A95CF744A4DBF0D50304D405EDD8B2530E243EDDBD317
7820'
])
 which has the following base16 encoding:

d18443a10105a0590100a8190100582101c557bd4fadc83f756fca2cd5ea
2dcc8b82159bb4e7453d6a744d4eecd6d0ac6019095c5820000000000000
000a582001
01
0119095a1a7fffffff19095b19300019010978217461673a707361636572
7469666965642e6f72672c323032333a7073612374666d19010c48000000
000000000019095f81a30558200404040404040404040404040404040404
040404040404040404040404040404025820030303030303030303030303
03016450526f545820cf88
d330e7a5366a95cf744a4dbf0d50304d405edd8b2530e243eddbd3177820

 Acknowledgments
 Thank you for help with the
 CDDL. Thanks to , , , , and for
 ideas, comments, and suggestions.

 Contributors

 Security Theory LLC

 lgl@securitytheory.com

 Arm Limited

 Tamas.Ban@arm.com

 Arm Limited

 Sergei.Trofimov@arm.com

 Authors' Addresses

 University of Applied Sciences Bonn-Rhein-Sieg

 Germany

 Hannes.Tschofenig@gmx.net

 Arm Limited

 Simon.Frost@arm.com

 Arm Limited

 Mathias.Brossard@arm.com

 HP Labs

 adrianlshaw@acm.org

 Linaro

 thomas.fossati@linaro.org

