
Porting to 64-bit GNU/Linux Systems

Andreas Jaeger
SuSE Linux AG

aj@suse.de, http://www.suse.de/˜aj

Abstract

More and more 64-bit systems are showing
up on the market—and developers are porting
their applications to these systems. Most code
runs directly without problems—but there is a
number of sometimes quite subtile problems
that developers have to be aware of for portable
programming and porting.

This paper illustrates some problems on port-
ing an application to 64-bit and also shows
how use a 64-bit system as development plat-
form for both 32-bit and 64-bit code. It will
give hints especially to application and library
developers on writing portable code using the
GNU Compiler Collection.

1 Introduction

With the introduction of AMD’s 64-bit archi-
tecture, AMD64, implemented in the AMD
Opteron and Athlon64 CPUs, another 64-bit
processor family enters the market and users
are going to buy and deploy these systems. A
new architecture offers new challenges for both
system developers (compare [JH]) and applica-
tion developers.

This paper will give hints especially to appli-
cation and library developers to write portable
code and make use of their 64-bit development
machine. While the paper discusses general
64-bit and porting problems specific to other
platforms, the AMD64 platform is used as pri-

mary example. Other architectures that the au-
thor has access to and is familiar with are dis-
cussed also. A brief characteristic of these 64-
bit Linux platforms1 is given in table 1.

Differences between platforms and therefore
the need to port software can be attributed to
at least one of:

Compiler Different compilers have different
behavior. This can mostly be avoided with
using the same version of the GNU com-
pilers.

Application Binary Interfaces (ABI) An
ABI specifies sizes of fundamental types,
function calling sequence and the object
format. In general the ABI is hidden from
the developer by the compiler.

CPU The effect of different CPUs is mainly
visible through the ABI. The differences
visible to developers include little or big
endian, whether the stack grows up or
down, or whether the fundamental size is
32-bit or 64-bit.

C Library Different C libraries might not im-
plement the same subset of functions or
have architecture dependent versions. The
GNU C Library tries to unify this but there
are always architecture dependent differ-
ences.

1The only missing 64-bit platforms that I am aware
of are MMIX and SuperH SH 5 but there is no Linux
port for them.

108 • GCC Developers Summit

Kernel All access to the Linux kernel is done
through functions of the C Library. A
newer kernel might have additional func-
tionality that the C Library then can pro-
vide.

Application developers will mainly have porta-
bility problems due to different CPUs and dif-
ferent ABIs and the discussion here will con-
centrate on these.

The paper is structured as follows: Section
2 mentions why 64-bit programs are advanta-
geous. The following section discusses exe-
cution of both 32-bit and 64-bit programs on
one system and development on such a system.
Section 4 shows how easy porting should be
and then goes into all the subtleties and prob-
lems that nevertheless arise.

2 Advantages of 64-bit Programs

The main limitation of 32-bit programs that
push developers to 64-bit programs is the lim-
ited address space. A 32-bit program can only
address 4 GB of memory. Under a 32-bit x86
kernel the available address space is at most 2-
3 GB (3.5 GB with a special kernel and static
linking of an application) since the kernel also
needs some of that memory. Nowadays appli-
cations need larger and larger address spaces
and performance can be greatly improved with
large caches which is a benefit especially for
databases.

Besides larger address space most recent 64-bit
processors introduce additional features over
the previous processor generation for improved
performance.

As an example the 64-bit AMD Opteron pro-
cessor has some architectural improvements,
like a memory controller integrated into the
processor for faster memory access which
eliminates high latency memory structure.

Programs written in 64-bit mode for AMD
Opteron take implicitly advantage of this but
also of further new features:

• 8 additional general purpose and 8 addi-
tional floating point registers

• RIP addressing (instruction-pointer rela-
tive addressing mode) to speed up espe-
cially handling of shared libraries[JH].

• A modern Application Binary Interface
[AMD64-PSABI].

• A large address space (currently 512 TB
per process).

3 64-bit and 32-bit Programs on
One System

The CPU architects of the 64-bit architectures
AMD64, MIPS64, Sparc64, zSeries and Pow-
erPC64 designed their CPUs in such a way that
these 64-bit CPUs can execute 32-bit code na-
tively without any performance penalty. The
most sold 64-bit platform is the MIPS architec-
ture but it—due to its usage nowadays mainly
in embedded systems—mainly runs in 32-bit
mode. Under Linux the 64-bit platforms Pow-
erPC64 and Sparc64 in general only use a 64-
bit kernel but have no significant 64-bit appli-
cation base.

All these architectures nevertheless share the
way that their 32-bit support is done. The sup-
port of two architectures is commonly called
“biarch support” and there’s also the general
concept of “multi-arch support.”

A 64-bit architecture that can execute 32-bit
applications natively offers some extra chal-
lenges for developers:

• The kernel has to support execution of
both 32-bit and 64-bit programs.

GCC Developers Summit 2003 • 109

Architecture uname -m Size Endian Libpath Miscellaneous
Alpha alpha LP64 little lib
AMD64 x86_64 LP64 little lib64 executes x86 code natively
IPF ia64 LP64 little lib executes x86 code via emulation
MIPS64 mips64 LP64 both lib64 executes MIPS code natively
PowerPC64 ppc64 LP64 big lib64 executes PowerPC code natively
Sparc64 sparc64 LP64 big lib64 executes Sparc code natively
PA-RISC64 parisc64 LP64 big — only kernel support, no 64-bit user land,

executes 32-bit PA-RISC code natively
zSeries (s390x) s390x LP64 big lib64 executes s390 code natively

Table 1: 64-bit Linux Platforms

• The system has to be installed in such a
way that 32-bit and 64-bit libraries of the
same name can exist on one system.

• The tool chain should handle development
of both 32-bit and 64-bit programs.

3.1 Kernel Implications

The kernel side is not part of this paper but
the requirements for the kernel implementation
should be stated:

• Starting of programs for every architec-
ture supported by the ABI, e.g. for both
32-bit and 64-bit.

• System calls for every architecture in a
way that is compatible to the correspond-
ing 32-bit platform. For example a pro-
gram that runs on x86 should run on
AMD64 without any changes.

One problem here is theioctl() sys-
tem call which allows to pass any kind
of data to the kernel including complex
data structures. Since the kernel needs to
translate these data structures to the same
structure for all supported architectures,
someioctl() s might only be supported
for the primary architecture. This restric-
tion only hits administration programs,
like LVM tools.

3.2 Libraries: lib and lib64

If a system only supports execution of one ar-
chitecture, all libraries will be installed in paths
ending with/lib like /usr/lib and user-
level binaries in paths ending with/bin , e.g.
/usr/bin . But if there’s more than one ar-
chitecture to support, libraries will exist in fla-
vors for each architecture but with the same
name, e.g. there’s alibc.so.6 for 32-bit
x86 and one for 64-bit code on an AMD64 sys-
tem. The problem now is where to install these
libraries.

Following the example set by the Sparc devel-
opers, all the other 64-bit biarch platforms in-
stall the 64-bit libraries into paths ending with
/lib64 , e.g. /usr/X11R6/lib64 . The
64-bit dynamic linker is configured to search
these library paths. For 32-bit libraries nothing
has been changed.

This setup has the advantage that packages
build for the 32-bit platform can be installed
without any change at all. For them everything
is the same as on the corresponding 32-bit plat-
form, no paths are changed at all. For exam-
ple the binary x86 RPM package of the Acro-
bat Reader can be installed directly on AMD64
systems and works without any change at all.

For 64-bit programs a little bit more work

110 • GCC Developers Summit

is needed since often configure scripts search
directly the library paths for certain libraries
but then find only the 32-bit library in e.g.
/usr/lib or makefiles have paths hard-
coded. Configure scripts created by GNU
autoconf offer an option to specify the li-
brary install path directly and if you use RPM,
you can use for example the following in your
spec file:

configure --prefix=/usr --libdir=%{_libdir}

Also ldconfig handles both 32-bit
and 64-bit libraries in its configuration
(/etc/ld.so.conf) and cache files
(/etc/ld.so.cache). ldconfig marks
64-bit libraries in the cache so that the dy-
namic linker can easily detect 32-bit and 64-bit
libraries.

3.3 Development for Different ABIs

GCC can be build as a compiler that supports
different ABIs on one platform. Depending on
the architecture a number of different ABIs or
instruction sets are supported, e.g. for ARM it
is possible to generate both ARM and Thumb
code. The GNU binutils also support these dif-
ferent ABIs.

The framework is especially useful for a biarch
compiler and the 64-bit GNU/Linux platforms
AMD64, MIPS, Sparc64 and zSeries (s390x)
have support to generate code not only for the
64-bit ABI but also for the corresponding 32-
bit (31-bit for zSeries) ABI. The PowerPC64
developers have not yet implemented this in
GCC but I expect that they follow the same
road.

Note that in the following text only the C com-
piler (gcc) is mentioned. The whole discus-
sion and options are also valid for the other
compilers in the GNU Compiler Collection:
The C++ compiler (g++), the Ada compiler
(gnat), the Fortran77 compiler (g77) and the
Java compiler (gcj).

3.3.1 The AMD64, Sparc64 and zSeries
Way

For AMD64, Sparc64 and zSeries the compiler
generates by default 64-bit code. To gener-
ate 32-bit code for x86 (on AMD64) or for
Sparc (on Sparc64), the compiler switch-m32
has to be given to GCC. Compilation for 31-
bit zSeries on a 64-bit zSeries needs the-m31
option. The assembler and linker have simi-
lar switches that GCC passes to them. The
compiler also knows about the default library
paths, e.g./usr/lib vs. /usr/lib64 and
invokes the linker with the right options. An
example compile session is given in figure 1.

3.3.2 MIPS and its ABIs

MIPS does not only support support 32-bit and
64-bit programs, it also support two different
ABIs for 32-bit programs. The three ABIs can
be summarized as follows:

Name Library Path GCC Switch
o32 (old 32-bit) /lib -mabi=o32
n32 (new 32-bit) /lib32 -mabi=n32
n64 (64-bit) /lib64 -mabi=64

Note that the Linux Kernel so far supports only
the o32 ABI completely, support for the other
two is currently been worked on.

3.3.3 Toolchain

GCC knows how to invoke assembler and
linker to generate 64-bit or 32-bit code. There-
fore in general GCC should be just passed the
right option for compilation and linking. In
cases where developers really need to call the
binary utilities2 directly for 32-bit code, there’s

2Calling these directly might also harm since GCC
passes extra options to the binary utilities. For example

GCC Developers Summit 2003 • 111

$ gcc hello.c -o hello64
$ gcc -m32 hello.c -o hello32
$ file ./hello32 ./hello64
./hello32: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV),
dynamically linked (uses shared libs), not stripped
./hello64: ELF 64-bit LSB executable, AMD x86-64, version 1 (SYSV),
dynamically linked (uses shared libs), not stripped
$ ldd ./hello32 ./hello64
./hello32:

libc.so.6 => /lib/libc.so.6 (0x40029000)
/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

./hello64:
libc.so.6 => /lib64/libc.so.6 (0x0000002a9566b000)
/lib64/ld-linux-x86-64.so.2 =>

/lib64/ld-linux-x86-64.so.2 (0x0000002a95556000)

$ gcc -L /usr/X11R6/lib -L /usr/X11R6/lib64 xhello.c -o xhello64 -lX11
/usr/lib64/gcc-lib/x86_64-suse-linux/3.3/../../../../x86_64-suse-linux/bin/ld:
skipping incompatible /usr/X11R6/lib/libX11.so when searching for -lX11
$ gcc -m32 -L /usr/X11R6/lib -L /usr/X11R6/lib64 xhello.c -o xhello32 -lX11
$ ldd ./xhello64 ./xhello32
./xhello64:

libX11.so.6 => /usr/X11R6/lib64/libX11.so.6 (0x0000002a9566b000)
libc.so.6 => /lib64/libc.so.6 (0x0000002a95852000)
libdl.so.2 => /lib64/libdl.so.2 (0x0000002a95a94000)
/lib64/ld-linux-x86-64.so.2 =>

/lib64/ld-linux-x86-64.so.2 (0x0000002a95556000)
./xhello32:

libX11.so.6 => /usr/X11R6/lib/libX11.so.6 (0x40029000)
libc.so.6 => /lib/libc.so.6 (0x400f8000)
libdl.so.2 => /lib/libdl.so.2 (0x4022e000)
/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

Figure 1: Example Compile Sessions on AMD64

a short list of these options for the GNU binu-
tils in table 2. The user can inquiry most of
these options directly with callinggcc -v to
print out the commands issued by the compiler.

3.3.4 Caveat: Include Files for Multi-Arch
Compilation

The support for different ABIs on one systems
has one problem: What happens if different

the linker ld will not produce correct C++ binaries if
not called with the right set of options which GCC does
automatically.

versions of a library are installed that have a
different interface? For example, the 64-bit li-
brary could be an older version than the 32-bit
library and the newer version has changed data
types or signatures of functions. Since there is
only one include directory for all ABIs (there is
no /usr/include64 !), the system adminis-
trator has to take care that installed header files
are correct for all ABIs and libraries. In the
worst case the include file has to include sup-
port for each ABI using preprocessor condi-
tionals. As an example, the GNU C Library has
quite a few kernel dependent interfaces that are
different between architectures. The include
files for e.g. AMD64 therefore have—where

112 • GCC Developers Summit

Tool Option for 32-bit code
AMD64 Sparc64 zSeries

ar No option needed
as --32 -32 -m31
gcc,g++,. . . -m32 -m32 -m31
ld -m elf_i386 -m elf32_sparc -m elf_s390
nm No option needed
strip No option needed

Table 2: Options for 32-bit Code Generation on 64-bit Architectures

necessary—constructs like the following (from
<bits/fcntl.h >):

#include<bits/wordsize.h>
[...]
if __WORDSIZE == 64
define O_LARGEFILE 0
else
define O_LARGEFILE 0100000
endif

3.3.5 Debugging

The GNU Debugger (gdb) is currently getting
enhanced to be able to debug a number of dif-
ferent architectures and ABIs. So, in the future,
we could have a GDB that debugs all bina-
ries that can run on one architecture, e.g. both
32-bit x86 and 64-bit programs on AMD64
systems. Currently this is not possible and
therefore a separate debugger has to be used
for every ABI. For example, SuSE Linux on
AMD64, has agdb binary to debug AMD64
programs and agdb32 binary for x86 pro-
grams.

The system tracerstrace has on some archi-
tectures, e.g. AMD64 and Sparc64 already the
capability to trace both 32-bit and 64-bit pro-
grams. On other systems both a 32-bit and a
64-bit version needs to be put in place with dif-
ferent names.

3.3.6 Changing the Personality

The output of uname -m is used by e.g.
configure to check for which architecture
to build. This can cause problems if you build
on a 64-bit system for the corresponding 32-bit
architecture since thenconfigure might de-
cide that this is a cross-compilation instead of
a native compilation. For such cases the out-
put of uname -m, the so called personality,
can be changed with a special system call. The
personality is inherited by children from their
parents. There exists a user space program to
change the personality and it can be used e.g.
on AMD64 as:

$ uname -m
x86_64
$ linux32 bash
$ uname -m
i686

to create a shell with changed personality for
further development.

The name of the user space program is differ-
ent on different architectures, the following list
contains those names that we are aware of:

GCC Developers Summit 2003 • 113

Architecture Personality Tool
AMD64 linux32
PowerPC64 powerpc32
Sparc64 sparc32
zSeries s390

3.4 Development

So, with the complete toolchain supporting dif-
ferent ABIs, it is now possible to develop both
64-bit and 32-bit programs on one machine.
Instead of having two machines heating the
room, a developer can use only a 64-bit box
as development machine and still produce and
test 32-bit code.

To develop 32-bit code on an AMD64 system,
the developer has to add the-m32 option to the
compiler flags, no other changes are needed in
general.

For the development of native 64-bit AMD64
code on the same machine, the only change
might be to change the library path if another
library path as/usr/lib64 is used. It is
even safe to give both the 32-bit and the 64-
bit path, the linker will find the right library
directly (but emit warnings) as shown in figure
1.

4 64-bit Porting: Hints and Pitfalls

Porting to a 64-bit system is not a problem
for portable programs. Unfortunately most
programs are not really portable and therefore
need to be changed to run correctly on another
platform.

The porting effort on GNU/Linux platforms is
lower than e.g. between Unix and GNU/Linux
since all GNU/Linux platforms use the GNU C
Library. The C Library tries to use a common
implementation and headers for all platforms
which eases portability. Using the same C Li-
brary cross platforms means:

• Usage of the same functions: The set of
functions is the same in general. Only a
few functions are architecture specific and
those are needed in general to access hard-
ware which is platform specific.

• A different layout of structures: The C Li-
brary implements the different processor
specific ABIs and therefore structures can
have different length and members.

Therefore a program that is written portable,
without reference to platform specific features,
in general can be easily ported from on plat-
form to the other, e.g. from 32-bit to 64-bit.

Each platform has its own special “features,”
meaning that some non-portable code works on
all platforms except one. Keeping these prob-
lems in mind helps writing portable code and
eases debugging of non-portable code.

Most of the problems arise in C and therefore
this language is used everywhere in this paper.
Some of these problems might not arise in C++
since C++ has some stricter rules.

The general problem is that sizes of fundamen-
tal types on different platforms, and especially
between 32-bit and 64-bit platforms, are differ-
ent and therefore not all types are interchange-
able.

4.1 “Portable” x86/AMD64 Inline Assembler

There are some things that can not be done
portably in general. One issue is inline assem-
bler. For processors from the same family, like
x86 and AMD64 processors, often assembler
code can be shared. But this is not possible be-
tween different architectures.

A small example for inline assembler on x86
and AMD64 is the following function:

/* ffs -- find first set bit in a

114 • GCC Developers Summit

word, counted from least
significant end. */

int
__ffs (int x)
{

int cnt, tmp;
/* Count low bits in X; store in

%1.*/
asm ("bsfl %2,%0\n"

"cmovel %1,%0\n"
/* If number was zero, return

-1.*/
: "=&r" (cnt), "=r" (tmp)
: "rm" (x), "1" (-1));

return cnt + 1;
}

This would be compiled by GCC for x86 to:

mov $0xffffffff,%eax
mov %eax,%edx
bsf 0x4(%esp),%ecx
cmove %edx,%ecx
mov %ecx,%eax
inc %eax
ret

The assembler for AMD64 looks like this:

mov $0xffffffff,%eax
mov %eax,%edx
bsf %edi,%ecx
cmove %edx,%ecx
mov %ecx,%eax
inc %eax
ret

This example worked fine sinceint is 32-
bit on both x86 and AMD64 and the same in-
structions can be used. For datatypeslong
this scheme cannot be used since it’s 32-bit on
x86 and 64-bit on AMD64. The size oflong
long is 64-bit on both architectures but since
AMD64 has 64-bit registers code can be writ-
ten that is more efficient.

Using the inline assembler in that function
made it possible for the developer to ignore the
different passing conventions in this example.
For x86 the parameterx is passed on the stack
(0x4(%esp)) and for AMD64 in the lower 32
bits of registerRDI (%edi).

4.2 Sizes and Alignment of Fundamental
Datatypes and Structure Layout

On 64-bit platforms pointers and the type
long have a size of 64 bits while the type
int uses 32 bits. This scheme is known as the
LP64 model and is used by all 64-bit UNIX
ports. A 32-bit platform uses the so-called
ILP32 model: int , long and pointers are
32 bits.

The differences in sizes (in bytes) between the
32-bit x86 and the 64-bit AMD64 are summa-
rized in the following table:

Type i386 AMD64
long 4 8
pointer 4 8
long double 12 16

Besides the different sizes of fundamental
types, different ABIs specify also different
alignments. Adouble variable, for example,
is aligned on x86 to 4 bytes but aligned to 8
bytes on AMD64 despite having the same size
of 8 bytes. Structures will therefore have a dif-
ferent layout on different platforms. Addition-
ally some members of structures might be in
a different order or the newer architecture has
additional members that could not have been
added to the older one.

It is therefore important not to hard code any
sizes and offsets. Instead the C operator
sizeof has to be used to inquire sizes of both
fundamental and complex types. The macro
offsetof is available to get the offsets of
structure members from the beginning of the
structure.

GCC Developers Summit 2003 • 115

4.2.1 int vs. long

Since the sizes ofint andlong are the same
on a 32-bit platforms, programmers have of-
ten been lazy and usedint and long inter-
changeably. But this will not work anymore
with 64-bit systems wherelong has a larger
size thanint .

A few examples:

• Due to its size a pointer does not fit into a
variable of typeint . It fits on Unix into
a long variable but theintptr_t type
from ISO C99 is the better choice.

• Untyped integral constants are of type
(unsigned)int . This might lead to un-
expected truncation, e.g. in the following
snippet of non-portable code:

long t = 1 << a;

On both a 32-bit and a 64-bit system the
maximal value for a can be 31, since the
type of1<<a is int . To get a shift done
in 64-bit (a long calculation),1L has to
be used.

• The type of identifiers of an enumera-
tion is implementation defined but all con-
stants get the same type. GCC by default
gives them typeint , unless any of the
enumeration constants needs a larger type.

4.3 Function Prototypes

If a function is called in C without function
prototypes, the return value isint —and that’s
a 32-bit type on all 64-bit Linux platforms.
For arguments the integer promotions are per-
formed and arguments of typefloat are pro-
moted todouble .

Such a missing prototype can easily lead to a
segmentation fault. For example ifmalloc()

or memcpy() are used without a prototype,
the resulting binary might break because of:

malloc() The return value is a 32-bit entity
and therefore only half of the bits of the
returned address might be stored in the
variable that holds the return value mak-
ing the pointer invalid.

memcpy() The first two arguments are point-
ers that take the source and target address.
If, instead of the 64-bit pointers, only the
lower 32 bits are passed tomemcpy() ,
the function will access random memory
(note this can only happen if the pointer
has been assigned to a variable ofint and
that variable is used for passing).

4.4 Variable Argument Lists

The problem with variable argument lists is the
same problem as with missing function proto-
types: At the call side an argument is passed to
a function but the function expects an argument
of a different size.

If you pass in a 32-bit value, it is normally
passed in 64-bit registers or on the stack as 64-
bit value. The question now is what to do with
the unused 32 bits? The 32-bit value can be
zero-extended so that the unused bits are all
zero, it can be sign-extended giving all zeros
or all ones, and it can be left unspecified (as on
AMD64). If the called function expects now
a 64-bit value where it gets a 32-bit value, the
function might not work as expected.

The important rules are:

• If you pass 32-bit values, like variables of
type int , the called function has to take
out 32-bit values.

• If the function expects 64-bit values, like
long or pointers, the caller has to pass

116 • GCC Developers Summit

64-bit values. Note that0 is not the same
as aNULLpointer since those have differ-
ent sizes.

Another topic is usage ofva_lists . You
cannot copy variables of this type directly. This
works on those platforms that use a pointer to
implementva_lists but not on others. Use
instead the function-like macrova_copy .

4.5 Function Pointers

Often programmers assume that all pointers
have the same format but this is not guaranteed
by the ISO C standard.

On IPF, PA-RISC and PowerPC64 a pointer to
a function and a pointer to an object are repre-
sented differently. For example on IPF, a func-
tion pointer points to a descriptor containing
the function address and the value of the GP
(global pointer, used with shared libraries) reg-
ister:

struct ia64_fdesc {
uint64_t func;
uint64_t gp;
};

The GP register needs to be set with the right
value before calling any function.

This means the following should not be done
in a portable program:

Compare function pointers Since there can
be more than one descriptor for any func-
tion, different function pointers for the
same function will have different values.

Locate function The function pointer will not
point directly to the function, so it cannot
be used easily to find the actual code of
the function.

Construct function pointer from data address
This will fail since the GP register will
not be setup correctly.

4.6 Using Bitwidth-Dependent Types Portably

Some applications depend on specific sizes for
their datatypes. As has been mentioned before,
this cannot be done portably in general. ISO
C99 introduced a new header filestdint.h
that defines datatypes having specified widths
and a corresponding set of macros. The fol-
lowing types are also specified:

Exact-width integer types Signed integer
types of the formintN_t (unsigned:
uintN_t) with width N are defined in
general with widths 8, 16, 32, or 64. A
int32_t is therefore a signed 32-bit
integer.

Minimum-width integer types The types
int_leastN_t for signed and
uint_leastN_t for unsigned in-
tegers with a width of at least N bits are
defined. The widths 8, 16, 32 and 64 are
required to be supported.

Fastest Minimum-width integer types The
types int_fastN_t for signed and
uint_fastN_t for unsigned integers
with width at least N bits are defined as
types that are usually the fastest of all
integer types having at least this width.
Width of 8, 16, 32 and 64 are required to
be supported.

Integer types holding pointers The integer
types intptr_t and uintptr_t can
hold a pointer, a conversion between
pointer and this integer type is always
possible.

Greatest-width integer types The integer
typesintmax_t anduintmax_t hold

GCC Developers Summit 2003 • 117

any value of any signed/unsigned integer
type.

Note that an ISO C99 implementation does not
need to implement all of these types. The GNU
C Library implements all of them for all plat-
forms.

In addition to these types a number of macros
are defined to give the limits of the types.

Inclusion of the headerinttypes.h defines
additional macros for format specifiers both for
printf andscanf for these types, and some
conversion functions likestrtoimax .

An example of the usage of the types and the
format specifier for printing is:

#include <inttypes.h>
#include <stdio.h>
int
main (void) {

intmax_t u = INTMAX_MAX;
printf("The largest signed integer"

" is: %" PRIdMAX "\n", u);
return 0;

}

4.7 Usingprintf and scanf

ISO C99 introduced a few new format speci-
fiers to allow printing and scanning of certain
types that might have architecture dependent
size. These are%pfor printing a pointer value
and the%Zsize modifier for arguments of type
size_t . An example:

...
void *p;
printf("p has value %p and "

"size %Zd\n", p, sizeof(p));

4.8 Unsigned and Signed Chars

The ISO C Standard does not define the signed-
ness of the typechar .3 A definition likechar

3Note that this is not a 64-bit problem but it is one
of those differences you’ll notice when porting and is

foo; creates an unsigned variable on some
platforms but a signed one on others. If you
use variables of typechar as small integers,
you should specify whether you need a signed
or an unsigned type. Also comparisons with
char variables should take this into account,
the following code snippet will not give the de-
sired outcome ifchar is unsigned:

char c;
if (c < 0)

puts("Non-ascii character");

During compilation GCC should generate
the warning “warning: comparison
is always false due to limited
range of data type ”.

Platforms with an unsigned char type are both
32-bit and 64-bit versions of S390 and Pow-
erPC. GCC has the options-fsigned-char
and -funsigned-char to change the
signedness of typechar .

4.9 Evaluation of Floating-Point Arithmetic

A common confusion happens when suddenly
algorithms using floating-point arithmetic give
different results. The IEEE754 standard de-
fines that the basic operations have to be ex-
act. But nevertheless, results might vary be-
tween architectures.

The problem happens with operations of type
float anddouble since on the popular x86
architecture these operations are evaluated in
the x87 FPU inlong double precision. The
compiler might choose to leave intermediate
results (with a type oflong double) in the
x87 FPU or convert them back to the target
type. Depending when this conversion hap-
pens, different rounding errors occur.

A small example to show the differences is:

therefore worth mentioning.

118 • GCC Developers Summit

#include <stdio.h>
int
main (void)
{

float b, c;

b = 1 / 3.0f;
c = b * 3.0f - 1.0f;
printf ("c: %.20f\n", c);
return 0;

}

Compiling and executing this program on an
Linux/AMD64 system gives different results
between 32-bit x86 and 64-bit binaries:

$ gcc t.c -m32 -o t32
$ gcc t.c -o t64
$./t32
c: 0.00000002980232238770
$./t64
c: 0.00000000000000000000

Note that the example gives the same results if
compiled with optimization since without opti-
mizationb is stored in memory as typefloat
but with optimizationb is left in the FPU.

ISO C99 defines the macro
FLT_EVAL_METHODfor this in the header
<float.h >. It is set to:

0 If evaluation is done with the range and pre-
cision of the type. This is the value on
nearly all Linux systems.

1 If evaluation of expressions of typefloat
anddouble is done to the range and pre-
cision ofdouble and oflong double
to the range and precision oflong
double .

2 If all evaluations is done to the range and
precision of typelong double . This
is the value on Linux/x86.

-1 Indeterminable.

This problem with different results due to the
evaluation of floating-point arithmetic is not a
genuine 64-bit problem but a problem between
x86 code and all other platforms and therefore
might hit developers porting from x86 to other
platforms, e.g. to AMD64.

4.10 Shared Libraries

Most architectures have the constraint that
shared libraries need to be compiled as PIC-
code using the-fPIC switch to GCC. Even
for those architectures that allow it, like x86, it
is not desirable to do so since a shared library
should live once in the memory and get then
shared by all applications using it. But non-
PIC code cannot be shared.

Architectures that force to use-fPIC for
shared libraries include AMD64, IPF, and PA-
RISC.

4.11 How to Check for 64-bit?

Starting with GCC 3.4,all LP64 platforms will
define the macros__LP64__ and_LP64 that
can be used e.g. in preprocessor defines. Ear-
lier GCC releases define this macro only on
a few platforms or OSes. For GCC 3.2 and
3.3, the macros are defined on NetBSD, for
IPF (every OS), for PA-RISC (every OS) and
for AMD64 running Linux (starting with GCC
3.2.3).

In general it is possible to check for 64-bit with
the architecture builtins of GCC, e.g. with:

#if defined(__alpha__)\
||defined(__ia64__)\
||defined(__ppc64__)\
||defined(__s390x__)\
||defined(__x86_64__)

GCC Developers Summit 2003 • 119

but this needs to be enhanced for each new 64-
bit platform. The better solution is to write
portable code that does not need to check for
architecture details.

4.12 Optimized Functions, Macros, and
Builtins

The GNU Compiler Collection uses the same
optimizations on all platforms but some of
them are tuned in different ways and others
need help from the architecture specific back-
end. One area were this occurs especially are
builtin functions.

A function like strlen can be implemented
in the following ways:

As builtin in GCC The compiler can detect
that e.g. the arguments tostrlen are
constant and evaluate the function at
compile time. It can also optimize
the function to an inline function and
do a loop instead of calling the ex-
ternal strlen function. This can
be disabled with-fno-builtin or
-fno-builtin- function .

As macro in Glibc The C Library imple-
ments a number of functions as macros.
The string inline functions can be disabled
with a definition of __NO_STRING_
INLINES , some of them are only en-
abled if __USE_STRING_INLINES is
passed. For details check the header
/usr/include/string.h directly.
Inlining of mathematical functions can
be disabled by defining__NO_MATH_
INLINES . Also it is allowed to disable a
specific macro like#undef strlen .

As function in Glibc ISO C99 forces to im-
plement all required functions as func-
tions. Therefore for examplestrlen
will always be in the C Library.

Some developers decide to override the C Li-
brary functions and write their own optimized
implementation. This works fine for one sys-
tem consisting of a specific CPU, a specific C
Library and GCC version. But going to another
architecture, better optimizations might be pos-
sible, e.g. reading 8 bytes at once instead of 4
in strlen , or current code is penalized, e.g.
alignment is mandatory for 8 byte access.

So, instead of writing something just for one
program, it should be done in a generic way in
GCC or glibc so that all programs can benefit
from one optimization.

A number of functions in Glibc are written in
hand-optimized assembler for some architec-
tures and where this is not done, a good C im-
plementation is used. On AMD64 the com-
piler has builtins for the common string func-
tions and also for some mathematical functions
and uses them depending on the arguments and
enabled compiler optimizations, e.g.-Os dis-
abled most builtins since they would increase
size.

The pitfalls regarding porting here are that a
programs does optimizations that are not valid
for a new architecture or does not expect that a
function might be implemented as a macro or
builtin.

4.13 Useful Compiler Flags

An incomplete list of GCC compiler flags that
might be useful for porting code:

-Wall Enables a number of default warnings,
should be used for all code

-W Enables additional warnings. Some of
them are hard to avoid so this might not
be useful for all code.

-Wmissing-prototypes Warn about missing
prototypes, this is especially important for

120 • GCC Developers Summit

64-bit ports.

5 Conclusion

Despite the different problems we encountered
at SuSE while porting to the various 64-bit
platforms (first for Alpha, later for IPF, zSeries,
AMD64 and PowerPC64), the number of pack-
ages with actual problems is getting smaller
and smaller since code has less platform spe-
cific assumptions and is more portable.

Also development of the toolchain has been
improved recently and there is more focus on
creating bi-arch toolchains to allow compila-
tion for different ABIs on one system.

I hope that the problems mentioned and ex-
plained will help further in writing portable and
efficient code.

6 Acknowledgments

Porting to any new architecture means building
on the foundations that others have led, learn-
ing from their experiences and tackling with
others all the subtleties of non-portable pro-
gramming. I’d like to thank especially my col-
leagues Andreas Schwab for help in lots of de-
bugging sessions and bug fixing of tools and
programs, Stefan Fent and Stefan Reinauer for
driving the port of SuSE Linux to AMD64
and thereby encountering many of the prob-
lems mentioned in this paper, Jan Hubička and
Michael Matz for porting and fixing GCC and
the ABI on AMD64—and all of them for their
discussions on these issues. Thanks also to
Michael Matz and Evandro Menezes for re-
viewing the paper.

References

[AMD64] AMD64 Architecture Program-
mer’s Manual, AMD (2003).

[Opteron] Software Optimization Guide for
the AMD Opteron™ Processor, AMD
(2003).

[AMD64-PSABI] UNIX System V Application
Binary Interface; AMD64 Architecture
Processor Supplement, Draft, (Ed. J. Hu-
bička, A. Jaeger, M. Mitchell),http:
//www.x86-64.org , (2003)

[i386-ABI] UNIX System V Application Bi-
nary Interface; IA-32 Architecture Pro-
cessor Supplement, Intel (2000).

[ISOC99] Programming Languages—C,
ISO/IEC 9899:1999 (1999)

[IEEE754] IEEE Standard for Bi-
nary Floating-Point Arithmetic,
ANSI/IEEE754-1985 (1985).

[JH] Porting GCC to the AMD64 Architecture,
Jan Hubǐcka, GCC Summit (2003).

