
A New Network File System is Born: Comparison of
SMB2, CIFS and NFS

Steven M. French
IBM

Samba Team
sfrench@us.ibm.com

Abstract

In early 2007, SMB2 became the first widely
deployed network file system protocol since
NFS version 4. This presentation will compare
it with its predecessors (CIFS and SMB) as well
as with common alternatives. The strengths and
weaknesses of SMB/CIFS (the most widely de-
ployed network file system protocol) and NFS
versions 3 and 4 (the next most popular proto-
cols) and SMB2 will be described.

Now that the CIFS POSIX Protocol exten-
sions are implemented in Linux kernel, Samba,
and multiple operating systems, whether SMB2
would be better for Linux in particular than
these CIFS POSIX Protocol extensions can be
analyzed. In addition, some of the alternatives
such as HTTP, WebDav and cluster file systems
will be reviewed. Implementations of SMB2 so
far include not just Vista and Longhorn but also
Samba client libraries and decoding support al-
ready is available in Wireshark. Linux imple-
mentation progress and alternatives for SMB2
client and server will also be described, and
recommendations made for future work in this
area.

1 Introduction

The SMB2 protocol, introduced in Microsoft
Vista this year, is the default network file sys-
tem on most new PCs, and differs from its pre-
decessors in interesting ways.

Although a few experimental network file
system protocols were developed earlier, the
first that were widely deployed date from the
mid-1980s: SMB (by IBM, Microsoft and
others), AT&T’s RFS protocol, AFS from
Carnegie-Mellon University, NFS version 2
(from Sun)[1] and Novell’s NCP. The rapid in-
crease in numbers of personal computers and
engineering workstations quickly made net-
work file systems an important mechanism for
sharing programs and data. More than twenty
years later, the successors to the ancient NFS
and SMB protocols are still the default network
file systems on almost all operating systems.

Even if HTTP were considered a network file
system protocol, it is relatively recent, dating
from the early 1990s, and its first RFC [RFC
1945] was dated May 1996. HTTP would
clearly be a poor protocol for a general pur-
pose network file system on most operating sys-
tems including Linux. Since HTTP lacked suf-
ficient support for "distributed authoring" with-
out locking operations, with little file meta-

1



data and lacking directory operations, "HTTP
Extensions for Distributed Authoring – WEB-
DAV" (RFC 2518) was released in February
1999, but WEBDAV did not displace CIFS or
NFS, and few operating systems have a usable
in-kernel implementation of WEBDAV.

So after more than twenty years, despite the in-
vention of some important cluster file systems
and the explosion of interest in web servers, we
are almost back where we started, comparing
NFS [3] Version 4 with the current CIFS exten-
sions and with a new SMB—the SMB2 proto-
col. File systems still matter; network file sys-
tems are still critical in many small and large
enterprises. File systems represent about 10%
(almost 500KLOC) of the 2.6.21 Linux Ker-
nel source code, and are among the most ac-
tively maintained and optimized components.
The nfs1 and cifs modules are among the larger
in-kernel file systems. Network file systems
matter—the protocols that they depend on are
more secure, more full featured and much more
complex than their ancestors, and some of the
better NAS2 implementations can perform as
well as SAN and cluster file systems for key
workloads.

2 Network File System Character-
istics

Network protocols can be considered to be lay-
ered. Network file system protocols are the
top layer, far removed from the physical de-
vices such as Ethernet adapters that send bits

1lowercase “nfs” and “cifs” are used to refer to the
implementation of the NFS and CIFS protocol (e.g.,
for Linux the nfs.ko and cifs.ko kernel modules),
while uppercase “NFS” and “CIFS” refer to the network
protocol

2Network Attached Storage (NAS) servers are
closely related to network file servers.

over the wire. In the Open System Interconnec-
tion (OSI) model, network file system protocols
would be considered as layer 6 and 7 (“Presen-
tation” and “Application”) protocols. Network
file system protocols rely on lower level trans-
port protocols (e.g., TCP) for reliable delivery
of the network file systems protocol data units
(PDUs), or include intermediate layers (as NFS
has done with SunRPC) to ensure reliable de-
livery.

Network file system protocols share some fun-
damental characteristics that distinguish them
from other “application level” protocols. Net-
work file system clients and servers (and
the closely related Network Attached Storage,
NAS, servers) differ in key ways from cluster
file systems and web browsers/servers.

• Files vs. Blocks or Objects: This dis-
tinction is easy to overlook when com-
paring network file system protocols with
network block devices, cluster file sys-
tems and SANs. Network file systems
read and write files not blocks of storage
on a device. A file is more abstract—a
container for a sequential series of bytes.
A file is seekable. A file conventionally
contains useful metadata such as ACLs
or other security information, timestamps
and size. Network file systems request
data by file handle or filename or identi-
fier, while cluster file systems operate on
raw blocks of data. Network file system
protocols are therefore more abstract, less
sensitive to disk format, and can more eas-
ily leverage file ownership and security in-
formation.

• Network file system protocol operations
match local file system entry points:
Network file system protocol operations
closely mirror the function layering of the
file system layer (VFS) of the operating
system on the client. Network file system

2



operations on the wire often match one
to one with the abstract VFS operations
(read, write, open, close, create, rename,
delete) required by the operating system.
The OS/2 heritage of early SMB/CIFS im-
plementations and the Solaris heritage of
NFS are visible in a few network file sys-
tem requests.

• Directory Hierarchy: Most network file
systems assume a hierarchical namespace
for file and directory objects and the direc-
tories that contain them.

• Server room vs. intranet vs. Internet:
Modern network file system protocols
have security and performance features
that make them usable outside of the
server room (while many cluster file sys-
tems are awkward to deploy securely
across multiple sites), but HTTP and prim-
itive FTP are still the most commonly
choices for file transfers over the Internet.
Extensions to NFS version 4 and CIFS
(DFS) allow construction of a global hi-
erarchical namespace facilitating transpar-
ent failover and easier configuration.

• Application optimization: Because the
pattern of network file system protocol
requests often more closely matches the
requests made by the application than
would be the case for a SAN, and since
the security and process context of most
application requests can be easily deter-
mined, network file system servers and
NAS servers can do interesting optimiza-
tions.

• Transparency: Network file systems at-
tempt to provide local remote transparency
so that local applications detect little or
no difference between running over a net-
work file system and a local file system.

• Heterogeneity: Network file system
clients and servers are often implemented

on quite different operating systems;
clients access files without regard to their
on-disk format. In most large enterprises,
client machines running quite different op-
erating systems access the same data on
the same server at the same time. The
CIFS (or NFS) network file system client
that came by default with their operating
system neither knows nor cares about the
operating system of the server. Samba
server has been ported to dozens of op-
erating systems, yet the server operating
system is mostly transparent to SMB/CIFS
clients. Network file systems are every-
where, yet are not always seen when run-
ning in multi-tier storage environments.
They often provide consistent file ac-
cess under large web servers or database
servers or media servers. A network file
system server such as Samba can easily
export data on other network file systems,
on removable media (CD or DVD), or on
a local file system (ext3, XFS, JFS)—and
with far more flexibility than is possible
with most cluster file systems.

Network file systems differ in fundamental
ways from web clients/servers and cluster file
systems.

2.1 History of SMB Protocol

Invented by Dr. Barry Feigenbaum of IBM’s
Boca Raton laboratory during the early devel-
opment of personal computer operating system
software, who briefly named it after his initials
(“BAF”) before changing the protocol name to
“Server Message Block” or SMB. IBM pub-
lished the initial SMB Specification book at the
1984 IBM PC Conference. A few years later a
companion document, a detailed LAN Techni-
cal Reference for the NetBIOS protocol (which

3



was used to transport SMB frames), was pub-
lished. An alternative transport mechanism us-
ing TCP/IP rather than the Netbeui frames pro-
tocol was documented in RFCs 1001 and 1002
in 1987.

Microsoft, with assistance from Intel and 3Com
early on, periodically released documents de-
scribing new “dialects” of the SMB protocol.
The LANMAN1.0 SMB dialect became the de-
fault SMB dialect used by OS/2, and at least
two other dialects were added for subsequent
OS/2 versions.

In 1992 X/Open CAE Specification C209 better
documented this increasingly important stan-
dard. The SMB protocol was the default net-
work file system for DOS and Windows, but
also for OS/2. IBM added Kerberos and Direc-
tory integration to the SMB protocol in its DCE
DSS project in the early 1990s. A few years
later Microsoft also added Kerberos security to
their SMB security negotiation for their Win-
dows 2000 products. Microsoft’s Kerberos au-
thentication encapsulated service tickets using
SPNEGO in a new SMB SessionSetup variant,
rather than using the original SecPkgX mech-
anism used by earlier SMB implementations
(which had been documented by X/Open). The
SMB protocol increasingly was used for pur-
poses other than file serving, including re-
mote server administration, network printing,
networking messaging, locating network re-
sources and security management. For these
purposes support for various network interpro-
cess communication mechanisms was added to
the SMB protocol, including Mailslots, Named
Pipes, and the “LANMAN RPC.” Eventually
more complex IPC mechanisms were built al-
lowing encapsulating DCE/RPC traffic over
SMB (even supporting complex object models
such as DCOM).

In the mid 1990’s the SMBFS file system for
Linux was developed. Leach and Naik au-
thored various CIFS IETF Drafts in 1997, but

soon CIFS Documentation activity moved to
SNIA. Soon thereafter CIFS implementations
were completed for various operating systems
including OS/400 and HP/UX. The CIFS VFS
for Linux was included in the Linux 2.6 kernel.
After nearly four years, the SNIA CIFS Tech-
nical Reference[4] was released in 2002 and in-
cluded not just Microsoft extensions to CIFS,
but also CIFS Unix and Mac Extensions.

In 2003 an additional set of CIFS Unix Exten-
sions was proposed, and Linux and Samba pro-
totype implementations were begun. By 2005
Linux client and Samba server had added sup-
port for POSIX ACLs,3 support for POSIX4

path names, a request to return all information
needed by statfs, and support for very large read
requests and very large write responses.

In April 2006 support for POSIX (rather than
Windows-like) byte range lock semantics were
added to the Samba server and Linux cifs client
(Linux Kernel 2.6.17). Additional CIFS exten-
sions were proposed to allow file I/O to be bet-
ter POSIX compliant. In late 2006 and early
2007, joint work among four companies and
the Samba team to define additional POSIX ex-
tensions to the CIFS protocol led to creation
of a CIFS Unix Extensions wiki, as well as
implementations of these new extensions[8] in
the Linux CIFS client and Samba server (Mac
client and others in progress). The CIFS proto-
col continues to evolve, with security and clus-
tering extensions among the suggestions for the

3“POSIX ACLs” are not part of the official POSIX
API. POSIX 1003.1e draft 17 was abandoned before
standardization

4In this paper, “POSIX” refers narrowly to the file
API semantics that a POSIX-compliant operating system
needs to implement. When the file system uses the CIFS
network file system protocol, providing POSIX-like file
API behavior to applications requires extensions to the
CIFS network protocol. The CIFS “POSIX” Protocol
Extensions are not part of the POSIX standard, rather a
set of extensions to the network file system protocol to
make it easier for network file system implementations
to provide POSIX-like file API semantics.

4



next round of extensions. As the technical doc-
umentation of these extensions improves, more
formal documentation is being considered.

2.2 History of NFS Protocol

NFS version 1 was not widely distributed, but
NFS version 2 became popular in the 1980s,
and was documented in RFC 1094 in 1989. Ap-
proximately 10 years after NFS version 2, NFS
version 3 was developed. It was documented[2]
by Sun in RFC 1813 in 1995. Eight years
later RFC 3530 defined NFS version 4 (obso-
leting the earlier RFC 3010, and completing a
nearly five year standardization process). An
extension to NFS version 3, “WebNFS,” doc-
umented by Sun in 1996, attempted to show
the performance advantages of a network file
system for Internet file traffic in some work-
loads (over HTTP). The discussion of Web-
NFS increased the pressure on other network
file systems to perform better over the Inter-
net, and may have been a factor in the renam-
ing of the SMB protocol—from “Server Mes-
sage Block” to “Common Internet File Sys-
tem.” Related to the work on NFS version
4 was an improvement to the SunRPC layer
that NFS uses to transport its PDUs. The im-
proved RPCSECGSS allowed support for Ker-
beros for authentication (as does CIFS), and
allows negotiation of security features includ-
ing whether to sign (for data integrity) or seal
(for data privacy) all NFS traffic from a par-
ticular client to a particular server. The NFS
working group is developing additional exten-
sions to NFS (NFS version 4.1, pNFS, NFS
over RDMA, and improvements to NFS’s sup-
port for a global namespace).

The following shows new protocol operations
introduced by NFS protocol versions 3 and 4:

NFS VERSION 2 Operations:

• GETATTR 1

• SETATTR 2

• ROOT 3

• LOOKUP 4

• READLINK 5

• WRITE 8

• CREATE 9

• REMOVE 10

• RENAME 11

• LINK 12

• SYMLINK 13

• MKDIR 14

• RMDIR 15

• READDIR 16

• STATFS 17

New NFS VERSION 3 Operations:

• ACCESS 4

• READ 6

• MKNOD 11

• READDIRPLUS 17

• FSSTAT 18

• FSINFO 19

• PATHCONF 20

• COMMIT 21

New NFS Version 4 Operations

• CLOSE 4

5



• DELEGPURGE 7

• DELEGRETURN 8

• GETFH 10

• LOCK 12

• LOCKT 13

• LOCKU 14

• LOOKUPP 16

• NVERIFY 17

• OPEN 18

• OPENATTR 19

• OPEN-CONFIRM 20

• OPEN-DOWNGRADE 21

• PUTFH 22

• PUTPUBFH 23

• PUTROOTFH 24

• RENEW 30

• RESTOREFH 31

• SAVEFH 32

• SECINFO 33

• SETATTR 34

• SETCLIENTID 35

• SETCLIENTID-CONFIRM 36

• VERIFY 37

• RELEASE-LOCKOWNER 39

3 Current Network File System Al-
ternatives

Today there are a variety of network file sys-
tems included in the Linux kernel, which
support various protocols including: NFS,
SMB/CIFS, NCP, AFS, and Plan9. In addi-
tion there are two cluster file systems now in
the mainline Linux kernel, OCFS2 and GFS2,
and a few popular kernel cluster file systems
for Linux that are not in mainline (including
Lustre and IBM’s GPFS). The cifs and nfs file
system clients for Linux are surprisingly sim-
ilar in size (between 20 and 30 thousand lines
of code) and change rate. The most common
SMB/CIFS server for Linux is Samba, which is
significantly larger than the Linux NFS server
in size and scope. The most common Linux
NFS server is of course nfsd, implemented sub-
stantially in kernel.

Windows Vista also includes support for var-
ious network file system protocols including
SMB/CIFS, SMB2 and NFS.

4 SMB2 Under the Hood

The SMB2 protocol differs[7] from the SMB
and CIFS protocols in the following ways:

• The SMB header is expanded to 64 bytes,
and better aligned. This allows for in-
creased limits on the number of active con-
nections (uid and tids) as well as the num-
ber of process ids (pids).

• The SMB header signature string is no
longer 0xFF followed by “SMB” but
rather 0xFE and then “SMB.” In the early
1990s, LANtastic did a similar change in
signature string (in that case from “SMB”
to “SNB”) to distinguish their requests
from SMB requests.

6



• Most operations are handle based, leav-
ing Create (Open/Create/OpenDirectory)
as the only path based operation.

• Many redundant and/or obsolete com-
mands have been eliminated.

• The file handle has been increased to 64
bits.

• Better support for symlinks has been
added. Windows Services for Unix did not
have native support for symlinks, but em-
ulated them.

• Various improvements to DFS and other
miscellaneous areas of the protocol that
will become usable when new servers are
available.

• “Durable file handles”[10] allowing easier
reconnection after temporary network fail-
ure.

• Larger maximum operation sizes, and
improved compound operation (“AndX”)
support also have been claimed but not
proved.

Currently 19 SMB2 commands are known:

• 0x00 NegotiateProtocol

• 0x01 SessionSetupAndX

• 0x02 SessionLogoff

• 0x03 TreeConnect

• 0x04 TreeDisconnect

• 0x05 Create

• 0x06 Close

• 0x07 Flush

• 0x08 Read

• 0x09 Write

• 0x0A Lock

• 0x0B Ioctl

• 0x0C Cancel

• 0x0D KeepAlive

• 0x0E Find

• 0x0F Notify

• 0x10 GetInfo

• 0x11 SetInfo

• 0x12 Break

Many of the infolevels used by the Get-
Info/SetInfo commands will be familiar to
those who have worked with CIFS.

5 POSIX Conformance

5.1 NFS

NFS version 3 defined 21 network file sys-
tem operations (four more than NFS version 2)
roughly corresponding to common VFS (Vir-
tual File System) entry points that Unix-like op-
erating systems require. NFS versions 2 and
3 were intended to be idempotent (stateless),
and thus had difficulty preserving POSIX se-
mantics. With the addition of a stateful lock
daemon, an NFS version 3 client could achieve
better application compatibility, but still can be-
have differently[6] than local file systems in at
least four areas:

• Rename of an open file. For example, the
“silly rename” approach often used by nfs
clients for renaming open files could cause
rm -rf to fail.

7



• Deleting an existing file or directory can
appear to fail (as if the file were not
present) if the request is retransmitted.

• Byte range lock security (Since these ser-
vices are distinct from the nfs server, both
lockd and statd have had problems in this
area).

• write semantics (when caching was done
on the client).

NFS also required additional protocol exten-
sions to be able to support POSIX ACLs,
and also lacked support for xattrs (OS/2
EAs), creation time (birth time), nanosecond
timestamps, and certain file flags (immutable,
append-only etc.). Confusingly, the NFS proto-
col lacked a file open and close operation until
NFS version 4, and thus could only implement
a weak cache consistency model.

5.2 NFSv4

NFS version 4, borrowing ideas from other
protocols including CIFS, added support for
an open and close operation, became stateful,
added support for a rich ACL model similar
to NTFS/CIFS ACLs, and added support for
safe caching and a wide variety of extended
attributes (additional file metadata). It is pos-
sible for an NFS version 4 implementation to
achieve better application compatibility than
before without necessarily sacrificing perfor-
mance.

5.3 CIFS

The CIFS protocol can be used by a POSIX
compliant operating system for most opera-
tions, but compensations are needed in order
to properly handle POSIX locks, special files,

and in order to approximate reasonable val-
ues for the mode and owner fields. There are
other problematic operations that, although not
strictly speaking POSIX issues, are important
for a network file system in order to achieve
true local remote transparency. They include
symlink, statfs, POSIX ACL operations, xat-
trs, directory change notification (including in-
otify) and some commonly used ioctls (for ex-
ample those used for the lsattr and chattr util-
ities). Without protocol extensions, the CIFS
protocol can adequately be used for most im-
portant operations but differences are visible as
seen in figure 1.

5.4 CIFS with Unix Protocol Extensions

As can be seen in figure 2, with the CIFS Unix
Extensions it is possible to more accurately em-
ulate local semantics for complex applications
such as a Linux desktop.

The Unix Extensions to the CIFS Protocol
have been improved in stages. An initial
set, which included various new infolevels to
TRANSACT2 commands in the range from
0x200 to 0x2FF (inclusive), was available when
CAP_UNIX was included among the capabili-
ties returned by the SMB negotiate protocol re-
sponse.

Additional POSIX extensions are negotiated
via a get and set capabilities request on the tree
connection via a Unix QueryFSInfo and SetFS-
Info level. Following is a list of the capabilties
that may be negotiated currently:

• CIFS_UNIX_FCNTL_LOCKS_CAP

• CIFS_UNIX_POSIX_ACLS_CAP

• CIFS_UNIX_XATTR_CAP

• CIFS_UNIX_EXATTR_CAP

8



Figure 1: Without extensions to CIFS, local (upper window) vs. remote (below) transparency
problems are easily visible

• CIFS_UNIX_POSIX_PATHNAMES_CAP
(all except slash supported in pathnames)

• CIFS_UNIX_POSIX_PATH_OPS_CAP

A range of information levels above 0x200
has been reserved by Microsoft and the SNIA
CIFS Working Group for Unix Extensions.
These include Query/SetFileInformation and
Query/SetPathInformation levels:

• QUERY_FILE_UNIX_BASIC 0x200
Part of the initial Unix Extensions

• QUERY_FILE_UNIX_LINK 0x201 Part
of the initial Unix Extensions

• QUERY_POSIX_ACL 0x204 Requires
CIFS_UNIX_POSIX_ACL_CAP

• QUERY_XATTR 0x205 Requires
CIFS_UNIX_XATTR_CAP

• QUERY_ATTR_FLAGS 0x206 Requires
CIFS_UNIX_EXTATTR_CAP

• QUERY_POSIX_PERMISSION 0x207

• QUERY_POSIX_LOCK 0x208 Requires
CIFS_UNIX_FCNTL_CAP

• SMB_POSIX_PATH_OPEN
0x209 Requires
CIFS_UNIX_POSIX_PATH_OPS_CAP

• SMB_POSIX_PATH_UNLINK
0x20a Requires
CIFS_UNIX_POSIX_PATH_OPS_CAP

• SMB_QUERY_FILE_UNIX_INFO2
0x20b Requires
CIFS_UNIX_EXTATTR_CAP

Currently the CIFS Unix Exten-
sions also include the following
Query/SetFileSystemInformation levels
that allow retrieving information about a
particular mounted export (“tree connection”),
and negotiating optional capabilities. Note that
unlike NFS and SMB/CIFS, the CIFS Unix
Extensions allow different capabilities to be

9



Figure 2: Better local (upper window) vs. remote (below) transparency with CIFS Unix extensions

negotiated in a more granular fashion, by “tree
connection” rather than by server session.

If a server is exporting resources located on two
very different file systems, this can be helpful.

• SMB_QUERY_CIFS_UNIX_INFO
0x200 (Part of the original Unix Exten-
sions)

• SMB_QUERY_POSIX_FS_INFO 0x201

• SMB_QUERY_POSIX_WHO_AM_I
0x202

These Unix Extensions allow a CIFS client
to set and return fields such as uid, gid
and mode, which otherwise have to be ap-
proximated based on CIFS ACLs, and also
to drastically reduce the number of network
roundtrips, the number of operations required
for common path based operations. For ex-
ample, with the older CIFS Unix Extensions,
a file create operation takes many network

operations: QueryPathInfo, NTCreateX, Set-
PathInfo, QueryPathInfo in order to implement
local Unix create semantics correctly. File cre-
ation can be done in one network roundtip
using the new SMB_POSIX_PATH_OPEN,
which reduces latency and allows the server
to better optimize. The improved atomicity of
mkdir and create makes error handling easier
(e.g., in case a server failed after a create oper-
ation, but before the SetPathInfo).

5.5 SMB2

The SMB2 protocol does improve upon its pre-
decessors in including symlink support, but
retrieving mode and Unix uid and gid from
NTFS/CIFS ACLs is awkward, and SMB2 ap-
pears only slightly improved in this area, and
substantially worse than the CIFS Unix Exten-
sions for this purpose.

10



octet 1 2 3 4 5 6 7 8

RFC 1001 
msg type 
(session)

SMB length (some reserve top 7 bits) 0xFF 'S' 'M' 'B'

SMB 
Command

Status (error) code SMB flags SMB flags2

Process ID (high order) SMB Signature

SMB signature (continued) Reserved Tree Identifier Process Id (Low)

SMB User Identifier Word Count (variable number of 16 bit 
parameters follow)

Byte Count (size of data area) (data area 
follows)

Table 1: SMB Header Format (39 bytes + size of command specific wct area)

octet 1 2 3 4 5 6 7 8

RFC 1001 
msg type 
(session)

SMB length 0xFE 'S' 'M' 'B'

SMB Header length (64) reserved Status (error) code

SMB2 Command Unknown SMB2 Flags

Reserved Sequence number

Sequence Number (continued) Process Id

Tree Identifier SMB User Identifier

SMB User Identifier SMB Signature

SMB Signature (continued)

SMB Signature (continued) SMB2 Parameter length (in 
bytes)

Variable 
length SMB 
Parm

Variable 
length SMB 
Data

Table 2: SMB2 Header Format (usually 68 bytes + size of command specific parameter area)

octet 1 2 3 4 5 6 7 8

SunRPC Fragment Header XID

Message Type (Request vs. Response) SunRPC Version

Program: NFS (100003) Program Version (e.g. 3)

NFS Command Authentication Flavor (e.g. AUTH_UNIX)

Credential Length Credential Stamp

Machine Name length Machine name (variable size)

Machine Name (continued, variable length)

Unix UID Unix GID

Auxiliary GIDs (can be much larger)

Verifier Flavor Verifier Length

NFS Command Parameters and/or Data follow

Table 3: SunRPC/NFSv3 request header format (usually more than 72 bytes + size of nfs command)

11



6 Performance

CIFS has often been described as a “chatty”
protocol, implying that it is inherently slower
than NFS, but this is misleading. Most chatti-
ness in observed behavior of CIFS is the result
of differences between the operating system
implementations being compared (e.g., Win-
dows vs. Linux). Another factor that leads
to the accusation of the CIFS protocol being
“chatty” (wasteful of network bandwidth) is
due to periodic broadcast frames that contain
server announcements (mostly in support of the
Windows Network Neighborhood). These are
not a required part of CIFS, but are commonly
enabled on Windows servers so that clients
and/or “Browse Masters” contain current lists
of the active servers in a resource domain.

There are differences between these proto-
cols that could significantly affect performance
though, and these include: compound opera-
tions, maximum read and write sizes, maxi-
mum number of concurrent operations, endian
transformations, packet size, field alignment,
difficult to handle operations, incomplete oper-
ations that require expensive compensations.

To contrast features that would affect perfor-
mance it is helpful to look at some examples.

6.1 Opening an existing file

The SMB2 implementation needs a surprising
eight requests to handle this simple operation.

6.2 Creating a new file

The SMB2 protocol appears to match perfectly
the requirements of the Windows client here.
Attempting a simple operation like:
echo new file data > newfile

results in the minimum number of requests
that would reasonably be expected (opencre-
ate, write, close). Three requests and three re-
sponses (823 bytes total).

6.3 Mount (NET USE)

Once again the SMB2 protocol appears to
match well the requirement of the client with
only 11 requests (four are caused by the Win-
dows desktop trying to open Desktop.ini
and AutoRun.inf).

7 Linux Implementation

Much of the progress on SMB2 has been due
to excellent work by the Samba 4 team, led
by Dr. Andrew Tridgell. Over the past year
and a half, they have implemented a compre-
hensive client library for SMB2, implemented
a test suite (not as comprehensive yet), im-
plemented DCE/RPC over SMB2 (for remote
administration), implemented a SMB2 server
(not complete), and in cooperation with Ronnie
Sahlberg, implemented a wireshark (ethereal)
protocol analyzer.

8 Future Work and Conclusions

Although great progress has been made on a
prototype user space client in Samba 4, an im-
plementation of SMB2 in kernel on Linux also
needs to be completed, and we have begun a
prototype. The SMB2 protocol represents a
modest improvement over the older SMB/CIFS
protocol, and should be slightly better despite
the slightly larger frame size caused by the
larger header. With fewer commands to op-
timize and better aligned fields, performance

12



may be slightly improved as server developers
better tune their SMB2 implementations.

Despite the addition of support for symlinks,
the SMB2 protocol lacks sufficient support for
features needed by Unix and Linux clients.
Adding Unix extensions to SMB2, similar to
what has been done with CIFS, would be pos-
sible and could reuse some of the existing Unix
specific infolevels.

With current Linux kernels, NFS version 4
and CIFS (cifs client/Samba server) are good
choices for network file systems for Linux to
Linux. NFS performance for large file copy
workloads is better, and NFS offers some secu-
rity options that the Linux cifs client does not,
but in heterogeneous environments that include
Windows clients and servers, Samba is often
much easier to configure.

9 Acknowledgements

The author would like to express his apprecia-
tion to the Samba team, members of the SNIA
CIFS technical work group, and others in an-
alyzing and documenting the SMB/CIFS pro-
tocol and related protocols so well over the
years. This is no easy task. In addition, thanks
to the Wireshark team and Tridge for helping
the world understand the SMB2 protocol bet-
ter, and of course thanks to the Linux NFSv4
developers and the NFS RFC authors, for im-
plementing and documenting such a complex
protocol. Thanks to Dr. Mark French for point-
ing out some of the many grammar errors that
slipped through.

10 Legal Statement

This work represents the view of the author and does
not necessarily represent the view of IBM. IBM,

OS/2, GPFS, and OS/400 are registered trademarks
of International Business Machines Corporation in
the United States and/or other countries. Microsoft,
Windows and Windows Vista are either a registered
trademark or trademark of Microsoft Corporation in
the United States and/or other countries. UNIX is
a registered trademark of The Open Group in the
United States and other countries. POSIX is a reg-
istered trademark of The IEEE in the United States
and other countries. Linux is a registered trademark
of Linus Torvalds. Other company, product and ser-
vice names may be trademarks or service marks of
others.

References

[1] Sun Microsystems Inc. RFC 1094: NFS:
Network File System Protocol
Specification. March 1989. See http://
www.ietf.org/rfc/rfc1094.txt

[2] Callaghan et al. RFC 1813: NFS Version 3
Protocol Specification. June 1995. See
http://www.ietf.org/rfc/
rfc1813.txt

[3] S. Shepler, et al. RFC 3530: Network File
System (NFS) version 4 Protocol. April
2003. See http://www.ietf.org/
rfc/rfc3530.txt

[4] J. Norton, et al. SNIA CIFS Technical
Reference. March 2002. See
http://www.snia.org/tech_
activities/CIFS/
CIFS-TR-1p00_FINAL.pdf

[5] C. Hertel. Implementing CIFS. 2004. See
http://ubiqx.org/cifs/

[6] O. Kirch. Why NFS Sucks. Proceedings of
the 2006 Ottawa Linux Symposium,
Ottawa, Canada, July 2006.

13



[7] Dr. A. Tridgell. Exploring the SMB2
Protocol. SNIA Storage Developer
Conference. September 2006. http:
//samba.org/~tridge/smb2.pdf

[8] CIFS Unix Extensions.
http://wiki.samba.org/index.
php/UNIX_Extensions

[9] Linux CIFS Client and Documentation.
http://linux-cifs.samba.org

[10] What’s new in SMB in Windows Vista
http://blogs.msdn.com/
chkdsk/archive/2006/03/10/
548787.aspx

14


