
A New Network File System
is Born: SMB2

Steve French
Linux File Systems/Samba Design

IBM Linux Technology Center

http://svn.samba.org/samba/ftp/cifs-cvs/ols2007-smb2.pdf

How does it stack up?
Is it worth implementing?

Le g a l S ta te m e n t
This work represents the views of the author and does not
necessarily reflect the views of IBM Corporation.

The following terms are trademarks or registered
trademarks of International Business Machines Corporation
in the United States and/or other countries: IBM (logo), A
full list of U.S. trademarks owned by IBM may be found at
http://www.ibm.com/legal/copytrade.shtml.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be
trademarks or service marks of others.

Outline
● What makes Network File Systems

(and their protocols) different ...
● A short history

– of SMB and the birth of SMB2
– and of NFS

● SMB2 under the hood
● Comparison of SMB2, CIFS, SMB, NFS
● Problematic Linux operations
● Linux SMB2 implementation
● “Where do we go from here?”

Who Am I?

● Author and maintainer of Linux cifs
network file system

● Veteran? Design/Developed various
network file systems since 1989

● Member of the Samba team,
coauthor of CIFS Technical
Reference and former SNIA CIFS
Working Group chair

● Architect for File
Systems/NFS/Samba in IBM LTC

What is a File System?
● “a file system is a set of abstract data types

that are implemented for the storage,
hierarchical organization, manipulation,
navigation, access, and retrieval of data”
[http://en.wikipedia.org/wiki/Filesystem]

● A Linux kernel module used to access files
and directories. A file system provides
access to this data for applications and
system programs through consistent,
standard interfaces exported by the VFS

● This is much, much harder over a network ...
which is why making Network File
Systems is fun

http://en.wikipedia.org/wiki/Filesystem

What makes network file system
developers lives miserable?

● Constraints from network
fs protocol

● Bugs in various servers
that must be worked
around

● Races with other clients

● Recovery after failure

● Long, unpredictable
network latency

● Hostile internet (security)

● More complex deadlocks
and locking

Don't (always) blame the
protocol ...

● Some problems
are with the
implementation
(e.g. nfs.ko,
cifs.ko) not with
the protocol

● It takes a long
time to get
implementations
right ... current
Linux ones are
still tiny (under
30KLOC)

Network File System Protocol
Characteristics

● Network fs protocols differ from other
application level protocols

– Access via Files (and offsets within files)
vs. Blocks

– PDUs loosely match local fs (VFS) entry
points

– Support Hierarchical directory

– Topologies/nets vary (server room, LANs,
intranet or even Internet for some)

– Application optimization possible

– Transparency

– Heterogeneity

Lots of Linux FS e.g.

FS Name Type Approx. size (1000 LOC)
6
6
6

AFS Network 9
Ext3 Local 12
Ext4 Local 14
GFS2 Cluster 19
CIFS Network 22
NFS Network 25
OCFS2 Cluster 33
XFS Local 71

Proc Spec. purp.
Smbfs (obsol)network
ecryptfs Spec. purp.

(w/o dlm)

58 Linux file systems (and 1 nfs server) in current kernel
not counting out of kernel fs: OpenAFS, GPFS, Lustre ...
nor the many fs and servers (Samba!) in user space...

The Birth of Vista

● Release of Vista was in early 2007.
Includes new default Network File
System protocol: SMB2

● Prototype Implementations of SMB2 in
Samba 4 by late 2006

● Wireshark support added even earlier

History of SMB/CIFS
● Birth of SMB/CIFS:
Dr. Barry
Feigenbaum et al of
IBM (published 1984
IBM PC Conf),
continued by Intel,
3Com, Microsoft and
others

● Became the default
for DOS, Windows,
OS/2, NT and
various other OS.

● Evolved through
various “dialects”

Happy 23rd Birthday!

History (continued)
● 1992 X/Open CAE SMB Standard

published (“LANMAN1.2” dialect)
● 1996 SMB renamed “CIFS” - Common

Internet File System (“NT LM 0.12”)
● 2002 SNIA CIFS Technical Reference

Published after 4 year effort (also
includes Unix and Mac extensions)

● 2003-2007 Additional Extensions for
Linux/Unix Documented and
Implemented (on multiple clients and
servers – not just Linux)

History of NFS
● NFS is born ... mid 1980's (Sun OS

2.0 1985)
● RFC 1094 (NFS v2) 1989
● RFC 1813 (NFSv3) 1995
● WebNFS 1996
● RFC 3530 (NFSv4) 2003
● NFS 4.1

documentation/prototyping (in
progress) 2007-

IBM Linux Technology Center

© 2006 IBM Corporation

And the alternatives?

 NFS v3 or v4
 AFS/DFS
 HTTP/WebDav
 Cluster Filesystem
Protocols

 Back where we started!
● Ancient NFS and SMB born mid-

1980s and quickly became popular
● Lots of other network file systems

died out in between
● HTTP/WebDAV too slow, and can't

do POSIX
● No widely deployed cluster fs

standard
● 2007: Back where we started with

NFSv4 and SMB2 widely deployed
and going to be dominant?

SMB2 Under the hood
● Not the same as

CIFS but ... still
reminiscent of
SMB/CIFS
– Same TCP port (445)
– Small number of

commands (all new)
but similar
underlying infolevels

– Similar semantics

SMB2 vs. SMB/CIFS
● Header better aligned and expanded

to 64 bytes (bigger uids, tids, pids)
● 0xFF “SMB” -> 0xFE “SMB”
● Very “open handle oriented” - all path

based operations are gone (except
OpenCreate)

● Redundant/Obsolete commands gone
● Bigger limits (e.g. File handle 64 bits)
● Better symlink support
● Improved DFS support
● “Durable File Handles”

A good new/old comparison from Tridge

19 known SMB2 PDUs
(commands)

 SMB2_NEGPROT 0x00

 SMB2_SESSSETUP 0x01

 SMB2_LOGOFF 0x02

 SMB2_TCON 0x03

 SMB2_TDIS 0x04

 SMB2_CREATE 0x05

 SMB2_CLOSE 0x06

 SMB2_FLUSH 0x07

 SMB2_READ 0x08

SMB2_WRITE 0x09

SMB2_LOCK 0x0a

SMB2_IOCTL 0x0b

SMB2_CANCEL 0x0c

SMB2_KEEPALIVE 0x0d

SMB2_FIND 0x0e

SMB2_NOTIFY 0x0f

SMB2_GETINFO 0x10

SMB2_SETINFO 0x11

SMB2_BREAK 0x12

Other protocols

● SMB/CIFS has more than 80
distinct SMB commands (Linux
CIFS client only needs to use 21).
A few GetInfo/SetInfo calls, similar
to SMB2, have multiple levels

● NFS version 2 had 17 commands
(NFS version 3 added 8 more), but
that does not count locking and
mount which are outside protocol

● NFS version 4 has 37 commands
(dropped some, added 25 more)
but moved locking into core

CIFS Linux (POSIX)
Protocol Extensions

● The CIFS protocol without extensions requires
awkward compensations to handle Linux

● Original CIFS Unix Extension (documented by
HP for SNIA five years ago) helped:

– Required only modest extensions to
server

– Solved key problems for POSIX clients
including:

● How to return: UID/GID, mode

● How to handle symlinks

● How to handle special files
(devices/fifos)

– But needed improvements

POSIX Conformance hard
for original CIFS

CIFS with Protocol Extensions
(CIFS Unix Extensions)

IBM Linux Technology Center

© 2006 IBM Corporation

What about SFU approach?

– Lessons from SFU:
• Map mode, group and user (SID) owner fields to
ACLs

• Do hardlinks via NT Rename
• Get inode numbers
• Remap illegal characters to Unicode reserved
range

• FIFOs and device files via OS/2 EAs on system
files

– OK, but not good enough …
• Some POSIX byte range lock tests fail
• Semantics are awkward for symlinks, devices
• UID mapping a mess
• Performance slow
• Operations less atomic and not robust enough
• Rename/delete semantics hard to make reliable

IBM Linux Technology Center

© 2006 IBM Corporation

CIFS Unix Extensions
 Problem ... a lot was missing:

 Way to negotiate per mount capabilities

 POSIX byte range locking

 ACL alternative (such as POSIX ACLs)

 A way to handle some key fields in statfs

 Way to handle various newer vfs entry
points

–lsattr/chattr

–Inotify

–New xattr (EA) namespaces

IBM Linux Technology Center

© 2006 IBM Corporation

Original Unix Extensions Missing
POSIX ACLs and statfs info

smf-t41p:/home/stevef # getfacl /mnt/test-dir/file1
file: mnt/test-dir/file1
owner: root
group: root
user::rwx
group::rw-
other::rwx

smf-t41p:/home/stevef # stat -f /mnt1
 File: "/mnt1"
 ID: 0 Namelen: 4096 Type: UNKNOWN (0xff534d42)
Block size: 1024 Fundamental block size: 1024
Blocks: Total: 521748 Free: 421028 Available: 421028
Inodes: Total: 0 Free: 0

IBM Linux Technology Center

© 2006 IBM Corporation

With CIFS POSIX Extensions, ACLs
and statfs better

smf-t41p:/home/stevef # getfacl /mnt/test-dir/file1
file: mnt/test-dir/file1
owner: stevef
group: users
user::rw-
user:stevef:r--
group::r--
mask::r--
other::r--

smf-t41p:/home/stevef # stat -f /mnt1
 File: "/mnt1"
 ID: 0 Namelen: 4096 Type: UNKNOWN (0xff534d42)
Block size: 4096 Fundamental block size: 4096
Blocks: Total: 130437 Free: 111883 Available: 105257
Inodes: Total: 66400 Free: 66299

IBM Linux Technology Center

© 2006 IBM Corporation

POSIX Locking

 Locking semantics differ between CIFS and POSIX
at the application layer.

 CIFS locking is mandatory, POSIX advisory.

 CIFS locking stacks and is offset/length
specific, POSIX locking merges and splits and
the offset/lengths don't have to match.

 CIFS locking is unsigned and absolute, POSIX
locking is signed and relative.

 POSIX close destroys all locks.

IBM Linux Technology Center

© 2006 IBM Corporation

Protocol changes

 The mandatory/advisory difference in locking
semantics has an unexpected effect.

 READX/WRITEX semantics must change when POSIX
locks are negotiated.

 Once POSIX locks are negotiated by the
SETFSINFO call, the semantics of READ/WRITE
CIFS calls change – they ignore existing
read/write locks.

 POSIX-extensions aware clients probably want
these semantics.

– It's a side effect, but a good one !

Problematic Operations

Olaf's “Why NFS Sucks” Talk at OLS 2006

● Some are hard to address (NFS over TCP still
can run into retransmission checksum issues
http://citeseer.ist.psu.edu/stone00when.html)

● Silly rename sideffects

● Byte Range Lock security

● Write semantics

● Lack of open operation lead to weak cache
consistency model

● Most of these issues were addressed with
NFSv4 as Mike Eisler pointed out

http://citeseer.ist.psu.edu/stone00when.html

CIFS has problems too

● There is an equivalent of “commit”
but it is not as commonly used (ie
to force server to flush its server
side caches and write to metal)

● No grace period for lock/open
recovery after server is rebooted
(clients can race to reestablish
state)

 Some questions even with
NFSv4 ...

● Does extra layer between NFS and TCP
(SunRPC), which is still required in v4, get
in the way?

● Can RPSEC_GSS performance overhead be
reduced enough?

● ACL mapping problems (NFSv4 ACLs are
almost NTFS/CIFS ACLs but not quite).
Management of ACLs from both sides
(Windows or CIFS vs. NFSv4) could break.
What about the ACL mask?

● UID -> username@domain mapping
overhead

● “stable file handles” and even stable file
system ids still a pain on many modern fs!

mailto:username@domain

And more to analyze for
NFSv4

● “Close to Open”and cache
consistency

● utimes -> fsync (hurts
performance)

● “COMMIT” and periodic write stalls
● What about “Linux Affinity?”

How well does NFSv4 or CIFS map
to the Linux VFS entries needed by
applications (not just the minimal
POSIX file calls)

●Linux has complex FS
operations to implement

Source: http://www.geocities.com/ravikiran_uvs/articles/rkfs.html

All network fs can handle
simple inode operations

● Linux inode operations

– create
– mkdir
– unlink (delete)
– rmdir
– mknod

● Note vfs operations not all atomic
(sometimes POSIX calls generate more
than one vfs op although “lookup
intents” help for nasty case of create)
Some compensations are needed

Multipage operations and
wsize/rsize

● For High Performance networks
transfer size > 1MB may be optimal

● Linux has two interesting high
performance page cache read/write op
(nfs and cifs use both)

– Readpages (10 filesystems use)
– Writepages (a slightly different set

of 10 filesystems use)
● Useful for coalescing reads/writes

together to allow more efficiency
● Eventually RDMA-like features will be

introduced into Linux network fs

readdir

● For network filesystems “ls” can
cause “readdir” storms (hurting
performance) by immediately
following readdir with lots of
expensive stat (and sometimes
xattr/acl) calls (unless the stat
results are requested together, or
cached)

● Whether network equivalent of
readdir can act as a “bulk stat”
operation can affect performance

Byte range locks,
leases/distributed caching
● Linux supports the standard POSIX

byte range locking but also
supports “leases”

● F_SETLEASE, F_GETLEASE, used by
programs like Samba server, help
allow servers to offer safe
distributed caching (e.g. “Oplock”
[cifs] and “delegations” [nfs4]) for
network/cluster filesystems

Dir change tracking –
inotify, d_notify

● There are two distinct
mechanisms for change
notification in Linux
– Fcntl F_NOTIFY
– And the newer, more general inotify

Xattrs

● Xattrs, similar in some ways to
OS/2 “EAs” allow additional inode
metadata to be stored

● This is particular helpful to Samba
to store inode information that has
no direct equivalent in POSIX, but
a different category (namespace)
also is helpful for storing security
information (e.g. SELinux) and
ACLs

POSIX ACLs, permissions
● Since Unix Mode bits are primitive,

richer access control facility was
implemented (based on an expired
POSIX draft for ACLs).

● Now working w/CITI, Andreas et al to
offer optional standard NFS4 ACLs
(NFSv4 ACLs loosely based on CIFS)

● POSIX ACLs are handled via xattr
interface, but can be stored differently
internal to the filesystem. A few
filesystems (including CIFS and NFS)
can get/set them natively to Linux
servers (but not for NFSv4)

Misc entry points: fcntl,
ioctl

● Fcntl useful not just for
get/setlease

● Ioctl includes two “semi-standard”
calls which fs should consider
implementing
– getflags/setflags (chattr, lsattr on

some other platforms)

Conclusion
● NFSv4 client in short term better performing in

most (not all) workloads. Harder to configure for
security though (AD is everywhere)

● With the newer Linux Extensions, CIFS to Samba
is a great alternative

● CIFS (the implementation) missing some key
features to catch up with competition

● CIFS will still be necessary for newer Windows
until SMB2 support in kernel matures (we need
to start now). To newer Windows servers use of
SMB2 would be slightly better than CIFS

● We need to evaluate adding the
Linux/Unix/POSIX extensions to SMB2 for Samba
as we did with CIFS

What about an in kernel
SMB2 or CIFS server?

● CIFS has too many protocol
operations to do complete server
implementation, but a limited
implementation of just the
minimum needed for clients using
the POSIX CIFS extensions would
be feasible

● SMB2 has fewer operations and
may be feasible in kernel (with
user space helpers for SID
translation and Kerberos/SPNEGO
session establishment etc.)

SMB2 Status

● Samba 4 server
● Samba 4 client and libraries
● Linux kernel client

4 obvious Linux SMB2
Implementation Alternatives

● Part of cifs.ko, add a few new C
files (more complex to understand
code, easy to start)

● Start from scratch, make smaller
implementation (new smb2.ko)

● Borrow heavily from cifs vfs for
new smb2.ko

● [or one could do nothing and hope
Vista/Longhorn etc. go away]

● SMB2 support in kernel should be
fairly easy to start, and fun ...

● Contact us on
linux-cifs-client@lists.samba.org
and
samba-technical@lists.samba.org

● And linux-fsdevel@vger.kernel.org

mailto:linux-cifs-client@lists.samba.org
mailto:samba-technical@lists.samba.org

Acknowledgements
Thanks to the Samba team, members of the

SNIA CIFS technical work group, and
others in analyzing and documenting the
SMB/CIFS protocol and related protocols so
well over the years. This is no easy task.
In addition, thanks to the Wireshark team
and Tridge for helping the world
understand the SMB2 protocol better.
Thanks to Jeremy Allison for helping me
drive better Linux extensions for CIFS.
Thanks to the Linux NFSv4 developers, the
NFS RFC authors, and to Olaf Kirch, Mike
Eisler for making less opaque the very
complex NFSv4 protocol.

Thank you for your time!

For further reading
● This presentation and SMB2 and CIFS info:

– http://svn.samba.org/samba/ftp/cifs-cvs/ols2007-smb2.pdf

– Dr. A. Tridgell. Exploring the SMB2 Protocol.
http://samba.org/~tridge/smb2.pdf

– http://wiki.wireshark.org/SMB2

– CIFS Unix Extensions Documentation
http://wiki.samba.org/index.php/UNIX_Extensions

– http://linux-cifs.samba.org

– my paper in OLS proceedings has bigger bibliography

● NFS

– “Why NFS sucks” by Olaf Kirch at OLS2006

– And Mike Eisler's response ...
http://nfsworld.blogspot.com/2006/10/review-of-why-nfs-
sucks-paper-from.html

– Checksum problem
http://citeseer.ist.psu.edu/stone00when.html

http://svn.samba.org/samba/ftp/cifs-cvs/ols2007-smb2.pdf
http://samba.org/~tridge/smb2.pdf

IBM Linux Technology Center

© 2006 IBM Corporation

Status

 Linux CIFS client

– Version 1.49 (Linux 2.6.22) A year ago at this time
... cifs version 1.43

– (1.43 included the much improved POSIX locking)

– Version 1.32 included POSIX ACLs, statfs, lsattr
 Smbclient

– Samba 3.0.25 includes client test code for POSIX
locking, POSIX open/unlink/mkdir.

 HP/UX client also supports Unix Extensions
 Sun is developing a kernel CIFS client for Solaris
 Server

 Samba 3.0.25 includes POSIX Locking (POSIX ACLs,
QFSInfo, Unix Extensions implemented before) and POSIX
open/unlink/mkdir.

IBM Linux Technology Center

© 2006 IBM Corporation

A year in review ... (for the client)

 Growing fast (well over 100 changesets per year ...), one of the larger
(22KLOC) kernel filesystems

 Write performance spectacularly better on 3 of 11 iozone cases
 POSIX locking, lock cancellation support (and much better POSIX byte

range lock emulation to Windows)
 NTLMv2 (much more secure authentication, and new “sec=” mount

options)
 Older server support (OS/2, Windows 9x)
 “deep tree” mounts
 New mkdir reduces 50% of network requests for this op
 Improved atime/mtime handling (and better performance)
 Improved POSIX semantics (lots of small fixes)
 Ipv6 support
 Can be used for home directory now ... everything should work!

IBM Linux Technology Center

© 2006 IBM Corporation

Two recent examples

 mkdir improvement:
 connectathon test1 (7 level deep dir creation, 1 file in each, 21845

directories)
 35% fewer frames sent, test completes 28% faster

 iozone write improvement
 more than 10 times faster on 3 iozone write tests of 11
 smf-t60p:/cifs-with-patch # time dd if=/dev/zero of=/cifs/.test bs=1024
 count=250000
 256000000 bytes (256 MB) copied, 34.9132 s, 7.3 MB/s
 (without patch) smf-t60p:/cifs # time dd if=/dev/zero of=/cifs/.test bs=1024
 256000000 bytes (256 MB) copied, 77.5971 s, 3.3 MB/s

IBM Linux Technology Center

© 2006 IBM Corporation

Newest code

 POSIX OPEN/CREATE/MKDIR
 POSIX “who am I” (on this connection)
 POSIX stat/lookup
 Under development (3.0.27+ ?) -

 CIFS transport encryption (GSSAPI encrypt at the CIFS packet level).
 Based on authenticated user (vuid) – encryption context per user.
 Allows mandatory encryption per share.

IBM Linux Technology Center

© 2006 IBM Corporation

Roadmap

 Client
 2.6.22 includes new mkdir (new open/create and unlink
in 2.6.23)

 Server
 Samba 3.0.25 is complete (needs documentation).
Encryption under development. Large (>128K) read
support complete on server only.

 Samba 4 Unix/POSIX Extensions started with new POSIX
CIFS client backend

 In discussions with other client and server vendors
about feature needs

IBM Linux Technology Center

© 2006 IBM Corporation

Windows client/POSIX interaction

 POSIX clients read/write requests conflict with
Windows locks, but not POSIX locks (Windows
locks are mandatory for POSIX clients).

 Windows clients read/write requests conflict
with both Windows and POSIX locks (both lock
types are mandatory for Windows clients).

 Windows locks are set, unlocked and canceled via
LOCKINGX (0x24) call.

 POSIX locks are set and unlocked via the Trans2
SETFILEINFO call, and canceled via the NTCANCEL
call.

IBM Linux Technology Center

© 2006 IBM Corporation

A few Extensions still needed

 inotify
 A few ioctls such as lsattr/chattr/chflags
(currently implemented only in cifs client)
e.g. To make a file immutable, or append-
only, or to zero blocks on delete.

stevef@smf-t41p:~/test-dir> lsattr /boot/append-only-file
-----ad------ /boot/append-only-file
stevef@smf-t41p:~/test-dir> lsattr /mnt1/append-only-file
lsattr: Inappropriate ioctl for device While reading
flags on /mnt1/append-only-file

IBM Linux Technology Center

© 2006 IBM Corporation

POSIX Errors
 NT Status codes (16 bit error nums) already
has a reserved range

 0xF3000000 + POSIX errnum

 POSIX errnum vary in theory, but not much
in practice for common ones use

 POSIX errnums fixed

 New capability(will probably be)
– #define CIFS_UNIX_POSIX_ERRORS 0x20

 Do we need to define new errmapping SMB
for client to resolve unknown POSIX errors
backs to NT Status?

IBM Linux Technology Center

© 2006 IBM Corporation

More general improvements still
needed in our aging protocol
 These changes were not really Unix or Linux
specific but POSIX apps may have stricter
assumptions

 Full local/remote transparency desired
 Need near perfect POSIX semantics over cifs
 Newer requirements

 Better caching of directory information

 Improved DFS (distributed name space)

 Better Performance

 Better recovery after network failure

 QoS

IBM Linux Technology Center

© 2006 IBM Corporation

Caching improvements
 “Reacquire Oplock” concept
 FCNTLs already defined/reserved for
this

 #define
FSCTL_REQUEST_OPLOCK_LEVEL_1
0x00090000

 #define
FSCTL_REQUEST_OPLOCK_LEVEL_2
0x00090004

 #define FSCTL_REQUEST_BATCH_OPLOCK
 0x00090008

 #define
FSCTL_REQUEST_FILTER_OPLOCK
0x0009008C

 Current work going on to test this
Source: http://www.microsoft.com/mind/1196/cifs.asp

IBM Linux Technology Center

© 2006 IBM Corporation

DFS (Global Namespace)
improvements

 DFS patch being reviewed
 Part has already been merged in

 We need to improve ability to find
nearest replica, and recover after
failure

 And also to hint “least busy”
server for load balancing

IBM Linux Technology Center

© 2006 IBM Corporation

New Transports
 Ipv6 support here but ...
 reduce fragmentation /

reassembly performance penalty
(Ipv6 and others can leverage
jumbo frames)

 To adapt to larger writes
 Other transports

(Infiniband/RDMA)
 Reduced latency
 Improved performance
 Quality of Service



IBM Linux Technology Center

© 2006 IBM Corporation

Beating the competition - NFSv4

 Key differences
 CIFS is richer protocol (huge variety of network filesystem functions

available in popular servers)
 CIFS supports Windows and POSIX model through different commands

as necessary
 CIFS can negotiate features with more flexibility: on a “tid” not just a

session (or RPC pipe). This is helpful in tiered/gateway/clustered
environments

 CIFS does not have SunRPC baggage
 And we have the Samba team ...

 And we are easier to configure than most cluster filesystems ...

IBM Linux Technology Center

© 2006 IBM Corporation

Where to go from here?

 Discussions on samba-technical and linux-cifs-client mailing lists
 For Linux CIFS Extensions and CIFS: Wire layout is visible in

fs/cifs/cifspdu.h
 For SMB2, see the Samba 4 source
 Working on updated draft reference document for these cifs protocol

extensions
 See http://samba.org/samba/CIFS_POSIX_extensions.html

