
Undocumented CIFS

Jeremy Allison : Samba Team

But isn't CIFS documented ?
• SNIA document does a basic job.

– Enough to get an implementor started.

– Roger Binns (VisionFS author) quote: “Anyone
following the CIFS spec has a beautiful server
no clients will interoperate with”.

• However it is very incomplete.
– Doesn't cover older Windows clients

– Doesn't cover OS/2 clients, or newer clients
like Linux or MacOS X

– Doesn't have the details needed to correctly
write a server for Windows clients.

What about the “licensed”
documentation ?

• Can't accurately comment as Microsoft
licensing terms prohibit Free Software from
participating.

• NetApp presentation implied the “Microsoft”
CIFS document is similar to the SNIA one.

• Licensees have to help Microsoft debug the
document they paid for !

• Still many details missing.

Why is CIFS so hard to
document ?

• Partly Microsoft intransigence
– “Private protocol” easier to extend arbitrarily

and preserve barriers to interoperability.

• Partly historical
– CIFS covers many old clients no longer in wide

use or testing, few resources are allocated to
documenting these.

• Partly due to client to server homogeneity.
– CIFS became “Windows NT kernel on the wire”

semantics. Windows kernel features exposed.

How can Samba help
document CIFS ?

• tridge had the epiphany several years ago.

• Don't follow any published specification.
– Create client test suite and tools to test any

theory about the “correct” behavior of CIFS
servers.

– Take the “latest” Microsoft server (currently
Windows 2003 Service Pack 1) as the
“standard”.

– Samba4 client suite and torture tester is the
result.

Samba contribution

Presenting some of the results of the torture
tester, as implemented in Samba3 and

Samba4.

“Ornery” open modes

• If a second open on a file would cause a
“sharing violation” error message, the
server must delay processing the second
open by approximately one second to allow
the client to close the currently open
handle.
– Used extensively by Microsoft Office.

– Time out is not exact, seems to be around one
second but this is almost certainly Windows
kernel dependent. Longest seen was 2
seconds.

“Ornery” Open modes

Client ServerOpen /foo

Open Handle #1 /foo

Second open /foo : call {*}

Oplock break for handle #1

Up to one
second delay

Time

Other client
activity

Close handle #1 /foo

Open Handle #2 /foo
reply to call {*}

Delayed open success

ReadFile/FindFirst etc.

“Ornery” Open modes

Client ServerOpen /foo

Open Handle #1 /foo

Second open /foo : call {*}

Oplock break for handle #1

One Second
delay

Time

Other client
activity

Sharing violation error :
reply to call {*}

Delayed open failure

Readfile/FindFirst etc.

Handle #1 NOT closed

“Odd” oplocks

• The CIFS spec. says that any second open
on a file already opened with an exclusive
oplock granted will cause an oplock break.
– This is untrue.

• Doing NTCreateX with “attribute only” flags
– FILE_READ_ATTRIBUTES|

FILE_WRITE_ATTRIBUTES|SYNCHRONIZE

does not cause an oplock break.

“Odd” oplocks (continued)

• The CIFS spec. says that a second open
on an already open file cannot be granted
an oplock.
– It seems that a level 2 (read-only) oplock can

be granted on a file already open with no
oplock !

– A write on either of the open handles causes a
“break to none” packet on the level 2 open
handle, but not the no oplock handle.

“Shifty” share mode checking

• The CIFS spec. says that any second open
on a file with a share mode conflicting with
an existing share mode causes a sharing
violation.

• Doing NTCreateX with an access mask
NOT containing any of the following :
– FILE_WRITE_DATA|FILE_APPEND_DATA|

FILE_READ_DATA|FILE_EXECUTE|
DELETE_ACCESS

does not cause a sharing violation.

What explains these strange
semantics ?

• This only makes sense if you consider how
the Windows kernel handles CIFS file
opens.
– Requests for “attributes” only seem to be

handled at a “meta-data only” layer above the
file open code.

– Requests for “real opens” go into the file
handle layer which causes the oplock break
and share mode processing to take place.

– Example of Windows internal semantics
leaking into the protocol.

“Wrong” write times

• Windows file timestamps contain a “last
write time” timestamp.
– The CIFS spec. says this is to be updated to

the current time whenever a file is written to.

• CIFS contains calls to set the “last write
time” timestamp.
– But what is the timestamp set to when a write

subsequently happens ?

– CIFS spec implies the write overwrites the
explicit “set timestamp” call.

“Wrong” write times
(continued)

• The “correct” action is to ensure that a write
time set via the “set write time” SMBtrans2
or other calls must remain as the “current”
write time – even if a SMBWriteX call is
subsequently made.
– So write times are “sticky”. Once a write time is

modified via an explicit call, further writes don't
change the time.

– But what happens with multiple handles
open ?

“Wrong” write times
(continued)

• When a “sticky” write time is set on one of
multiple handles open on the same file,
subsequent attribute reads of the write time
 return the “sticky” time.
– However, once the handle on which the “set

write time” call is done has been closed, then
subsequent writes update the time – but not
until all existing handles are closed.

– These semantics in a protocol are insane, but
Microsoft Office (Excel) depends on them.

“Wrong” write times – what is
happening ?

• Again, the internals of Microsoft's CIFS
implementation have bled into the protocol
on the wire.
– Windows keeps open handles on a file in an in-

memory cache. This explains the “set by one,
seen by all semantics”.

– Reference counting on the handles explains
the last inconsistency. The pending change
gets flushed onto disk once the “master”
handle is closed, but the other handles still
remember the “sticky write time” while they are
 open.

“Daft” directory listings

• The CIFS spec says nothing about a client
directory listing other than that all the files
in a directory must appear.
– In reality the two entries dot and dot dot MUST

appear as the first two entries.

– If not, Windows NT 4.x clients will display
bogus folders entitled dot or dot dot in
Windows explorer.

– It's a bug – but one every server vendor must
be aware of.

“Daft” directory listings
(continued)

• The CIFS spec. shows three ways of
continuing a directory listing from a client.
– Resume by “continue” from the end of the

previous search.

– Resume by filename.

– Resume by “resume key” - a special value

• Windows servers suffer from different bugs
in each of these that CIFS client writers
must be aware of.

“Daft” directory listings
(continued)

• Resume by continue bit :
– Windows servers have interesting bugs with

this option, they miss filenames (seemingly at
random). Not safe to use in client code.

• Resume by filename :
– Works against Windows servers, but only on

NTFS exported drives.

• Resume by “resume key” :
– Used by Windows servers exporting FAT

filesystems.

“Daft” directory listings
(continued)

• In order to cope with all varients of
Windows servers :
– Use the require resume key bit in the trans2

FindFirst/FindNext SMB. Don't set the
“continue” bit

– Send the returned resume key to continue
from.

– Also send the filename to resume from.

– Seems to give reliable directory listings with all
tested Windows servers.

“Dodgy” delete on close

• “Delete on close” seems to be a state
attached to a file - but also settable at
NTCreateX time.
– If set when the last handle to the file is closed it

causes the server to delete the file.

– The state can be set and unset via the
SMBtrans2 call SetFileInfo – info level
SET_DISPOSITION_INFORMATION.

– The file handle must have been opened with an
access mask containing DELETE.

“Dodgy” delete on close

• Once the “Delete on close” state has been
set on a file then no further opens are
allowed.
– The file is still seen in directory listings

however.

– The delete on close state is attached to the
underlying file state – all handles opened on
the file will see this state.

– The file must have been opened with
FILE_SHARE_DELETE to allow delete on
close to be set.

“Secret” SMB signing

• SMB signing is partly documented, but
details are missing.
– Signing session numbers are associated with

the SMB_MID (multiplex-id) number.

– This means that SMBtrans2 calls split into
primary and secondary requests and
responses use the same session number for
signing.

– oplock break messages from server to client
(asynchronous) are not signed and don't use a
sequence number.

Locking for LuZ3r5

• SMB byte range locking acts as a
restaurant “plate stack” from the same
process.

• Locks can't overlap, or be split or merged
(as they can in POSIX), but read locks can
be “stacked” on top of a write lock.
– So long as the same locking context is used.

• The locks remain as a stack and are
removed off the bottom on unlock.

Crazy comments and
questions ?

• email: jra@samba.org

• samba-technical@samba.org mailing list.

mailto:jra@samba.org
mailto:samba-technical@samba.org

