Advanced Interoperability in a
hetrogeneous environment

By Jeremy Allison

Sary /Ljﬂ/
y

Development Team

email: jra@samba.org

Hetrogeneous problems

® All IT departments have to deal with integrating
Windows systems with other Operating Systems
and network platforms.

® The Windows family of Operating Systems is
designed to be compatible only with itself.
® Uses different user and group models.
® Uses different authentication and security methods.
® Uses proprietary file and printer sharing protocols.
® Uses a proprietary directory service.

® \Windows hides the API's needed to replace
these models on a client.

Hetrogeneous solutions

® C(Client side changes are not scalable in a large
organization.

® Always easier to make few changes on servers.

® Hidden API's on clients make full conversion of
Windows clients to UNIX protocols currently
impossible.

® Various solutions exist to make UNIX/Linux
servers fit into a Windows Domain environment.

® Samba is the most popular non-Windows server
solution (estimates are 30% of Windows clients
talk to a Samba server).

New Samba 2.2 design
philosophy

® For Samba 2.2 the design philosophy of the code
was changed.

® Previous to 2.2, Samba tried to track the X/Open and
Microsoft specification documents.

® The goal for Samba 2.2 was correctness, defined
as "the way Windows 2000 acts”.

® Testtools were written to test the behaviour of
Windows 2000 over the wire, and Samba was
modified accordingly.

® These Open Source test tools are now used by all the
major SMB/CIFS vendors (including Microsoft) for
compatibility testing.

New Features in Samba 2.2

Ability to act as a Domain controller for Windows
2000 and Windows NT clients.

Support of Windows 2000/NT access control lists
(ACLs) by mapping them into POSIX ACLs.

Full 64 bit locking, even on 32 bit (x86) platforms.

Full implementation of Windows 2000/NT "point
and print" auto printer driver download ability.

Management of Samba shares using native
Windows tools.

Interoperability with winbindd - single sign-on.

Quick Overview

® Samba consists of two user mode daemons.

® nmbd - NetBIOS naming daemon. Not covered further
in this talk.

® smbd - Main file and print serving code.
® smbd has evolved over seven years of coding.
® Originally a file server, it has expanded to include

print services, authentication services and now
an implementation of an entire RPC protocol.

® smbd is too complex. Much work is being done to
simplify it and break it into manageable parts.

smbd design

® smbd consists of a single process per connected
]| .]|
client”.

® Multi-user Windows servers such as Citrix or Terminal
server can break this assumption.

® UNIX user context is used for security.

® This is a very important point. smbd does not enforce
security itself, it sets the effective userid to the UNIX
uid mapped to the client context and lets the OS
determine access. No "root race" holes.

® As a consequence of this smbd is single threaded.
POSIX threads are not guaranteed to have a security
context.

smbd event flow

® Dealing with incoming SMB messages
[smbd/process.c]:

select()
read message from socket into 64k buffer [inbuf].
check message for correctness

check incoming user context, change effective uid if
needed.

process message (done in switch_message()) -
generating reply into 64k buffer [outbuf].

send reply to client.

periodically do general housekeeping (time-out events
etc.)

smbd design (continued)

® As close to Windows semantics as POSIX
allows.

® Try to overlay POSIX filesystem with Windows
semantics in the core code.

® Don't create a "shadow" filesystem with dot files.

® Don't create mappings that have no meaning to the
underlying system (ACL or user databases).

® No modifying file contents (no CR/LF translation).

® VFS layer in Samba 3.0 will provide "pluggable”
mechanisms to provide this kind of OEM
customization [examples/VFS/skel.c].

VFS hooks in smbd 3.0

® All calls into POSIX (open/close/read/write etc...)

are vectored via a shared library loaded function
table.

® Default POSIX operations are available via
import.

® ‘"pass-through" interfaces are thus possible, a sample
audit VFS plug-in is supplied.
® VFS plug-ins are loaded per share, all
pathnames passed to the VFS are UNIX
character set format (conversion from DOS
codepage is done before call).

Mapping WIin32 concepts to
POSIX

® \WIin32 has some concepts that don't map well to
POSIX.
® Deny modes.

Oplocks.

Byte range locks.

ChangeNotify.

® Timed lock requests.

® Samba implements deny modes between smbd
processes via a shared memory area,
implemented differently within 2.0.x and above.

Deny mode semantics in POSIX

® POSIX has no "deny modes". Samba layers
these over ordinary POSIX open calls
[smbd/open.c].

® POSIX apps do not interact with DENY modes.

® Reason - what happens if someone opens
/etc/passwd with DENY ALL ?

® DENY mode semantics are not logical - adding this to
POSIX is not good design.

® Samba implements a fast, smbd to smbd

mechanism to convey deny modes between user
processes.

® No centralized deny mode daemon needed.

Samba shared memory Deny
mode database

locking/[xX] tdb in 2.2.0

_ Shared Memory Area
in 2.0.x

(dynamic in Samba 2.2.0 and above)

| Deny Read
\Rjnters as offsets

FreeList
Deny Read

Open Mode Chain

Open File Hash Table
> S

\Hash table locks (sysV semaphores
or fcntl locks)

Creating Oplocks in POSIX

Allowing Oplocks on top of POSIX breaks
consistent view of filesystem (and Samba
philosophy) [smbd/oplocks.c]

® However, too useful not to implement. Needed for
SMB speed.

Deny mode database holds all shared info about
open file state. Oplock records added to this
data.

Blocking IPC mechanism between smbds
needed that would integrate into select()/poll().

UDP messages on loopback interface chosen.

Oplock communications

® On break request, smbd locks db, finds holder of
oplock, sends break request via UDP port,
releases db lock then blocks awaiting reply).

® Code in [smbd/open.c] and [smd/oplock.c] -
request_oplock break() function.

® Receiver smbd gives priority to incoming UDP
messages in select(), recurses into secondary
smbd processing loop [smbd/oplock.c].

® '"Dangerous' messages that may cause an oplock
’Per?gk from the receiving smbd dre queued at this
ime.
® On exit from recursed state, queued messages
are given priority [smbd/process.c] -
receive_message or_smb().

The swamp - mapping Win32
byte range locks to POSIX

® WIin32 byte range locks seem to be easy to map
into POSIX.

® Approach chosen in all Samba versions 2.0.x and
before.

® Depends upon locking conflicts being handled at
client redirector.

® Not possible to give exact Windows semantics.

® Samba 2.2.x and 3.0 have correct Win32
semantics.

® "Correct" here means 'what NT does'. Has little
relation to Win32 documentation or the spec.

POSIX locks - the exact
semantics

® |ock ranges can be merged/split.
® Lock ranges can be upgraded/downgraded.
® 32/64 bit signed, not unsigned ranges.

| RDIck |
| RDIck |
| RD Ick |
| Unlk |

Tir¥|e|RDIck| | RDIck |

Kernel view of locks

POSIX lock semantics
(continued).

® Killer issue : POSIX locks are per process, not
per file descriptor.

® Eq:

int fd1 = open("/tmp/bibble", O _RDWR);
fcntl(fd1, F SETLK, &lock struct),

fd2 = dup(fd1)

close(fd2);

SURPRISE ! The lock you thought you had on fd1 is now gone !

In anyones wildest dreams this is not desirable behavior.

POSIX lock semantics
(continued).

® Samba 2.0.x solution to this problem was to
reference count all opens on a file onto a single
fd, open read/write (if possible).

® Conserves fd usage.
® Samba checks prohibited security overrides.

® Disadvantages are :

® Multiple opens under different uids - need to use fork()
as a procedure call to check return,

® smbd is lying to operating system about access mode.
® 2.2.0/3.0 solution - store pending closes in a tdb.
® Allows multiple opens to obey Samba philosophy.

"Welcome to Fantasy Island” :
The Win32 lock spec.

® Win32 locks as described in Win32 docs are not
what is implemented in Windows NT.

® Locks can be downgraded by overlaying read locks
onto write locks and then doing one unlock.

® Compatible locks can be stacked on top of each other
and are then reference counted.

® The only way Samba can implement this is with a
locking database.

® This tdb database [locking/brlock.c] implements full 64
bit Win32 lock semantics, indexed by dev/inode pairs.

® Any locks passed by this are (optionally) passed to a
POSIX lock mapping layer [locking/posix.c].

Mapping Win32 locks to POSIX

® POSIX lock layer attempts to map given 64 bit
unsigned lock onto signed (64 or 32, depending
on filesystem) bit POSIX lock.

® If no POSIX mapping possible - discard the request
(return True - POSIX app can't get to this range
anyway).
® Locks that pass are then stored in a second,
lower level tdb that contains full record of all
existent POSIX locks on a dev/inode pair.

® This is needed as POSIX kernel will lose information
when |locks are overlapped.

Mapping Win32 locks onto
POSIX (continued).

EI E EI E EI Client1
[r] cient

Client2

“E E EI E E Desired result

Time

ChangeNotify and timed locks

® ChangeNotify is a problem as it is resource
intensive.

® Similar to FAM on IRIX ((kernel interface)- this is now
available on Linux.

® For portability reasons, Samba currently does a
periodic scan, with no depth.

® Produces a hash of the directory contents and checks
this in the idle loop [smbd/nttrans.c].

® Timed locks are implemented by all lock requests
being instantaneously checked with the request
packet being queued until a check succeeds in
the idle loop (or timeout) [smbd/blocking.c].

Samba DCE/RPC subsystem:
incoming

® Pipe opens are done on a IPC$ share, smbd
redirects into pipe handling code [smbd/pipes.c].

® All writes onto pipe handle are buffered into a
continuously growing (length limited) memory
buffer [rpc_server/srv_pi;?e_hnd.c].

® On an authenticated RPC bind (NTLM handshake),
the user credentials are stored with the pipe
[rpCc_server/srv_pipe.c].

® As a PDU's worth of data is received, the header is
processed, stripped off (all sign & seal processing is
done here) and the incoming PDU data is appended.

® When the complete RPC is received then the
pipe/function specific processing is invoked.

Samba DCE/RPC subsystem:
outgoing

® After successful processing of the RPC request
the outgoing data stream is marshalled into an

auto-growing buffer via [rpc_parse/parse XXX]
calls.

® When the client does a read on the RPC pipe the
outgoing data is split into PDU sized chunks

[rpc_server/srv_pipe hnd.c] and returned as the
read data.

® Additional pipes (eg. MS-DFS pipe) can be
added into pipes tables in
[rpc_parse/parse_rpc.c] - uuid, and
[rpc_server/srv_pipe.c] - pipe function table.

Resources

® Main Samba Web site :
® http://samba.org
® Newsgroup :
® news:.comp.protocols.smb
® Samba discussion list :
® email: samba@samba.org
® Samba development list :
® email: samba-technical@samba.org

