Porting Windows NT ®
Applications to Linux

By Jeremy Allison

Sary /Ljﬂ/
y

Development Team

email: jra@samba.org

Windows Porting - why do it ?

® Portability. Win32 API is not usable on anything
other than Windows (valiant attempts like WINE
notwithstanding).

® POSIX APIl's are stable and common across
many different versions of UNIX.

® Even more so than Win32. Originally touted as a
"common" Windows API there are now over 5
different versions.

® Win32 API is an incoherent design. Error returns
differ across functions, few abstract data types
(hard to move to 64 bit). Undergoes rapid
changes.

Windows Porting - why do it ?

® Financial gain : Linux is the fastest growing
server OS. Large categories of software are as
yet uncolonised on Linux.

® No competition from the platform vendor : "The
Windows API supports ISV's in the same manor
as a rope supports a man about to be hung"
(Andrew Schulman).

® Customizable : Open Source allows the exact
behavior of the OS to be determined. Puts
application vendors in charge of their own
destiny....

Windows Porting - what is

possible (and what isn't)

® \Windows GUI client applications are a nightmare
to port.

The Win32 GUI API is horribly complex, with many
subtle interdependencies.

To port a Windows GUI application, without too much
change, winelib from the WINE project is the best
hope.

® This is the route Corel have taken.

® Best possible solution if the application is large and must keep
running on Windows.

Qt, GTK are cross platform GUI toolkits. wxWindows
based on GTK also cross platform.

® Usable if the GUI application is small and can be rewritten.
Windows GUI programs are in a world of pain on
Linux :-).

Windows Porting - what is
reasonable

® \Windows NT service control code is reasonably
easy to port.

® Two possibilities for network services.

® Stand-alone daemon - always running.

® Program managed by inetd superserver - much easier
to use than NT style code.

® For non-network services then stand-alone
daemon is the only choice.

Stand-alone daemons

® The only choice for a non-network server.
® Most similar to an NT service.

® Usually run as "root" (equivalentto NT
LocalSystem account).

® root has more abilities than LocalSystem, can
impersonate users at will.

® If you can, design so that you lose root privileges as
soon as possible. Greatly adds to security.

® No registry on UNIX. Store configuration

information in files - ASCII editable files are
always preferred.

Stand-alone daemon code

® Good examples are Samba (smbd/nmbd) and
Apache.

® Typically one process per connected client.

® Managed by start/stop scripts held in
/etc/rc.d/init.d.
® Dependencies managed by run levels and numeric
ordering of script names.

® Look into /etc/rc.d/rc3.d and /etc/rc.d/rc5.d for good
examples.

® S<number>name is start script.
K<number>name is kill (shutdown) script.

Controlling stand-alone
daemons

® No API equivalent to "ControlService()". Use
asynchronous signals instead.

® ControlService() notifications are run under a
different thread on NT.

® Default model on Linux is to use a signal handler,
send a notification that is checked in main code.

SERVICE_CONTROL_STOP -> send SIGTERM (not SIGKILL).
SERVICE_CONTROL_PAUSE -> send SIGTSTP (not SIGSTOP).
SERVICE_CONTROL_CONTINUE -> send SIGCONT.

No method of performing SERVICE _CONTROL_INTERROGATE
-> possibly map to SIGHUP.

Causes most daemons to reread configure files and reconfgure
themselves.

Controlling stand-alone
daemons

UNIX has richer semantics for grouping
processes. Signals can be used to control a
related group of processes called a "session".

Examine code sample 1.
UNIX threading is done via pthreads.

Examine code sample 2.

® Performs stand-alone daemon control in a threaded
manor (easier to understand for NT programmers).

® \WARNING ! This code has a dependency on Linux
pthreads (signals need to be sent to the correct thead
id, not parent process id).

Inetd daemons

® |f possible, use the inetd super-server to start
your daemon. Extra security (tcpd) is available.

® inetd can accept TCP or UDP connections on
behalf of your daemon and will invoke you with
stdin, stdout, stderr set to the network socket.

® Beware of stderr printf calls from library functions...

® [netd can invoke a new daemon per incoming
connection, or invoke one daemon and wait until
it finishes.

® Configuration file in /etc/inetd.conf. Example line:

® swat stream tcp nowait root /usr/local/samba/bin/swat swat

Inetd daemon code

® To determine if your daemon has been started by
iInetd, attempt a socket operation (getsockopt())
on file descriptor zero. If it succeeds, you were
started from inetd.

® |nstall issues are more difficult for inetd
daemons.
® /etc/inetd.conf file listens on ports defined in
/etc/services.

® service lookups (the getservbyname() call) may be
served via a network lookup (NIS or NISPLUS).

® Inetd daemon code less suited to high
performance.

Asynchronous signals

® These are really "software interrupts”. Can be
used to break into "slow" system calls in the case
where threads would be used in NT.

® See sample3.c for an example of using the
SIGALRM signal for this.

® SetConsoleCtrlHandler() is the closest NT
concept, however this spawns a new thread
internally to deal with the notifications.

® Signals and POSIX pthreads don't mix too well. A
separate thread handler is best used
(sample2.c) in the UNIX threaded case.

Multi-threaded vs. Multi-process

® Windows NT code tends to be multi-threaded
rather than multi-process (traditional UNIX
model).

® Win32 threads have significant differences from UNIX
pthreads model. Study a good pthreads book.

® Win32 synchronization primitives (Mutexes, Events,
Semaphores) all can be built using pthreads
primitives.

® Beware of different semantics between similar looking

primitives. For example, Win32 Mutexes are
recursive, pthreads mutexes are not.

® Beware of subtle dependencies on Win32 semantics.

Multi-threaded vs. Multi-process
(continued)

® For performance reasons, Win32 multi-threaded
code may better be re-architected as multi-
process code on Linux.

® Linux much better at handling multi-processes.
Process creation is much cheaper under Linux than
NT (about the same as thread creation on NT).

® Multi-process code easier to debug under Linux
than multi-threaded code.

® Multi-process code more robust against
programmer error than multi-threaded code
(example, Samba vs. NT SMB server).

Creating processes

® Win32 CreateProcess() is a monster function.

Far too many parameters (10) and 8 configurable
flags that modify behavior.

UNIX has fork() - returns twice (subtle point).
Followed by exec() it allows the same semantics
as CreateProcess().

® Having this functionality in two separate functions
allows application specific modifications in the process
environment before invoking the child process.

In order to create a process under a different
user context, Win32 requires a plaintext
password for that user (and a system privilege).

Waiting for processes to die

® \Win32 uses "standard" wait function
WaitForXXObjects() to synchronize parent with
child death.

® Somewhat limited - only 64 HANDLES can be used
with WaitForMultipleObjects().
® POSIX uses asynchronous signals to signal child
death.

® Parent can be set to ignore child death (no signal) -
equivalent to closing the child process handle on NT.

® Child status can be returned using the waitpid() call.

Creating threads

® \Win32 threading model is well defined. POSIX
threads were an additional interface and are less
well integrated into the system.

® CreateThread() or beginthreadex() may be
replaced by pthread create().

® Older POSIX interfaces are not MT safe
(eg.gethostbyname()). Some interfaces have

been extended by adding a _r suffix (to signify
reentrant).

® This is similar to the Win32 Ex suffix.

® Don't assume calls are MT safe unless explicitly
documented as such.

Win32 to UNIX : sockets

® \Win32 sockets map almost directly to UNIX
sockets.

® Significant difference is fd set code. Win32 uses
an array of HANDLES rather than a bitmask.

® Win32 socket HANDLES need to be created as

non-overlapped in order to use them with default
ReadFile()/WriteFile().

® UNIX sockets are just ordinary file descriptors and
can be treated exactly as such. read()/write() work as
expected. inetd depends on this.

® The "blocking hook" concept doesn't exist under
POSIX - was an old 16-bit Windows method.

Win32 to UNIX : memory
mapped files

® UNIX mmap is easier to use than Win32 memory
mapping.

® One system call to map a file region (mmap()),
one call to remove the mapping (munmap()).

® Auxiliary calls to flush views etc.

® WIin32 calls, although adding an extra API layer
(a "File Mapping Object") are functionally
identical.
® So much so POSIX file mapping is implemented in

terms of Win32 file mapping in Cygwin32, a POSIX
emulation layer on top of Win32.

Win32 to UNIX : file locking

File locking under Win32 is much easier to use
than POSIX.

Semantics are also different, Win32 file locking is
mandatory, POSIX locking is advisory.

See sample4.c for how to use fcntl locking.

POSIX has much richer locking semantics. Lock
ranges can be merged and split, and lock ranges
can be upgraded (read -> write lock) and
downgraded (write -> read lock).

Win32 locking semantics are not precisely
known.

Win32 to UNIX : event logging

® UNIX eventlogging APl's are easier to use than
the Win32 ones.

® openlog()/syslog()/closelog() are the only relevant
functions.

® syslog() is a varargs function allowing printf style
formatting of log messages.

® The clean architecture split (the logging functions
just write down a local pipe to a separate logging
daemon) allows easy remoting of logs, without
the application needing to be aware.

® | ogging is controlled by the syslog daemon, and
the /etc/syslog.conf file.

Win32 to UNIX : input/output

® Win32 has several different I/O types.

® Synchronous, Asynchronous (Overlapped) and I/O

completion port.
® Using I/O completion ports are complex but can give

high thoughput.
® UNIX has synchronous and asynchronous (old
style SIGIO and newer style POSIX aio XX
functions).

® Currently the aio_read()/aio_write() functions in Linux
2.2 are emulated using threads created by glibc.

® Win32 Overlapped code maps reasonably well to the
newer POSIX.4 aio XX calls.

Win32 to UNIX : I/O completion
ports

® Currently no UNIX has a mechanism similar to
Win32 I/O completion ports.

® |/O completion ports allow a limited number of worker
thread to keep an asynchronous I/O handle busy.

® Whenever an |/O request completes one of the worker
threads is woken to process the request.

® The Linux 2.4 kernel will have a mechanism to
reproduce |I/O completion ports (queued POSIX
real-time signals with sigwaitinfo()).

® The signal number chosen will represent the
completion port.

Win32 to UNIX : shared libraries

® Win32 shared library functions : LoadLibrary(),
GetProcAddress(), FreeLibrary() map easily onto
the UNIX dlopen(), disym() diclose() functions.

® UNIX elf shared object format is more powerful
than the Win32 COFF based format.

® UNIX shared libraries can link back to symbols in the
loading code, Win32 shared libraries must be
complete when created.

® Concepts map reasonably well, however when
running root daemons be careful to use fully
qualified pathnames to prevent security
problems.

Win32 to UNIX : more complex
mappings

® Win32 uses WaitforMultipleObjects to
synchronize all events.

® Limited to 64 HANDLES, but can be HANDLES to any
waitable object.

® Under UNIX, poll()/select() may be best mapping.

® However poll()/select() only waits on file descriptors.

® Common trick is to use signal handlers that write
messages down a pipe file descriptor to map other
waitable objects to a poll()/select(). See samplel.c

® Beware of differences between slow (interruptible via
signals) and fast system calls. Win32 has no similar
concept.

Win32 to UNIX : more complex
mappings (continued)

® Win32 message pump code may be replaced
with SystemV message queues (or POSIX
message queues once these become standard).

® MsgWaitforMultipleObjects() is probably best replaced
with poll(), using UNIX domain sockets to transfer the
messages, rather than SYSV message queues.

® SYSV functions suffer from poor integration with other
synchronization mechanisms (as they are not file
descriptor based).

® WIin32 heap code may be discarded - replace
with simple malloc.

® Different malloc libraries available under UNIX for
different uses.

Win32 to UNIX : security
considerations

® Win32 has an amazingly complex and over
engineered security model.

® Every object can be separately secured.
® Almost no Win32 code uses it.

® UNIX relies on file system security to secure
shared objects.
® Much simpler to use.

® Several subtle pitfalls. O EXCL to stop race
conditions as an example.

® '"root" daemons are system level code.

® In practice most Win32 code will ignore security
(e.g.. Microsoft applications).

UNIX user and group account
mechanisms

® UNIX has a simple 32-bit (16 in the current Linux
kernel) user id to represent any user. Likewise a
32/16 bit group id to represent a group. User and
group number spaces are disjoint.

® "Foreign" users (from another machine) cannot
be distinguished from a local user if their uid is
the same.

® YP/NIS and NIS+ are simply a way of getting a group
of UNIX machines to agree on a common mapping for
these numbers to user/group names.
® On-disk storage of file ownership is only the
owning uid and gid.

Windows NT user and group
account mechanisms (SIDs)

® NT uses a "SID" (security identifier) to store user
and group identities. NT machines also have
SIDs.

® SID number space is flat (users / groups /
machines) all allocated from the same number

space.

® Unlike uids, SIDs have a complex structure. A
typical SID looks like :
® S-1-5-21-<32 bits>-<32 bits>-<32 bits>-<32-bits>
® Thefirst'1'is the revision level of the SID.

® The '5'is the "indentifying authority" (ie. who created
it). 5 means an NT system (Samba uses this also).

NT SIDs (continued)

® The '21'is the sub-authority. 21 means accounts
created by the Administrator (ie. not built in
accounts). Well, mostly :-).

® The next 96 bits are a Domain or Machine ID.

® All NT machines have a 96 bit unique identifier. This
fact is significant and will be covered in a later slide.

® The final 32 bits are a "RID" (relative ID). This is
the actual user or group ID within the 96-bit
unique identifier.

® The overall SID design is unusably complex (and
almost no programmers understand it).

Windows NT security model

® \When a user logs onto an NT machine, their SID,
as well as a list of the group SIDs they belong to,
are stored in a kernel data structure known as
an "access token".

® An access token is associated with every process.

® Threads share their owning processes token, unless
they are impersonating a user.

® This is identical to the process credentials in the Linux
task struct structure.

® This group list is fetched from the account database
(local account) or from the PDC/BDC (domain
account).

UNIX security model

® UNIX has 'root' - all powerful, and "everyone
else”.

® User logs on (username/password pair).

® Login process (running as root) consults system
databases, authenticates password and then
determines the uid and list of gid's that the user
belongs to.

® Login process forks(), then sets this group list as the
current group list onto the current process, sets the
current process uid to the user uid in a one-way
manor, then overlays the current process with the
users logon shell.

® No way for the user to get "root" privilege back.

UNIX security model (continued)

® No "magic” or hidden API's involved in this
process.

® Any process running as root can do this (become
another user).

® Authentication of the users password is optional
for a root process.
® Use getpwnam() to look up a users authentication

structure. Compare with NetUserGetlnfo on NT
(getpwnam() is much easier to use).

® root processes can get users hashed password (this
IS intentionally hidden on NT).

Win32 Impersonation

Win32 threads can impersonate a connected
user via a single API call.

Under the covers this is done via the NTLM
challenge/response mechanism.

Such a mechanism is easily built into a UNIX
protocol if needed (no need for plaintext
passwords over the wire).

® Layering the application protocol on top of a known
crypto protocol (SSL or ssh) is an easier solution and
IS less likely to cause security breaches.

Win32 SSPI is equivalent to the UNIX GSSAPI.

Config files vs the Windows
registry

® Registry is a binary "data dump" for applications
and the system.

® Nicely designed API, however if it is corrupted the
system is unusable.

® UNIX uses text files (usually in /etc) for critical
system configuration.

® Server applications can place their config files in
/etc, or within their own directory.
® Very common on UNIX to have a 2-layer config

mechanism, with system global config in a file in /etc,
and user specific config in a dot file within the users

home directory.
® Similar to Win32 profiles but a cleaner mechanism.

Emulating the registry

® UNIX has libraries designed to store name/value
pairs (where the value can be an arbitrary binary
value just like the regqistry).

® libdb implements a b-tree/hash based storage
mechanism used for such data.

® Not transactional (although an Open Source
implementation is).
® No security on individual elements.

® See sample5.c for details on implementing a
simple registry for string data. Easy to extend for
binary also.

Windows porting - here be
dragons !

® Any code using MFC will be difficult to port.
® MFC classes are designed to tie together "model” and
"view". Roach motel class library.

® If service code is just using MFC collection classes,
then porting to C++ STL standard is recommended.

® Any code tied to Windows message pump processing
will have to be re-written.

® COM/DCOM code must be replaced.

® COM on Linux libraries exist - third party, binary only.

® Options include ONC/RPC or Corba libraries (all
available with source code).

Windows porting - more
dragons

® |/O completion ports and asynchronous I/O under
Win32 is the most difficult area to address.

® \Win32 code using this will be considered to be
performance sensitive.

® No identical concepts under Linux.

® UNIX async |/O comes closest.

® Linux implementation currently done in user space -
not high performance.

® SGl has donated Linux kernel async 1/0. May go into
kernel 2.4 ?

® Older SIGIO async I/O may work.

® Measure performance to be sure (means more
complex code under UNIX than Win32)

Windows porting - more
dragons

® Beware of Win32 code using the
"ChangeNatification” API's.

® These are kernel notifications of changes on the
filesystem - UNIX does not support this.

® Be aware of file system differences, UNIX has no
file "attributes" like SYSTEM or HIDDEN. To
delete a file the directory must have write
permission.

® Open files can be deleted on UNIX - useful for
private application space (atomically removed on
close).

Windows porting - things to
throw away

® \Windows structured exception handling.

® g++ on Linux will do C++ exception handling.

® No Linux equivalent to Windows C based try
keyword.

® Most code that depends on this is attempting to catch
top level errors to display a dialog box. Linux does
useful core dumps instead.

® Microsoft "additions" to the C language.

® Things like __declspec(), __dllexport(), __ dllimport()
and other monstrosities.

® Thread local storage must be done explicitly,
rather then using the Microsoft keyword.

Weeding out Windows-isms

® Win32 has very poor abstract type definitions.

® Most functions use DWORD or other types specified
as an absolute size.

® Under UNIX, replace these with correct abstract
types (eg. off t for file sizes, size t for string
lengths).

® Win32 is tied to 32 bit semantics. Porting to a 64

bit UNIX platform takes great care (but doing so
will fix many bad assumptions).

® Win32 little-endian by definition.

® All data file reading/writing code must be fixed to work
on big endian processors.

Application data portability

® Many Win32 programs just write "C" structures
directly onto the wire or disk.

® This would even break on Windows if a different
compiler with different structure packing rules was
used.

® The Visual C++ monopoly (RIP Borland) means no-
one cares.

® UNIX programs must take care to write out in a
portable format.

® No direct structure dumps.
® Endian independent linearization.
® Using xdr library can help greatly here.

Porting Summary

® Bear in mind other UNIXs than Linux when
porting.

® Making code portable across POSIX platforms is
worthwhile in the long run (not tied to single platform).

® \Weed out non-portable APIs.

® Study POSIX specifications when deciding what to
APIls to use.

® Port with 64 bit platforms in mind.

® 32 bit platforms (such as Win32) will become legacy
very quickly.

References

® \Win32 API definitions.
® C(Check out MSDN site at microsoft.com.

® "Advanced Windows Programming" : Jeffrey Richter.

® Cygnus/RedHat : Cygwin32 product.
® An excellent example of how to map POSIX -> Win32.

® Allows your new UNIX port to continue running on
Windows !

® POSIX Spec: IEEE document.

® UNIX pthreads books :
® "Programming with POSIX Threads": Dave Butenhof

® "Pthreads Programming": Dick Buttlar & Jacqueline
Farrell (O'Reilly book).

