Mapping Windows ACLs into
POSIX ACLs

By Jeremy Allison

Sary /Ljﬂ/
y

Development Team
email: jra@samba.org
email: jeremy@valinux.com

Why attempt to map Windows to
POSIX ACLs in Samba ?

® \Windows administrators are used to simple ACL
controls.

® The Samba mapping of UNIX user/group/world
triple is not considered enough granularity for
Windows permissions.

® Competing SMBmplementations implement
Windows ACLs.

® |t becomes a ‘checkbox' feature, no matter how used.

® Fits with Samba philosophy of allowing OS to
control acces, less user-space security policy.

® UNIX and client view of permissions are consistant.

POSIX ACLs - the non-standard
standard.

® Not an official POSIX standard.

® Draft standard 1003.1e revision 17 is the API
Samba standardized on.

® Differences in vendor implementations of this API
mean Samba needs a interface layer to map to
underlying OS.

® Linux - the UNIX defragmentation tool - uses 1003.1e
draft 17 as the API - so identity mapping used on
Linux.

® [mplementation of ACL support in Samba has
increased pressure on ACL standardization.

POSIX ACLs

Are extension of UNIX u/g/w permissions.

Designed for simplicity. Allow additional users
and groups to have access specified to a file or
directory.

Do not extend UNIX permission model with extra
modes of access (rwx only).

Two extra features added, inheritance (for
directories) and masks.

® Inheritance applied to files and directories alike.
® Masks override group and additional permissions.

Examining a POSIX file ACL

® Sample POSIX file ACL :

file: testfile <--- file name

owner: jeremy <--- file owner

group: users <-- POSIX group owner

user::rwx <-- perms. for file owner (standard 'user’)
user:tpot:r-x <-- perms. for extra user 'tpot'

group::r-- <-- perms. group owner (standard 'group’)
group:pcguest:r-- <-- perms. for extra group 'pcguest’
mask:rwx <-- mask '"ANDed' with groups

other:--- <-- perms. for any other user (standard 'world')

Examining a POSIX directory
ACL.

® Sample POSIX directory ACL :

file: testdir/ <-- File name

owner: jeremy <-- File owner

group: jeremy <-- POSIX group owner

user::rwx <-- perms. for directory owner (standard 'user’)
group::rwx <-- perms. for group owner (standard 'group’)
mask:rwx <-- mask applied (ANDed) to group perms.
other:r-x <-- perms. for all other access (standard 'other’)
default:user::rwx <-- Inherited owner perms.
default:user:tpot:rwx <-- Inherited extra perms for user tpot
default:group::r-x <-- Inherited group perms.

default:mask:rwx <-- Inherited default mask

default:other:--- <-- Inherited other perms.

POSIX ACL rules

® There are some special rules applied.

® As all POSIX creation calls specify a default mode t
(created permissions) argument, then the most
restictive set of inherited and requested permissions
IS used on creation of a filesystem object.

® \When the chmod call changes group permissions,
then the change is applied to the mask if the object
has an ACL.

® This ensures users using non ACL-aware tools don't
grant more access than they intended to users or
groups with existing ACL entries.

POSIX ACL evaluation

® A POSIX process has an associated effective
user id (euid), effective primary group id (egid),
and a list of additional groups (gid's).

® \When checking the requested access (rwx)
against an object with a POSIX ACL, the order of

evaluation is as follows :

® uid matches are made first (starting with the owner
uid). If any uid entries in the ACL match, this entry is

used for access.

® Search for any matching gid entries, if the requested
access is granted for any gid associated with the
process then allow access.

® If no other entry matches, use the "other" entry for
access.

"Overdesigned, underused and
added to NFSv4" - Win32 ACLs

® Win32 ACLs are (IMHO) a mes.

® Beautifully designed from a computing science point
of view, they are so complex to use that aimost NO
Windows administrator understands them.

® [n addition, so few Win32 programmers understand
them that in practice most applications also ignore
ACLs.

® Order dependent, moving the entries within an ACL
can completely change the access decisions granted
by that ACL.

® Win32 ACLs (like most things in Win32) are a
moving target. Many changes introduced in
Windows 2000.

Win32 ACL details

® Win32 ACLs contain an owner and group owner
SID, plus an order dependent list of entris.
® Each entry contains a SID to which the entry applies,
a set of flags and 32 bits of actual permissions.

® The flags can specify that the permission bits either
GRANT or DENY the given action.

® Flags can also specify if an entry is inherited by
objects within a container, and what type of object can
inherit the entry.

® They have richer semantics than POSIX ACLs.

® ACL Inheritance changes made in Windows 2000
make this problem even worse.

Win32 ACL evaluation

® NT Kernel processes have a token containing a
user SID, and a list of group SIDs.

® These are exactly analogous to a POSIX user
context.

® \Windows ACL editor insists on DENY ACLs
preceeding ALLOW.

® Evaluation walks the list given the requested
access, terminating if a DENY match is found,

then masking off ALLOW bits granted.

® If the remaining access has had all bits masked out,
access is granted, else denied.

The easy part - returning POSIX
ACLs and Win32 ACLs

® Easier as Win32 ACLs are (almost) a superset of
POSIX ACLs.

® Problem was finding a mapping for "empty"
POSIX entris.

® Empty POSIX entries mean "no access".

® "No access" Win32 entries block following permit
entries.

® Worst case is "rw-rw----". Cannot map other:--- into
"Everyone: No Access" as this would override any
other access to the file.

® Use "Take Ownership" (O) flag as meaning "no
access".

Mapping POSIX ACLs to Win32
ACLs

® All ACL entries returned are "ALLOW" entris.

® Even POSIX user:--- entries are mapped into a "Take
Ownership" "ALLOW" entry.

® This is to preserve the entry in the list, so when this
entry is returned to the Samba server, we know to
keep the user:--- entry (meaning deny).

® If this entry was not returned, then on read, no modify,
write from the NT ACL editor, the POSIX user:---
entry woulde removed (maybe then allowing access
that should not have beén granted).

® Group entries are not returned as "DENY" as the
order of evaluation would change.

® The POSIX mask is appliedefore returning entries.

A digression - mapping SIDs to
uids/gids

® When returning SIDs to an NT client, some
mapping between UNIX uid/gids must be done.

® All entries on the UNIX filesystem must have
valid uid/gids (by definition).

® When returning these are either mapped to SIDs local
to the server box, to (via winbind) to Domain SIDs.

® \When mapping Win32 ACL SIDs to POSIX
uid/gid's smbd tries to contact winbindd, and then
does a best effort mapping.

® If no mapping can be done, the ACL set call fails.

The hard problem - mapping
Win32 ACLs to POSIX

This is very complex code (as it states in the
Samba code).

"Best effort" is the best we can do, given that we
are losing information.

Firstly we convert the incoming Win32 ACL into
an internal canonical format (convert SID's to
uids/gids, map generic bits to specific bits etc.).

Next we cope with NT's tendency to canonicalize
ACLs that were given to it, and then send back a
different ACL....

Mapping Win32 ACLs to POSIX
ACLs (continued).

We refuse any ACLs not in canonical form (ie. all
DENY entries must precede ALLOW entries).

We then merge ACL entries containing duplicate
SIDs (ie. ensure each SID can appear only once
in the list).

® This is done by OR'ing ALLOW permissions, and
masking off DENY permissions.

Then we need to walk the list three time.

The first pas, we look for a DEN Y Everyone
entry. If found, we truncate the list at this point.

Mapping Win32 ACLs to POSIX
ACLs (continued).

® Second pass - look for user DENY entries. If
found, look for ALLOW group entries for which
the user is a member of that group, turn the
DENY entry into an ALLOW entry with the
ALLOW bits from the group entry, masked with
the DENY bits from the group entry.

® Third pass - look for group DENY entries. For
each one, then look for user ALLOW entries
where the user is a member of that group, and
mask out the DENY bits.

® If there exists an ALLOW Everyone entry, convert the
DENY group entry to an allow, with the allow bits
masked by the deny bits.

Converting Win32 ACLs to
POSIX ACLs (continued).

® Wliaf were creaflng with a|| HiIS coae, IS a

snapshot of ALLOW entris, based on the
current group memberships on the UNIX server.

® If group memberships change, the ACLs will not
update automatically to reflect this.

® Finally, we ensure that the resultant POSIX ACL
is well formed, according to the POSIX spec (ie.
must have u/g/w).

® The POSIX ACL mask is always set to rwx, as no
mask information is given in the Win32 ACL.

® When doing chmod() inside Samba, we have to reset
the ACL mask, as a standard chmod() call changes it.

Mapping Win32 ACLs to POSIX
ACLs (continued).

® Changes in ownership or group ownership are
noted, and the standard UNIX chown() call is
made.

® This will fail if the user is not root of course.

® The result of all this pain, is a mapping that is not
exact, but a "reasonable" approximation of what
the user wanted.

® Given the light use of ACLs on Win32, this
seems to be popular within Samba.

® Tweaks and changes are still being made to the
algorithms.*

Futures

Code has been developed to give full Win32
(based on current Windows 2000 ACLSs)

semantics to Samba.

This will be kept in a sparse tdb databas,
external to the UNIX filesystem.

This unfortunately will decouple the UNIX and
Win32 ACLs, but might be useful to Samba NAS

appliance vendors.
Performance implications are not yet known.

Questions ?

® Samba code is at : www.samba.org
® Samba build farm at : build.samba.org

® Technical mailing list :
® samba-technical@samba.org

