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Emulating Windows file 
serving on POSIX

Jeremy Allison
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But isn't it easy ?

Just take a kernel, add 
your own file system and..
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Not if you don't own your 
own kernel

or file system.
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POSIX mapping challenges

● Pathnames and Privilege.
● Extra attributes.
● Open Modes / Oplocks / Leasing.
● File Locking.
● ACLs / Identity mapping.
● Alternate Data Storage / Streams / 

EA's.
● Change Notification.
● Exotica (Quotas / Snapshots / MSDFS 

etc.).
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Pathnames and Privilege

● POSIX userspace API's are all pathname 
based.

● SMB2 on the wire protocol is handle 
based.

– Less so for SMB1.
– Incoming pathnames must be 

converted to handles using the 
userspace API's.

● Works fine with simple model of 
mapping Windows users to POSIX uids.
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Pathnames and Privilege 
(continued)

● Case insensitivity can hurt 
performance.

– It's not the hits that cost, but the 
misses.

– Samba uses a stat-cache to speed up 
name translation in userspace.

– If users are happy with canonicalized 
case, that's the easiest way to deal 
with this.

– Some UNIX filesystems support case 
insensitivity.

– 8.3 filename mapping still rears its ugly 
head occasionally. 
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Pathnames and Privilege 
(continued)

● POSIX symlinks can ruin your whole 
day.

– Can be set via NFS or CIFS UNIX 
extensions.

– Should the server follow them ?
● Harder to decide than it looks.

● Options:
– O_NOFOLLOW on open().
– Use lstat/lchown/lchmod functions.
– realpath().
– fopenat()/fstatat() and friends. 
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Why following symlinks 
can cause problems

a/realative/dir/path/file.txt

Symlink, that points
elsewhere

/evil/directory

/safe/export/
Exported root of share:
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Pathnames and Privilege 
(continued)

● Problems with preventing the following 
of symlinks - O_NOFOLLOW:

– Not all systems have it.
– It doesn't do what programmers want 

or expect.
– Neither do the lstat/lchown/lchmod 

functions.
– fopenat()/fstatat() is worse.

● Two fixes for this:
– Walk the path a component at a time.
– Use realpath().
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Pathnames and Privilege 
(continued)

● But what about users 
with elevated 
SeBackup/SeRestore 
privileges ?

● Symlink races are deadly with root 
access.

– chdir() into target directory to avoid all 
the previous problems.

– It's harder than that..
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Extra Attributes
● Windows files have many more 

attributes than POSIX – how to store 
them ?

● We cheat and insist on a 
file system with extended 
attributes.

– It's not really POSIX 
under the rubber 
mask.

● If you can do without ACLs, simple 
mappings may be done onto POSIX 
permission bits.
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Open Modes / Oplocks / 
Leasing

● Using shared memory all the extra 
meta-data associated with opens can 
be efficiently shared.

– So long as CIFS/SMB/SMB2 access is all 
that is required, this is enough.

– Issues arise when NFS exports overlap 
the same file systems.

– Windows open meta-data can cause 
NFS clients to fail in unexpected ways.
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Open Modes / Oplocks / 
Leasing (continued)

● Write a user space NFS server that 
integrates with the CIFS/SMB/SMB2 
data model.

● Push required open state meta-data 
into the kernel.

– First done in SGI IRIX.
– Oplocks available as 

F_SETLEASE/F_GETLEASE in Linux.
– Share modes passed into Linux kernel 

(for IBM GPFS) via flock() call.
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File Locking
● Finally a solved problem !

– Even the zero-zero locks :-).

● Shared memory allows a mapping layer 
on top of POSIX fcntl locks

– POSIX locks are flexible enough that 
Windows locks can be mapped onto 
them.

– See my previous talk on mapping 
Windows unsigned file locks onto 
POSIX signed locks.

– Atomic operations are possible, but 
hard to get right.
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File Locking (continued)
● Smbtorture suite has a great set of 

regression tests for file (byte range) 
locking.

– Unfortunately can't test cross protocol 
file locking semantics (interactions 
with NFS).

● Good news is almost no POSIX 
applications care about the exact 
semantics of file locking (except file 
servers like Samba).

● No significant file locking bugs reported 
in the past five years or so.
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ACLs / Identity mapping
● Underlying system must have some 

form of ACLs / access control.
– (Draft) POSIX ACLs will do.
– NFSv4 ACLs are better.
– But nothing is perfect here.
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ACLs / Identity mapping 
(continued)

● How to get perfect Windows ACL 
fidelity mapped onto POSIX access 
control ? Samba solution:

– Map incoming Windows ACL onto local 
filesystem.

– Store unmodified Windows ACL along 
with a cryptographic hash of the 
underlying mapped ACL, read back 
into Windows format.

– Allows detection of external 
modification by NFS or local 
processes.
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ACLs / Identity mapping 
(continued)

● Windows ACLs (stored with perfect 
fidelity) control the first level of access.

– Any Windows DENY is correctly 
returned.

– Problems can arise when Windows says 
ALLOW but POSIX mapping says 
DENY.

– Optionally override POSIX permissions.
● Can lead to root symlink races, see 

earier section on pathname 
processing.
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ACLs / Identity mapping 
(continued)

● Mapping uids / gids to Windows SIDs is 
conceptually very simple, but there are 
many ways to do this.

– Small cottage industry of solutions 
available.

– Samba winbindd is the version we ship.
– All solutions have to deal with the same 

fundamental issues (“foreign” SIDs, 
files with group ownership but no user 
ownership).

– Some of these problems are very 
difficult (user/group enumeration).
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Alternate Data Storage / 
Streams / EA's

● Are a bad idea..

● And thankfully are rarely used.
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Alternate Data Storage / 
Streams / EA's (continued)

● Windows extended attributes map 
easily into UNIX EA's (no such thing in 
POSIX).

– Except case sensitivity issue.

● Windows streams in theory cannot map 
into UNIX EA's.

– Arbitrary size means they will overflow.
– In practice, due to small size, this can 

work.

● Without kernel support, map to 
“shadow” directories containing data.
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Change Notification

● A bad idea for scalability.
– Allows simple client requests to cause 

large amounts of server resources to 
be used.

● A bad idea for clustered file servers.
– Broad notify on the root of a filesystem 

can lead to lots of cross 
communication between cluster 
nodes.

● Not fully supported in a Windows 
compatible way on any UNIX.
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Change Notification 
(continued)

● All UNIXes do this differently.
– Linux has inotify.
– Solaris / Nexenta has FEN.
– FreeBSD has fsnotify.

● In the same way as for oplocks, Samba 
implements a user space 
implementation that can map onto an 
underlying kernel version.
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Exotica (Quotas / 
Snapshots etc.)

● POSIX symlinks can hide a multitude of 
sins.

● Arbitrary blob store on disk, just like 
EA's but supported on all systems.

– MSDFS links.
– Reparse points.
– Samba uses a prefix to ensure that 

such objects aren't misinterpreted by 
NFS clients.

● Only works for objects that don't have 
file stream content.
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Exotica (Quotas / 
Snapshots etc.)

● Windows is extending the filesystem in 
new and interesting ways.

● So are Linux, Solaris/Nexenta, FreeBSD 
and other POSIX-style systems.

● The problem is each system is 
implementing similar functionality in 
different ways.

● It truly is impossible to create a perfect 
mapping.

– After all, if you really NEED Windows..
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You know where
to license it
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Exotica (Quotas / 
Snapshots etc.)

● Samba attempts to map the significant 
features of each Linux / UNIX 
implementation into methods that 
Windows clients can use.

– Abstract each feature into the Samba 
VFS (Virtual File System) switch.

● Keeps the Samba implementors job 
interesting.

– Probably for another 20 years..
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“Your next mission, should 
you chose to accept it, is 
to make it all work in a 

cluster..”
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Coming soon, in a talk by 
Michael Adam of SerNet
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Questions and Comments ?

Email: jra@samba.org

Slides available at:

ftp://samba.org/pub/samba/slides/samba-impossible.odp

mailto:jra@samba.org
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