
O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 
W

id
e
r
 W

o
r
ld

Emulating Windows file 
serving on POSIX

Jeremy Allison
Samba Team

jra@samba.org

mailto:jra@samba.org


O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 
W

id
e
r
 W

o
r
ld

But isn't it easy ?

Just take a kernel, add 
your own file system and..



O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 
W

id
e
r
 W

o
r
ld

Not if you don't own your 
own kernel

or file system.



O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 
W

id
e
r
 W

o
r
ld

POSIX mapping challenges

● Pathnames and Privilege.
● Extra attributes.
● Open Modes / Oplocks / Leasing.
● File Locking.
● ACLs / Identity mapping.
● Alternate Data Storage / Streams / 

EA's.
● Change Notification.
● Exotica (Quotas / Snapshots / MSDFS 

etc.).



O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 
W

id
e
r
 W

o
r
ld

Pathnames and Privilege

● POSIX userspace API's are all pathname 
based.

● SMB2 on the wire protocol is handle 
based.

– Less so for SMB1.
– Incoming pathnames must be 

converted to handles using the 
userspace API's.

● Works fine with simple model of 
mapping Windows users to POSIX uids.



O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 
W

id
e
r
 W

o
r
ld

Pathnames and Privilege 
(continued)

● Case insensitivity can hurt 
performance.

– It's not the hits that cost, but the 
misses.

– Samba uses a stat-cache to speed up 
name translation in userspace.

– If users are happy with canonicalized 
case, that's the easiest way to deal 
with this.

– Some UNIX filesystems support case 
insensitivity.

– 8.3 filename mapping still rears its ugly 
head occasionally. 



O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 
W

id
e
r
 W

o
r
ld

Pathnames and Privilege 
(continued)

● POSIX symlinks can ruin your whole 
day.

– Can be set via NFS or CIFS UNIX 
extensions.

– Should the server follow them ?
● Harder to decide than it looks.

● Options:
– O_NOFOLLOW on open().
– Use lstat/lchown/lchmod functions.
– realpath().
– fopenat()/fstatat() and friends. 



O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 
W

id
e
r
 W

o
r
ld

Why following symlinks 
can cause problems

a/realative/dir/path/file.txt

Symlink, that points
elsewhere

/evil/directory

/safe/export/
Exported root of share:



O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 
W

id
e
r
 W

o
r
ld

Pathnames and Privilege 
(continued)

● Problems with preventing the following 
of symlinks - O_NOFOLLOW:

– Not all systems have it.
– It doesn't do what programmers want 

or expect.
– Neither do the lstat/lchown/lchmod 

functions.
– fopenat()/fstatat() is worse.

● Two fixes for this:
– Walk the path a component at a time.
– Use realpath().



O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 
W

id
e
r
 W

o
r
ld

Pathnames and Privilege 
(continued)

● But what about users 
with elevated 
SeBackup/SeRestore 
privileges ?

● Symlink races are deadly with root 
access.

– chdir() into target directory to avoid all 
the previous problems.

– It's harder than that..



O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 
W

id
e
r
 W

o
r
ld

Extra Attributes
● Windows files have many more 

attributes than POSIX – how to store 
them ?

● We cheat and insist on a 
file system with extended 
attributes.

– It's not really POSIX 
under the rubber 
mask.

● If you can do without ACLs, simple 
mappings may be done onto POSIX 
permission bits.



O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 
W

id
e
r
 W

o
r
ld

Open Modes / Oplocks / 
Leasing

● Using shared memory all the extra 
meta-data associated with opens can 
be efficiently shared.

– So long as CIFS/SMB/SMB2 access is all 
that is required, this is enough.

– Issues arise when NFS exports overlap 
the same file systems.

– Windows open meta-data can cause 
NFS clients to fail in unexpected ways.



O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 
W

id
e
r
 W

o
r
ld

Open Modes / Oplocks / 
Leasing (continued)

● Write a user space NFS server that 
integrates with the CIFS/SMB/SMB2 
data model.

● Push required open state meta-data 
into the kernel.

– First done in SGI IRIX.
– Oplocks available as 

F_SETLEASE/F_GETLEASE in Linux.
– Share modes passed into Linux kernel 

(for IBM GPFS) via flock() call.



O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 
W

id
e
r
 W

o
r
ld

File Locking
● Finally a solved problem !

– Even the zero-zero locks :-).

● Shared memory allows a mapping layer 
on top of POSIX fcntl locks

– POSIX locks are flexible enough that 
Windows locks can be mapped onto 
them.

– See my previous talk on mapping 
Windows unsigned file locks onto 
POSIX signed locks.

– Atomic operations are possible, but 
hard to get right.



O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 
W

id
e
r
 W

o
r
ld

File Locking (continued)
● Smbtorture suite has a great set of 

regression tests for file (byte range) 
locking.

– Unfortunately can't test cross protocol 
file locking semantics (interactions 
with NFS).

● Good news is almost no POSIX 
applications care about the exact 
semantics of file locking (except file 
servers like Samba).

● No significant file locking bugs reported 
in the past five years or so.



O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 
W

id
e
r
 W

o
r
ld

ACLs / Identity mapping
● Underlying system must have some 

form of ACLs / access control.
– (Draft) POSIX ACLs will do.
– NFSv4 ACLs are better.
– But nothing is perfect here.



O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 
W

id
e
r
 W

o
r
ld

ACLs / Identity mapping 
(continued)

● How to get perfect Windows ACL 
fidelity mapped onto POSIX access 
control ? Samba solution:

– Map incoming Windows ACL onto local 
filesystem.

– Store unmodified Windows ACL along 
with a cryptographic hash of the 
underlying mapped ACL, read back 
into Windows format.

– Allows detection of external 
modification by NFS or local 
processes.



O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 
W

id
e
r
 W

o
r
ld

ACLs / Identity mapping 
(continued)

● Windows ACLs (stored with perfect 
fidelity) control the first level of access.

– Any Windows DENY is correctly 
returned.

– Problems can arise when Windows says 
ALLOW but POSIX mapping says 
DENY.

– Optionally override POSIX permissions.
● Can lead to root symlink races, see 

earier section on pathname 
processing.



O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 
W

id
e
r
 W

o
r
ld

ACLs / Identity mapping 
(continued)

● Mapping uids / gids to Windows SIDs is 
conceptually very simple, but there are 
many ways to do this.

– Small cottage industry of solutions 
available.

– Samba winbindd is the version we ship.
– All solutions have to deal with the same 

fundamental issues (“foreign” SIDs, 
files with group ownership but no user 
ownership).

– Some of these problems are very 
difficult (user/group enumeration).



O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 
W

id
e
r
 W

o
r
ld

Alternate Data Storage / 
Streams / EA's

● Are a bad idea..

● And thankfully are rarely used.



O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 
W

id
e
r
 W

o
r
ld

Alternate Data Storage / 
Streams / EA's (continued)

● Windows extended attributes map 
easily into UNIX EA's (no such thing in 
POSIX).

– Except case sensitivity issue.

● Windows streams in theory cannot map 
into UNIX EA's.

– Arbitrary size means they will overflow.
– In practice, due to small size, this can 

work.

● Without kernel support, map to 
“shadow” directories containing data.



O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 
W

id
e
r
 W

o
r
ld

Change Notification

● A bad idea for scalability.
– Allows simple client requests to cause 

large amounts of server resources to 
be used.

● A bad idea for clustered file servers.
– Broad notify on the root of a filesystem 

can lead to lots of cross 
communication between cluster 
nodes.

● Not fully supported in a Windows 
compatible way on any UNIX.



O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 
W

id
e
r
 W

o
r
ld

Change Notification 
(continued)

● All UNIXes do this differently.
– Linux has inotify.
– Solaris / Nexenta has FEN.
– FreeBSD has fsnotify.

● In the same way as for oplocks, Samba 
implements a user space 
implementation that can map onto an 
underlying kernel version.



O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 
W

id
e
r
 W

o
r
ld

Exotica (Quotas / 
Snapshots etc.)

● POSIX symlinks can hide a multitude of 
sins.

● Arbitrary blob store on disk, just like 
EA's but supported on all systems.

– MSDFS links.
– Reparse points.
– Samba uses a prefix to ensure that 

such objects aren't misinterpreted by 
NFS clients.

● Only works for objects that don't have 
file stream content.



O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 
W

id
e
r
 W

o
r
ld

Exotica (Quotas / 
Snapshots etc.)

● Windows is extending the filesystem in 
new and interesting ways.

● So are Linux, Solaris/Nexenta, FreeBSD 
and other POSIX-style systems.

● The problem is each system is 
implementing similar functionality in 
different ways.

● It truly is impossible to create a perfect 
mapping.

– After all, if you really NEED Windows..



O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 
W

id
e
r
 W

o
r
ld

You know where
to license it



O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 
W

id
e
r
 W

o
r
ld

Exotica (Quotas / 
Snapshots etc.)

● Samba attempts to map the significant 
features of each Linux / UNIX 
implementation into methods that 
Windows clients can use.

– Abstract each feature into the Samba 
VFS (Virtual File System) switch.

● Keeps the Samba implementors job 
interesting.

– Probably for another 20 years..



O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 
W

id
e
r
 W

o
r
ld

“Your next mission, should 
you chose to accept it, is 
to make it all work in a 

cluster..”



O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 
W

id
e
r
 W

o
r
ld

Coming soon, in a talk by 
Michael Adam of SerNet



O
p

e
n

in
g

 W
in

d
o
w

s
 t

o
 a

 
W

id
e
r
 W

o
r
ld

Questions and Comments ?

Email: jra@samba.org

Slides available at:

ftp://samba.org/pub/samba/slides/samba-impossible.odp

mailto:jra@samba.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

