Samba Internals

By Jeremy Allison

Sary /Ljﬂ/
y

Development Team

email: jra@samba.org

Why document the internals of
the Samba code ?

Samba, in conjunction with Linux or FreeBSD is
now used in many "appliance"” file and print
serving products.

Samba is a part of every Linux distribution.

Samba has now been adopted by major software
vendors such as SGI, HP, and Veritas.

The design philosophy behind Samba is not clear
from looking at the code.

® \Why certain features may be accepted or rejected
depends on how they fit into the overall design.

Quick Overview

® Samba consists of two user mode daemons.

® nmbd - NetBIOS naming daemon. Not covered further
in this talk.

® smbd - Main file and print serving code.
® smbd has evolved over seven years of coding.
® Originally a file server, it has expanded to include

print services, authentication services and now
an implementation of an entire RPC protocol.

® smbd is too complex. Much work is being done to
simplify it and break it into managable parts.

smbd design

® smbd consists of a single process per connected
I . 1
client".

® Multi-user Windows servers such as Citrix or Terminal
server can break this assumption.

® UNIX user context is used for security.

® This is a very important point. smbd does not enforce
security itself, it sets the effictive userid to the UNIX
uid mapped to the client context and lets the OS
determine access. No "root race" holes.

® As a consequence of this smbd is single threaded.
POSIX threads are not guaranteed to have a security
context.

smbd event flow

® Dealing with incoming SMB messages
[smbd/process.c]:

select()
read message from socket into 64k buffer [inbuf].
check message for correctness

check incoming user context, change effective uid if
needed.

process message (done in switch_message()) -
generating reply into 64k buffer [outbuf].

send reply to client.

periodically do general housekeeping (timout events
etc.)

smbd design (continued)

® As close to Windows semantics as POSIX
allows.

® Tryto overlay POSIX filesystem with Windows
semantics in the core code.

® Don't create a "shadow" filesystem with dot files.

® Don't create mappings that have no meaning to the
underlying system (ACL or user databases).

® No modifying file contents (no CR/LF translation).

® VFS layer in Samba 3.0 will provide "pluggable”
mechanisms to provide this kind of OEM
customization.

Mapping WIin32 concepts to
POSIX

® \Win32 has some concepts that don't map well to
POSIX.

® Deny modes.

ChangeNotify.

NT specific ACL's.

Oplocks

® Differences in byte-range locks.

® Samba implements deny modes between smbd
processes via a shared memory area.

® POSIX processes ignore the deny modes.

Deny mode semantics in POSIX

® POSIX has no "deny modes". Samba layers
these over ordinary POSIX open calls
[smbd/open.c].

® POSIX apps do not interact with DENY modes.

® Reason - what happens if someone opens
/etc/passwd with DENY ALL ?

® DENY mode semantics are not logical - adding this to
POSIX is not good design.

® Samba implements a fast, smbd to smbd

mechanism to convey deny modes between user
processes.

® No centralized deny mode daemon needed.

Samba shared memory Deny
mode database

locking/[xx tdb in 2.2.0

_ Shared Memory Area
in 2.0.x

(dynamic in Samba 2.2.0 and above)

~ | Doy Reat
\iointers as offsets

Deny Read
Open Mode Chain
Open File Hash Table
. g

Hash table locks (sysV semaphores
or fcntl locks)

Creating Oplocks in POSIX

® Allowing Oplocks on top of POSIX breaks
consistant view of filesystem (and Samba
philosophy) [smbd/oplocks.c]

® However, too useful not to implment. Needed for SMB
speed.

® Deny mode database holds all shared info about
open file state. Oplock records added to this
data.

® Blocking IPC mechanism between smbds
needed that would integrate into select()/poll().

® UDP messages on loopback interface chosen.

Oplock communications

® On break request, smbd locks db, finds holder of
oplock, sends break request via UDP port,
releases db lock then blocks awaiting reply).

® Code in [smbd/open.c] and [smd/oplock.c] -
request _oplock break() function.

® Receiver smbd gives priority to incoming UDP
messages in select(), recurses into secondary
smbd processing loop [smbd/oplock.c].

® 'Dangerous’ messages that may cause an oplock
’Prrr?gk from the receiving smbd dre queued at this
ime.
® On exit from recursed state, queued messages
are given priority [smbd/process.c] -
receive_message or smb().

The swamp - mapping Win32
byte range locks to POSIX

® WIin32 byte range locks seem to be easy to map
into POSIX.

® Approach chosed in all Samba versions 2.0.x and
before.

® Depends upon locking conflicts being handled at
client redirector.

® Not possible to give exact Windows semantics.

® Samba 2.2.x and 3.0 have correct Win32
semantics.

® "Correct" here means 'what NT does'. Has little
relation to Win32 documentation or the spec.

POSIX locks - the exact
semantics

® |ock ranges can be merged/split.
® Lock ranges can be upgraded/downgraded.
® 32/64 bit signed, not unsigned ranges.

[RDIck |

| RDIck |
| 2D Tk | Kernel view of locks

| Unlk |
Tir¥1e|RDIck| | RDIck |

POSIX lock semantics
(continued).

® Killer issue : POSIX locks are per process, not
per file descriptor.

® Eq:

int fd1 = open("/tmp/bibble", O _RDWR);
fcntl(fd1, F_SETLK, &lock_struct);

fd2 = dup(fd1);

close(fd2);

SUPRISE ! The lock you thought you had on fd1 is now gone !

In anyones wildest dreams this is not desirable behaviour.

POSIX lock semantics
(continued).

® Samba 2.0.x solution to this problem was to
reference count all opens on a file onto a single
fd, open read/write (if possible).

® Conserves fd useage.
® Samba checks prohibited security overrides.
® Disadvantages are :

® Multiple opens under different uids - need to use fork()
as a proceedure call to check return.

® smbd is lying to operating system about access mode.
® 2.2.0/3.0 solution - store pending closes in a tdb.
® Allows multiple opens to obey Samba philosophy.

Mapping WIin32 concepts to
POSIX (continued)

® ChangeNotify is a problem as it is resource
intensive.

® Similarto FAM on IRIX.

® For portability reasons, Samba currently does a
periodic scan, with no depth.

® FAM-style interface is planned. User feedback
needed.

® NT ACL's.

® Current plans are to map to simple UNIX permissions
as a first step.

® More NT RPC calls needed to allow users to see IRIX
users as NT owners.

Mapping WIin32 concepts to
POSIX (continued)

® Byte-range locks have different semantics under
Win32.

® No range splitting or merging.
No lock upgrades/downgrades.
Few apps depend on these exact semantics.
Win32 redirector helps here by filtering invalid
application requests on the client.
® Bilocking locks are the only real issue.

® Samba is not multi-threaded so implements this by

periodic polling.

® Future work may add some threading to Samba for
limited purposes. Full multi-threading not planned.

Resources

® Samba for IRIX Web site :
® http://www.sgi.com/software/samba
® Main Samba Web site :
® http://samba.org
® Newsgroup :
® news:.comp.protocols.smb
® Samba discussion list :
® ecmail: samba@samba.org
® Samba development list :
® email: samba-technical@samba.org

