Samba Printing

By Jeremy Allison

Sary /Ljﬂ/
y

Development Team

email: jra@samba.org

Windows network printing....
"What Lies Beneath"

® \Windows developed from a single user system,
which means a printing API (application
programming interface) was developed first.

® A network protocol (several in fact) was grafted on
afterwards to provide remote printing using this API.

® UNIX printing started with what is essentially a
protocol (programs writing text data into a pipe)
and has not developed much beyond that.

® \Windows printing undoubtedly is easier for users
and programmers to use. However, many horrors
lie beneath.........

How Windows Printing works
(but which one ?)

As with most things in SMB/CIFS, there are
threee different ways to print within Windows.

Original simple print spooling path, no concept of
drivers.

Windows 9x point-and-print path, uses "RAP"
calls to send jobs, receive info.

Windows NT/2000/XP and future uses DCE/RPC
(distributed computing environment/remote

proceedure calls) building a very complex
printing system.

The original DOS network
printing system

® Very similar to the original DOS printing
mechanism of opening a PRN: or LPT: device
and sending data down the handle.

® Remoted over the SMB protocol as the
SMBsplopen call.

® Rudimentary support for monitoring printer queue
status.

® Query call allows data on job id's, job status
(printing/held/error) time of submission to be returned.

® This is very similar to the output of [pg on UNIX

® Note: no concept of drivers in the OS - each
application has their own printer drivers.

The Windows 3.x printing
system

® This was the first Windows to have the concept
of application independent drivers.

® However, drivers had to be installed on each
client - the concept of drivers being automatically
downloaded to clients was not added until
Windows 95 (correct me if I'm wrong :-).

® Created the "virtual printer" API that is the basis
for all Windows applications today. Note it's an
API| not a protocol.

® Created a (Windows specific) page description
langage allowing a metatfile to be sent to a
server.

Windows Printing Abstractions.

® OpenPrinter() creates a handle that represents a
printer state.

® The current state of a printer in a Win32 client is
represented by a large blob of data.

® C(Called a "DEVICE MODE" or DEVMODE.

® Changes to this view of the printer by the
SetPrinterData() call are things like "portrait” and
"landscape”. Held locally on the client.

Contains driver specific private fields.

Specifies whether this driver emits RAW data (printer
PDL data) or EMF (enhanced meta-file) data (network
printer spooler will convert from Windows format to
printer PDL).

The Windows 9x print system.
A step forward

® Windows 9x has the capability to have the client
automatically download the driver files for a
connected printer at setup time.

® This allows an administrator to determine at install
time what driver is used for which printer on the client.

® Windows 9x clients use RAP calls (Remote
Proceedure calls tunnelled inside SMBtrans
commands on the IPC$ share) to get a block of
information about the driver to download.

® This includes the pathnames (including share) to
download, and information about the printer (hame,
location, comment strings etc).

Windows 9x printing (continued)

® Job control calls were added to do things like
pause jobs/cancel jobs/purge print queue.

® The Windows 9x print monitor application is
written to use these network calls underneath.

® On Win32 calls opening a printer handle, a local
DEVMODE is created on the client and all
changes are held there.

® Some Win32 printing calls have no effect on a
Windows 9x machine (no way to remote them to
a print server).

Windows NT Printing
(the dream becomes a

nightmarez

® Windows NT/2000/XP use a completely different
method of printing.

® SMB calls open the IPC$ share, then open the
W\SPOOLSS pipe beneath it.

® DCE/RPC calls are done to SPOOLSS pipes to
open printers, create printers, add drivers.

® Anything that can be done locally via the Win32
printing API's is remoted via this method.

® Unfortunately the application Win32 calls are not
directly remoted to a network print server. The spooler
service is between. This is a very fragile piece of
code (even for Windows).

Windows NT printing system

Win32

Ak WInNNT spooler
pplication service Remote
DCE/RPC
calls to network

spooler
Local RPC

DEVMODE

Kernel boundary ?r%cgri]set)

Windows NT/2000/XP Point and
Print concept.

® Printers (representing queues to different
printers) have data structures called
DEVICEMODES attached.

® Standard capabilities are stored in the
DEVICEMODE.

® Non-standard capabilities are created by the
Win32 printer driver code and stored as
key/value pairs associated with the printer - sent
to the print server.

® Notification mechanism allows server to notify
clients on capability changes and on printer
status changes.

Windows NT Point and Print
(continued)

® Translation can be done either on the client

(RAW) print type, or by sending a metafile to the
server (EMF).

Metafile on the server depends on associated
driver code being run on the server - Samba
cannot do this.

® Special per-printer DEVICEMODE sent when printer
handle opened to enable remote translation (EMF).

GUI representation of capabilities shared by
system print dialog and by Win32 driver code.

Printing (and printer administration) security done
by associating Win32 ACLs with printer object.

Windows Point and Print
(continued)

® All print communication done using DCE/RPC
calls over SMB.

® Print path starts with printer handle being
opened.

® Print "Job" submitted into queue (job ID returned).

® Data spooled into job.
® On “close" then the print is started.

® Backchannel notification very poorly done
(reverse SMB connection from server to client).

® Standard job commands (enumerate, delete) and
gueue commands (pause, resume, purge).

Why printing in Samba is so
complex

® \What this means is Samba must support all three
different systems in order to compete in the
Windows file and print market.

® But it gets worse.....

® The DCE/RPC implementation of the remote calls in
Windows is unbelievably complex. PDC emulation is
easy compared to this.

® The implementation is APPALLING. Send an
incorrectly formatted packet back to the spooler, it
crashes. Send data it isn't expecting - it crashes.

® The implementers did not understand network
protocols. At all.

Why printing in Samba is so
complex (continued).

® A multitude of client application Win32 calls are
coalesced in the spooler service and end up as
one or more calls on the wire.

® Many of the Win32 calls are simply remoted
(easiest to figure out). Some are not - completely
new structures and data types seen on the wire.

® This has been the hardest interoperability problem the
Samba Team has ever faced.

® Approximately 5-10 person years of work has
gone into this code.

Why the Windows NT printing
model Is broken.

® In implementing the Windows NT printing model
we came across several glaring design flaws.

® Driver binary dependence.

® |In order to correctly load a driver on a Windows
network printer server it has to EXECUTE on the
server that it is being served from.

® This is a severe disadvantage if your server is a
Windows MIPS or Alpha CPU and your clients are
x86 (| guess that's why Windows doesn't run on
anything but Intel. No, WinCE doesn't count :-).

® Driver versioning doesn't work.

® Many drivers share file names. All drivers of the same
type (user or kernel) are put into one directory.

More complaints about
Windows printing....

® There is no protection from race conditions.

® Two printer admins installing drivers at the same time
could ruin each others day :-).

® Between Windows NT 4.x and Windows 2000 the
drivers changed from running in kernel mode
(NT4.x) to user mode (2000 and above).

® As the old drivers need to work, Windows 2000 has to
support both.

® A new directory structure was added under the magic
printing share to support this.

® The print subsystem looks like it was cobbled
together by sophomore (1st year) CS students.

Samba Printer Code

® [mplements Windows NT/2000/XP "point and
print" interfaces.

® Provides driver download.
® Provides remote store for capability data.
® Maps Windows "printers" onto UNIX print queues.

® Depends on drivers doing the data translation
(rasterization/conversion to PS etc.) on the client

(RAW mode - no EMF).

® Uses internal tdb database to store capabilities
such as DEVICEMODE and key/value pair data.

® (Can fail with drivers that are expected to be run on the
server.

An Aside about TDB

® Developed from our original shared memory
code for distributed file open data between
smbds.
® Re-written mainly by tridge. Uses mmap and cleanly
falls back to read/write.

® Allows multi-simultaneous readers and writers to
access data as key/value pairs.

® Now used as the back-end store for most parts of
Samba (the Samba registry :-).

® Codeis GPL-NOT LGPL'!

TDB Internals

;[gger;(agh free [y free
f free list start space Space gy

free space
: 4l

tdb/ free Key/Valuet :
header space data %
- Key/VaI ue A Yo
\iointersasoffsets
Free List
Data Chain
Hash Table Index
O

Hash table locks (fentl locks)

Samba Printer Code (continued)

Printer tdb acts as a registry store for printer
capabilities.

Print queue tdb keeps track of Win32 submitted

jobs. Associates Windows data with underlying

UNIX spooling data (as returned from Ipq).

On job submission a job entry is created in the
queue tdb.

Data then spooled into a tmp file.

On completion job submitted into UNIX print
system using internal Samba vectored API.

Polling used to report print status.

Reporting Print Queue Status

® Many Windows clients "poll" when a print monitor
application is open.

® Running Ipq for each query request would Kkill
server performance.
® The last queue status is cached with a timestamp.

® Very complex code to ensure multiple writers can
update/query simultaneously.

® F[ull database traversals are the most costly.

® UNIX print jobs are mapped into a "smbprn” job
name when reporting back to a Windows client.

Samba Interface to UNIX print
system

® Kept as simple as possible. Consists of
operations :

® get queue

pause_queue

resume_queue

job_delete

job_pause

job_resume
® job submit

® CUPS currently only real API user. Others map
UNIX commands (Ipg,lprm,lpc) under interface.

Samba Interface to Windows
Printer manipulation

® To allow Samba based "print appliances" smbd
calls external scripts on events like "add printer"”,
"delete printer" etc.

® These scripts allow UNIX print queues to be
created/deleted etc.

® tdb based messaging system is used to notify
smbd's of change events (such as "add job",
"delete job").
® These events are used to send notifications back to
the client.

® Event model not fully understood yet.

Win32 Printer capabilities In
Samba

® DEVICEMODE stored per printer object in tdb.

® Security : ACLs stored per printer in tdb.

® Accessing user checked against stored ACL before
allowing desired access.

® Generic key/value access provided by
GetPrinterData()/SetPrinterData()/EnumPrinterD
ata() calls.

® These can set arbitrary capabilities and enumerate
the list

® Treated as "blobs" of typed data and stored in the tdb.

® No mapping between UNIX capabilities and
Win32.

Setting up a Samba Printer

® A driver needs to be bound to the client view of a
printer.

® "Printer" administrator must bind a driver to a
UNIX print queue.

® C(Clients then transparently download and install this
code.

® Users don't need to know printer type or how it is
configured.

® Driver takes care of GUI dialog capabilities.
Changes are stored on Samba server and sent
via notification to other clients.

Known Problems

No way to ensure Win32 printer driver associated
with a printer by the printer Admin is correct.

No way to ensure capabilites set from Win32
match to capabilities set under UNIX (must trust
print admin).

Even with perfect UNIX API, transition to use
extra features will be slow as Samba must
compile on many older systems.

Win32 printer status decoupled from UNIX printer
status (must pass through narrow API) and error
codes don't always match.

Futures

® The UNIX printer APl must get fixed and become
richer.
® There are various groups attempting this.
® |BM omnidriver group.
® Open Source Printing group (headed by HP).
® CUPS is currently the best choice for an APl (IMHO).

® Postscript printers handled well under
UNIX/Linux

® Inkjet driver improvements sorely needed.

® Microsoft are moving the goalposts with the new
UNIDRIVER in Windows XP and beyond....

Resources

® Main Samba Web site :
® http://samba.org
® Newsgroup:
® news:.comp.protocols.smb
® Samba discussion list :
® email: samba@samba.org
® Samba development list :
® email: samba-technical@samba.org

