HBWHS

Samba's Cloudy Future

SAMBA

Jeremy Allison
Samba Team

jra@samba.org



HBWHS

Isn't cloud storage the future ?

Yes, but not usable for many existing
apps.



HBWHS

Cloud Storage is a blob store

* Blob stores don't map very well onto the
open/read/write/close random access semantics of
most applications.

* Apps are changing to cope with no random access
semantics of cloud stores, but this will take time.



HBWHS

Doesn't FUSE solve this ?

* Mostly, for Linux and MacOS X
applications.

 No FUSE on Windows clients.

— So can't Windows clients access
via Samba running on top of a
FUSE filesystem ?

— No, because FUSE system calls
can block for an awfully long
time..

— In theory Samba can cope with
this by making all syscalls async.

— Might we become a FUSE host ?



HEWHS

Enter flexible Samba

 The VFS can save us !

 Stackable, modular, easily modifiable user-space code.

 Already contains code to cache all reads/writes onto
local files.

— We just :-) need a way to ensure we sync to the
remote cloud on metadata update

— File/directory creation/deletion, .

 What should we do with the extra metadata (ACLS
etc.) ?



Possible Architecture

. Metadata
- sync protocol
S —

To client

(SMBzg

To cloud
(https)

)

PIHOM A9PI/M

Local file access
Into Disk Cache

°,
T
0
-
5
Q
-
3
0
0
g
)
H
0
g



HEWHS

What level of coherence can we
provide ?

 NOT full Windows semantics.

— Latency going to the the cloud would make this
unusable.

— Only clients going to the same on-premises Samba-
Cloud gateway provide Windows semantics.

e Coherence on close/unlink/mkdir/create only.

— If a client writes then closes, they are guaranteed to
have that version uploaded to cloud storage.

— Open files not synced.
 “Good-enough” semantics for many apps.



HEWHS

Under the covers

 Cloud services daemon reads/writes into private
namespace hidden from smbd, but on the same
physical device.

 On sync use atomic file operations (rename, unlink) to
move to/from private namespace into smbd-exported
namespace.

* |f we have a underlying btrfs copy-on-write filesystem,
use file cloning on close to create instant copies that
can be synchronized out to cloud storage.

— On non COW filesystems, physical copies of files
needed.



Operations - Open/Create/Mkdir

 Create operations must sync with cloud daemon.

HEWHS

— Requires synchronous call to cloud backend.
— On create success local file/directory created.
— For files marked TMP, ignore cloud operations ?

 For open existing, open operation must trigger read
from cloud.

— At least fetching file metadata (size etc.) must be
synchronous.

— File data access operations (read/write) can then be
forced to go async until the data is synchronized from
the cloud.

— FILE_ATTRIBUTE_OFFLINE can help here.



HEWHS

Operations -
Read/Write/Truncate/Unlink/Rename

 Once the on-disk file Is known to be in a valid state,
reads, writes and truncates can proceed as normal.

— No cloud communication needed.

 Unlink and rename need synchronous operation to the
cloud, but should be a reasonably quick operation (just
round-trip latency).



HEWHS

Operations - Close

» Reference count open files — on last close then
expensive synchronous operations need to happen.

e |f file modified then make a sync call to the cloud sync
daemon to make a copy of this file.

— Use COW Iif avallable.

— Once copy Is complete, smbd can reply to the close
request.

e Cloud sync daemon then pushes changed file up to the
cloud.

— Should we add a delay time here ? Only guarantee
coherence after 5 minutes ?



HEWHS

The cloud sync daemon

Using existing Samba technologies talloc,
asynchronous tevent, with backing threadpool.

— All smbd's will need to talk to it.
— Use tdb transactions for crash recovery.

Create plugable back-ends to allow choice of cloud
storage providers.

Ignore key management/credentials issues.

— Just expect credentials file to have been magically
placed locally by an administrator.

Many possible tunables — number of simultaneous
connections, bandwidth limits etc.



HBWHS

Error recovery

 Shock, horror. Cloud file operations can fail, right in the
middle of uploading via https.

— Do we allow client access to continue whilst there Is
a cloud outage ?

- |If so, how do we queue operations that occur during
cloud outage ?

— How much queuing do we allow in order to replay
operations later before stopping client access ?

* | don't currently have good answers to these problems.




Privacy: "We have secured ourselves from the
NSA, except for the parts that we either don't
know about or can't talk about.” - Bruce
Schneier

HEWHS

 Data stored in the cloud unencrypted, or remotely
encrypted with keys held by the cloud storage provider
can be compromised.

* Local encryption before uploading to the cloud Is the
only way to reduce this risk.

e Getting this right is hard. Two options | can see:

— vfs_encfs — Samba VFS module that emulates encfs
fuse module.

— Copy to encfs filesystem before uploading to cloud.



HBWHS

Create backends that target the Big
Three Cloud Store Vendors

g Microsoft Azure

dimnazon >
webservices™

Google Cloud Platform




HEWHS

Existing vendors

* There are many existing cloud-gateway companies,
some of which are already using Samba for this
purpose.

 Are we trying to compete with them ?

— No - In doing this I'm trying to raise the bar on what
are the “basic” services provided with Samba.

— Proprietary cloud-gateways provide more complete
service guarantees.

 Are you reinventing the wheel ?

— Yes. Loughborough University in the UK has this
code already. Unfortunately they're not releasing it
back to the community (so far, I've asked).



HBWHS

Questions and Comments ?

Email: jra@samba.org

Slides available at:

ftp://samba.org/pub/samba/slides/sambaxp-2015-cloudy-
future.odp


mailto:jra@samba.org
ftp://samba.org/pub/samba/slides/sambaxp-2015-cloudy

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

