

IDL everywhere

Andrew Tridgell
Samba Team

tridge@osdl.org

from last year ...

● Last year I presented on our new IDL based
DCE/RPC implementation

● new IDL compiler called 'pidl'
● extensions to cope with non-traditional IDL
● new RPC test suite in smbtorture

● Since then our use of IDL has expanded greatly
● now used for several new non-RPC protocol libraries
● used for an internal RPC system called IRPC
● used for some on-disk structures

IDL and licensing

● Last year ...
● announced intention to use a very liberal license for IDL

files
● legal work not completed in time for that conference

● License done
● The legal issues have now been resolved, and the IDL

files are now available under a very liberal license
● We hope that all vendors will be able to use them
● see source/librpc/idl/IDL_LICENSE.txt

IDL for non-RPC protocols

● DCE/RPC used IDL from the beginning
● structures map to IDL very well
● using IDL in new implementations is an obvious choice

● What about other protocols?
● with small extensions, IDL can be used for other well

structured protocols
● not suitable for all protocols, depending on how well the

protocol elements map onto IDL constructs

● NBT, DGRAM, WINS and CLDAP
● we have found these to all be very suitable for IDL

implementations

... IDL for non-RPC protocols

● Why use IDL?
● leverages existing code generation framework
● can automatically produce packet printing routines
● provides for more robust parsing code
● single source for both marshalling and unmarshalling

code

● Disadvantages?
● some constructs are awkward to put into in an IDL form
● can be more difficult to cope with other broken

implementations

NBT in IDL

● NBT is the most widely used protocol for CIFS
name resolution

● defined in RFC1001/1002
● traditionally coded by hand
● quite a regular structure, with some minor exceptions

● Comprehensive coverage
● nbt.idl defines more of the NBT protocol than Samba has

ever supported in the past
● easy to read and simple to understand
● name compression hand coded as it does not fit well into

an IDL framework

typedef [bitmap16bit] bitmap {
NBT_RCODE = 0x000F,
NBT_FLAG_BROADCAST = 0x0010,
NBT_FLAG_RECURSION_AVAIL = 0x0080,
NBT_FLAG_RECURSION_DESIRED = 0x0100,
NBT_FLAG_TRUNCATION = 0x0200,
NBT_FLAG_AUTHORITIVE = 0x0400,
NBT_OPCODE = 0x7800,
NBT_FLAG_REPLY = 0x8000

} nbt_operation;

typedef [enum16bit] enum {
NBT_QTYPE_ADDRESS = 0x0001,
NBT_QTYPE_NAMESERVICE = 0x0002,
NBT_QTYPE_NULL = 0x000A,
NBT_QTYPE_NETBIOS = 0x0020,
NBT_QTYPE_STATUS = 0x0021

} nbt_qtype;

typedef struct {
nbt_name name;
nbt_qtype question_type;
nbt_qclass question_class;

} nbt_name_question;

typedef [flag(NDR_NOALIGN|NDR_BIG_ENDIAN|NDR_PAHEX),public] struct {
uint16 name_trn_id;
nbt_operation operation;
uint16 qdcount;
uint16 ancount;
uint16 nscount;
uint16 arcount;
nbt_name_question questions[qdcount];
nbt_res_rec answers[ancount];
nbt_res_rec nsrecs[nscount];
nbt_res_rec additional[arcount];
[flag(NDR_REMAINING)] DATA_BLOB padding;

} nbt_name_packet;

 request: struct nbt_name_packet
 name_trn_id : 0x566e (22126)
 operation : 0x0010 (16)
 0x00: NBT_RCODE (0)
 1: NBT_FLAG_BROADCAST
 0: NBT_FLAG_RECURSION_AVAIL
 0: NBT_FLAG_RECURSION_DESIRED
 0: NBT_FLAG_TRUNCATION
 0: NBT_FLAG_AUTHORITIVE
 0x00: NBT_OPCODE (0)
 0: NBT_FLAG_REPLY
 qdcount : 0x0001 (1)
 ancount : 0x0000 (0)
 nscount : 0x0000 (0)
 arcount : 0x0000 (0)
 questions: ARRAY(1)
 questions: struct nbt_name_question
 name: struct nbt_name
 name : 'BLU'
 scope : NULL
 type : NBT_NAME_CLIENT (0x0)
 question_type : NBT_QTYPE_NETBIOS (0x20)
 question_class : NBT_QCLASS_IP (0x1)
 answers: ARRAY(0)
 nsrecs: ARRAY(0)
 additional: ARRAY(0)
 padding : DATA_BLOB length=0

Auto-generated packet display code

Using generated NBT library

● 'control block' interface
● pidl generates a structure oriented 'control block'

interface
● callers fill in fields from the IDL, and call to code

generated by pidl to perform marshalling and
unmarshalling

● unlike traditional DCE/RPC, generated code is not tied to
a transport, it is 'structure to bytes' and 'bytes to structure'
code

● Higher level libraries
● Higher level name resolution routines are built on top of

the generated code

IDL for WINS

● Not just NBT packets
● WINS replication protocol on TCP/42
● not previously documented as far as I know
● IDL for WINS replication in winsrepl.idl

● Some mysteries
● What is the significance of the 0x7800 opcode bits?

IDL for DGRAM

● NBT UDP/138
● General purpose datagram protocol
● Primarily used for netlogon requests
● Most common payload is a SMB trans packet!

● IDL in nbt.idl
● defines a minimal SMB packet in IDL
● defines all netlogon varients

IRPC

● Internal communication
● A CIFS server needs to be able to communicate

internally between its component parts
● Needed for status monitoring, management and shared

protocol elements (such as oplocks)
● must be fast, flexible and easily extensible

● Can we leverage existing code?
● Use IDL for message definition?
● Needs 1-many messaging
● needs more flexible structure than traditional RPC

endpoints

... IRPC

● New transport
● unix domain sockets, in DGRAM mode
● typically achieves around 50k ops/sec on a PC
● allows for multiple replies per request
● requests encoded using NDR, described with IDL

● Why not ncadg?
● endpoint model is not well suited to IRPC usage pattern
● this leads to nca* having a much heavier weight server

side impact on the code than is warranted
● could possibly move to ncadg in the future if endpoint

problem is solved

Uses of IRPC

● Status, control and management
● retrieve status of server components
● lists of active users, connections, NBT names etc
● send control messages to components
● startup, shutdown and general management tasks

● Status databases
● Samba3 used small status databases for these tasks
● these had a significant overhead even when not queried
● data changes are far more frequent than data queries
● better to only generate overhead when information is

needed, not when information changes

js bindings

● Scripting RPC
● RPC code can be tedious to write
● a scripting interface makes for simpler development of

test and management code

● Why js?
● widely used, well understood language
● easy to embed
● multiple free and portable implementations
● C-like syntax makes for easy integration with existing

code
● note that js is also known as 'ECMAscript'

ejs

● Which js implementation?
● needs to have a small footprint
● needs to be very portable
● needs to be easily embedded
● reference counted, not garbage collection

● Chose 'ejs', part of appweb
● released under GNU GPL
● beng actively developed
● very good C extension hooks
● http://www.appwebserver.org/products/ejs/ejs.html

Generating ejs bindings for RPC

● Use PIDL
● leverage existing IDL infrastructure
● bindings only need to do structure to structure mapping
● types map surprisingly well

● OO interface
● each IDL interface makes one object
● all bitmaps, enums and constants mapped to js variables
● objects can be overlaid, to combine functions
● connections auto-close when object goes out of scope

js enumerate SAMR domains

/* connect to the SAMR server */
status = samr.connect(binding);
assert(status.is_ok);

/* perform a samr Connect2 operation */
io.input.system_name = NULL;
io.input.access_mask = samr.SEC_FLAG_MAXIMUM_ALLOWED;
status = samr.samr_Connect2(io);
assert(status.is_ok);
handle = io.output.connect_handle;

/* enumerate domains */
io.input.connect_handle = handle;
io.input.resume_handle = 0;
io.input.buf_size = ­1;

status = samr.samr_EnumDomains(io);
assert(status.is_ok);

/* print them */
entries = io.output.sam.entries;
for (i=0;i<entries.length;i++) {

println(entries[i].name);
}

js bindings for IRPC

● Just like RPC?
● only fundamental difference is connect
● recognise different binding string form, using IRPC name

● Multiple replies
● An internal IRPC name can map to many tasks
● each query logically generates an array of replies
● replace io.output.* hash with io.results[] array

server side scripting

● js for web interfaces
● ejs already designed for web server scripting
● 'esp' (embedded server pages) gives session variables

and other modern web scripting capabilities

● Common libraries
● write js libraries
● not tied to command line or web
● provide higher level interfaces to IRPC management calls

and RPC pipes

js bindings for SMB

● Obvious next step
● generate bindings for Samba4 'raw' client library
● very extensive, well tested, SMB library
● will allow new torture tests to be written in js

● but its not IDL ...
● 'raw' library not generated from IDL
● need to generate bindings from C headers

● Stay tuned for js SMB bindings!

More Info

● Grab the code
● http://devel.samba.org/
● See Samba4 instructions

Questions?

