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Software Engineering Progress

* What has been happening 1n practical software
engieering?
* 10 years ago, I think that most free software projects were

behind most proprietary projects in terms of software
engineering techniques

* now, I think that free software 1s leading the way



New tools - new approaches

* The last few years has seen a new emphasis on
good software engineering techniques

* talked about for a long time, but now being widely adopted

* a combination of tools and techniques
* Types of tools

* static analysis

* runtime analysis and simulation
* memory management tools

* code generation

* much improved infrastructure libraries



Static Analysis

* Static code analysis has been around for a long
time.

* Lint has been around for well over 20 years!
* Now starting to be applied much more widely

* advanced gcc warnings
* 'sparse' analysis for kernel
* stanford checker

* findstatic.pl, minimal includes.pl in Samba



Runtime analysis

* Runtime analysis also has a long history

* when was the first profiler written? The first runtime heap
checker?

* Recent advances have revolutionised runtime
analysis
* valgrind - perhaps the most important advance in recent
years

* tracing infrastructures



Code Generation

* Code generation has had a huge impact on the
design of Samba4

* A bit over 50% of code in Samba4 is now auto-generated
* Mostly based on IDL, using pidl

* some based on swig, for python bindings
* Could this be generalised?

* more general code generators also become more unwieldy

* different projects have quite different generator
requirements

* IDL compilers - Samba vs Wine vs Ethereal



Non-traditional IDL

* [nitial motivation for IDL was for DCE/RPC
* DCE/RPC 1s natually IDL based

* code generation rules are quite simple
* Once we got the IDL bug ...

® used for on-disk xattr format
* used for NBT/WINS packets

* used for datagram and mailslot code
* Lots of extension to IDL

* non NDR formats, alignment rules, sub-contexts etc



The async problem

* Projects that implement network protocols tend to
start out as “do one thing at a time” systems

* very simple to code and understand
* can suffer very badly from latency problems

® some environments exacerbate this - like HSM
* There are three commonly used solutions

* use threads
* break up into separate processes

® use a state machine



Threads are evil



processes are ugly



state machines send you mad



Samba4 - choose your own
combination of evil, ugly and mad



A events/async framework

* We eventually settled on a system that provides
flexibility while (hopefully) maintaining sanity
* runtime chosen process models

* a sane events framework

* composite functions for taming state machines



Looking for an embedded solution?

* The end result 1s we can have a single non-
blocking process that has

* aldap server

* a CIFS server
* a NBT server
* a dgram server
® arpc server

e and soon .... a web server



Composite Functions

* Composite functions keep us (relatively) sane

* build higher level async functions out of lower level
functions

* a single coherent framework for state machine handling

* sane error handling (thanks to talloc)
* Allows linkage between protocol subsystems

* composite 'connect' does ...

e DNS and NBT and /etc/hosts
e SMB connection

* spnego, NTLM etc
* all in parallel!



Memory Management

* Memory management has always been a key
problem 1s software engineering
* One solution - a new language?
* Java, mono, python etc

* Another common solution has been pool based
memory managers

* apache runtime, old talloc

* these help, but memory management 1s still painful



talloc - sane memory handling in C

* Pool based memory managers have been around
for a long time

* get a handle, alloc some chunks on that handle, destroy the
handle

* Last year we noticed 'halloc' on freshmeat.net
* hierarchical pool allocation? Could this be useful?
* Revolution!

* new talloc implemented

* destructors allow huge lumps of complex code to be
removed

* casy Integration with existing resources



Code Coverage

* Code coverage tools have been around for ages

* like most people, I ignored them

* started playing with gcov for small bits of code
* Eureka!

* code coverage + good test suites + valgrind == wonderful!



The usability problem

¢ Oh the embarrassment!

* ADS - Microsoft has taken traditional unix subsystems and
integrated them better than the originals

* krb5 + DNS + LDAP + RPC + CIFS

* For Samba, the problem was LDAP

* OpenLDAP + SSL + SASL + krb5 == nightmare

* How important 1s the standards focus of OpenLDAP for
Samba?

* The solution was Idb



1db - sane but minimal 'LDAP'

e [s LDAP without a schema usetful?

* Yes!
* An empty file 1s a valid database
* for embedded LDAP, trusting the application is OK

* 1db grows up

* schema module added
* Idap protocol server added

* still allows for sane 'no schema' embedded usage



code coverage > high coverage test suites

static analysis
BETTER CODE talloc

/

compiler advances
T type safety < P

valgrind



Life at the bleeding edge

* A new filesystem, a new way to lose your data!

* STES - a filesystem for high decibel storage systems
* What happens if .....

* we run smbtorture CHARSET test against Win32 STFS
e ... and 1t tests all UCS2 characters

* ... including character 0x12F

* ... and we mount the same filesystem via STFS for Linux

* ... and we want to cleanup the test using
rm-rf testdir



When all else fails ... brute force

* The LSA session key problem

* on ncacn_np transport session key is obvious

* on ncacn 1p tcp what is the key??
* re-cast problem as a public challenge

* clarifies problem a lot, and sometimes gives a solution

* noticed that encryption was the same on all servers!
* a fixed key?!?

* How far do changes propogate?
* input appears to be in 7 byte blocks. What could that be?



smart brute force

* bitslice DES
* 32 DES calls 1n parallel

* full search would still take years
* Could the key be human readable?

* search weighted by character frequency
e attack 51 bits at a time
* 2 days of CPU later solution 1s “SystemLibraryDTC”



Questions?



