
musings on software engineering

Andrew Tridgell
tridge@osdl.org

(Please ask questions during the talk)

An accidental linux box ...

Software Engineering Progress

● What has been happening in practical software
engieering?

● 10 years ago, I think that most free software projects were
behind most proprietary projects in terms of software
engineering techniques

● now, I think that free software is leading the way

New tools - new approaches

● The last few years has seen a new emphasis on
good software engineering techniques

● talked about for a long time, but now being widely adopted
● a combination of tools and techniques

● Types of tools
● static analysis
● runtime analysis and simulation
● memory management tools
● code generation
● much improved infrastructure libraries

Static Analysis

● Static code analysis has been around for a long
time.

● Lint has been around for well over 20 years!

● Now starting to be applied much more widely
● advanced gcc warnings
● 'sparse' analysis for kernel
● stanford checker
● findstatic.pl, minimal_includes.pl in Samba

Runtime analysis

● Runtime analysis also has a long history
● when was the first profiler written? The first runtime heap

checker?

● Recent advances have revolutionised runtime
analysis

● valgrind - perhaps the most important advance in recent
years

● tracing infrastructures

Code Generation

● Code generation has had a huge impact on the
design of Samba4

● A bit over 50% of code in Samba4 is now auto-generated
● Mostly based on IDL, using pidl
● some based on swig, for python bindings

● Could this be generalised?
● more general code generators also become more unwieldy
● different projects have quite different generator

requirements
● IDL compilers - Samba vs Wine vs Ethereal

Non-traditional IDL

● Initial motivation for IDL was for DCE/RPC
● DCE/RPC is natually IDL based
● code generation rules are quite simple

● Once we got the IDL bug ...
● used for on-disk xattr format
● used for NBT/WINS packets
● used for datagram and mailslot code

● Lots of extension to IDL
● non NDR formats, alignment rules, sub-contexts etc

The async problem

● Projects that implement network protocols tend to
start out as “do one thing at a time” systems

● very simple to code and understand
● can suffer very badly from latency problems
● some environments exacerbate this - like HSM

● There are three commonly used solutions
● use threads
● break up into separate processes
● use a state machine

Threads are evil

processes are ugly

state machines send you mad

Samba4 - choose your own
combination of evil, ugly and mad

A events/async framework

● We eventually settled on a system that provides
flexibility while (hopefully) maintaining sanity

● runtime chosen process models
● a sane events framework
● composite functions for taming state machines

Looking for an embedded solution?

● The end result is we can have a single non-
blocking process that has

● a ldap server
● a CIFS server
● a NBT server
● a dgram server
● a rpc server
● and soon a web server

Composite Functions

● Composite functions keep us (relatively) sane
● build higher level async functions out of lower level

functions
● a single coherent framework for state machine handling
● sane error handling (thanks to talloc)

● Allows linkage between protocol subsystems
● composite 'connect' does ...

● DNS and NBT and /etc/hosts
● SMB connection
● spnego, NTLM etc
● all in parallel!

Memory Management

● Memory management has always been a key
problem is software engineering

● One solution - a new language?
● Java, mono, python etc

● Another common solution has been pool based
memory managers

● apache runtime, old talloc
● these help, but memory management is still painful

talloc - sane memory handling in C

● Pool based memory managers have been around
for a long time

● get a handle, alloc some chunks on that handle, destroy the
handle

● Last year we noticed 'halloc' on freshmeat.net
● hierarchical pool allocation? Could this be useful?

● Revolution!
● new talloc implemented
● destructors allow huge lumps of complex code to be

removed
● easy integration with existing resources

Code Coverage

● Code coverage tools have been around for ages
● like most people, I ignored them
● started playing with gcov for small bits of code

● Eureka!
● code coverage + good test suites + valgrind == wonderful!

The usability problem

● Oh the embarrassment!
● ADS - Microsoft has taken traditional unix subsystems and

integrated them better than the originals
● krb5 + DNS + LDAP + RPC + CIFS

● For Samba, the problem was LDAP
● OpenLDAP + SSL + SASL + krb5 == nightmare
● How important is the standards focus of OpenLDAP for

Samba?

● The solution was ldb

ldb - sane but minimal 'LDAP'

● Is LDAP without a schema useful?
● Yes!
● An empty file is a valid database
● for embedded LDAP, trusting the application is OK

● ldb grows up
● schema module added
● ldap protocol server added
● still allows for sane 'no schema' embedded usage

code coverage

valgrind

high coverage test suites

talloc

type safety
compiler advances

static analysis
BETTER CODE

Life at the bleeding edge

● A new filesystem, a new way to lose your data!
● STFS - a filesystem for high decibel storage systems

● What happens if
● we run smbtorture CHARSET test against Win32 STFS
● ... and it tests all UCS2 characters
● ... including character 0x12F
● ... and we mount the same filesystem via STFS for Linux
● ... and we want to cleanup the test using
rm -rf testdir

When all else fails ... brute force

● The LSA session key problem
● on ncacn_np transport session key is obvious
● on ncacn_ip_tcp what is the key??

● re-cast problem as a public challenge
● clarifies problem a lot, and sometimes gives a solution
● noticed that encryption was the same on all servers!
● a fixed key?!?

● How far do changes propogate?
● input appears to be in 7 byte blocks. What could that be?

smart brute force

● bitslice DES
● 32 DES calls in parallel
● full search would still take years

● Could the key be human readable?
● search weighted by character frequency
● attack 51 bits at a time
● 2 days of CPU later solution is “SystemLibraryDTC”

Questions?

