
Testing MSRPC

Andrew Tridgell
Samba Team

The other half of CIFS

● MSRPC, the variant of DCE/RPC used by
Microsoft, plays a huge role in CIFS

● the basis of almost all non-file oriented operations
● used for resource management, user administration,

directory replication, logon, printing and even file-system
search

IDL and NDR

● A DCE/RPC implementation is based around two
major components

● IDL, the interface definition language, defines the
structures and calls available within each interface

● NDR, the network data representation, defines the way that
a structure is linearised onto a wire buffer

● DCE/RPC without IDL?
● in Samba3 we implemented NDR without IDL
● in hindsight this was a mistake, it led to a very poorly

structured implementation

Interpreting IDL

● IDL gives shape, but not meaning
● a RPC test infrastructure gives the opportunity to

experiment

● Here is some typical IDL
● what does “resume_handle” contain?
● what are the units of “max_size” ?

NTSTATUS samr_EnumDomainUsers(
[in,ref] policy_handle *handle,
[in,out,ref] uint32 *resume_handle,
[in] uint32 acct_flags,
[in] uint32 max_size,
[out] samr_SamArray *sam,
[out] uint32 num_entries
);

A MSRPC development plan

● For Samba4 we developed our MSRPC
implementation differently to our earlier attempts

● First, form the IDL for the function
● Second, write a test that confirms the IDL, and the meaning

of elements
● Third, write the server side implementation

● To help with the process we have developed a
number of useful tools

● ndrdump for working out IDL
● scanners for investigating a pipe
● IDL extensions for validating NDR and building tests

Wire vs API compatibility

● Should we be API compatible?
● DCE/RPC defines both a programming API and a wire

format

● For Samba4 we are aiming only for wire
compatibility

● only wire format is needed for remote interoperability
● some aspects of API compatibility are unpalatable

MSRPC pipes

● Each IDL files defines one or more MSRPC pipes
● Pipes come in a number of different types

● “database pipes” are the most common. They contain
query, set and enumerate functions

● SAMR, LSA, SPOOLSS, WKSSVC, DFS etc
● “management pipes” provide DCE/RPC level management

functions
● MGMT and EPMAPPER

● “specialised pipes”
● NETLOGON, SKADS, DRSUAPI etc

Testing database pipes

● For database pipes like SAMR, the test strategy is
● enumerate every existing element of every type in the

database
● for each existing element try every read (non-destructive)

operation
● create a new test element of each type
● for each test element try every write (destructive) operation
● delete the test elements

IDL extensions

● pidl adds a number of extensions to IDL
● allows more well-known structures to be encoded as IDL
● avoids some of the more tedious aspects of IDL coding

● major uses of the extensions so far:
● encode low level DCE/RPC packet formats as IDL
● encode security-descriptors as IDL
● auto-initialise string encapsulation

subcontexts

● It is common for MS programmers to write
elements like:

● [in,size_is(length)] uint8 *buffer;”

● The MS application then needs to manually parse
● In pidl we can write:

● [in,subcontext(4)] RealStructure *value;

● For an example, see sec_desc_buf in lsa.idl

Relative Pointers

● Microsoft use a “relative” pointer format on the
wire for some structures. This would require
manual parsing in midl.

● In pidl we can use:
● [relative] uint32 *v;

● This tells pidl that the pointer should be
encoded/decoded using a relative offset instead of
a unique pointer

● For an example, see security_descriptor in
misc.idl

Alignment and forced little-endian

● The NDR specification has strict rules for
alignment, and assumes the endianness is set by
the PDU flags

● In pidl those can be controlled using:
● [flag(NDR_LITTLE_ENDIAN)]
● [flag(NDR_NOALIGN)]

● For an example, see epm_towers in dcerpc.idl

Generating ethereal modules

● Ethereal is the best decoder of MSRPC available,
but it can still be improved

● We want to replace the RPC decoders in ethereal with auto-
generated decoders based on IDL and pidl

● This would make ethereal maintainence much easier
● Invaluable for developers working on new pipes

● Tim Potter has this mostly working, stay tuned!

Ethereal and ndrdump

● Ethereal is a fantastic tool for investigating
MSRPC pipes! It is even more useful when
combined with ndrdump

● capture a windows -> windows session using ethereal
● use “Export Selected Packet Bytes” on the RPC payload
● use ndrdump to dump the binary data using an IDL

template
● modify the IDL, then try ndrdump again.
● Loop until exasperated or happy!

Auto-generating IDL - possible?

● An obvious question is whether it is possible to
auto-generate IDL by probing a remote server

● The answer appears to be “sometimes”, and it
certainly isn't easy

● the RPC-AUTOIDL test in smbtorture is a proof-
of-concept of an IDL generator

RPC-AUTOIDL

● Try all-zero packets of length 0, 1, 2, 3 etc
● When RPC fault code changes, this gives base

input structure size
● For each 4 bytes, test if it is a pointer by varying the value

from 0 to 1 and watching the fault code
● When fault code changes, try expanding the packet by 0, 1,

2, 3 until fault code changes back
● recursively process all pointer areas

● For an example, see samr_SetDsrmPassword

The “many ways” of MSRPC

● Like CIFS, MSRPC often has many ways of
doing a operation

● There are a total of 15 “change password” methods that we
have found so far!

● This can be a blessing, as the redundency makes
testing easier

● It also is a curse, as it makes it very hard to test
properly using windows clients

Open Challenges

● Are you bored? Want an interesting challenge?
● There are two significant open questions we have

run into but not solved in MSRPC:
● How is the session key computed in lsa_SetSecret on a

TCP transport?
● what is the encapsulation use on the ci_skads pipe?

● See the following URLs:
● http://samba.org/ftp/tridge/misc/lsakey.tgz
● http://samba.org/ftp/tridge/misc/ci_skads.cap

Writing a new IDL file from scratch

● Assuming you are trying to implement an
existing undocumented pipe:

● get a sniff of windows to windows, with as many call types
as possible

● run RPC-SCANNER to find the number of calls
● use RPC-MGMT to find the endpoint list and auth types
● use ndrdump to try possible IDL formats for each call
● write a smbtorture test for the new pipe

Questions?

● For a copy of this talk see
http://samba.org/ftp/samba/slides/tridge_cifs04.pdf

● See http://devel.samba.org/ for information on
downloading Samba4

