
Wine/Samba

Andrew Tridgell
tridge@osdl.org

(please heckle during the talk!)

Common Technologies

● Wine and Samba face some common areas of
development

● DCE/RPC, IDL and related technologies
● representing NTFS filesystem features on Posix
● multiple locking APIs

● Open questions
● What should we cooperate on?
● should we aim for Wine/Samba interoperability?
● if we cooperate, then how?

Different Aims

● Object level vs wire level
● Samba doesn't care about API compatibility, Wine does

● Trust the caller?
● for a file server, users are the enemy
● for wine, users (applications) can be assumed benign
● that will change when wine does networking, RPC etc

DCE/RPC and IDL
● Both projects are increasing efforts in this area

● widl IDL compiler in wine
● pidl IDL compiler in Samba

● Could we share IDL compiler?
● wire compatibility versus object compatibility
● Samba IDL extensions

● Could we share IDL files?
● much easier!
● Samba IDL license aims for sharing with Wine

● Share test tools?
● rpcecho, smbtorture, ndrdump etc

DCE/RPC and IDL continued

● DCE/RPC test suites
● smbtorture RPC tests
● aiming for high coverage
● focussing on server-oriented calls

● Samba IDL status
● about 50% of Samba4 code generated from IDL
● widely used for non-traditional tasks (nbt, xattrs etc)
● 4 transports so far (ncacn_np, ncacn_ip_tcp, ncalrpc and

ncacn_unix_stream)
● good start on DCOM support

DCE/RPC differences

● Samba4 treats DCE/RPC and IDL differently
from midl

● structure based calling convention
● all calls can be async
● direct C (not table based) NDR handling
● extended endpoint name syntax
● many IDL syntax extensions
● auto-generated size and debug functions

● Should we cooperate?
● different goals?
● no common IDL interfaces yet? (maybe DCOM)

NTFS features on Posix

● Both Wine and Samba need to squeeze NTFS
like filesystem features on Posix

● timestamps
● attributes
● OS/2 style EAs
● streams
● case-insensitivity
● NT ACLs
● 8.3 names
● and the just plain weird stuff

Samba3 vs Samba4 vs Wine

● Samba3 and Samba4 approach posix mappings
differently

● Samba3 is more ad-hoc, with less clearly defined interfaces
● Samba4 uses a 'NTVFS' interface, hiding Posix mappings

behind a NT-like API
● Samba4 aims for much more complete mapping

● Wine is more like Samba3 in approach?
● mostly Win9x style filesystem model?
● not aimed at fileserver oriented tasks?
● will this change?

xattr mappings

● Samba4 uses xattrs to store most NTFS features
● defined in xattr.idl, but not strictly tied to IDL
● holds timestamps, dos attribs, alloc size, NT ACLs, NT

streams and OS/2 style EAs
● uses 4 separate xattr names, in 2 namespaces

● user.DosAttrib
● user.DosEAs
● user.DosStreams
● security.NTACL

File Attributes

const string XATTR_DOSATTRIB_NAME = "user.DosAttrib";

typedef struct {
 uint32 flags;
 uint32 attrib;
 uint32 ea_size; /* accelerator for DosEAs */
 udlong size; /* used to validate alloc_size */
 udlong alloc_size;
 NTTIME create_time;
 NTTIME change_time;
 NTTIME write_time; /* only when sticky write time set */
 utf8string name; /* for case-insensitive speedup */
} xattr_DosInfo2;

OS/2 EAs

const string XATTR_DOSEAS_NAME = "user.DosEAs";

typedef struct {
 utf8string name;
 DATA_BLOB value;
} xattr_EA;

typedef [public] struct {
 uint16 num_eas;
 [size_is(num_eas)] xattr_EA *eas[];
} xattr_DosEAs;

NTFS named streams

const string XATTR_DOSSTREAMS_NAME = "user.DosStreams";

typedef struct {
 uint32 flags;
 udlong size;
 udlong alloc_size;
 utf8string name;
} xattr_DosStream;

typedef [public] struct {
 uint32 num_streams;
 [size_is(num_streams)] xattr_DosStream *streams[];
} xattr_DosStreams;

NT ACLs
const string XATTR_NTACL_NAME = "security.NTACL";

typedef [switch_type(uint16)] union {
 [case(1)] security_descriptor *sd;
} xattr_NTACL_Info;

typedef [public] struct {
 uint16 version;
 [switch_is(version)] xattr_NTACL_Info info;
} xattr_NTACL;

xattr tradeoffs

● The good ...
● convenient, keeps data with file
● available on most modern filesystems

● The bad ...
● not enabled on many systems
● can slow down some filesystems a lot

● The ugly
● very small limits for streams and EAs
● incorrect atomic semantics
● all-at-once access only

some alternatives

● tdb backend
● portable, supports large streams and EAs
● not scalable to large systems. Could be split up?
● not journaled yet

● dot-files?
● horrible rename, unlink semantics
● directly visible to Posix applications

LSM module

● Can we make xattrs atomic? secure?
● yes, via a LSM module
● speed gain via in-kernel attribute cache
● especially useful for NT ACLs

● all the right hooks
● LSM can give us transparent visibility of NTFS attributes

to Posix (eg. ACLs)
● need a user/kernel channel for credentials and attribute

changes

case-insensitivity

● current solution
● scan directories a lot
● hardest problem is proving a file does not exist
● horrible performance in some cases

● kernel support?
● lots of resistance from kernel developers for case-

insensitive filesystem support
● maybe a coherence hook could be added?

● other methods?
● yes, but they get complex

case-insensitivity continued ...

● possible solution?
● store case-preserved name in xattr
● Wine and Samba return case-preserved name
● store lowercase name in posix directory
● keep a shared-memory store of directory state

● default is unknown state
● other states based on combinations of uppercase chars to scan

● update directory state during directory scan
● coherence using directory timestamp or kernel seqnum?

case-insensitivity continued ...

● properties
● Windows clients see correct semantics for windows files,

plus fast access
● posix clients see correct semantics for posix files
● posix clients see windows files as lowercase (unless libc

updated)
● memory usage proportional to number of directories, not

number of files

● coherence?
● timestamps not ideal
● a directory sequence number could be provided by kernel?

locking

● three flavours
● byte range locks
● share modes
● oplocks

● Share between Samba and Wine?
● Samba uses tdb databases - could be shared
● does Wine care about exact locking semantics?
● requires quite intimate communication

Where to now?

● Should we interoperate?
● Wine and Samba have quite different needs, but also

significant overlap
● most obvious area for cooperation is in filesystem attributes

● Cooperate on test tools?
● we have no automated way of running win32 tests, you do!
● could Wine use some of our dual-server techniques? Could

ReactOS?

Demos!

● smbtorture RPC-ECHO and win32 echo
● masktest

● testing windows wildcard matching

● gentest
● generic dual server randomised testing

● locktest
● randomised lock testing

● file streams, ACLs
● RPC calls - such as RPC-SRVSVC

